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Abstract

We study 141 field-generalizations of the rational and elliptic Gaudin models. For sl(N)
case we introduce equations of motion and L-A pair with spectral parameter on the Riemann
sphere and elliptic cure. In sl(2) case we study the equations in details and find the corre-
sponding Hamiltonian densities. The n-site model describes n interacting Landau-Lifshitz
models of magnets. The interaction depends on position of the sites (marked points on the
curve). We also analyze the 2-site case in its own right and describe its relation to the prin-
ciple chiral model. We emphasize that 1+1 version impose a restriction on a choice of flows
on the level of the corresponding 0+1 classical mechanics.
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1 Introduction

Gaudin model (or Gaudin magnet) was introduced by M. Gaudin [I] as a quasiclassical limit
of spin-1/2 chain and was studied via the Bethe ansatz [2, B]. Let us start with a general
rational model underlying Gaudin magnets. The classical rational Gaudin model is defined by
the following quadratic Hamiltonians:

1 (85¢)
H, ;@ L A=l (1.1)
where S € s1(2,C), {21,...,2,} € CP! - marked points and { ) denotes the trace.

From the point of view of the Lax pair the model is described by a general Lax matrix which
is a sl(V,C)-valued function L(z) on CP'\{z1,...,z2,} with simple poles at {z1,...,2,} and
some given residues Res,, L(z) = S® € sl(N, C):

L(z) =) > (1.2)

Z— 2y

a=1

The generating function of the Hamiltonians is

n a\2 a Qb
Lpey =ty 80 5 1 (875 (13)
2 2 — (z — z4) port

The first sum in (L3]) shows that the eigenvalues A, of S® are the constant C-numbers.
Thus, the phase space is a direct product@of the coadjoint orbits by SL(N, C) action: M = O'x
.-+ x O". This phase space is naturally equipped with a linear Poisson-Lie structure:

{Sa, 85} =06 C,8s, (1.4)
ol

where S¢ are coefficients in some basis {T, }: S% =Y S%T, and C(Zﬁ are the structure constants

(6%
of sl(IV,C) in this basis. The natural basis is described in the Appendix. The Hamiltonians
(TT) in sI(N, C) case are replaced by

1 (S*S°) B
H“__N;za—zc’ a=1.n, (1.5)

The dynamics with respect to the Hamiltonians (L5 is given by the following equationa@:

00,8 = {Ha, 5} = = 3 222,
c7a (1.6)
O, S = {H,,S"} = 5250 for q £ b.

Za—2p ’

These equations of motion can be represented in the Lax form

n fact, there is coadjoint action of SL(N, C) on M which provides the constraint 3 S* = 0 with some fixation

a
of SL(N,C) action. Then one can make a reduction M — M//SL(N,C). But we do not go into details of this
reduction here. In [I7}[19] the examples of the reduction for the Painlevé VI equation are discussed. The r-matrix
of the reduced models satisfies the reflection equations. Thus, the models live on the boundaries of the finite
lattices.
*Here we imply some choice of the normalization by the Killing form ( ), see also (B.8)



O, L = [L, M,] (1.7)
with the Lax pair

Lz) =Y &
=) c; 2=’ (1.8)
M,(z) = Z‘Eza

In such a generality the model was studied many times. For example, the non-autonomous
version corresponds to the Schlesinger system of the isomonodromic deformations on a sphere.
It was studied a hundred years ago [4].

In the elliptic case [5] the Lax matrix (I.2)) is replaced by

n
L(z) =) Sapalz — 2T, (1.9)
a=1 «

where z € 3, is a coordinate on an elliptic curve ¥, with moduli 7. Basis {T,} and the
corresponding Poisson structure is defined in the Appendix (B.4]). Functions ¢, (z — z,) (B.13)
form a basis in I'(EndV, ¥;) with a simple pole at z, for some fixed holomorphic vector bundle
V of degree one. The Poisson structure (L4]) for the structure constants (B.7)) is related to the
existence of the r-matrix of the Belavin-Drinfeld type [6]. The quadratic Poisson structure can
be defined by the same r-matrix [7].

Most of problems natural for integrable systems have been studied for the Gaudin model
as well. Among them the separation of variables [§], relations to monodromy preserving and
Knizhnik-Zamolodchikov equations [9], quantum quadratic algebras and bihamiltonian struc-
tures [10], quantization [I1] and Langlands duality [12]. It should be mentioned that the elliptic
Gaudin model was originally defined by B.Enriquez and V.Rubtsov [13] as an example of the
Hitchin-type system [I5]. ”Dynamical” case was considered first by A.Gorsky and N.Nekrasov
[14]. That case corresponded to degree zero vector bundle V' (that is to nontrivial moduli space
of bundles) or to the "spin” extensions of the Calogero model. In [24] it was shown that the
top-like models and Calogero-type models are related by means of the modification procedure
(the later changes the degree of V). In this sense the models are equivalent.

Consideration of particular cases and different types of reductions leads to relations between
Gaudin model and a number of known integrable systems such as interacting tops [16], Painlevé
VI equation and Zhukovsky-Volterra gyrostat [17], Neumann system [I8].

With the advent of the Inverse Scattering Method the Lax equations or the zero-curvature
equations [20] (with spectral parameter) became a main tool for investigation of nonlinear equa-
tions [211, 22]. Different applications and classifications can be found in [23]. In this paper we are
predominantly interested in the Landau-Lifshitz equation [26] (which describes the continuous
limit of the XYZ model [27, 28]) and the principle chiral model [29] [30].

In [24] a general scheme was suggested for constructing 1+ 1 (or field) generalizations of the
Gaudin-type models as typical examples of the Hitchin systems. As a by-product of this work
the field generalization of the elliptic Calogero model was obtainedﬁ and its equivalence to the
Landau-Lifshitz equation was shown in terms of the special singular gauge transformations.

The purpose of the paper is to present explicit L-A pairs for 1 + 1 Gaudin model, to pro-
pose corresponding Hamiltonian description and to find out relationships between the obtained
equations and some known models such as the Heisenberg Model, the Landau-Lifshitz Equation
and the Principle Chiral Model. The results of the paper can be briefly summarized as follows:

3This result was first obtained by I.Krichever in [25].



(041) Mechanics: (141) Field Version: Type of Models:

Gaudin flows {H,} 1% flows {Hq1} n-site Generalization of
Principle Chiral Model (1.10)

Gaudin flows {H,} 2" flows {Ha o} Interacting Models of
("Reformulated version”) Landau-Lifshitz type

The first flows are described by the following equations:

{ atasa — k0,5 = — Z[ ’Qpac( )]’
c#a (111)
0:,S° = [S°, Pba(S)).

In ”2-site” case and rational limit these are the equations of the Principle Chiral Model:
Ol — kOzlo + 5= [ll,lo] =0,
Ol — kOl = 0

with lg = S* 4+ S2% and [; = S — 52,
The equations for the second flows are of the form (here we put sl(2,C) case and sl(N, C) is
considered below):

(1.12)

afaSa — kOpn® =[S, 9(S)] + ; 1% @ea(S€)] — [Fca(Sc)7Sa]7 (1.13)
05,5 = [@an(11%), S + [, Fya (5], '

where n* = 4)\2 [S 5% 4+ > $ac(S€). Note that in ”1-site” case n = 1 the first one equation
c#a
in (LI3) is the Landau-Lifshitz equation (for t; = t):

k‘2

0SS + — e

[5, Sza] = [, 9(5)] (1.14)
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2 sl(V,C) Elliptic Gaudin Model

2.1 Standard Description

The phase space of the Gaudin model is a direct product of orbits O x - - - x O, by the coadjoint
action of SL(N,C)). The coordinates {SS} on each orbit S¢ € O, are chosen to be dual to the
basis {T,} of the Lie algebra sl(N,C). The later basis {T}} is built as the projective representa-
tion of (Z/NZ @& Z/NZ) in GL(N,C) (see (B.4])). The corresponding structure constants ([B.7))
provides the Poisson-Lie brackets:



{Sa Sﬁ} =6 Ca,850+8- (2.1)

Let us introduce now the Lax matrix defined on the elliptic curve ¥; = C/(Z + 7Z) with
modular parameter 7 (IJm(7r) > 0):

=3 ) SiTapalz — 2), (2.2)

c=1 ael”

where Iy, = Z%) (see (B3) and functions {ps(z — z.)} form the basis in the space of sections
I'(EndV, 3;) with simple poles at {z.}, ¢ = 1...n for the holomorphic vector bundle V' of degree
one associated with the principle GL(N, C)-bundle over ;. In fact the Lax matrix is fixed by

the quasiperiodic properties with (B.IHB.2)):

Lz+1)=QL(2)Q™', L(z+7)=AL(z)A™! (2.3)
and residues Res,, L(z) = S°.
The invariants of the Lax matrix generate commuting Hamiltonians

n

o (L2(2)) = 3 (Haep(z — 20) — HyoFr(z — 22)) — Ho (2.4)

c=1

1
2N

where Hy . = ﬁ((55)2> =1 3> 5¢5¢, are the Casimir functions corresponding to the orbits
a€l’y
O. and the Hamiltonians are:

Hiom b S0l = Y Sl ) 29
c#a c#a 0461—"
Hy = ;V Z<50A<SC>> 2}Z<Sbfbc<50>> = (2.6)
b#c
%Z Y SCaSaplwa ——Z > StaSatalz = ze),
¢ ael’y b#c a€l’y

where we use the following notations: p(w,) is defined in (B.IT)), functions ¢~ (z) and f,(z) - in
(B.I3HB.14). We also define the linear operators:

65 : Sa — Sap(wa)a Sﬁab : Sa — Sagpa(za - Zb)a fab : Sa — Safa(za - Zb) (27)
In the following we also use Ei: S, — S,E; (wq ). Note that
Pab = —Pba (2.8)

in the sense that (S%@3.,(S%)) = — (%@, (S%)) due to (AIQ). Similarly, £ = fpa, $* = ¢ and
E = —F\.

“Note that we use both the Eisenstein and the Weierstrass functions. They are simply related (A ZHAS).



The commutativity of the Hamiltonians with respect to (2.I)) follows from the underlying

linear r-matrix structure of the Belavin-Drinfeld type: rZP(z,w) = Y. @z — w)To @ T, [6].
acl”
Note also that the Hamiltonians H; , are not independent:

> Hi,= —% DD (S@ac(S%) 28, (2.9)
a=1

a=1 c#a

The appropriate number of independent Hamiltonians is achieved by taking into account Hy
and all higher Hamiltonians.
Let us write down equations of motion with respect to the Hamiltonians (2Z5H2.6)):

8taSa = {HLa?Sa} - - Z[Saa@aC(SC)] (2-10)
c#a
01,5 = {H1,0, 5"} = 5", &1a (5] (2.11)
01yS* = {Ho, S} =[S, 6(S")] = > _[5% fac(5)] (2.12)
c#a

Proposition 2.1 The equations of motion (ZIHZ12) can be presented in the Lax form (I.7)
with the Lax matriz L(z) defined in (Z.2) and M-matrices given as follows:

Ma = Z SgTonOoz(Z - Za) (2'13)
ael’y;
=D > Sz~ =) (2.14)
b=1 'yEFEV

Proof:

The proof is direct. It is based on the usage of (B.I9B.23)). Let us prove identity (B.23]) which
is the most nontrivial here. For a generic point w € X; consider m(z, w) = (2 —w)p, (W —2,):

my = oz — 20)(E1(z — w) + Ei(w — z) + E1(wy) — Ei(wy + 2 — 24)) =
©y(2 = 2a) (E1 (2 —w) + Er(w — 2a)) = f5(2 — 2a)
Combining (BI9) and (B.22) which are implied to be known we have:

p5(z — 2 = (9(z — 20)pn (2 — )iy (1 — z4) T

P5(0 = 22) (P4 (2 = W)pr (0 = 20)) + P (2 = 20) (5 (50 — Wiy (w0 — 2) DB
230 — 20) P42 — )3 — 20) + 93(0 — 2)pr (2 — za)ipa(z — W)+
P+~ (2 = 2¢) Py (2c = 2a) (B1(2¢ — w) + Er(w — 20) + E1(wy) — Er(wy + 2c — 20)) =
o~y (2 — za)m%—
B4~z = 2a)0(2a — 2e) (E1(w — zc) + E1(20 — w) + E1(wg) — E1(wg + 20 — 2¢))+
P+~ (2 = 2¢) Py (2¢ — 2a) (E1(2c — w) + E1(w — 2a) + E1(wy) — B1(wy + 2c — 24)) =
py(z = Za)mﬁ Pt (2 = 2¢) f1(2e = 2a) + 0By (2 — 2a) f3(2a — 2c)+

(Er(ze —w) + Er(w — Za))(@ﬁ—l—v(z - ZC)SD“/(ZC —24) + SDB+7(Z - Za)@ﬁ(za —2) =

6



pry(z — Za)mfi — 0p+y(2 — 2¢) fy(2c — 2a) + 0py(2 — 20) f3(2a — 2¢)+
(E1(ze —w) + Er(w — 24)) oy (2 — 2a)0p(2 — 2¢)

This ends the proof of (B.23]).
O
2.2 Useful Reformulation

In this subsection we rewrite the equations of motion in a form which will be convenient for
1+ 1 generalization. First, consider the following expressions for a = 1...n:

(B.22)
> Typy(z — za) Z Py(2a —2c) =
yel)y
> Ty Y SS/SDW( ze)(E1(2 — za) + El( za — 2c) + E1(wy) — B1(2 — 2 twy)) =
L (2.15)
Ey(z = 20)(L = Ma) + 30 McE1(20 — 2¢) + Mo+ 3. T,55f4(2 — 24) =
cta ~ely
Ei(z—za)L+ > McEy(zq — 2¢) + Mo — > T,S5F (2 — za)
c#a yel’y
Then let us define new M-matrices in the following way:
My= Y T,S5F( + > Tonfoy(z = 2za), a=1.m, (2.16)
vely vely
where )
"= TS0 (20 — 2) = Y M%(za) = Resz—, (Z — ZaL(z)) (2.17)
c#a c#a
From (2.I5]) we can see that the new M-matrices are the linear combinations of (2.13H2.14):
My =Ei(z — 20) L+ Y | M.Ey (20 — %) + Mo (2.18)
c#a

Then the Lax equations yield

=L, MEi(2 — 2) + Mo] = Y E1(2a — 2¢)0;, L + Oy, L
cta c#a
and the equations of motion are:
agaS“ = Z El(za — zc)atCS“ + atOS“ =
c#a
Z [Sa’ El(za - Zc)@ac(sc) - fac(Sc)] + [Sa’ @(Sa)]

c#a
while for b # a:
8;@517 = 8tbSbE1(za — Zb) + Z atCSbEl( — ZC) + &gOSb [Sb Sb]—

c#a,b
By (2 — 2p) Z[Sb7¢bC(Sc)] + > Ei(za — ZC)[Sba@bbC(Sc)] - Z[Sbafbt:(sc)] =
c#b c#a,b c#b

[Sb7 @A(Sb) + E1(20 — 2a)Pba(S?) — fba(sa)]+

;b[sb’ (El (Zb - Za) + El(za - Zc))@bc(sc) - fbc(SC)]



Finally, we have
05,5 = [5% 95 + D[S, Fue(5°)) (2.19)
c#a

0;,8" = [S*, 9S°) + [, Foa(S™)] + 32 [S”, Gba(@ac(59))] =

. b 7 T b g (2.20)
2 [ Pau (Pucl(S°N)] + 15", Foa(S)] = (5", fua07°)] + (5", Foo(S°)

The corresponding Hamiltonians are obtained in the same way:

Ho+ 3 Ei(zq — 2¢)He = 3¢ < °HS) — 5k ST (S fup(SY))—
c#a b#c

N 2 Bi(za = ze) 2ASPa(S")) = Z<S%SC> o o (S fa(S?)-

c;éa b#c c b,c#a, b#c

£ 38 c(S) — 5w S (Bi(za — 2e) — Bi(za — 2))(S%0e(S°)) — (2.21)
c#a b,c#a, b#c

W ; Er (20 — 2c)(S°Peal(S?)) =

o S(SEHS) + L ; (S@Fue(S€)) + ﬁb 7&2# (SPealPar(S?)))

The last one term equals:

ﬁ > (se SDca(SDab(Sb)» 2N > (S @ca(@ab(s ) — 2N (SPealPac(S°))) =
bt 16756 c, ~ blc;éa c Al QcC cc;émc (222)
Wb§a<5 Pea(an(S%))) — W#a@ P(59) + WC%‘:I(S SV (za — zc)

From (2.2T}2.:22) we conclude that the Hamiltonians for the reformulated version of the Gaudin
model are of the form:

Hy= == (50" + = > (S"Fue(S) + 5= > (SPea(@ap(S7)), a=1l.m  (2.23)
or

] c ~Qc 1 a c L (RN ~ b _

Ho= 5 Z (59S) + 5 D A8 Fae(SN + 5 D (5Peal@an(S")), a=1.m.

c#a b,c#a, b#c
Two last forms of the Hamiltonians are differ by the constant 7k > (S¢S p(z, — 2.). Let us
c#a

summarize the obtained in results in

Proposition 2.2 The dynamics of the Gaudin model produced by Hamiltonians

% a ~Qa 1 a f; c L % 5 b
o= 55708 + 1 #Za@ Fac(S) + 57 b§a<s ca(@ab(57))) (224)
s given by equations
0p, 8" =[5 S + > _[8*, Fuc(5°)) (2.25)
c#a
01,8 = [ (01 + 18" Fua(S")) " = 5 el (2.26)

and can be presented in the Lax form with L(z) from (2.3) and

My =) T,S5F( + > Tolfoy(z = 2a), a=1l.n. (2.27)
~vely ~vely



The Gaudin Hamiltonians (2.5) and (2.24)) are simplified when written in terms of n* (2.I7):
. 1 . 1 2 1 -
Ho = —(5),  Ha = 5=(5"98%) = o= (1)) + 5 D (5" Fue(5°)). (2.28)
c#a
In the end of the section let us also give the rational "reformulated” version since it is more
illuminating:

~ M 1 1 fa
M, =3 L= M, + -1 (2.29)
Za — Ze 2 — Zg Z— 2 Z— 2
c#a
where
SC
fa — . 2.30
=2 (2:30)
CFa
Hamiltonians: )
~ 1 S 1 (525°€)
H,=—— — —_— 2.31
“ 2N< Zza—zc >+Nz(za—zc)2 ( )
c#a c#a

c#a c#a b#c

Sch a Sage ge 2
¥ Y Gt = w0 R e i X
b,c#a; b#c c#a c#a

Scsb Sage
Z zahiczc = _% Z zaizc <zc—zb> = % Z (iafzc;Q_F
) (2.32)

The last one term is the analogue of the constant 5% . (S¢S (2zq — 2.) in (222]). The corre-
CFa
sponding equations of motion are:

a S g¢
0,5 :c;ga—%;? .
2.33
~ b [Sb’sa] 1 [chsb] — [Sb,Sa} [n/avsb]
at“S T (2a—2p)? T Za—2p c§ Za—z2c  (za—2p)2 Za—2p

3 Field Version
3.1 141 sl(V,C) Gaudin Model

The general construction of the field version for the Hitchin systems was described in [24]. For
our current purposes we only need to define the phase space. By analogy with mechanics let
us consider a collection (direct product) of n orbits assigned to the marked points, i.e. let
Res,—,, L(z) = S% ) be elements of the loop coalgebras sl” (N, C) and z be a loop variable. We
imply that the values of the invariants under the coadjoint action (or the eigenvalues of S) are
fixed. More over we assume for simplicity that the eigenvalues are C-numbers (independent of x).
From the physical point of view it means that the magnetic momentum vector is normalized (as
it is assumed in the Landau-Lifshitz model). The boundary conditions are chosen to be periodic.
In summary, S%(x) are sl” (N, C)-valued periodic functions on a unit circle S': §%(z+27) = S%(x)
with eigenvalues {\; 4, k = 1..N, a = 1...n} fixed to be C-numbers: d,\, = 0.
In the field case the Lax equations (L7 a replaced by the zero-curvature equations:



Oy, L — kdy M, = [L, M,] (3.1)

In fact, the numeration of M, should include two type of indices as in (2.35]): the first one
type describes the number of the flow in the hierarchy and runs over 1...N in 0+ 1 mechanics or
1...00 in 1 + 1 field theory while the second one runs over 1...n in both cases and describes the
assignment of the Hamiltonians to the marked points. In this paper we are not going to concern
the whole hierarchy but only two first flows (as we did in 0+ 1 case).

We will see that the first n flows of the hierarchy corresponds to the Gaudin Hamiltonians
in the standard description (2.5]) supplemented by the momenta P, along = while the second n
flows naturally related to reformulated version (2.24)).

Standard Description H,| — 15t flows
| ption H,]

Reformulated Version ]:Ia — |2nd flows
—

(3.2)

Thus we do not use multi-index for times. It is sufficient to use t, and ¢, for our purposes
and we keep these notations for the field version.

It should be mentioned that the field generalization of the Lax pair into ”L-A” pair satisfying
(B1) is nontrivial. The fact that the L-matrix (2.2]) is unchanged in the field version follows
from the triviality of the moduli space of bundles of degree one. It is explained in [24] in detail.
As a result we deal with the following Lax matrix:

L= TS0,z — 2) (3.3)

c=1~el,

The M,-matrices for the first flow coincide with the mechanical versions either:

My= Y T,8%0(z — za) (3.4)

~ely

Proposition 3.1 The zero-curvature equations (31) with L from (3.3) and M, from (37) are
equivalent to the following equations:

01, S — kDS = — 5[5, Gae(59)),
Fa (3.5)
01, 5" = [S°, Ppa(S))-

The proof is the same as in the mechanical case. As we will see below the Hamiltonian corre-
sponding to M, has the form

M, = jé dx (P, + Ha(S(z))), (3.6)
Sl

where § dx P, is the shift operator in the loop algebra si(N, C): {$ dx Py(z), S®(y)} = 0ap0,S®(v)
St st
and H, is defined as in (L5]) or (Z5). Thus the Hamiltonian describing equations (3.5]) has the

form:

Ho = ]é dx | P, — % D (S @ac(S%) | - (3.7)
$1 c#a

10



The phase space is a direct product of the symplectic orbits of the loop group Sl(N ,C) with
linear Poisson structure:

{S2(2), S5(1)} = (@ — Y)capS2y 5(x), @b = 1. (3.8)
The second flows are of our main interest.
Proposition 3.2 The zero-curvature equations
05, L — kdyM, = L, M,]
with L from (323) and

M, = Z T,STFy (2 — za) + Z Tnypy (2 — 20), a=1..n, (3.9)
vely vely
where % = n'* + An®, 0'* = > $ac(S€) are equivalent to the following equations:
c#a
07,8 — kOyn® =[S, H(S)] + ; [S%, Fue(S°)] + ; [Pac(S€), n*]+
Ey(59), Ant| + 82, B (an?)| - By (8%, Ane) (3.10)

95,5 = [S°, Gpa(n®)] + [S°, Fba(SY)],
—k0,S* = [S*, An“].

The proof is also similar to the one given for the mechanical case. Functions n® are not uniquely
defined by equations —kd,S* = [S% An®]. We fix this ambiguity by requiring n® — n'* =
> Pac(S€) or An® — 0 in 0 + 1 limit. As for the equation —k0,S* = [S?®, An?] itself only
c#a

some special cases were studied such as ”vector” case [34, B5] and ” Grassmannian” case (special
coadjoint orbits) [36]. For sl(2,C) case the answer is well known: An® = —&[S“, Sa].

3.2 2-site Case and Principle Chiral Model

L-A pair for the principle chiral model was suggested in [29] (see also [21], 30, 31} 32]). Consider
the first flows of the Gaudin model ([3.35]) with 2 sites or marked pointes (n = 2). It is convenient
to start from the rational version:

St S?

L= + = M + M, (3.11)
zZ— 21 zZ— 22

The corresponding M-matrix is known to be

1 2
M =M — M = 5 — 5 . (3.12)
z— 21 zZ — Z9
Therefore the equations of motion are
OpSt — k0, ST = ——2_[S', 57, (3.13)
0;5% 4 k0, 5% = ﬁ[sl, S?). '

Then the Hamiltonian describing equations (B8.13]) has a form:

’H:’Hl—’Hg:}{dx (Pl—P2—<SISQ>>E (3.14)

21 — %2

Sl

5See section "Hamiltonian description” and ([@42).
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and the phase space is a direct product of two symplectic orbits of the loop group SI(N , C) with
the linear Poisson structure:

{Sa(), 55(1)} = Sabd(x — y)ca,3Sa 5(x), a,b=1,2. (3.15)

Remark: One can make a substitution S' = (I + 1) and S? = 3(lp — l1) to represent
equations (313) in its traditional form

21— (3.16)

Ol — kdylo + =2=[l1,1p] = 0,
Olg — kOzl1 =0

or change the coordinates (x,t) to "light-cone” coordinates: & = @, n= t_k;l“”:
1_ 2 1 @2
{o0_ T (3.17
0eS° = = [SH, S7].

Elliptic case. For L-A pair L = M+ My and M = My — My with M, = > ToS%p0(2—24),
ael’y;
a = 1,2 the equations (B.5)) yields (0y = 0, — O, ):

0:5? + k0, 5% = 2[S?, a1 (S1)]. ’
or by analogy with (317
OySt = —2[8%, p12(5?)],
oise Zapsh gatsny (319)

In sl(2,C) case this result was obtained by I.Cherednik [30]. Here we see that the principle
chiral model corresponds to the special (2-site) case of the first flows of 1 + 1 Gaudin model.
It should be also mentioned that in [30] the equations for sl(2,C) case were obtained as a filed
version of XYZ model, i.e. from the second flow of 1-site Gaudin model (or sl(2, C) elliptic top).
It may be explained as follows: consider stationary solutions S* = S*(n) (or 9¢:5* = 0). Then
fixing the ambiguity in solutions of the equation [S?, $a1(S')] = 0 as S% = —1¢9(S1) we have

9pS' =[S, ¢ragan (1)) = [ST, (1))
which is the equation of sl(V, C) elliptic top (or 1-site elliptic Gaudin model) corresponding to
the second flow H = 7 (S1H(S1)).

4 sl(2,C) 141 Gaudin Models

4.1 141 XXX Gaudin Magnet: Interacting Heisenberg Models

Let us consider the case Res,, L(z) = S® € sl(2,C) in detail. The linear Poisson-Lie structure in
this case:

{84, Sh} = 2v/ =162 04,5, (4.1)
3
where S% are coefficients in the basis of Pauli matrices: S* = ) S%0,.
=1

The Gaudin Hamiltonians are:

12



o Z S¢S{ + 5555 + 5555 (42)
“ 2 — Ze '
c#a
while the Hamiltonians of the reformulated version are:
2
(825¢) 1 S H?
Ry L (S ) e 4
c;éa —z.)? 4 sl Za — Ze¢ 2)2
since on )
Zzlicz_{_Q)\Q_ Zzz zfig_'_g\%:
c#a e e c;ﬁab;ﬁc are e
1 (s8¢ | 1 (5°5°) H2
502 (za—zc)2 T 2 betar bte (ze—2a)(ze—2p) + 2)\2 -
1 (5*5°) 1 (ScSb) H2 4.4
2 z (za—2c)2 4 (za—2c)(za—2p) + 222 ( )
b,c#a; b#c
2
(8959 |1 (9% 1 se Hg
2 Z (za— zc)2 + 4 Z (za—2c)? - Z<<z za—zc> >+ W
c#a c#a
Then the corresponding equations of motion are:
~ o [S® Sc [S“ S5€]
atasa Z (za—2¢)? -3 Z Za—2Zc
/ 4.5)
b Tohse 1 Tls , m s (hS , [res (
afaS T (2a—2p)? + Za—2p Z Za—Zc + €2 za—zp  (za—2p)2 Za—2p
where
S¢ H
/a a qa
— Zdg 4.6
T’ Z Za _ ZC )\3 ( )
c#a

Remark: (IZZS]) differs from (2.30) by He S“ and the corresponding Hamiltonian (£.4) differs

from (232) by W' This difference does not follow from ansatz (39) but appears from the

Hamiltonian description (see section 4.3). The corresponding Lax pair is given by L from (2]
and

1 H, 1 fa
M, Z L+—2My = —— M, + — (4.7)
#aza—zc Z— 2zq Az Z— 2zq Z— 2zq

1+1 version

Let S%(z) € sl(2,C) be periodic sl(2, C)-valued functions on a circle S': $%(x + 27) = S%(x)
with eigenvalues {\,} fixed to be C-numbers: d;\, = 0. The Poisson structure now is

{S4(x), Sh(y)} = 2V —16"enp, S% (x)d(z — y). (4.8)
Consider g “
~ n
M, = 4.
¢ (z—za)2+z—za (4.9)
where

13



k Se k ,
a_ a a a _ _ a a a a — . a 4.1
" W[s 5] +c§¢aza_zc —AQS —4>\2[S 5S4+, 8% =8,8 (4.10)

Let us remark here that in (041) limit n® = n'® . Then the zero-curvature equation
Ui n

95, L — kdy M, = [L, M,] (4.11)

reads as follows

0;,5* — Ko = |3 22 + 3 T,

c#a c#a (412)
g, gb — 18%57 | [n".s"
ta (Z 7Zb) Za—Zp

These equation generalize the Heisenberg model which appears from (£12) in n = 1 (1-site)
case:

k2
oS + — o [S,Sz2] =0 (4.13)
and described by the Hamiltonian
o fd (8,5)) (4.14)
16)\2 X o . .
Sl

4.2 141 XYZ Gaudin Magnet: Interacting Landau-Lifshitz Models
By analogy with the previous section the Hamiltonians in 0+1 sl(2,C) case:

Ay = H{S°0(5%) + 3 SUSP(5) — ([ 20 guel) | ) + 5. (115)
c#a c#a

Consider now the following I.-A pair:

3

( ) i Z 0'049004(2 - Zc)
e=la=l (4.16)

Mq(z) = Z N80a%alz = 2a) + S20aps(z — 2a) 0y (2 — Za),

where «a, 3,7 are different indices equivalent to 1,2,3 up to a cyclic permutation and (compare

with ([@I0))
a k a Qa c Ha
"= (S, 59] + ;wac (59) 3 —a gdq (4.17)
The zero curvature equation (4.I1]) leads to equations of motion:
{ 0,5 = kOun® =[S, 0(S")] + 220", Pea(S9)] = Peal[S; Pea(S)]),

, ) , ) R c;ﬁab (418)
3ga5 - [‘Pab(na)ﬂs ] + (,Oba([(Pba(S )7Sa])

5The remark about the term %Sa in the previous section is reasonable here as well.
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and n® ([4I7) is a particular solution of the equation

— kS =[S0 =) Pac(5)]. (4.19)
c#a
It is fixed if we require 0% — n* = Y Pac(S€) + %S“ in (0+1) limit. The proof follows from
cta @

([CACI0). In particular, from (C8) it follows that ¢eq([S, Pea(S)]) = [Fra(S€), S%. Then
([#18) is written in the form close to (B.10):

;. 5% — kdyn® = [S%, H(SY)] + X[ 2ea(S9)] — [Fea(S°), 57,
, cra (4.20)
0z, 5% = [@ap(1%), S”) + [S?, Fpa (S)].

The last three terms in the first equation of ([BI0) vanish. It is due to (C.6) that V A, B €
s1(2,C) : X R X
Eq([A, B]) = [E1(A), B] + [A, E1(B)].

Note that in case n = 1 the first one equation in (£20]) is the Landau-Lifshitz equation:

k2 .
described by the Hamiltonian
"= jfd Lisp(s) + - ((0.8)) (4.22)
I A VR 1622 "\ ‘ '
Sl

4.3 Hamiltonian Description

The explicit form of the conserved quantities in terms of the fields are obtained by solving the
Riccati equation. First, we make the gauge transformation (see for example [24] [33]):

(o (2 2 ) () =0 (e (2 0)) (1) =0 0o

with
8:L1a k2 02L1a 3K [9yL12\°
T = LigLoy + LY + kL1 ——= — kOy L1y — — 2 — (= 4.24
12Lo1 + L7y + kL1y Ty 2l = 5= + Tro (4.24)
which leads to the Schrédinger equation:
(—K202 + Ty = 0. (4.25)
% fz dyx(y)
Taking wave function in the form ¢y =e *o we come to the Riccati equation:
kOzx +x* —T =0. (4.26)

The solution is obtained via local decompositions:

Xo = =5 Xa1 T Xa0+ (2 = 2a)Xag + oy T =gz T2+ 25 Ta 1+ Tup + o (4.27)

Za
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L= LoV 4 190 4 (2 — 2,) L% 4 .. (4.28)
zZ— 2,
Then ([4.20) gives:
XZ,,*I = )\CQL = Ta,*Qa
1
Xa,0 = 5, (Ta,~1 — kOxXa,1),
a 2Xa,—1 a T2 rAQ (429)

a,—1

1
Xa,1 = Xa—1 (Ta,O - 4Ta,—2)’

As it was shown in [33] x,x @29) are the densities of the conservation laws. We will use
notation

ha,k(x) = _)‘aXa,kfl (430)

for the densities and

Mot = P dx hoa(@) (4.31)
St

for the Hamiltonians. The coefficients (£.28]) of the decomposition of L-matrices in rational and

elliptic cases:

La,fl = ga La,—l = ga
Lef= 3 Pt L0 = 32 fucl5°),
c#a
Lol — C_az Se el — 1 A(Sa) _ z F (Sc) (432)
(za—20)2’ 14 ac )
c#a c#a

In what follows we sometimes omit for the simplicity the index a for L-matrix and its elements
assuming decompositions (L2HL2]]). Substituting (£.28)) into (4.24]) we get:

Ty —2= L1_21L2_11 + L1_11L1_11 ) )

To—1 =Ly L3y + L Lo +2L9 Ly + kLHLB# —kdp Ly
12

Tao = L, Ly + Ly LY, + 204 Ly + 9,18, + L9, L9, +

-1 -1 27 —1 -1
k 0 -1 —159 70 _ L%L; 1 0.L 0 _ K295L 3k2 (0zL
L12 L L12 L12

(4.33)
12
Let us summarize the obtained results.

Proposition 4.1 The density of the Hamiltonian x40 has the following form in terms of the
decomposition of the L-matriz (4.28):
2AaXa,0 = Ta—1 = (L71LY) — 2P, = —2(H, + P,), (4.34)

where P, is the density of the Hamiltonian of the shift operator along x corresponding to the ath
site (marked point):

(4.35)

a a,— 8,L“’*1 T
{f do Pu(e), S°(9)} = ko, S, Pale) = ~5L31 (@) i )
S
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Proof

The nontrivial part of the proof is related to the shift operators P,. Brackets (4.8]) have the
following form in standard basis (here we omit index a as above):

{L5 (), L) (v)} = 2Ly5 (2)0(x —y), {Ly)' (@), L) (1)} = —2Ly' (2)8(z — v), (4.36)
{Lf21($),L511 (y)} = —4Lf11(33)5($ - y).

1
For example, let us verify that fdx (L} =) 8IL_112(JE;3) Lyt (y)} = —2k0, Ly (v):
S

fox (Lit @) 22 11 (y)) =
(L ), L ) 5255 — f x 0uLi (@) 0 Ll @), L () = (437)

—1, \ Oy LT, (¥) —1, Oy LT () —1
2Ly (y) yLl—;f(y) + 4Ly (9)% = —2k0y Ly ().
The later follows from the condition 9,A\2 = 0 = 9,((L1'(¥))? + L1z (y) Lyt (y)). The verifi-
cation of (A3H]) for other components can be performed in the same way.
O

Proposition 4.2 The density of the Hamiltonian xq,1 has the following form in terms of the
decomposition of the L-matriz (4.28):

8A3Na1 = 4N2T, 0 — Tc?fl =
2<La,—1La,—1> (§<La0La0> + <La Ara, —1>) (<La —1La0>) + (438)
2k (L300, Lo Loy — £ (9, Le1)2)

Proof

Our purpose is to show that ¢ dx Lh.s.(438) = § dx r.h.s.(@38)). The proof is direct. It is
St St

based on the integration by parts. For example,

-1 -1 -1 2
§ dx 422 ( K2 02l + % <M)) — k2 (Lu 8le12 _ a:rLﬁl) =

L—l L—l -
St 12 12
—4¢d k_2 L—lL—l (4.39)
Sf X 2 < xT xT >
S
and
-1 -1
f dx 42k, 2k (Lolale’Ql +LT0,I0, — L?QLE%) _
(4.40)

—Qk(M—aL ) (LG8, + Lo gt + 219 L) _Qkfdx (LOLZ1LY).

—1
L12

O
Finally, we have the following densities of the Hamiltonians describing the first and the
second flows:
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ha,l = _AaXa,O = _éTa a=F, - %<La7_1La70>
ha72 = _AG,XG, 1= —% T 4;2 TC%*I) — _l<LG70La 0>
_%<La,1La,—1> + 1 <La —1La >2

8)\2 <La06 L% —1La —1> + 16)\2 <(a L% —1) >

(4.41)
These equalities are understood in a sense that ¢ dx Lh.s.(@41]) = f dx r.h.s.(@41).
St

Proposition 4.3 Hamiltonian density ({-41]) provides equations ({{.13) and ({{.20)

Substituting (432)) into ([4.41)) we obtain explicit expressions for the Hamiltonians. In rational
case:

_ _ (5259 | _
Hop = y{dx haa(z) = y{dx Py— 3 Z pll B y{dx (P, + H,), (4.42)
St st c#a St

2 2
545¢) c Sese
a2—§dX ha2 fdx %z(ia Zc)2_%<<z ZaSZc> >+$<Z <Za_Zc>>
! c;ﬁa @ c;ﬁa
5€0,5%5%)
oy 2 :

7a—2c T 16>\2 ((9:5) >> -

(4.43)
ngdx (ﬁa 4)\2 Z Sfas:c - 16,\2<((9 5%) >>

and in the elliptic case:

Har = y{dx hoi () = y{dx Py — % 3 (59 ae(59)) y{dx (Po+ Hy),  (4.44)

S St c#a St
2
Ha2 —Sfdx ha2(z 3€ dx | 1(s%p(5%)) + 1 ; (STF(5¢)) — %((; @ac(sc)> )
2
+532 (; (s Aac<sc>>) o 5 (Pac(592::55") + 1052 (0597 | = (4.45)

Sfidx (ga 4)\2 §< ( ) Sasa> 16)\2 <(a Sa) >>

where in H,, H, from @2H3) and in {@I5) we assume S® = S(z)

18



5 Appendix: Elliptic Functions

5.1 Basic Definitions and Properties

We assume that ¢ = exp(27i7), where 7 is the modular parameter of the elliptic curve ¥, which

is realized as C/T;, ' = Z @ Zr.
The basic element is the theta function:

I(z|T) = q% Z(—l)"e(%n(n + 1)1+ nz) = (e =exp2m)
neZz

s
4

(1 _ qn)(l _ qn62i7rz)(1 _ qne—Qinz) .

s

qée (eiwz _ e—iwz)

n=1

The FEisenstein functions

1
Eq(z|1) = 0. log ¥(z|T), Eq(z|T) ~ P 2m 2,
where
oo oo’

3 1 24 /(1
n =% 3 Y e e

m—=—0o0 N=—00

and n(7) = g2 [I,50(1 —¢") is the Dedekind function.

1
Es(z|1) = —0.Eq(2|T) = 63 log¥(z|T), FEa(z|T) ~ 2 + 21 .

The higher Eisenstein functions

Ei(z) = %302@2(@, (j>2).

(A1)

(A.2)

(A.3)

(A.4)

(A.5)

It is easy to see that the even-numbered functions are even and the odd-numbered ones are

odd:

Eop(—2) = Ear(2),  FEopq1(—2) = —Eop11(2)

Relation to the Weierstrass functions

C(z,7) = E1(z,7) +2m1(1)2,

p(z,7) = Ea(z,7) — 2m(7) .
The next important function is

Pu + 2)9'(0)
O(u)d(2)

(b(ua Z) = ¢(Z,U), ¢(—U, —Z) = _(b(ua Z) .
It has a pole at z =0 and

QS(U’ Z) =

B, ) =~ + Ba(u) + 2 (BR(u) — p(w) + ...

19
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Let f(u,z) = 0y¢(u,z). Then

flu,2) = ¢(u, 2)(Er(u+ 2) — Ex(u)).
Heat equation
O-p(u,w) — %ﬂ@u&uqﬁ(u,w) =0.

Quasi-periodicity

Vz+1)=—-9(2), dz+71)= —q*%eﬁm’zvﬂ(z) ,
Ei(z+1) = FEi(2), Ei(z+71)=E(2) —2mi,
Ey(z+1) = FEs(z), Es(z+7)=Es(2),
du,z4+1) = d(u,z), d(u,z+7) = e ™p(u, z).
flu,z+1) = flu,2), flu,z+7)=e ™ f(u,z) — 2me(u,z).

The Fay three-section formula:

d(ur, z1)p(u2, 22) — d(ur + ug, 21)P(u2, 22 — 21) — G(u1 + ug, 22)P(u1, 21 — 22) = 0.

Particular case of this formula is the Calogero functional equation

¢(u’ Z)av¢(va Z) - QS(U’ Z)au¢(u’ Z) = (E2(u) - E2(v))¢(u +, Z) )

¢(u, 2)p(—u, 2) = Es(2) — Ea(w).

d(z,u1)P(z,u2) = d(z,ur + u2)(E1(z) + Ev(ur) + E1(u2) — E1(z 4+ uy + ug))

Another important relation is

d(v,z —w)p(ur — v, 2)p(us +v,w) — G(ug — ug — v,z — w)P(uz + v, 2)p(u1 — v, w) =

¢(u17 Z)¢(u27 w)f(u17 U2, U) )
where
flur,ug,v) = Ey(v) — E1(ug —ug —v) + E1(u; —v) — E1(ug +v).

Taking limit us — 0 in (A23]) we obtain:

d(v, 2z —w)p(ug — v, 2)p(v,w) — p(u; — v,z — w)P(v, 2)Pp(u; — v,w) =
¢(u1, 2)(E2(v) — Ex(u1 —v)),
which is equivalent to (A.20) due to (A.12).

Theta functions with characteristics:
For a,b € Q by definition:

e[ ’ ](z,r):Ze((j—l—a)?%—i—(j—i—a)(z—i—b)) .

JEZ
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In particular, the function ¢ (AJ]) is a theta function with characteristics:

I, 7) = 0 [i?; }(x,T). (A.26)

Properties:
H[Zkz+Lﬂ:eMW[Zk@ﬂ,

a+ad

9[2}@+a%ﬁ):e(ﬂ@%—d@+mge{ b }@J%
G[Gij@ﬂ:G[Zk@ﬂ,jeZ.

The following notations are used: 6 [ Z//22 } (2) = Oap(2). Then 611(z) = ¥(z) from (AJ).

5.2 Lie Algebra sl(N,C) and Elliptic Functions

Introduce the notation

ex(2) = exp(Cnt2)
and two matrices
Q = diag(en(1),...,ex(m),...,1) (B.1)
o1 0 --- 0
oo 1 --- 0
A=l (B.2)
o0 o0 - 1
10 0 --- 0
Let
Ty =2 = (Z/NZoZ/NZ), Ty =29 =z@\ (0,0) (B.3)

be the two-dimensional lattices of orders N2 and N2 — 1 correspondingly. The generators of the

lattice I'y corresponding to the elliptic curve X, (generated by the lattice I';) are % and %

The matrices QA% a = (a1, a2) € Zg\%) generate a basis in the group GL(V, C), while Q“*A*2,
a = (a,a9) € 25\2,) generate a basis in the Lie algebra sl(N,C). Consider the projective
representation of Z%) in GL(V,C)

a1an

(Z—)Ta :eN(T)QalAQQ, (B4)

axb
1,1y = eN(_

)Ta+b7 (a X b= a1b2 — agbl) (B.5)
The natural Killing form is

d

(TaTs) & Tv(T,Ty) = N§ (B.6)

0,a+8 mod Tx

It follows from (B.3) that
(Lo, 18] = ca.gTotp (B.7)
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where

Ca,p = 2V —1sin %(a x ) (B.8)
are the structure constants of sl(N,C). They obey the following properties:
cC‘Uﬁ - ca7ﬁ+a (B.g)
CO‘?B = _66704 = Cﬁ,—Oé

Introduce the following constants on Z?):

I(w,) = 0(“*%) , (B.10)
Biwy) = B((T) ) By, = (D) e = (BT (B
and the quasi-periodic functions on >,
0n(2) = (BT ), (B.12)
Pr(2) = en(122)9(2) , (B.13)
£1(2) = en(02)0u0(2)|_nionr = 0y (2)(Brwy +2) ~ i), (B14)
Fy(2) = oy(2) Er(2) = f1(2) = 94(2)(E1(2) + E1(wy) — Er(wy + 2)). (B.15)

Function ¢, (z) is an element of the basis in the space of sections with a simple pole at z = 0 of
the bundle End(V) for the holomorphic vector bundle V' of degree 1. It follows from (A.9) that

py(2+1) =en(12)py(2), @y(2+T7) =en(—71)p(2) (B.16)
fz+1) =en(1)f1(2), fi(z+7)=en(—m)fy(2) — 2mup,(2) (B.17)
Ey(z+1) =en(n)Fy(2), Fy(z+7)=en(—m)F(2) (B.18)

Function F,(z) is the quasi-periodic and has the second order pole at z = 0.
Let us write down the Fay-type formulae. It follows from (A.T9HA.22]) that

or(z = 7)oz = 26) BED o (5= 2)0p(2a — 26) + P1a (e — 2)py(ze — 2a)  (B.19)

(22 () — (2 f5(2) PEY o ()05 — (o) (B.20)

pa(2p-a(z) B 02) — plwn) (B.21)

P32)0r(2) P2 g ()ELE) + Filoog) + Fileo) = Bie 4w +). o
ey(21)py(22) =" @21 + 22)(Er(21) + Ei(22) + Er(wy) — E1(z1 + 22 + wsy))

The last one identity can be also rewritten (using (A.10)) which is ¢, (—2) = —p_,(z) and

(AL6)) as follows:
Py(21)p—y(22) = =y (21 — 22)(E1(21) — E1(22) + Er(wy) — Er(21 — 22 + wy))

We also need the following relation:

— (2 = 2e) [y (2 = 2a) + 09(2 — 2a) f3(2 — 2) = (B.23)
—081+(2 = 2e) [y (2 = 2a) + a4+(2 — 2a) f3(2a — 2c)
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a L0) | (01 [ (D
Oa 3 01 02
half-periods || w1 = % wy =13 | w3= HTT
(2) 02(2)01(0) | 04(2)01(0) | 05(2)61(0)
Pa 200G | 6:0606) | 5:00606)
5.3 Lie Algebra sl(2,C) and Elliptic Functions
For SL(2,C) instead of T, we use the basis of sigma-matrices
op=1d, o1="Tp1, oo=T11, o3=-Tip,

{o.} ={00,04},(a=0,0), (e =1,2,3)

o4 =

2 9T T

The standard theta-functions with the characteristics are

01 — 109 01 + 109

Ooo =103, Oho="02, Op1 =04, 011=0.

Fora=1,2,3 and {wa} = {3, 75", 3}

va(2) = e(20-wq)

Y(0)(z + wa)
(2)0(wa)

(C.1)

(C.2)

(C.3)

In sl(2,C) case some more properties appear in addition to the previously listed. In what
follows a, 3, v are different indices equivalent to 1, 2, 3 up to a cyclic permutation. Then w,+wg =

wy mod I'y and ¢q45(2) = @y (2).

P—a(2) = pal2), Pa(—2) =

Ei(wq) = =27V —10;wq

Indeed, from (A.6) and (A.I5) we have —FE1(5) = E1(§ — 1) = E1(5) + 27/ —1. Then

—pa(z)

Ey(wa) + Er(wp) = E1(wa + wp)

(va(2))? = p(2) — p(wa)

For small z:

From (C.6) we also have

Fa(z) - @5(2)@7(2) - _82:‘1004(2)

The Fay identity (A19) reads:

Oy (2 = 2a)pp(2 — 2c) = a2 — 2a)pp(20 — 2c) — Palz —

Combining (C.9) we may get:
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ZC)‘Pv(za — Zzc)

(C.4)

(C.5)

(C.6)

(C.7)

(C.8)

(C.9)



(2 — 2c)pp(z — 2a)Palz — 2a) = 98(2 — 2a)Py(2 — 2a) (20 — 2e)+ (C.10)
9004(2 - Zc)‘Poz(Zc - Za)(PB(Zc - Za) - 9004(2 - Za)@a(zc - Za)‘Pﬂ/(Zc - Za)

or
Py (2 = 2¢)Palz = 2a) 07 (2 — 2a) = 0p(2 — 2a) Py (2 — 2a) Py (2a — 2c)+ (C.11)
9004(2 - Za)@a(zc - Za)‘Pﬁ(Za - Zc) - (Pa(z - Zc)@a(zc - Za)‘Pﬂ/(Za - Zc)
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