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1 DGA and Université de Versailles Saint-Quentin, Laboratoire PRISM, 45 avenue des États-Unis, F-78035
Versailles cedex, France
antoine.joux@m4x.org
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Abstract. We present a new variant of cover and decomposition attacks on the elliptic curve discrete
logarithm problem, that combines Weil descent and decomposition-based index calculus into a single
discrete logarithm algorithm. This variant applies, at least theoretically, to all composite degree exten-
sion fields, and is particularly well-suited for curves defined over Fp6 . We give a real-size example of
discrete logarithm computations on a seemingly secure curve defined over a 130-bit degree 6 extension
field.
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1 Introduction

Elliptic curves are used in cryptography to provide groups where the discrete logarithm problem is thought
to be difficult. We recall that given a multiplicative finite group G and two elements g, h ∈ G, the discrete
logarithm problem consists in computing (when it exists) an integer x such that h = gx. In the case of elliptic
curves, the group law is usually denoted additively and the discrete logarithm problem consists, given two
points P,Q to find an integer x such that Q = xP .

More precisely, when elliptic curves are used in cryptographic applications, the discrete logarithm problem
is usually considered to be as difficult as in a generic group of the same size [32]. As a consequence, for a
given security level, the key size is much smaller than for other popular cryptosystems based on factorization
or discrete logarithms in finite fields. The first elliptic curves considered [21, 25] in cryptography were defined
over either binary or prime fields, but to speed up the arithmetic computations, it has been proposed to
use various forms of extension fields. In particular, Optimal Extension Fields have been proposed in [5] to
offer high performance in hardware implementations. They are of the form Fpd where p is a pseudo-Mersenne
prime and d is such that there exists an irreducible polynomial of the form Xd−ω ∈ Fp[X]. In most examples,
the degree d of the extension is rather small.

However, when curves defined over extension fields are considered, some non-generic attacks, such as Weil
descent or decomposition attack, can be applied. The first one aims at transferring the DLP from E(Fqn) to
the Jacobian of a curve C defined over Fq and then use index calculus on this Jacobian [2, 14, 17] to compute
the logarithm; it works well when the genus of the curve C is small, ideally equal to n, but this occurs quite
infrequently in practice. Many articles have studied the scope of this technique (cf. [9, 12, 13, 16, 18]), but
even on vulnerable curves, the Weil descent approach is often just a little more efficient than generic attacks
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on the DLP. Decomposition-based index calculus, or decomposition attack, is a more recent algorithm (see
[11, 15, 20, 28]), which applies equally well to all (hyper-)elliptic curves defined over an extension field. Its
asymptotic complexity is promising, but in practice, due to large hidden constants in the complexity, it
becomes better than generic attacks for group sizes too large to be threatened anyway.

In this article, we combine both techniques into a cover and decomposition attack, which applies as soon
as the extension degree is composite. The idea is to first transfer the DLP on the Jacobian of a curve defined
on an intermediate field, then use the decomposition method on this sub-extension instead of the classical
index calculus. This attack is not a mere theoretical possibility: we give concrete examples of curves defined
over Fp6 that are seemingly secure against all other attack, but for which our method allows to solve the DLP
in a reasonable time. In particular, we have been able to compute logarithms for an elliptic curve defined
over a 130-bit degree 6 extension field in less than 30 hours real-time, using approximately 3700 CPU ·hours.

The paper is organized as follow: first we briefly recall in Section 2 the principles of Weil descent and
of the decomposition method. We then give an explicit description of our attack in Section 3, introducing a
useful variant of the decomposition step that can be of independent interest. In particular, we study the case
of elliptic curves defined over Fp6 , list all the potentially vulnerable curves and give a complexity analysis and
a comparison with previously known attacks. Finally, in Section 4, we describe in details the computations
on our 130-bit example.

2 Survey of previous work

2.1 Weil descent and cover attacks

Weil descent has been first introduced in cryptography by Frey [12]; the idea is to view an abelian variety
A (e.g. an elliptic curve) of dimension d defined over an extension field K/k as an abelian variety WA/k of
dimension nd over k, where n is the degree of the extension K/k. If WA/k turns out to be the Jacobian of a
curve C|k or can be mapped into such a Jacobian, then the discrete logarithm in A(K) can be transferred to
JacC(k), where it may become much weaker due to the existence of efficient index calculus algorithms. When
the genus of C is small relatively to the cardinality of the base field, the complexity is in O(g2 log3 p · g! · p+
g2 log p · p2) as the cardinality p of k grows to infinity; the first term comes from the relation search and the
second from the sparse linear algebra. Following [17], it is possible to rebalance these two terms by using a
double large prime variation. In this variant, only a small number pα of prime divisors3 are considered as
genuine, while the rest of the prime divisors are viewed as “large primes”. The optimal value of α depends
of the cost of the two phases; asymptotically the choice that minimizes the total running time is 1 − 1/g,
yielding a complexity in Õ(p2−2/g) for fixed g as p goes to infinity.

The main difficulty of this Weil descent method is to find the curve C. This problem was first addressed for
binary fields by Gaudry, Hess and Smart (GHS [16]) and further generalized by Diem [9] in odd characteristic.
To attack an elliptic curve E defined over Fpn (p prime power), the GHS algorithm builds a curve C defined
over Fp such that there exists a cover map π : C → E defined over Fpn . The construction is more easily
explained in terms of function fields: the Frobenius automorphism σFpn/Fp

can be extended to the composite

field F ′ =

n−1∏
i=0

Fpn(Eσ
i

), and the function field F = Fp(C) is defined as the subfield of F ′ fixed by σ. The GHS

algorithm then uses the so-called conorm-norm map NF ′/F ◦ConF ′/Fpn (E) to transfer the discrete logarithm
from E(Fpn) to JacC(Fp). An important condition is that the kernel of this map must not intersect the
subgroup in which the discrete logarithm takes place, but as remarked in [9, 18], this is not a problem in
most cryptographically interesting situations.

3 The term prime divisor is an abuse of language that denotes the linear irreducible polynomials that are used in
the index calculus algorithm on JacC(k)



Improved Index Calculus on some Elliptic Curves 3

This technique is particularly efficient when the genus g of C is close to n. However, this only occurs for a
small number of curves: in general, g is of the order of 2n, which means that index calculus in the Jacobian
of C is much slower than generic attacks on E(Fpn). Still, it has been shown that over some finite fields, most
if not all elliptic curves are weak in the sense that Weil descent algorithms are better than generic attacks;
these fields have composite extension degree [24]. Indeed, even when the GHS attack does not provide any
low genus cover for E, it may still be possible to find a sequence of low degree isogenies, a.k.a. an isogeny
walk, from E to another elliptic E′ vulnerable to the GHS attack [13].

In this article, we are especially interested by elliptic curves defined over finite fields of extension degree
n = 6. In this case, we can consider the three different extensions Fp6/Fp3 , Fp6/Fp2 and Fp6/Fp for the GHS
attack. For the first two extensions, there exist a non-negligible proportion of weak curves, with corresponding
covers by a curve of genus respectively 2 and 3 (see [27]). Whereas classical index calculus methods do not
provide any complexity improvement for genus 2 coverings, the situation is slightly better for the genus 3
case: using the double large prime variation of [17], the complexity of the discrete logarithm is in Õ

(
p8/3

)
, or

even in Õ
(
p2
)

when the cover is non-hyperelliptic [10], which is smaller than the Õ
(
p3
)

of generic attacks.
For the extension Fp6/Fp, the genus of the cover obtained by the GHS attack cannot be as low as 6: it is at
least 8 in characteristic 2, and 9 otherwise, but will be higher for most curves [7].

2.2 Decomposition attack

The index calculus method has become ubiquitous in the last decades for the resolution of discrete logarithm
problems. However its direct application to elliptic curves faces two major challenges: contrarily to finite
fields or hyperelliptic curves, there is no natural choice of factor base and besides there is no equivalent of
the notion of factorization of group elements.

The first main breakthrough was achieved in 2004 by Semaev [31] when he suggested to replace fac-
torization by decomposition into a fixed number of points; for that purpose, he introduced the summation
polynomials which give an algebraic expression of the fact that a given points decomposes into a sum of
factor base elements. But for a lack of an adequate factor base, this approach fails in the general case. Then
Gaudry and Diem [11, 15] independently proposed to use Semaev’s idea to attack curves defined over small
degree extension fields Fpn/Fp. Their method shares the basic outline of index calculus, but to distinguish it
from what has been presented in the previous subsection, we follow [28] and call it the decomposition attack.

On E(Fpn), a convenient choice of factor base is the set of rational points of the curve having their
x-coordinates in the base field Fp. By combining Semaev’s summation polynomials and Weil restriction, the
relation search then becomes a resolution of a multivariate polynomial system over Fp. The complexity of
this approach can be estimated using double large prime variation, by O

(
p2−2/n

)
for fixed n as p grows to

infinity. Moreover, this applies to all curves defined over Fpn . Unfortunately, the hidden constants in this
complexity become very large as n grows, and the resolution of the polynomial systems is intractable as soon
as n ≥ 4 (or n ≥ 5 with the variant given in [20]).

The decomposition attacks can also be applied to higher genus curves. However, the Semaev’s polynomials
are no longer available in this case and the algebraic expression of the group law is more complicated. In [28],
Nagao proposes an elegant way to circumvent this problem, using divisors and Riemann-Roch spaces. For
hyperelliptic curves, the decomposition search then amounts to solving a quadratic multivariate polynomial
system. This approach is less efficient than Semaev’s in the elliptic case, but is the simplest otherwise. For
fixed extension degree n and genus g, the complexity of a decomposition attack is in O

(
p2−2/ng

)
with a

double large prime variation. Again, the resolution of the polynomial system is the main technical difficulty,
and is easily feasible for only very few couples (n, g), namely (2, 2), (2, 3) and (3, 2).
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3 Cover and Decomposition attack

Let Fqd/Fp be an extension of finite fields, where q is a power of p (in most applications p denotes a large prime
but in general, it can be any prime power), and let E be an elliptic curve defined over Fqd of cryptographic
interest, i.e. containing a subgroup G of large prime order. As E is defined over an extension field, it is
subject to the attacks presented above. But if the degree [Fqd : Fp] of the extension is larger than 5, then
we have seen that E is practically immune to decomposition attacks. In the following, we assume that the
potential reduction provided by the GHS attack or its variants is not significant enough to threaten the
security of the DLP on the chosen curve E.

When q is a strict power of p, we have a tower of extensions given by Fqd/Fq and Fq/Fp. In this context,
it becomes possible to combine both cover and decomposition methods and obtain an efficient attack of the
DLP on E. The idea is to use Weil descent on the first extension Fqd/Fq to get a cover defined over Fq, with
small enough4 genus g. Then we can apply a decomposition attack on the curve thus obtained, making use
of the second extension Fq/Fp.

3.1 Description of the attack

We now explicitly detail this cover and decomposition approach. We suppose first that there exists a hyper-
elliptic curve H of small genus g > 1, defined over Fq together with a covering map π : H → E defined over
Fqd . This can be obtained by the GHS attack or its variants, possibly preceded by an isogeny walk. This
cover classically allows to transfer the DLP from G to a subgroup G′ ⊂ JacH(Fq) via the conorm-norm map

NF
qd
/Fq
◦ π∗ : E(Fqd) ' JacE(Fqd)→ JacH(Fq)

assuming that ker(NF
qd
/Fq
◦ π∗) ∩ G = {OE}. For simplicity, we assume that H has an imaginary model

given by the equation y2 = h(x).

The decomposition part of the attack is adapted from Gaudry and Nagao; since it is quite recent, we
detail the method. We consider the same factor base as Gaudry and Nagao

F = {DQ ∈ JacH(Fq) : DQ ∼ (Q)− (OH), Q ∈ H(Fq), x(Q) ∈ Fp},

which contains approximately p elements; as usual, we can use the hyperelliptic involution to reduce the size
of the factor base by a factor 2. As in all index calculus based approaches, there are two time consuming
steps: in the first one, we have to collect about p/2 relations between factor base elements, while in the
second one, we compute discrete logarithms by using linear algebra on the matrix of relations.

Let n be the extension degree [Fq : Fp]. In Nagao’s original version, one tries to decompose an arbitrary
divisor D (typically obtained by considering a large multiple of some element in F) into a sum of ng divisors
in the factor base

D ∼
ng∑
i=1

((Qi)− (OH)) . (1)

Heuristically, there exist approximately png/(ng)! distinct sums of ng elements of F , so the probability that
a given divisor D is decomposable can be estimated by 1/(ng)!. To check if D can be decomposed, one
considers the Riemann-Roch Fq-vector space

L (ng(OH)−D) = {f ∈ Fq(H)∗ : div(f) ≥ D − ng(OH)} ∪ {0}.
4 Meaning that g should be small relatively to the genus that could be obtained by direct Weil descent, using the

extension Fqd/Fp.
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We can assume that the divisor D is reduced and has Mumford representation (u(x), v(x)) with deg u = g, so
that this Fq-vector space is spanned by u(x), u(x)x, . . . , u(x)xm1 , (y − v(x)), x(y − v(x)), . . . , xm2(y − v(x)),
where m1 = b(n−1)g/2c and m2 = b(ng−g−1)/2c. A function f = λ0u(x)+λ1u(x)x+ . . .+λm1

u(x)xm1 +
µ0(y − v(x)) + µ1x(y − v(x)) + . . . + µm2

xm2(y − v(x)) vanishes on the support of D and exactly ng other
points (possibly defined on the algebraic closure of Fq) if its top-degree coefficient is not zero. We are looking
for a condition on λ0, . . . , λm1 , µ0, . . . , µm2 ∈ Fq such that the zeroes Q1 . . . , Qng of f disjoint from Supp(D)
have x-coordinate in Fp; this event yields a relation as in (1).

Therefore we consider the polynomial F (x) = f(x, y)f(x,−y)/u(x) where y2 has been replaced by h(x).
Without loss of generality, we can fix either λm1

= 1 or µm2
= 1 in order to have F monic of degree ng.

The roots of F are exactly the x-coordinates of the zeroes of f distinct from Supp(D), thus we are looking
for the values of λ and µ for which F splits in linear factors over Fp. A first necessary condition is that
all of its coefficients, which are quadratic polynomials in λ and µ, belong to Fp; a Weil restriction on these
coefficients then yields a quadratic polynomial system of (n− 1)ng equations and variables coming from the
components of the variables λ and µ. The corresponding ideal is generically of dimension 0, and the solutions
of the system can be found using for instance a Gröbner basis computation. Since the number of systems to
solve is huge (on average (ng)! · p/2), techniques such as the F4-traces algorithm of [19] should be preferred.
Once the solutions in Fq are obtained, it remains to check that the resulting polynomial F splits in Fp[x],
and if it is the case, to compute the corresponding decomposition of D.

In this article, instead of using Nagao’s original version, we consider a somewhat different approach that
offers some similarity with the sieving method used in the number field and function field sieves [1, 23]. More
precisely, we no longer have a divisor D to decompose, but instead search for sums of factor base elements
equal to 0:

m∑
i=1

((Qi)− (OH)) ∼ 0 (2)

The expected number of relations of the form (2) involving m points of the factor base is approximately
pm−ng

m! . Since we need to collect at least about p/2 relations, we look for sums of m = ng + 2 points. As
in Nagao’s method, we work with the Riemann-Roch Fq-vector space L(−m(OH)) which is spanned by
1, x, . . . , xm1 , y, xy, . . . , xm2y, where m1 = bm/2c and m2 = b(m − 1)/2]c − g. We consider the function
f = λ0 +λ1x+ . . .+λm1

xm1 +µ0y+µ1xy+ . . .+µm2
xm2y: it vanishes in exactly m points if its top-degree

coefficient is not zero, and the x-coordinates of its zeroes are the roots of the polynomial

F (x) = f(x, y)f(x,−y) = (λ0 + λ1x+ . . .+ λm1
xm1)2 − h(x)(µ0 + µ1x+ . . .+ µm2

xm2)2.

As before, we fix λm1
= 1 if m is even or µm2

= 1 otherwise, so that F is monic, and in order to obtain a
relation of the form (2), we are looking for values of λ and µ for which F splits in linear factors over Fp.
The first condition is that F belongs to Fp[x]; after a Weil restriction on its coefficients, this translates as a
quadratic polynomial system of (n− 1)m equations and n(m− g) variables. With our choice of m = ng+ 2,
this corresponds to an underdetermined system of n(n− 1)g+ 2n− 2 equations in n(n− 1)g+ 2n variables.

When the parameters n and g are not too large, we remark that it is possible to compute once for
all the corresponding Gröbner basis for a lexicographic order. Each specialization of the last two variables
then provides an easy to solve system, namely triangular with low degree. It remains to check whether the
corresponding expression of F is indeed split and to deduce the corresponding relations between the points
of F . Note that this kind of precomputation cannot be achieved in Nagao’s version: it would require to solve
the corresponding polynomial system with the representation (u(x), v(x)) of D as formal parameters, which
is intractable due to a too large number of variables.

In this form, our technique is already faster than Nagao’s (timings are given in Section 5), but can still
be further improved. Indeed, checking that F is split has a non-negligible cost, since we need to factor a
polynomial of degree m into linear terms. To avoid this cost, it is possible to modify the search for relations
in order to use a sieving technique; we defer the details to Section 4.2.
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Once enough relations of the form (2) have been collected, we can deduce with linear algebra the loga-
rithms of all elements in F (up to a multiplicative constant, since we have not specified the base). In order
to compute the discrete logarithm of an arbitrary divisor D, we proceed to a descent phase: we need to
decompose this arbitrary divisor as a sum of factor base elements. This decomposition search can be done
using Nagao’s method as described above. Note that, if D does not decompose as a sum, it suffices to try
small multiples 2D, 3D . . . until we find one correct decomposition. Thanks to this descent step, it is possible
to compute many discrete logarithms in the same group for negligible additional cost.

When the cover of E is not hyperelliptic, one can still use Nagao’s Riemann-Roch based approach (or
the variant we have presented). It is not difficult to compute a basis of the vector spaces L(D− ng(OH)) or
L(−m(OH)) and to consider a function f(x, y) (depending of parameters λ and µ) in these spaces. Getting
rid of the y-variable can be done quite easily by computing the resultant in y of f and the equation of the
curve; however, the resulting polynomial F (x) no longer depends quadratically of the parameters λ and µ.
Consequently, the system obtained by Weil restriction still has the same number of equations and variables
but its degree is greater than 2, so that the resolution is more complicated.

3.2 Complexity analysis

Constructing the cover H|Fq
of an elliptic curve E|F

qd
with the GHS method and transferring the DLP from

G ⊂ E(Fqd) to G′ ⊂ JacH(Fq) has essentially a unit cost, which is negligible compared to the rest of the
attack. The complexity of the decomposition phase is divided between the relation search and the linear
algebra steps. For the classical approach of Nagao, in order to collect about p/2 relations we need to solve on
average (ng)!·p/2 quadratic polynomial systems. The resolution cost of this kind of systems using e.g. Gröbner
basis is hard to estimate precisely, but is at least polynomial in the degree 2(n−1)ng of the corresponding
zero-dimensional ideal. The linear algebra step then costs O(ngp2) operations in Z/(#G)Z using sparse linear
algebra techniques. With the variant we have presented, we need to compute first the lexicographic order
Gröbner basis of an ideal generated by n(n− 1)g + 2n− 2 quadratic equations in n(n− 1)g + 2n variables.
This cost is also at least exponential in n2g, but the Gröbner basis computation has to be done only once.
Afterwards, we have to solve on average (ng+ 2)! · p/2 “easy” systems. The complexity of the linear algebra
step is the same (the cost of the descent is negligible compared to the sieving phase).

When p is very large relatively to n and g, then the linear algebra becomes the dominating step of the
algorithm. It is nevertheless possible to rebalance the cost of the two steps. Indeed, collecting extra relations
can speed up the computation of the logarithms; this is the idea behind structured Gaussian elimination [22]
and double large prime variation. With the former technique, the consequence on the asymptotic complexity
is not known. With the latter, the analysis of [17] shows that the asymptotic complexity of this cover and
decomposition attack becomes Õ(p2−2/ng) as p grows to infinity for fixed n and g in Nagao’s version. For the
variant, the asymptotic complexity is higher: Õ(p2−2/(ng+2)) but with a much smaller hidden constant, so
that it is faster than Nagao’s version for accessible values of p. Note that it is straightforward to parallelize
the relation search phase; this is also possible, but much less efficiently, for the linear algebra step. This
implies that the practical choice of the optimal balance depends not only of the implementation but also of
the computing power available.

These complexities crucially depend of the genus of the cover of E. If it is too large, generic attacks
become more efficient, but it may be possible to transfer the DLP from E to an isogenous curve E′ more
vulnerable to this cover and decomposition attack. There exist two “isogeny walk” strategies to find the curve
E′ (if it exists) [6]: one can randomly sample the isogeny class of E via low-degree isogenies until a weak
curve is found, or one can try all the weak curves until a curve isogenous to E is found. The best strategy
to use and its complexity depend of the size of the isogeny class and of the number of weak curves. For the
cases we have considered, this isogeny walk can become the dominating part in the overall complexity (see
next section for details).
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4 Application to elliptic curves defined over Fp6

For an elliptic curve E defined over an extension field Fp6 (where p is a prime power), we can apply our
cover and decomposition attack either with the tower Fp6 —Fp2 —Fp or with the tower Fp6 —Fp3 —Fp. We
have seen in Section 2.2 that in practice, we can compute decompositions only for a very limited number
of values of (n, g). In particular, our attack is feasible only if E admits a genus 3 (resp. 2) cover; we give
examples of such curves below. Of course, this attack needs to be compared with the classic cover attacks
or decomposition attacks using the base field Fp3 ,Fp2 or Fp, as recalled in Section 2.

4.1 Using a genus 3 cover

In the present subsection, we consider the cover and decomposition attack using the tower Fp6 —Fp2 —Fp.
Thanks to the results of [9, 27, 34], in odd characteristic, we know that the only elliptic curves defined over
Fq3 (in our case, we have q = p2) for which the GHS attack yields a cover by a hyperelliptic curve H of
genus 3 defined over Fq, are of the form

y2 = h(x)(x− α)(x− σ(α)) (3)

where σ is the Frobenius automorphism of Fq3/Fq, α ∈ Fq3 \Fq and h ∈ Fq[x] of degree 1 or 2. Similar results
are also available in characteristic 2 (see [29]), thus our attack is also applicable in characteristic 2; we give
details of the construction of the cover in both cases in the Appendix. The number of curves admitting an
equation of the form (3) is Θ(q2), thus only a small proportion of curves is directly vulnerable to the cover
and decomposition attack. However, since this number of weak curves is much larger than the number of
isogeny classes (which is about q3/2), a rough reasoning would conclude that essentially all curves should be
insecure using an isogeny walk strategy. Assuming that the probability for a curve to be weak is independent
from its isogeny class, we obtain that the average length of this isogeny walk is about q = p2 steps. It is thus
the dominating phase of the algorithm, but is still better than the Õ(p3)-generic attacks. Nevertheless, all
the curves of the form (3) have a cardinality divisible by 4, so obviously not all curves are vulnerable to this
isogeny walk (we recall that two curves are isogenous if and only if they have the same cardinality). Still,
we conjecture that all curves with cardinality divisible by 4 are vulnerable to this cover and decomposition
attack using an isogeny walk.

We can also consider non-hyperelliptic genus 3 covers. In this case, weak curves have equation

y2 = c(x− α)(x− σ(α))(x− β)(x− σ(β)) (4)

where c ∈ Fq3 and either α, β ∈ Fq3 \ Fq or α ∈ Fq6 \
(
Fq2 ∪ Fq3

)
and β = σ3(α). Much more curves are

directly vulnerable to this cover [27]: actually, about half of the curves having their full 2-torsion defined
over Fq admit an equation of the form (4).

For a genus 3 hyperelliptic cover over Fp2 , the quadratic polynomial systems to solve over Fp are composed
of 6 variables and 6 equations with Nagao’s approach, or 8 equations and 10 variables with our variant.
Such systems can be solved very quickly by any computational algebra system. Unfortunately, with non-
hyperelliptic covers, the systems of equations are much more complicated; in particular, we have not been
able to successfully compute decompositions using available Gröbner basis implementations.

4.2 Details of the sieving technique

As mentioned in Section 3, it is possible to speed up our relation search by using a sieving technique. We
describe this technique in the special case of a hyperelliptic genus 3 cover in odd characteristic. We have seen
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that with our variant, we obtain a system of 8 equations and 10 variables, together with the corresponding
lexicographic order Gröbner basis, which is computed once for all. The standard approach would be to
evaluate the last two variables x9 and x10, solve the resulting easy (low degree and triangular) system and
test if the polynomial F of degree 8 (defined in Section 3.1) is split for these solutions.

Instead, we start by evaluating the last variable x10. Due to the simple shape of the Gröbner basis in
this particular example, it is then possible to express all the other variables as polynomials in x29. Thus,
after replacement, F becomes a polynomial in the two variables x and y = x29, with a degree in y equal to
2. The key idea is, instead of trying to factor F for many values of x9, to compute for each value of x ∈ Fp
the values of y such that F (x, y) = 0. Since F has degree 2 in y, this can be done very efficiently, just by
obtaining the square root of the discriminant. In fact, we can speed the process even more by tabulating the
square roots modulo p. Our sieving process consists, for each root y, to increment a counter corresponding
to this value of y. When one of this counters reaches 8, the corresponding value of y admits 8 corresponding
roots. If in addition y is a quadratic residue, then for x9 = ±√y, the polynomial F evaluated at x9 splits
into 8 distinct linear terms. Note that changing the sign of x9 yields the same relation.

Moreover, this technique is well-suited to the double large prime variation. Indeed, if F ′ denotes the
subset of the factor base F (given in Section 3.1) composed of a small number pα of “genuine” points, we
just have to substitute into F the values of x corresponding to x-coordinates of points in F ′. As soon as 6
values of x are associated to one value of y, we obtain a relation involving at most 2 large primes (if the
remaining degree 2 factor is split, which occurs with probability close to 1/2). This speeds up the relation
search by a factor p1−α. In particular, this modifies the optimal balance between the relation search and the
linear algebra for our variant: the asymptotically best choice for α is now 1− 1/7 and the overall complexity
is reduced from Õ(p2−2/8) to Õ(p2−2/7) as p grows to infinity. This reduces the asymptotic gap between
Nagao’s method and our variant, without degrading the practical performance.

4.3 Using a genus 2 cover

We now consider the tower Fp6 —Fp3 —Fp. The existence of genus 2 covers (which are necessarily hyper-
elliptic) defined over Fq, where q = p3, has been studied in [30, 3]. In odd characteristic, vulnerable curves
admit an equation in so-called Scholten form

y2 = ax3 + bx2 + σ(b)x+ σ(a) (5)

where a, b ∈ Fq2 and σ is the Frobenius automorphism of Fq2/Fq. An elliptic curve E can be transformed into
Scholten form as soon as its full 2-torsion is defined over Fq2 [30] or its cardinality is odd and j(E) /∈ Fq [3].
Consequently, a large proportion of curves are vulnerable to our cover and decomposition attack. Moreover,
any curve without full 2-torsion but still with a cardinality divisible by 4, is 2-isogenous to a curve with full
2-torsion [26].

In this setting, the quadratic polynomial systems to solve over Fp are composed of 12 variables and 12
equations with Nagao’s approach, or 16 equations and 18 variables with our variant. Solving such systems
is still feasible on current personal computers, but is much slower than in the case of hyperelliptic genus 3
cover defined over Fp2 . For example with Nagao’s approach, the degree of the corresponding zero-dimensional
ideals are respectively 212 versus 26. Since the complexity of standard Gröbner basis algorithms for zero-
dimensional ideals is bounded from below by the cube of the degree, this means that using a genus 2 cover
over Fp3 for our attack becomes at least 250 000 times slower than when it uses a genus 3 cover over Fp2 .

4.4 Complexity and comparison with other attacks

In order to obtain actual (and not just asymptotic) comparisons, we consider the cryptographically significant
example of a curve E defined over Fp6 where p is a prime close to 227 and #E(Fp6) is 4 times a 160-bit prime
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number `. Following [33], we consider that the cost of an arithmetic operation in Fq (where q = p, p2, p3, p6

or `) is given by cq = (log q)2, that the cost of an operation on polynomials (using Karatsuba method) of
small degree g over Fq is cq,g = g1.59cq, and that the cost of an operation in a Jacobian is cJ = 22cq,g when
g > 3, cJ = 10cq when g = 1, cJ = 40cq when g = 2 and cJ = 90cq when g = 3.

The basis of comparison for all attacks on the elliptic curve discrete logarithm problem comes from
generic algorithms, i.e. algorithms that do not use any information about the actual group structure and
only consider the group law. Such attacks, e.g. Shanks’s baby-step giant-step or Pollard’s Rho, have a
complexity in O(

√
#G) group operations. In our elliptic curve setting, the cardinality of G is up to a small

factor equal to the cardinality of E(Fp6), so that generic attacks perform in Õ(p3). On the example, Pollard’s

Rho method necessitates about 2
√
` = 281 group operations in the curve, namely a total cost of 299.

A second attack we consider is the double large prime variation of the classic index calculus on a hy-
perelliptic genus 3 cover H|Fp2

(if it exists); we have seen that the asymptotic complexity is in Õ(p8/3) as

p grows to infinity. For the complexity of the 162-bit example, we need to find the optimal balance. We
consider a reduced factor base composed of (p2)α/2 genuine primes. The probability that an element of the
Jacobian gives a relation with at most two large primes is about p2(α−1)/2, and as we need approximately
p2/2 such relations, the complexity of the relation search phase is p2(2−α)cJ = 2126−54α. The linear algebra
costs 3(p2α/2)2c` = 2108α+14.2, so that the optimal value of α is 0.69 and the total cost of the index calculus
attack is about 290.

Alternatively, one can apply the GHS attack with the extension Fp6/Fp. Its asymptotic complexity is

in Õ(p2−2/g), but the actual behavior depends greatly of the genus g of the cover over Fp. We have seen
that in the best case g = 9. With our 162-bit example, this gives a complexity of 9!p/2 cJ ' 263 for the
relation search and 9(p/2)2c` ' 270 for the linear algebra, which can be slightly rebalance by considering a
factor base reduced by a one half factor to obtain an overall cost in 269. However, this genus 9 case is very
exceptional, and in general the genus of the cover given by the GHS attack is much larger. For instance, if
we consider the equation of the form (3), which is already a favorable case for the GHS attack, the genus of
the cover is g = 33, and the complexity of the index calculus becomes much worse than generic attacks.

Instead of cover techniques, we can consider the decomposition attack of [11, 15]. If we consider Fp2 as

the base field, the asymptotic complexity is in Õ(p8/3). The actual value involves the cost of the resolution of
a multivariate polynomial system in 3 equations and variables of degree 4 over Fp2 . Since the corresponding
ideal is zero-dimensional, we estimate that this resolution necessitates D3 operations in Fp2 , where D = 43 is
the degree of the ideal. In the 162-bit example, we find that the best value of α for the balance between the
relation search and the linear algebra is 0.76, which gives a total cost of 297. Alternatively, if we take Fp as

the base field, the asymptotic complexity becomes Õ(p5/3). The system to solve at each decomposition trial
has 6 equations in 6 variables of degree 32, and the corresponding zero-dimensional ideal has degree D = 326.
The cost of the resolution of such system is prohibitively high, in 2100, which is clearly not competitive on
this example.

Finally, we consider our cover and decomposition attack, whose asymptotic complexity either in Õ(p5/3)
with Nagao’s decomposition, or Õ(p12/7) with our sieving variant. With the first method, the actual com-
plexity involves the resolution cost of a quadratic multivariate polynomial system. For such systems, we use

the different bound

(
n+ dreg

n

)3

cp on the complexity of Gröbner basis computations, where n is the number

of variables and dreg the degree of regularity, see [20]. If we work with a hyperelliptic genus 3 cover defined
over Fp2 , then n = 6 and dreg = 7, so the complexity of the relation search with Nagao’s decomposition is

6! p/2

(
13
6

)3

cp ' 277. This is greater than the complexity of the linear algebra, which is in 6 (p/2)2c` ' 268,

so no balance is needed. If we work instead with a genus 2 cover defined over Fp3 , the cost of the linear
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algebra is the same but the relation phase is much slower: with n = 12 and dreg = 13, its complexity becomes
about 2112.

With our variant instead of Nagao’s, the Gröbner basis computation is done only once, and the specialized
systems we have to solve afterwards are much simpler. In the case of the hyperelliptic genus 3 cover, we
can use the sieving technique presented above: at each step, we just have to evaluate the polynomial F (x, y)
in x (which costs at most 16cp since degx F = 8) and solve the resulting quadratic univariate polynomial
in y (this amounts to the computation of a square root, which costs at most 2 log(p)cp). The complexity
of the relation search is then 8!p/2 (16 + 2 log p)cp ' 257, whereas the complexity of the linear algebra is
in 8(p/2)2c` ' 269. This can be rebalanced, and we find that the optimal size of the reduced factor base is
0.173p, giving a total cost of about 266.

Attack Asymptotic complexity 162-bit example cost

Pollard p3 299

Ind. calc. on H|F
p2

, g(H) = 3 p8/3 290

Ind. calc. on H|Fp , g(H) = 9 p16/9 269

Decomp. on E|F
(p2)3

p8/3 297

Decomp. on E|F
p6

p5/3 2135

Decomp. on H|F
p2

, g(H) = 3 p5/3 266

Fig. 1. Comparison of the complexity of various attacks on E(Fp6)

5 A 130-bit example

In this section, we give a practical example of the genus 3 cover and decomposition attack for an elliptic
curve defined over Fp6 where p = 4 194 319 = 222 +15 is a 23-bit prime. We define Fp2 as Fp[i] where i2 = −1
and Fp6 as Fp2 [θ] where θ3 = 2.

The elliptic curve E is given by the following Weierstrass equation:

y2 = (x− c)(x− α)(x− σ(α))

where σ : x 7→ xp
2

, c = 1 048 587 and α = 3 812 894 θ2 + 3 527 164 θ + 1 048 580 i.

This elliptic curve has a genus 3 cover by the hyperelliptic curve H defined over Fp2 by:

y2 = x7 + (1 048 579 i+ 4 194 290)x6 + (2 097 203 i+ 2 359 305)x5 + (2 686 984 i+ 393 267)x4 +

(3 538 925 i+ 1 359 881)x3 + (126 973 i+ 2 424 826)x2 + (589 830 i+ 3 083 272)x+

4 021 007 i+ 1 363 461

which is of the form y2 =
(
x+ φ(x) + φσ(x) + φσ

2

(x)− 4c
)
N(x)2 where N(x) is the minimal polynomial

of α over Fp2 and φ : x 7→ (α−σ2(α))(σ(α)−σ2(α))
x−σ2(α) + σ2(α).

The cover map π from H to E is given by:

π(x, y) =

(
x+ φ(x) + φσ(x) + φσ

2

(x)

4
,
y(x− φσ(x))(x− φσ2

(x))

8N(x)(x− σ2(α))

)
.
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The common cardinality of E over Fp6 and of the Jacobian of H over Fp2 is:

N = 4` = 4 · 1361158674614712334466525985682062201601,

where ` is a 131-bit prime. The number of different abscissae x in Fp that correspond to a pair of points
(x, y) and (x,−y) is equal to 2 096 834. However, for technical reasons during the sieving process, we had to
remove the two points with abscissa equal to zero. Still, we are doing index calculus with a smoothness basis
containing approximately 2.1 millions elements.

For best performances, we use the sieving approach described in Section 3.1. As a first step, we compute
a lexicographic order Gröbner basis of the system composed of 10 quadratic equations in 8 variables. This is
done in about 1 min on a 2.6 GHz Intel Core 2 Duo processor with Magma V2.16-12 [8]. Instead of the double
large prime variation, we execute a structured Gaussian elimination. During the sieving phase, we used 200
cores of quadri-core Intel Xeon 5570 processors at 2.93 GHz5. After 3751 sec, we had collected 51 883 659
relations, close to 25 times the number of necessary relations for the linear algebra. Each relation involved
8 distinct elements from the smoothness basis. Thanks to the large number of extra relations, structured
Gaussian elimination performed quite well and, after 1357 seconds on a single core, it produces a system
of 666 062 equations in 665 061 unknowns, involving between 8 and 62 basis elements. The total number of
non-zero entries in all the equations is 33 761 662 and all these entries are equal to ±1.

The most time consuming step is the iterative linear algebra, which is done with a MPI implementation of
the Lanczos algorithm. It took about 27 hours and 16 minutes on 128 cores of the same Intel Xeon processors
as above. A large fraction of this time was taken by the MPI communications, since at each round 42.5
Mbytes of data had to be broadcast between the 16 involved bi-processor machine (8 cores/machine). This
linear algebra phase produced discrete logarithms for all the smoothness basis elements that remained after
structured Gaussian elimination. Substituting these values back in the initial linear system, we recovered,
in less than 10 minutes on a single core, the discrete logarithms modulo ` of all elements in the smoothness
basis (given by their coordinates on H):

log(1, 1 778 117 + 4 043 006 i) = 478106327125435970114550562691648441691

log(2, 2 470 708 + 2 816 377 i) = 602746135361964172293799284108866826746

log(3, 2 962 826 + 1 627 410 i) = 705308208894647255094849524081114540246

...

log(4 194 313, 3 987 487 + 990 581 i) = 771689882707001577629366094743363462187

log(4 194 316, 2 427 954 + 2 537 863 i) = 1353572318664688725968460416545816094564

log(4 194 317, 1 149 909 + 103 530 i) = 297560310280931383403112066498178155928

Individual logarithms of points on the curve. With the results of the above precomputation, computing
logarithm of arbitrary points on the elliptic curve becomes easy. To demonstrate this, we constructed points
on E with the following process and computed their logarithms. First, we let:

X0 =

5∑
j=0

(⌊
π · pj

⌉
mod p

)
ij mod 2θj mod 3

= (593 885 + 3 175 989 i) + (199 943 + 841 508 i)θ + (411 724 + 2 224 599 i)θ2.

We then constructed points on E with abscissa X0 + δ for small offsets δ. Let P1, P2, P3, P4, P5, P6 and
P7 be the points corresponding to offsets 0, 1, 2, 3, 5, 11 and 12. We lift each of these points to the Jacobian

5 This work was granted access to the HPC resources of CCRT under the allocation 2010-t201006445 made by
GENCI (Grand Equipement National de Calcul Intensif)
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of H using the Conorm-Norm method. Note that, if a given point cannot be lifted, we instead lift a small
multiple of it. After that, we apply the method of Nagao (as in Section 3.1) to small multiples of the lifted
element until we find a multiple that decomposes as a sum of elements from the smoothness basis. Looking
up the corresponding logarithms (and dividing back by the small multiples that have been included) yields
the logarithm of each point. The computation of the Conorm-Norm takes negligible time in magma. On
average, we expect to try 720 multiples with Nagao’s method before finding a decomposition. To try 2000
multiples, which was enough for each of the seven considered points, we need 350 seconds using magma on
an Intel Core i7 at 2.66 GHz. As a consequence, each individual logarithm on E can be performed in a few
minutes. We give details in Table 1, in the table, the points involved in the decomposition are described
by their abscissa together with a + or − sign that indicates whether the “real” part of the ordinate has a
positive or negative representative in ] − (q/2), (q/2)[. Similarly, we indicate the choice of the points on E
with a + or a − depending on the representative of the constant term in the ordinate6.

Points Mult. Conorm-Norm Mult. Nagao Points in decomposition

(X0)− 2 341 370864− 2471314+ 2517710− 3195688− 3512289− 3700196−

(X0 + 1)− 2 1664 1030818+ 2692469+ 2731382− 3612676+ 3920772− 4172888+

(X0 + 2)− 4 85 399440− 705045− 901013− 1366937+ 2079739+ 3419126+

(X0 + 3)+ 1 655 37064+ 2305706+ 2573803+ 2665635− 3263560− 4118343−

(X0 + 5)− 2 72 311191− 1011994+ 2166025− 2649962− 2777633− 2900897+

(X0 + 11)− 4 140 291295+ 518109− 863097− 1733917+ 3082470− 3588239+

(X0 + 12)+ 3 1139 230555− 385454+ 790502− 985560+ 1466691− 4062680+

Table 1. Details of individual logarithm computations.

The group structure of E is Z/2Z × Z/(2`)Z and all the logarithms are computed modulo `. Thus, in
order to obtain points of order `, we multiply each of the points Pj by 2. To obtain the discrete logarithms
in base P1, we simply divide all the obtained logarithms by the logarithm of P1. Finally, we obtain:

2 · P2 = 77150321803257128283015428889459689383 · 2 · P1

2 · P3 = 277607596028887848748187645469867507392 · 2 · P1

2 · P4 = 950556100385309676489669420946201334105 · 2 · P1

2 · P5 = 317720686887855216292082605854593050146 · 2 · P1

2 · P6 = 1312283093890189917677060643407272214266 · 2 · P1

2 · P7 = 1190357845148092637575742537424612955882 · 2 · P1.

All in all, we have been able to completely solve the discrete logarithm problem on the 130-bit elliptic
curve E in less than 30 hours real-time with no more than 200 cores, corresponding approximately to 3700
CPU ·hours. This is several orders of magnitude faster than any generic algorithm. For comparison, an attack
of the Certicom ECC2K-130 challenge using a state-of-the-art implementation of Pollard’s Rho is currently
underway [4]; it was expected to solve the DLP on a Koblitz elliptic curve defined over F2131 in about one
year with 3000 3GHz Core 2 CPUs, but has not succeeded yet.

6 We did not really choose the points, but simply took the first point produced by Magma with the specified abscissa.
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6 Conclusion and perspectives

In this paper, we have proposed a new index calculus algorithm to compute discrete logarithms on elliptic
curves defined over extension fields of composite degree. In particular, degree 6 extensions are very well-suited
to this method, as we have practically demonstrated on a 130-bit example.

This combination of cover and decomposition techniques raises many questions. For example, it would
be interesting to know if elliptic curves of prime cardinality defined over a degree 6 extension field can be
efficiently attacked. A related problem is how to target more curves easily: this requires either an improvement
of the isogeny walk, or an efficient use of non-hyperelliptic covers. Finally, whether our method applies to
different extension degrees is an important issue; clearly, degree 4 extensions are also susceptible, but the
advantage over generic methods is then less significant.
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A Genus 3 cover

A.1 Odd characteristic

We consider elliptic curves defined over Fq3 of the form

y2 = h(x)(x− α)(x− σ(α)) (6)

where σ is the Frobenius automorphism of Fq3/Fq, α ∈ Fq3 \ Fq and h ∈ Fq[x] of degree 1 or 2. Such elliptic
curves were studied by [9, 34]; they are the only elliptic curves for which the GHS attack yields a cover by a
hyperelliptic curve H of genus 3 defined over Fq.

We give now an explicit description of the cover π : H → E; following [27], we express this cover as a
quotient by a bi-elliptic involution, instead of using the GHS approach. For simplicity, we will assume that
h(x) = x (this can always be achieved by an appropriate change of coordinates if h has a root in Fq).

Let φ : x 7→ D
x−σ2(α) +σ2(α) be the unique involution of P1(Fq) sending σ2(α) to∞ and α to σ(α), so that

D =
(
α− σ2(α)

) (
σ(α)− σ2(α)

)
. If φ lifts to an involution of a hyperelliptic curve H|Fq

, then necessarily φσ

and φσ
2

will be also involutions of H. Observing that {Id, φ, φσ, φσ2} forms a group, this leads us to consider

the curve of equation y2 = x+ φ(x) + φσ(x) + φσ
2

(x); a more usual form for this equation is

H : y2 = F (x)N(x) (7)
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where N(x) = (x− α) (x− σ(α))
(
x− σ2(α)

)
is the minimal polynomial of α over Fq and

F (x) = N(x)
(
x+ φ(x) + φσ(x) + φσ

2

(x)
)
∈ Fq[x]. It is clear that φ gives an involution of H, still denoted

by φ : (x, y) 7→
(

D
x−σ2(α) + σ2(α), y D2

(x−σ2(α))4

)
.

The quotient of this genus 3 hyperelliptic curve H by φ is the elliptic curve

E′ : y2 = (x− α− σ(α))
(
x2 − 4ασ(α)

)
and the quotient map π′ : H → E′ satisfies π′(x, y) =

(
x+ φ(x), y/(x− σ2(α))2

)
. The curve E′ is 2-isogenous

to the original curve E : y2 = x(x− α)(x− σ(α)) via the map:

(x, y) 7→
(

x2 − 4ασ(α)

4(x− α− σ(α))
, y

(x− 2α)(x− 2σ(α))

8(x− α− σ(α))2

)
.

Finally, the cover map π : H → E has the expression

π(x, y) =

(
F (x)

4N(x)
,
y(x− φσ(x))(x− φσ2

(x))

8N(x)(x− σ2(α))

)
. (8)

In the general case, when E has equation (6), the cover (8) remains the same and the corresponding
hyperelliptic curve H of genus 3 defined over Fq has the following equation:

H : y2 = 4N(x)2 h

(
F (x)

4N(x)

)
.

A.2 Characteristic 2

Let E be an ordinary curve defined over a binary field Fq3 ; it admits an equation of the form

E : y2 + xy = x3 + ax2 + b (9)

where b = 1/j(E). As already apparent in [16], the GHS attack produces a genus 3 hyperelliptic cover of E
when TrFq3/Fq

(b) = 0, so that Θ(q2) curves are directly vulnerable. To describe this cover, we slightly adapt

the description of [27, 29], already used in the previous subsection.

Let σ : x 7→ xq be the Frobenius automorphism and let v = 4
√
b; by assumption its trace over Fq is zero.

As in the case of odd characteristic, we consider the involution φ : x 7→ σ(v)σ2(v)
x+v + v of P1(Fq) sending v

to infinity and σ(v) to σ2(v). We denote by N the minimal polynomial of v over Fq and by F the product

N(x)
(
x+ φ(x) + φσ(x) + φσ

2

(x)
)
∈ Fq[x]. Then, φ lifts to a bi-elliptic involution of the hyperelliptic curve

H|Fq
defined by

H : y2 +N(x)y = F (x)N(x) + aN(x)2. (10)

The curve E is up to a change of variable the quotient of H by φ and the cover map from H to E is
given by:

π : (x, y) 7→
(
x+ φ(x) + v,

y(x+ φ(x) + v)

N(x)
+ v2

)
. (11)


