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M-SHELLABILITY OF DISCRETE POLYMATROIDS

MAJID ALIZADEH, AFSHIN GOODARZI, AND SIAMAK YASSEMI

Abstract. In this note we show that every discrete polymatroid is M -shellable.
This gives, in a partial case, a positive answer to a conjecture of Chari and improves
a recent result of Schweig where he proved that the h-vector of a lattice path matroid
satisfies a conjecture of Stanley.

1. Introduction and Preliminaries

Amatroid M is a pair (E(M),B(M)) consisting of a finite set E(M) and a collection
B(M) of subsets of E(M), called bases of M , that satisfy the following two conditions:

(B1) B(M) 6= ∅, and
(B2) for each pair of distinct sets B, B′ in B(M) and for each element x ∈ B \B′,

there is an element y ∈ B′ \B such that (B − x) ∪ y is in B(M).

Subsets of bases are called independent sets. The collection of independent sets of
a matroid form an abstract simplicial complex, called matroid complex.

For a (d − 1)-dimensional simplicial complex ∆, let fi be the number of (i − 1)-
dimensional faces of ∆ (i.e. the faces of cardinal i), and f(∆) = (f0, f1, . . . , fd) its
f -vector. The h-vector h(∆) = (h0, h1, . . . , hd) is defined by H(y) = F (y − 1), where

H(y) =
∑d

i=0
hiy

d−i and F (y) =
∑d

i=0
fiy

d−i.
A monomial order ideal Γ on a set V = {x1, . . . , xn} of variables is a set of mono-

mials xa1
1 . . . xan

n such that u ∈ Γ and v|u imply that v ∈ Γ. The degree sequence of
Γ is h(Γ) = (h0, h1, . . .), where hi = #{u ∈ Γ|degu = i}. We will not distinguish
between a monomial order ideal and its poset (ordered by divisibility).

A pure M-vector is the degree sequence of an order ideal of monomials, whose
maximal elements have the same degree.

The following conjecture of Stanley [5] is one of the most important conjectures on
h-vector of matroid complexes.

Conjecture 1.1. (Stanley) The h-vector of a matroid complex is a pure M-vector.

A poset Q is an M-poset if there exists a monomial M on a finite set E of inde-
terminates (variables) such that Q is isomorphic to the poset (ordered by divisibility)
on the set of monomials on E that divide M . Equivalently, an M-poset is a direct
product of chains.
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Given two elements x ≤ y of a poset P , the interval [x, y] is called an M-interval
if it is an M-poset. A pure poset P is called M-partitionable if P can be partitioned
into M-intervals [x1, y1], . . . , [xn, yn] such that for each 1 ≤ i ≤ n, yi is a maximal
element of the poset P . Such a partition is called an M-partition of the poset P .

Definition 1.2. An M-shelling of a poset P is an M-partition of P along with
an ordering of the M-intervals such that the union of the elements in any initial
subsequence of M-intervals is an order ideal of P . A poset P is M-shellable, if it
admits an M-shelling.

Chari [2] proposed a stronger version of Stanley’s conjecture for h-vectors of matroid
complexes based on the concept of M-shellability:

Conjecture 1.3. (Chari) The h-vector of a matroid complex is a shellable M-vector.

Recall that a pure M-vector is called shellable if it is the degree sequence of an
M-shellable order ideal of monomials.

Herzog and Hibi [3] introduced discrete polymatroid, which it is a generalization of
matroids. Let Γ be a pure monomial order ideal on the variables {x1, . . . , xr} and for
any m ∈ Γ, the degree of xi in m is denoted by mi. We say Γ is a discrete polymatroid
if, for any two maximal monomials m,m′ ∈ Γ and index i with mi > m′

i, there exists
an index j such that mj < m′

j and
xj

xi
m ∈ Γ, cf. [4, Definition 4.1.].

The aim of this paper is to show that every discrete polymatroid is M-shellable
(Theorem 2.1). We apply this result to show that the h-vector of a lattice path
matroid (see Section 2 for definition) satisfies Conjecture 1.3.

2. Main Theorem

Theorem 2.1. Every discrete polymatroid is M-shellable.

Proof. Let Γ be a discrete polymatroid on the set {x1, . . . , xr} of variables and let p
be the number of maximal elements of Γ. The proof is by induction on p. If p = 1,the
basic case, then Γ is an M-poset and the assertion is obvious. So assume that p > 1.
Then there exist an index j and two maximal elements m and m′ in Γ with mj 6= m′

j.
With no lose of generality, we assume that j = r. Now, put

• k = max{mr | m ∈ Γ};
• Γ1 = {m ∈ Γ | xk

r ∤ m};
• Γ2 = Γ− Γ1; and
• Γ′ = {m

xk
r
| m ∈ Γ2}.

Claim: Γ1 and Γ′ are discrete polymatroids.
Proof of Claim: We only show that Γ1 is discrete polynomial. A similar argument
works for Γ′. First note that Γ1 is a monomial order ideal. Since, for m ∈ Γ1 and
u | m we get that xk

r ∤ u which implies that u ∈ Γ1.To prove the purity of Γ1, we
assume that this is not the case and get a contradiction. By assumption, there exist a
maximal element m in Γ1 and an element m′ ∈ Γ2 such that m | m′. So m′ = xt

rm, for
some t > 0. Let m

′′

be a maximal elements in Γ with m′′

r < k. Then there exists an
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index j such that
xj

xi
m′ = xjx

t−1
r m ∈ Γ which it is contradict m is a maximal element

of Γ1. Thus Γ1 is pure. To complete the proof we assume that m and m′ be two
monomials in Γ1 with mi > m′

i, for some i. Then there exists an index j such that
mj < m′

j and
xj

xi
m ∈ Γ, since Γ is a discrete polymatroid. If j 6= r, then xk

r ∤
xj

xi
m,

since xk
r ∤ m. For j = r we have mr < m′

r < k and then (
xj

xi
m)r < k. Therefore Γ1 is

a discrete polymatroid. This complete the proof of the claim.
By induction hypothesis, there exist the following M-shelling orders for Γ1 and Γ′:

Γ1 = [a1, b1]∪̇ · · · ∪̇[an, bn] and Γ′ = [c1, d1]∪̇ · · · ∪̇[cl, dl].

We claim that the following order

Γ = [a1, b1]∪̇ · · · ∪̇[an, bn]∪̇[x
k
rc1, x

k
rd1]∪̇ · · · ∪̇[xk

rcl, x
k
rdl]

is an M-shelling for Γ. It suffices to show that every initial subsequence A =
Γ1∪̇[xk

rc1, x
k
rd1]∪̇ · · · ∪̇[xk

rcs, x
k
rds] (s < l) is an order ideal. Assume the contrary. Then

there exist m ∈ A−Γ1 and u ∈ Γ−A with u | m. Therefore, u
xk
r
∈ [c1, d1]∪̇ · · · ∪̇[cs, ds].

Since u
xk
r
| m
xk
r
, and Γ′ is M-shellable. It contradicts u ∈ Γ−A. Now the proof is com-

plete. �

Note that the converse of Theorem 2.1 does not hold. As a counterexample, one
can consider the monomial order ideal Σ with maximal elements xy and z2. It is easy
to see that Σ is M-shellable but it is not a discrete polymatroid.

A sequence (h0, h1, . . . , hr) is called a PM-vector if it is the degree sequence of some
discrete polymatroid. Clearly, every PM-vector is a pure M-vector. But Theorem 2.1
gives the following generalization of this fact.

Corollary 2.2. Every PM-vector is a shellable M-vector.

The h-vector of Σ in the example before Corollary 2.2 is (1, 3, 2). It shows that
(1, 3, 2) is a shellable M-vector, but it is indeed a PM-vector (take the discrete poly-
matroid with maximal elements xy and yz). However we guess these two classes of
vectors are very closed.

We end the paper by a result on lattice path matroids.
Fix two lattice paths P = p1p2 . . . pm+r and Q = q1q2 . . . qm+r from (0, 0) to (m, r)
with P never going above Q. For every lattice path R between P and Q, let N (R)
be the set of R’s north steps.

In [1], the authors showed that M [P,Q] = {N (R) : R is a path between Q and P}
is a matroid. M [P,Q] is called a lattice path matroid.

Schweig [4, Theorem 3.6.] showed that lattice path matroids satisfy Conjecture 1.1.
Even more, he proved that the h-vector of a lattice path matroid is a PM-vector, [4,
Corollary 4.5.]. This result of Schweig and Corollary 2.2 together imply the following
result, which says that lattice path matroids satisfy Conjecture 1.3.

Corollary 2.3. The h-vector of a lattice path matroid is a shellable M-vector.
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