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M-SHELLABILITY OF DISCRETE POLYMATROIDS
MAJID ALIZADEH, AFSHIN GOODARZI, AND SIAMAK YASSEMI

ABSTRACT. In this note we show that every discrete polymatroid is M-shellable.
This gives, in a partial case, a positive answer to a conjecture of Chari and improves
a recent result of Schweig where he proved that the h-vector of a lattice path matroid
satisfies a conjecture of Stanley.

1. INTRODUCTION AND PRELIMINARIES

A matroid M is a pair (E(M), B(M)) consisting of a finite set £(M) and a collection
B(M) of subsets of E(M), called bases of M, that satisfy the following two conditions:
(B1) B(M) # 0, and
(B2) for each pair of distinct sets B, B’ in B(M) and for each element z € B\ B,
there is an element y € B"\ B such that (B —z) Uy is in B(M).

Subsets of bases are called independent sets. The collection of independent sets of
a matroid form an abstract simplicial complex, called matroid complex.

For a (d — 1)-dimensional simplicial complex A, let f; be the number of (i — 1)-
dimensional faces of A (i.e. the faces of cardinal i), and f(A) = (fo, f1,..., fa) its
f-vector. The h-vector h(A) = (hg, hy, ..., hq) is defined by H(y) = F(y — 1), where
H(y) = Z?:O hiy®~" and F(y) = Z?:O Sy

A monomial order ideal " on a set V' = {xy,...,x,} of variables is a set of mono-

mials z{* ... 2% such that v € I and v|u imply that v € I'. The degree sequence of

I'is h(I") = (ho, h1,...), where h; = #{u € I'|degu = i}. We will not distinguish
between a monomial order ideal and its poset (ordered by divisibility).

A pure M-vector is the degree sequence of an order ideal of monomials, whose
maximal elements have the same degree.

The following conjecture of Stanley [ is one of the most important conjectures on
h-vector of matroid complexes.

Conjecture 1.1. (Stanley) The h-vector of a matroid complex is a pure M-vector.

A poset @) is an M-poset if there exists a monomial M on a finite set E of inde-
terminates (variables) such that @) is isomorphic to the poset (ordered by divisibility)
on the set of monomials on E that divide M. Equivalently, an M-poset is a direct
product of chains.
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Given two elements x < y of a poset P, the interval [z,y] is called an M-interval
if it is an M-poset. A pure poset P is called M-partitionable if P can be partitioned
into M-intervals [z1,v1], ..., [Tn, ys] such that for each 1 < i < n, y; is a maximal
element of the poset P. Such a partition is called an M-partition of the poset P.

Definition 1.2. An M-shelling of a poset P is an M-partition of P along with
an ordering of the M-intervals such that the union of the elements in any initial
subsequence of M-intervals is an order ideal of P. A poset P is M-shellable, if it
admits an M-shelling.

Chari [2] proposed a stronger version of Stanley’s conjecture for h-vectors of matroid
complexes based on the concept of M-shellability:

Conjecture 1.3. (Chari) The h-vector of a matroid complez is a shellable M -vector.

Recall that a pure M-vector is called shellable if it is the degree sequence of an
M-shellable order ideal of monomials.

Herzog and Hibi [3] introduced discrete polymatroid, which it is a generalization of
matroids. Let I be a pure monomial order ideal on the variables {z1,...,x,} and for
any m € I', the degree of z; in m is denoted by m;. We say I' is a discrete polymatroid
if, for any two maximal monomials m,m’ € I" and index i with m; > m], there exists
an index j such that m; <m/ and 7Zm € T, cf. [4, Definition 4.1.].

The aim of this paper is to show that every discrete polymatroid is M-shellable
(Theorem 2.1]). We apply this result to show that the h-vector of a lattice path
matroid (see Section [ for definition) satisfies Conjecture

2. MAIN THEOREM
Theorem 2.1. FEvery discrete polymatroid is M-shellable.

Proof. Let I" be a discrete polymatroid on the set {x1,...,z,.} of variables and let p
be the number of maximal elements of I'. The proof is by induction on p. If p = 1,the
basic case, then I' is an M-poset and the assertion is obvious. So assume that p > 1.
Then there exist an index j and two maximal elements m and m/ in I' with m; # m/;.
With no lose of generality, we assume that 7 = r. Now, put

e k=max{m, | me'};

o I''={mel |z} tm}

° FQZF—Fl, and

° F’:{w—";|mef‘2}.

Claim: I'; and I are discrete polymatroids.

Proof of Claim: We only show that I'; is discrete polynomial. A similar argument
works for IV. First note that I'y is a monomial order ideal. Since, for m € I'y and
u | m we get that 2% { u which implies that u € T';.To prove the purity of I'y, we
assume that this is not the case and get a contradiction. By assumption, there exist a
maximal element m in I'; and an element m’ € T’y such that m | m’. So m’ = alm, for
some t > 0. Let m" be a maximal elements in I' with m” < k. Then there exists an
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index j such that = m = z;27'm € T which it is contradict m is a maximal element
of I'y. Thus I'y is pure To complete the proof we assume that m and m’ be two
monomials in I'y with m; > m/, for some 7. Then there exists an index j such that
mj < m); and fc—jm € T, since I is a discrete polymatroid. If j # 7, then z* { z—jm,
since z¥ { m. For j = r we have m, < m/ < k and then (2m), < k. Therefore I'; is
a discrete polymatroid. This complete the proof of the claim.

By induction hypothesis, there exist the following M-shelling orders for I'y and I":

Iy =[a1, 1)U~ -Ula,, b,] and T = [cy,dq]U---Ule, dy].
We claim that the following order
F = [alvbl]uu[anubn]u[x C1,T T’dl] [QE C, T T’dl]

is an M—shelling for I'. It suffices to show that every initial subsequence A =
[yUlxkey, akdy)U- - - Ulake,, 2Fd,) (s < 1) is an order ideal. Assume the contrary. Then
there exist m € A F1 and u € I'— A with u | m. Therefore, % € [cy,di]U- - - Ules, ).

Since % | 7+, and I is M-shellable. It contradicts u € I' — A. Now the proof is com-
plete. O

Note that the converse of Theorem 2.1] does not hold. As a counterexample, one
can consider the monomial order ideal Y with maximal elements xy and 22. It is easy
to see that X is M-shellable but it is not a discrete polymatroid.

A sequence (hg, hq, ..., h,) is called a PM-vector if it is the degree sequence of some
discrete polymatroid. Clearly, every PM-vector is a pure M-vector. But Theorem 2.1
gives the following generalization of this fact.

Corollary 2.2. Fvery PM -vector is a shellable M -vector.

The h-vector of ¥ in the example before Corollary is (1,3,2). It shows that
(1,3,2) is a shellable M-vector, but it is indeed a PM-vector (take the discrete poly-
matroid with maximal elements zy and yz). However we guess these two classes of
vectors are very closed.

We end the paper by a result on lattice path matroids.

Fix two lattice paths P = p1ps...pmyr and Q = q1qa - . . Gy from (0,0) to (m,7r)
with P never going above Q. For every lattice path R between P and Q, let N'(R)
be the set of R’s north steps.

In [I], the authors showed that M[P, Q] = {N(R) : R is a path between @) and P}
is a matroid. M [P, Q)] is called a lattice path matroid.

Schweig [4, Theorem 3.6.] showed that lattice path matroids satisfy Conjecture [[1]
Even more, he proved that the h-vector of a lattice path matroid is a PM-vector, [4,
Corollary 4.5.]. This result of Schweig and Corollary together imply the following
result, which says that lattice path matroids satisfy Conjecture [L3l

Corollary 2.3. The h-vector of a lattice path matroid is a shellable M -vector.
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