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Abstract

We discuss the Nakamura’s conjecture stating that the Tomimatsu-Sato black

hole solution with deformation parameter n is composed of the special solutions

of the Toda molecule equation at the n-th lattice site. From the previous work,

in which the conjecture was partly analytically proved, we goes further toward

final full proof by rearranging the rotation parameter. The proof is explicitly

performed for the highest and lowest orders. Though the proof for the full orders

is still remained unsolved, the prospect to the full proof becomes transparent and

workable by our method.
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1 Introduction

There are close and unexpected relations between a variety of integrable systems. The

interplay between black hole and the Toda molecule solutions is one of such examples.

A. Nakamura found an important relation [1] between the Tomimatsu-Sato (hereafter

we refer it as TS) solutions [2] and the Toda molecule solutions [3]. That is, he asserts

that a series of TS solutions with deformation parameter n and rotation parameters

p, q (p2+ q2 = 1) are obtained from the special solutions of the Toda molecule equation

at the n-th lattice site (Nakamura’s conjecture). The Ernst equation is summarized

as two sets of equations, {Eqs. (13) and (14)} and {Eqs. (15) and (16)}. Nakamura

checked that this conjecture is numerically satisfied for small n. One of the present

authors (T.F.) tried to prove analytically this conjecture for general n [4].

In [4], we proved for general n case that the special solutions of Toda molecule satisfy

the first set of equations without using the explicit form of the solution. However, the

second set was proved to satisfy for the restricted case of q = 0 by using the explicit

form of the solution. The q = 0 black hole is corresponding to the (extended) Weyl

solutions. (q = 0, n = 1 correspond to the Schwarzschild solution.) Thus the full proof

was remained unsolved for the generic case, q 6= 0. For general n, the two solutions of

Toda molecule equation, gn and fn (see Eq. (4)), are given by the polynomials of p and

q of homogeneous degree of n and n− 1, respectively, that is, piqn−i, (i = 0, · · · n) and
piqn−i−1, (i = 0, · · · n− 1). If we change these parameters p, q (independent parameter

is one) to t defined by (37), the special solutions of Toda molecule equation gn and fn
are described by the Laurent polynomials whose highest (lowest) degrees are n (−n)
and n−1 (−n+1), respectively. We give the explicit form of the Nakamura’s conjecture

order by order on t. In this paper we prove the second set of equations at the highest

and lowest orders of t. This may be the step toward the complete proof. This paper

is organized as follows. In the next section we briefly review our previous work [4].

Sec. 3 is the central part of this paper, where the Toda molecule equations and the

Nakamura’s conjecture are expanded by the Laurent polynomials and its conjecture is

proved at the highest and lowest orders of t. Some detailed calculations are developed

in the Appendix. In Sec. 4, we discuss on the results and their implications of the

present paper.

2 Nakamura’s conjecture and our previous results

The two dimensional Toda molecule equation is described by

∂2

∂S∂T
logVn ≡ (logVn)ST = Vn−1 − 2Vn + Vn+1. (1)

Here S and T are light cone coordinates related with the Cartesian coordinates, X and

Y , by

S =
1

2
(X + Y ), T =

1

2
(X − Y ) (2)
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and n indicates the n-th lattice site. If we introduce τ function defined by

Vn = (logτn)ST , (3)

the Toda molecule equation is expressed in terms of the Hirota’s bilinear forms [5] as

DSDT τn · τn − 2τn+1τn−1 = 0, (4)

where the Hirota derivative is defined by D(f · g) = (∂f)g − f(∂g). The bilinear form

is very useful for the integrable system, which is also the case in the present problem.

n is positive integer and the boundary condition is chosen as τ0 = 1 corresponding to

the finite and semi-infinite lattices. The general solution of Eq. (4) is expressed in a

form of the two-directional Wronskian [7]

τn = det













ψ L−ψ . . . Ln−1
−

ψ

L+ψ L+L−ψ . . . L+L
n−1
−

ψ
...

...
...

...

Ln−1
+ ψ Ln−1

+ L−ψ . . . Ln−1
+ Ln−1

−
ψ













. (5)

with the boundary condition τ0 = 1 and initial condition τ1 = ψ. Here L+(L−) ≡
∂S(∂T ) =

∂
∂X

+ ∂
∂Y

( ∂
∂X

− ∂
∂Y

). For the finite lattice, the initial condition ψ takes a form

ψ =
N+1
∑

k=1

Hk(S)Gk(T ). (6)

So that Vn satisfies the boundary condition

V0 = VN+1 = 0, (7)

where N stands for the total number of lattice sites. In the present paper, the semi-

infinite lattice corresponding to the N → ∞ case is treated. We first show how it

appears as a result of a Pfaffian identity for the help of later discussions, though it is

a known fact.

We introduce D as a determinant of (n+ 1)× (n+ 1) matrix τn+1;

D ≡ τn+1. (8)

The minor D
[

i
j

]

is defined by deleting the i-th row and the j-th column from D.

Similarly D
[

i,k
j,l

]

is defined by deleting the i and k-th rows and the j and l-th columns

from D and so on. The Toda molecule equation (4) is now expressed as

D
[

n

n

]

D
[

n+ 1

n+ 1

]

−D
[

n+ 1

n

]

D
[

n

n+ 1

]

−DD
[

n, n+ 1

n, n+ 1

]

= 0. (9)

It holds since it is nothing but the Jacobi’s (Sylvester’s) formula for matrix minors,

which is one of Pfaffian identities. Thus the Toda molecule equation has been reduced
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to Pfaffian identity in direct method. It is also the case in the Einstein equation as will

be shown in the following.

The Ernst equation for axially symmetric metric of Einstein equation is

(ξξ∗ − 1)∇2ξ − 2ξ∗∇ξ · ∇ξ = 0. (10)

It is shown that Eq. (10) is invariant under the global SU(1,1) transformation

ξ′ =
αξ + β∗

βξ + α∗
, (|α|2 − |β|2 6= 0). (11)

Setting

ξn =
gn
fn
, (12)

the Nakamura’s conjecture on TS solutions consists of two ingredients [1];

(i) Eq. (10) has a decomposition into two sets [1]

Dx(gn · fn − g∗n · f∗n) = 0, (13)

Dy(gn · fn + g∗n · f∗n) = 0, (14)

and

F (g∗n · fn) = 0, (15)

F (g∗n · gn + f∗n · fn) = 0. (16)

Here the bi-linear operator F is

F = (x2 − 1)D2
x + 2x∂x + (y2 − 1)D2

y + 2y∂y + cn (17)

and x and y are usual prolate spheroidal coordinates defined by

∂X = (x2 − 1)∂x and ∂Y = (y2 − 1)∂y. (18)

(ii) From the solutions of the Toda molecule equation τn, a set of TS solutions with

deformation parameter n, ξn = gn
fn
, are obtained as

gn = τn = D
[

n+ 1

n+ 1

]

, fn = τn−1 |ψ→L+L−
ψ

= D
[

1, n + 1

1, n + 1

]

(19)

by choosing the arbitrary function ψ and the constant cn in (6) as

ψ = px− iqy, p2 + q2 = 1, cn = − 2 n2. (20)
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The first set of Eqs. (13) and (14) is proved in the general case whose detailed proof

should be referred to [4]. While, the second set of Eqs. (15) and (16) is shown for a

restricted case of q = 0 in [4]. The present paper is its extension to generic case q 6= 0

and we review for q = 0 first.

To prove the second set of decomposition equations Eqs. (15) and (16), the explicit

form of ψ in Eq. (20) is required in contrast to the case of the first set. gn(fn) is the

determinant of matrix whose (i, j) ((i− 1, j − 1)) element is

Li−1
+ Lj−1

−
ψ = Li−1

+ Lj−1
−

(px− iqy)

= pWi+j−1(x) + (−1)j iqWi+j−1(y), (21)

where

Wn+1(z) = (z2 − 1)
d

dz
Wn(z) with W1(z) = z. (22)

The polynomial expression for Wn(z) is given by

Wn(z) =
n−2
∑

m=0

{

m
∑

l=0

(−1)l(m− l + 1)n−1

(

n

l

)}

(z+1)m+1(z−1)n−m−1, (n ≥ 2), (23)

where
(n
l

)

is the binomial coefficient.

In case of p = 1 and q = 0, ψ = x and gn and fn are real functions depending only

on x. Explicit forms of gn and fn are

gn = det













W1(x) W2(x) . . . Wn(x)

W2(x) W3(x) . . . Wn+1(x)
...

...
...

...

Wn(x) Wn+1(x) . . . W2n−1(x)













, fn = det







W3(x) . . . Wn+1(x)
...

...
...

Wn+1(x) . . . W2n−1(x)






.

(24)

Using Eq. (22) we can evaluate the determinant,

gn = (x2 − 1)
n(n−1)

2 det













x 1 0 0 . . . 0

x2 − 1 2x 2 0 . . . 0

2x(x2 − 1) 6x2 − 2 12x 12 . . . 0
...

...
...

... . . .
...













=
An
2
(x2 − 1)

n(n−1)
2

(

(x+ 1)n + (x− 1)n
)

, (25)

where the coefficient An is

An =

(

n−1
∏

k=0

Γ(n− k)

)2

= (n− 1)2(n − 2)4 · · · 22(n−1). (26)

Eq. (25) is proved by induction. For n = 1 and n = 2 cases Eq. (25) holds. Assuming

it for n = l− 1 and n = l cases we prove it for the case of n = l+1. Applying Jacobi’s
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formula (9) to gn we obtain, corresponding to the Toda molecule equation in Eq. (5),

gl−1 gl+1 = (L2
X gl) gl − (LX gl)

2, (27)

where LX ≡ (x2 − 1)∂x. Using the assumed forms for gl and gl−1 we find the expected

form for gl+1;

gl+1 =
Al+1

2
(x2 − 1)

(l+1)l
2

(

(x+ 1)l+1 + (x− 1)l+1
)

. (28)

Here we have used an equality obtained from the definition of An in Eq. (26);

An−1An+1 = n2An. (29)

Thus Eq. (25) is proved for n = l + 1. Quite analogously fn is shown to be

fn =
An
2
(x2 − 1)

n(n−1)
2

(

(x+ 1)n − (x− 1)n
)

. (30)

The second set of Eqs. (15) and (16) is

F (gn · fn) = 0,

F (gn · gn + fn · fn) = 0, (31)

and F becomes in q = 0 and cn = −2n2 case

Fa · b = 1

x2 − 1

(

(L2
Xa)b+ a(L2

Xb)− 2(LXa)(LXb)

)

− 2n2ab. (32)

It is straight forward to show gn and fn in Eqs. (25) and (30) satisfy Eq. (31).

3 Proof of Nakamura’s Conjecture at the highest and low-

est orders

If the Nakamura’s conjecture is true, the global symmetry (11) of the Ernst’s equation

must be reflected in the Toda molecule equation. The symmetry (11) with (12) is

rewritten as
g′n
f ′n

=
αgn + β∗fn
βgn + α∗fn

. (33)

This may be divided into the following two transformations:

g′n = αgn + β∗fn, (34)

f ′n = βgn + α∗fn. (35)

Indeed it is easily shown that two sets (13)-(16) in the Nakamura’s conjecture remain

invariant under the above transformations (34) and (35). Furthermore, it turns out that

the transformed functions g′n and f ′n are also solutions of the Toda molecule equations,
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i.e. any linear superposition of the solutions gn and fn given by Eq. (19) satisfies the

Toda molecule equation. The proof for the linear property is confirmed by several ways.

As the first proof, we consider that the transformation ψ → ψ+ b
a
in Eq. (5) generates

different solution of Toda molecule equation. Under the transformation, the function τn
becomes τn +

b
a
τn−1|ψ→L+L−ψ. Taking the transformation and the rescaling of the tau

function into account, one can show that the function aτn+bτn−1|ψ→L+L−ψ satisfies the

Toda molecule equation, where a and b are any complex constants. Because τn = gn
and τn−1|ψ→L+L−ψ = fn under the choices (20), it is shown that agn + bfn is also a

solution of Toda molecule equation. As the second proof, it follows from this linear

combination (34) ((35)) that

DSDT fn · gn = fn+1gn−1 + fn−1gn+1, (36)

which can be reduced to a Pfaffian identity.

Here let us consider expansions of the functions gn and fn by the parameters p and

q. For general n, gn and fn are given by polynomials of p and q of homoheneous degree

of n and n−1, respectively. As we mentioned, we must prove order by order. However,

in terms of p, q, it is rather complicated. So let us introduce one parameter t defined

by

p =
t+ t−1

2
, q =

t− t−1

2i
. (37)

Then ψ is rewritten as

ψ = t

(

x− y

2

)

+ t−1
(

x− y

2

)

= tv + t−1u, u =
x+ y

2
, v =

x− y

2
. (38)

To make the t dependence of gn, fn clear, we write them as

gn = gn(x, y; t), fn = fn(x, y; t). (39)

Then, gn(x, y; t) and fn(x, y; t) are expressed as the Laurent polynomials of n and n−1

orders of t, respectively:

gn(x, y; t) =
n
∑

m=−n

g̃(m)
n (x, y)tm, fn(x, y; t) =

n−1
∑

m=−n+1

f̃ (m)
n (x, y)tm. (40)

They have the following properties

g∗n = gn(x, y; t
−1), f∗n = fn(x, y; t

−1) (41)

g∗n = gn(x,−y; t), f∗n = fn(x,−y; t) (42)

gn(x, y;−t) = (−1)ngn(x, y; t), fn(x, y;−t) = (−1)n−1fn(x, y; t) (43)

gn(x, y; it) = (−i)n2
gn(y, x; t), fn(y, x; it) = (−i)n2

−1fn(y, x; t) (44)

as are shown from their definitions. It follows from these identities that

g̃(n−2m−1)
n (x, y) = 0, f̃ (−n+2m+1)

n (x, y) = f̃ (n−2m−1)
n (x,−y), (m = 0, · · · , n − 1)(45)

f̃ (n−2m)
n (x, y) = 0, g̃(−n+2m)

n (x, y) = g̃(n−2m)
n (x,−y), (m = 0, · · · , n) (46)
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and we obtain the expansions,

gn(x, y; t) =
n
∑

m=0

g̃(n−2m)
n (x, y)tn−2m, fn(x, y; t) =

n−1
∑

m=0

f̃ (n−2m−1)
n (x, y)tn−2m−1 (47)

and

g∗n(x, y; t) =
n
∑

m=0

g̃(−n+2m)
n (x, y)tn−2m, f∗n(x, y; t) =

n−1
∑

m=0

f̃ (−n+2m+1)
n (x, y)tn−2m−1

(48)

with

g̃(−m)
n (x, y) = g̃(m)

n (x,−y), f̃ (−m)
n (x, y) = f̃ (m)

n (x,−y). (49)

Because the Toda molecule equations for fn and gn and Eq. (36) hold for an arbitrary

value of the parameter t, we obtain order by order equations of the Laurent expansions

of fn and gn (see the Appendix). The highest order equations of them, which correspond

to the I = 0 case in the Appendix, are given by

DSDT g̃
(n)
n (x, y) · g̃(n)n (x, y) = 2g̃

(n+1)
n+1 (x, y)g̃

(n−1)
n−1 (x, y), (50)

DSDT f̃
(n−1)
n (x, y) · f̃ (n−1)

n (x, y) = 2f̃
(n)
n+1(x, y)f̃

(n−2)
n−1 (x, y), (51)

and

DSDT f̃
(n−1)
n (x, y) · g̃(n)n (x, y) = f̃

(n)
n+1(x, y)g̃

(n−1)
n−1 (x, y) + f̃

(n−1)
n−2 (x, y)g̃

(n+1)
n+1 (x, y). (52)

In fact, because by definitions the highest order terms g̃
(n)
n (x, y) and f̃

(n−1)
n (x, y) are

written by the following determinants

g̃(n)n (x, y) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

v L−v · · · Ln−1
−

v

L+v L+L−v · · · L+L
n−1
−

v
...

...
. . .

...

Ln−1
+ v Ln−1

+ L−v · · · Ln−1
+ Ln−1

−
v

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (53)

f̃ (n−1)
n (x, y) =

∣

∣

∣

∣

∣

∣

∣

∣

L+L−v · · · L+L
n−1
−

v
...

. . .
...

Ln−1
+ L−v · · · Ln−1

+ Ln−1
−

v

∣

∣

∣

∣

∣

∣

∣

∣

(54)

with u = (x+ y)/2 and v = (x− y)/2, it is shown that all of these equations (50)-(52)

reduce to Pfaffian identities.

In general, these functions gn and fn should be expressed as finite polynomials of

the prolate spheroidal coordinates x, y. To determine the explicit forms for all orders is

seemingly a tedious work. However, after some numerical caluculations, we know that

the highest term g̃
(n)
n (x, y) and the lowest term g̃

(−n)
n (x, y) have the forms,

g̃(n)n (x, y) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

v L−v · · · Ln−1
−

v

L+v L+L−v · · · L+L
n−1
−

v
...

...
. . .

...

Ln−1
+ v Ln−1

+ L−v · · · Ln−1
+ Ln−1

−
v

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 2n(n−1)Anu
n(n−1)

2 v
n(n+1)

2 (55)

7



and

g̃(−n)n (x, y) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

u L−u · · · Ln−1
−

u

L+u L+L−u · · · L+L
n−1
−

u
...

...
. . .

...

Ln−1
+ u Ln−1

+ L−u · · · Ln−1
+ Ln−1

−
u

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 2n(n−1)Anu
n(n+1)

2 v
n(n−1)

2 ,

(56)

where An is given by Eq. (26). Also it turns out that the highest term f̃
(n−1)
n (x, y) and

the lowest term f̃
(−n+1)
n (x, y) are

f̃ (n−1)
n (x, y) =

∣

∣

∣

∣

∣

∣

∣

∣

L+L−v · · · L+L
n−1
−

v
...

. . .
...

Ln−1
+ L−v · · · Ln−1

+ Ln−1
−

v

∣

∣

∣

∣

∣

∣

∣

∣

=
g̃
(n)
n (x, y)√

π
×

n−1
∑

m=0

m
∑

l=0

(−1)l−m
Γ(2m+1

2 )Γ(2(n−l)+1
2 )

Γ(2(m−l)+3
2 )Γ(l + 1)Γ(m− l + 1)Γ(n −m)

u2lv−2m−1 (57)

and

f̃ (−n+1)
n (x, y) =

∣

∣

∣

∣

∣

∣

∣

∣

L+L−u · · · L+L
n−1
−

u
...

. . .
...

Ln−1
+ L−u · · · Ln−1

+ Ln−1
−

u

∣

∣

∣

∣

∣

∣

∣

∣

=
g̃
(−n)
n (x, y)√

π
×

n−1
∑

m=0

m
∑

l=0

(−1)l−m
Γ(2m+1

2 )Γ(2(n−l)+1
2 )

Γ(2(m−l)+3
2 )Γ(l + 1)Γ(m− l + 1)Γ(n −m)

u−2m−1v2l. (58)

These polynomial expressions (55)-(58) are proved by applying the mathematical in-

duction and using the identities (49). In the n = 1 and n = 2 cases these expressions

(55)-(58) hold. Assuming it for n = l − 1 and n = l cases, we prove them for the case

of n = l + 1. Substituting the assumed polynomial forms g̃
(l−1)
l−1 and g̃

(l)
l into the Toda

molecule equation at the highest order,

g̃
(l+1)
l+1 (x, y) =

1

2g̃
(l−1)
l−1 (x, y)

(DSDT g̃
(l)
l (x, y) · g̃(l)l (x, y)), (59)

we obtain the expected polynomial form for g̃
(l+1)
l+1 . By using the identities (49), it is

easily shown Eq. (56) is correct. Eq. (52) is used instead of Eq. (51) to prove the parts

f̃
(n−1)
n (x, y) and f̃

(−n+1)
n (x, y), with the expressions (55) and (56) shown in the above.

Likewise, it is shown the expressions for f̃
(n−1)
n (x, y) and f̃

(−n+1)
n (x, y) are correct by

substituting them into Eq. (52) and using the identities (49). Thus these polynomial

expressions are correct. The linearity property for gn and fn ensures that the expression

for f̃
(n−1)
n (x, y) satisfies Eq. (51).

Let us prove the Nakamura’s conjecture at the highest order of t. Substituting the

Laurent expansions (47) and (48) into it’s conjecture (13)-(16), the equations in each

8



order of t corresponding to its conjecture are derived (see the Appendix). The highest

orders of t for Eqs. (13)-(15) and Eq. (16) are 2n − 1 and 2n, respectively. They are

described as the following equations at the highest order:

Dx(g̃
(n)
n (x, y) · f̃ (n−1)

n (x, y)− g̃(−n)n (x, y) · f̃ (−n+1)
n (x, y)) = 0 (60)

Dy(g̃
(n)
n (x, y) · f̃ (n−1)

n (x, y) + g̃(−n)n (x, y) · f̃ (−n+1)
n (x, y)) = 0, (61)

and

F (g̃(−n)n (x, y) · f̃ (n−1)
n (x, y)) = 0 (62)

F (g̃(−n)n (x, y) · g̃(n)n (x, y)) = 0. (63)

It is proved by the straightforward calculation that the polynomial expressions (55)-

(58) satisfy the Nakamura’s conjecture at the highest order (60)-(61) and (62)-(63).

Although the validities of Eqs. (60) and (61) are clear due to a Pfaffian identiy for the

first set of equations Eqs. (13) and(14), here they are reproduced from this approach.

It is also proved by straightforward calculations that the lowest order equations of

the Nakamura’s conjecture are right. As an another way, it is easily proved by using

the property (49).

4 Discussions

In this paper we have discussed a proof of the Nakamura’s conjecture on TS solutions.

In the previous work [4], the first set of Eqs. (13) and (14) was proved completely

without using the explicit forms of fn and gn. Whereas the proof of the second set

of Eqs. (15) and (16) needed the explicit forms of fn and gn and was given for the

restricted case p = 1, q = 0, deformed but non-rotating black hole. It is corresponding

to the (extended) Weyl solution. In that case, th key point was that the functions

gn and fn depends only on x and their polynomial expressions are explicitly required.

This work is the extension of that work. That is, we have discussed the deformed and

rotating black hole (q 6= 0) in this paper, extending the previous results to more generic

case of pq 6= 0. To prove the deformed and rotating case we have rearranged the original

parameters p, q (p2 + q2 = 1) to t. Thanks to this arrangement, some properties of the

functions gn and fn become transparent and workable (for instance (41)-(44)). Using

the property (44), the explicit forms of functions gn and fn are obtained for p = 0, q = 1

(t =
√
−1) case and proved to satisfy the Nakamura’s conjecture. For this case it is

known that the metric indicates extremal TS solution, not asympotetically flat and

describes a region of the TS metric near its ergosphere [8].

For the most generic case, pq 6= 0, the functions gn and fn are embedded in two

dimensions and the situation is drastically changed compared with the pq = 0 case.

The introduction of t enables us to prove the conjecture order by order on t. In

fact, by the Laurent expansions of the functions gn and fn we obtain the polynomial

expressions of x, y (55)-(58) for the highest and lowest orders of gn and fn. As the

9



result, it is proved that the highest and lowest orders of the Nakamura’s conjecture are

valid by the straightforward calculations. Unfortunately the proof for the second set

of the conjecture has not been completed at full orders though their explicit forms are

described in the Appendix.

Here some comments are in order. It seems that the equations for the next highest

order (I = 1 in the Appendix) will be an important key to solve the problem. Though

it is considerably complex, it is very straightforward. Then Eqs. (B.1)-(B.6) and our

polynomial expressions for the highest and lowest order terms of gn and fn will be

useful, because Eqs. (B.1)-(B.6) were already proved and the highest orders and the

following orders for gn and fn are coupled in the next highest order equations (I = 1 in

the Appendix). Futheremore, we observe that the expression for the highest order of

fn is connected with the Gamma functions. It is strongly expected that the polynomial

expressions for gn and fn are described by two variables hypergeometric functions. As

the other approaches, those by the Kramer-Neugebauer and Bäcklund transformations

are considered. Although these transformations change properties of special solutions,

the approach to the TS solutions as the Kramer-Neugebauer limit [9] will be useful to

prove the conjecture.

It is also worth noting that the SU(1,1) symmetry plays the important role for

the proof of the polynomial expressions (57) and (58). The Nakamura’s conjecture is

invariant under the transformation. The physical meanings of its symmetry is that a

NUT parameter is generated by the transformation, (for instance the Schwartzschild

geometry becomes Taub-NUT geometry by the transformation.). Therefore, if the

Nakamura’s conjecture is correct, its conjecture is also correct even for a generalization

of TS solutions with a NUT parameter. The study of relations between Toda molecule

and Ernst equation is very important. It explains the reason why the deformation

parameter n is limitted as integers for TS solutions, though generalized TS solutions

with non integers deformation parameters were considered by Hori [10] and Cosgrove

[11]. On the physical natures of TS geometries, for instance, geometrical difference

between odd and even deformation parameters will be also clarified from this point of

views [12]. The explorations of these relations are expected to shed new light on the

integrable systems and the Ernst equation themselves.
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Appendix

We have seen the functions gn and fn are expanded by the one parameter t. In the

appendix, we extract order by order equations for the Toda molecule equations and the

Nakamura’s conjecture by substituing the expressions (47) into them.

A. Order by order equations for Toda molecule equation

The Toda molecule equation for gn are expressed by

DSDT

(

n
∑

m=0

g̃(n−2m)
n (x, y)tn−2m

)

·
(

n
∑

l=0

g̃(n−2l)
n (x, y)tn−2l

)

= 2

(

n+1
∑

m=0

g̃
(n−2m+1)
n+1 (x, y)tn−2m+1

)(

n−1
∑

l=0

g̃
(n−2l−1)
n−1 (x, y)tn−2l−1

)

(A.1)

in terms of the Laurent expansions by t. The parameter t is an arbitrary constant,

so that the above equation must hold at each order of t. For the orders t2n−2I , (I =

0, · · · 2n), we derive the following coupled equations:

(I) for 0 ≤ I ≤ n− 1,

I
∑

J=0

DSDT g̃(n−2J)
n (x, y) · g̃(n−2I+2J)

n (x, y)

= 2
I
∑

J=0

g̃
(n−2J+1)
n+1 (x, y)g̃

(n−2I+2J−1)
n−1 (x, y), (A.2)

(II) for I = n,

n
∑

J=0

DSDT g̃(n−2J)
n (x, y) · g̃(−n+2J)

n (x, y)

= 2
n
∑

J=1

g̃
(n−2J+1)
n+1 (x, y)g̃

(−n+2J−1)
n−1 (x, y),

(III) for n+ 1 ≤ I ≤ 2n, y → −y in (I) and (II). (A.3)

In the similar way, the Toda molecule equation for fn becomes the following equations

at the order t2n−2I−2, (I = 0, · · · , 2(n − 1)):

(IV) for 0 ≤ I ≤ n− 2,

I
∑

J=0

DSDT f̃
(n−2J−1)
n (x, y) · f̃ (n−2I+2J−1)

n (x, y)

= 2
I
∑

J=0

f̃
(n−2J)
n+1 (x, y)f̃

(n−2I+2J−2)
n−1 (x, y), (A.4)

(V) for I = n− 1,

11



n−1
∑

J=0

DSDT f̃
(n−2J−1)
n (x, y) · f̃ (−n+2J+1)

n (x, y)

= 2
n−1
∑

J=1

f̃
(n−2J)
n+1 (x, y)f̃

(−n+2J)
n−1 (x, y), (A.5)

(VI) for n ≤ I ≤ 2(n − 1), y → −y in (IV) and (V). (A.6)

For t2n−2I−1, (I = 0, · · · , 2n− 1), Eq. (36) is reduced to

(VII) for 0 ≤ I ≤ n− 2,

I
∑

J=0

DSDT f̃ (n−2J−1)
n (x, y) · g̃(n−2I+2J)

n (x, y)

= 2
I
∑

J=0

(

f̃
(n−2J)
n+1 (x, y)g̃

(n−2I+2J−1)
n−1 (x, y)

+f̃
(n−2J−2)
n−1 (x, y)g̃

(n−2I+2J+1)
n+1 (x, y)

)

, (A.7)

(VIII) for I = n− 1,

n−1
∑

J=0

DSDT f̃ (n−2J−1)
n (x, y) · g̃(−n+2J+2)

n (x, y)

= 2
n−1
∑

J=0

f̃
(n−2J)
n+1 (x, y)g̃

(−n+2J+1)
n−1 (x, y)

+
n−2
∑

J=0

f̃
(n−2J−2)
n−1 (x, y)g̃

(−n+2J+3)
n+1 (x, y), (A.8)

(IX) for n ≤ I ≤ 2n− 1, y → −y in (VII) and (VIII). (A.9)

The highest order equations correspond to the I = 0 case.

B. Order by order equations for Nakamura’s conjecture

Eqs. (13)-(16) of the Nakamura’s conjecture are also rewritten by the Laurent ex-

pansions of t. Eq. (13) becomes the following equations for the order t2n−2I−1, (I =

0, · · · , 2n − 1):

(I) for 0 ≤ I ≤ n− 1,

I
∑

J=0

Dx

(

g̃(n−2J)
n (x, y) · f̃ (n−2I+2J−1)

n (x, y)

−g̃(−n+2J)
n (x, y) · f̃ (−n+2I−2J+1)

n (x, y)
)

= 0 (B.1)

(II) for I = n,

n
∑

J=1

Dx

(

g̃(n−2J)
n (x, y) · f̃ (−n+2J−1)

n (x, y)
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−g̃(−n+2J)
n (x, y) · f̃ (n−2J+1)

n (x, y)
)

= 0 (B.2)

(III) for n+ 1 ≤ I ≤ 2n − 1, y → −y in (I) and (II). (B.3)

Eq. (14) reduces to the following equations at the order t2n−2I−1, (I = 0, · · · , 2n− 1):

(IV) for 0 ≤ I ≤ n− 1,

I
∑

J=0

Dy

(

g̃(n−2J)
n (x, y) · f̃ (n−2I+2J−1)

n (x, y)

+g̃(−n+2J)
n (x, y) · f̃ (−n+2I−2J+1)

n (x, y)
)

= 0 (B.4)

(V) for I = n,

n
∑

J=1

Dy

(

g̃(n−2J)
n (x, y) · f̃ (−n+2J−1)

n (x, y)

+g̃(−n+2J)
n (x, y) · f̃ (n−2J+1)

n (x, y)
)

= 0 (B.5)

(VI) for n+ 1 ≤ I ≤ 2n− 1, y → −y in (IV) and (V). (B.6)

For Eq. (15) at the order t2n−2I−1, (I = 0, · · · , 2n − 1), it is

(VII) for 0 ≤ I ≤ n− 1,

I
∑

J=0

F g̃(−n+2J)
n (x, y) · f̃ (n−2I+2J−1)

n (x, y) = 0 (B.7)

(VIII) for I = n,

n
∑

J=1

F (g̃(−n+2J)
n (x, y) · f̃ (−n+2J−1)

n (x, y) = 0 (B.8)

(IX) for n+ 1 ≤ I ≤ 2n− 1, y → −y in (VII) and (VIII). (B.9)

For Eq. (16) at the order t2n−2I , (I = 0, · · · , 2n), it is

(X) for 1 ≤ I ≤ n,

I
∑

J=0

F
(

g̃(−n+2J)
n (x, y) · g̃(n−2I+2J)

n (x, y)

+f̃ (−n+2J+1)
n (x, y) · f̃ (n−2I+2J+1)

n (x, y)
)

= 0 (B.10)

(XI) for I = 0,

F (g̃(−n)n (x, y) · g̃(n)n (x, y)) = 0 (B.11)

(XII) for n+ 1 ≤ I ≤ 2n, y → −y in (X) and (XI). (B.12)
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Eqs. (B.1)-(B.6) are corresponding to the first set (13) and (14) of the Nakamura’s

conjecture. As already mentioned, the first set (13) and (14) is proved by using a

Paffinian identity [4]. Thus Eqs. (B.1)-(B.6) are correct. The highest order equations

of the Nakamura’s conjecture also correspond to the I = 0 case.
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