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SUPER DUALITY AND HOMOLOGY OF UNITARIZABLE

MODULES OF LIE ALGEBRAS

PO-YI HUANG, NGAU LAM, AND TZE-MING TO

Abstract. The u-homology formulas for unitarizable modules at negative levels
over classical Lie algebras of infinite rank of types gl(n), sp(2n) and so(2n) are ob-
tained. As a consequence, we recover the Enright’s formulas for three Hermitian
symmetric pairs of classical types (SU(p, q), SU(p) × SU(q)), (Sp(2n), U(n)) and
(SO∗(2n), U(n)).

1. Introduction

In analogy to Kostant’s u-cohomology formulas [Ko], Enright establishes similar for-
mulas [E] for unitarizable highest weight modules of Hermitian symmetric pairs in term
of certain complicated subsets of the Weyl groups. The argument there is intricate and
involves several equivalences of categories and non-trivial combinatorics of the Weyl
groups. Kostant’s formula can be rephrased by saying the Kazhdan-Lusztig polyno-
mials associated to finite-dimensional module are monomials. The same statement is
true by Enright’s formulas for unitarizable highest weight modules. Except for the re-
semblance of the formulas, there was no obvious connection between Enright’s formula
and Kostant’s formula.

However, the modules appearing in the Howe duality at negative levels [W, H1, H2]
over classical Lie algebras of infinite rank are unitarizable modules (cf. [EHW], see also
Proposition 2.6 and Remark 2.7 below) and the character formulas for these modules
can be obtained by applying the involution of the ring of symmetric functions with
infinite variables, which sends the elementary symmetric functions to the complete
symmetric functions, to the characters for the corresponding integrable modules over
the respective Lie algebras (cf. [CK, CKW]). Remarkably, the u-homology groups
of these modules are also dictated by those of the corresponding integrable modules
[CK, CKW]. Recently, the correspondence between u-homology groups of integrable
modules at positive levels and u-homology groups of unitarizable modules (at negative
levels) over the respective Lie algebras can be elucidated in terms of the so called super
duality [CWZ, CW], established in [BrS, CL, CLW]. So far there is no explanation
of the similarity of these two different u-homology groups. Super duality gives a first
conceptual explanation of this similarity [CLW, Theorem 4.13].

To the best of our knowledge, there is no other proof of Enright’s formulas. In this
paper, we give a proof of Enright’s homology formulas for unitarizable modules by using
Kostant’s formulas and super duality. The u-homology formulas (see Theorem 4.4 be-
low) for unitarizable modules over classical Lie algebras of infinite rank of types gl(n),
sp(2n) and so(2n) are obtained by combinatorial method. The proof involves relating

1

http://arxiv.org/abs/1012.1087v1


2 PO-YI HUANG, NGAU LAM, AND TZE-MING TO

the combinatorial data of Kostant’s formulas for integrable modules over corresponding
Lie algebras, that are determined by the super duality, to the data of the Lie algebras
under consideration. By applying the truncation functors (cf. [CLW, Section 3.4] to
the u-homology formulas, see also Section 2.4 below), we recover the Enright’s for-
mula for three Hermitian symmetric pairs of classical types (SU(p, q), SU(p)×SU(q)),
(Sp(2n), U(n)) and (SO∗(2n), U(n)). However, for so(2n), our method can only recover
partially Enright’s formula for some unitarizable highest weight cases.

The paper is organized as follows. In Section 2, we review and set up notations
for the classical Lie algebras of finite and infinite rank. We describe the unitarizable
highest weight modules considered in this paper. Combinatorial description of Weyl
groups are also given in this section. In Section 3, we compare the actions of certain
subsets of Weyl groups on certain numerical data associated with the highest weights.
In Section 4, homology formulas for unitarizable modules over Lie algebras of infinite
rank are proved. In Section 5, Enright’s homology formulas are proved.

We shall use the following notations throughout this article. The symbols Z, N, and
Z+ stand for the sets of all, positive and non-negative integers, respectively. We set
Z
∗ := Z\{0}. For a partition λ, we denote by λ′ the transpose partition of λ. Finally

all vector spaces, algebras, tensor products, et cetera, are over the field of complex
numbers C.

Acknowledgments. The second author is very grateful to Shun-Jen Cheng for nu-
merous discussions and useful suggestions. He also thanks Weiqiang Wang for valuable
suggestions. The first and second authors were partially supported by an NSC-grant
and thank NCTS/South. The third author thanks NCTS/South for hospitality and
support.

2. Preliminaries

2.1. Classical Lie algebras of infinite rank. In this subsection we review and fix
notations on Lie algebras of interest in this paper. For details we refer to the references
[K, W, CK, CLW].

2.1.1. The Lie algebra a∞. Let C
∞ be the vector space over C with an ordered basis

{ ei | i ∈ Z } so that an element in End(C∞) may be identified with a matrix (aij)
(i, j ∈ Z). Let Eij be the matrix with 1 at the i-th row and j-th column and zero
elsewhere. Let å∞ denote the subalgebra of the Lie algebra End(C∞) spanned by
Eij with i, j ∈ Z. Denote by a∞ := å∞ ⊕ CK the central extension of å∞ by the
one-dimensional center CK given by the 2-cocycle

(2.1) τ(A,B) := Tr([J,A]B),

where J =
∑

i≤0Eii and Tr(C) is the trace of the matrix C. Observe that the cocycle
τ is a coboundary. Indeed, there is embedding ι̊a from å∞ to a∞ defined by A ∈ å∞
sending to A+Tr(JA)K (cf. [CLW, Section 2.5]). It is clear that ι̊a(̊a∞) is an ideal of
a∞ and a∞ is a direct sum of the ideals ι̊a(̊a∞) and CK. Note that ι̊a(Eii) = Eii +K
(resp. Eii) for i ≤ 0 (resp. i ≥ 1).
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The Cartan subalgebra
∑

i∈Z CEii ⊕CK is denoted by ha. By assigning degree 0 to
the Cartan subalgebra and setting degEij = j − i, a∞ is equipped with a Z-gradation
a∞ =

⊕
k∈Z(a∞)k. This leads to the following triangular decomposition:

a∞ = (a∞)+ ⊕ (a∞)0 ⊕ (a∞)−,

where (a∞)± =
⊕

k∈±N
(a∞)k and (a∞)0 = ha.

The set of simple coroots, simple roots and positive roots of a∞ are respectively

Π∨
a = { β∨

i := Eii − Ei+1,i+1 + δi0K | i ∈ Z },

Πa = { βi := ǫi − ǫi+1 | i ∈ Z },

∆+
a = { ǫi − ǫj | i < j, i, j ∈ Z },

where ǫi ∈ h∗a is determined by 〈ǫi, Ejj〉 = δij and 〈ǫi,K〉 = 0. We also let ϑa ∈ h∗a be
defined by 〈ϑa,K〉 = 1 and 〈ϑa, Ejj〉 = 0, for all j ∈ Z. Let ρa ∈ h∗a be determined by
〈ρa, Ejj〉 = −j, for all j ∈ Z, and 〈ρa,K〉 = 0, so that we have 〈ρa, α

∨
i 〉 = 1, for all

i ∈ Z.

2.1.2. The Lie algebras c∞ and d∞. For g = c, d, let g̊∞ be the subalgebra of å∞
preserving the following bilinear form on C

∞:

(ei|ej) =

{
(−1)iδi,1−j, if g = c,

δi,1−j, if g = d,
i, j ∈ Z.

Let g∞ = g̊∞⊕CK be the central extension of g̊∞ determined by the restriction of the
two-cocycle (2.1). Then g∞ has a natural Z-gradation and a triangular decomposition
induced from a∞ with (g∞)n = g∞ ∩ (a∞)n, for n ∈ Z. Similar to the a∞ case, the
cocycle is a coboundary. Indeed, there are embeddings ι̊g from g̊∞ to g∞ defined by
A ∈ g̊∞ sending to A+Tr(JA)K [CLW, Section 2.5]. It is clear that ι̊g(̊g∞) is an ideal

of g∞ and g∞ is a direct sum of the ideals ι̊g(̊g∞) and CK. Note that ι̊g(Ẽi) = Ẽi −K
for i ∈ N where

Ẽi = Eii − E1−i,1−i.

Note that (g∞)0 =
∑

i∈NCẼi ⊕ CK are Cartan subalgebras, which will be denoted by

hg. We let ǫi ∈ h∗g be defined by 〈ǫi, Ẽj〉 = δij for i, j ∈ N and 〈ǫi,K〉 = 0. Then the
set of positive roots of c∞ and d∞ are respectively

∆+
c = { ± ǫi − ǫj , −2ǫi (i, j ∈ N, i < j) },

∆+
d = { ± ǫi − ǫj (i, j ∈ N, i < j) }.

Set

α∨
0 =

{
−Ẽ1 +K, for c∞,

−Ẽ1 − Ẽ2 + 2K, for d∞,
α0 =

{
−2ǫ1, for c∞,

−ǫ1 − ǫ2, for d∞.

The set of simple coroots and simple roots of g∞ are respectively

Π∨
g = {α∨

0 , α
∨
i = Ẽi − Ẽi+1 (i ∈ N) },

Πg = {α0, αi = ǫi − ǫi+1 (i ∈ N) }.
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Let ϑg ∈ h∗g defined by 〈ϑg, Ẽi〉 = 0 for i ∈ N and 〈ϑg,K〉 = r with r = 1 (resp. 1
2) for

g = c (resp. d). We also let ρg ∈ h∗g be determined by

〈ρg, Ẽj〉 =

{
−j, for g = c,

−j + 1, for g = d,
j ∈ N, and 〈ρg,K〉 = 0.

We have 〈ρg, α
∨
i 〉 = 1 for i ∈ N and g = c, d.

2.1.3. Levi subalgebras. For g = a, c, d, let ∆g := ∆+
g ∪∆−

g , where ∆−
g = −∆+

g . Then

∆g is the set of roots of g∞. Let ∆±
g,c := ∆±

g ∩
(∑

j 6=0 Zαj

)
and ∆±

g,n := ∆±
g \ ∆±

g,c.
Denote by gα the root space corresponding to α ∈ ∆g. Set

(2.2)
u±g :=

∑

α∈∆±
g,n

gα, lg :=
∑

α∈∆±
g,c

gα ⊕ hg.

Then we have g∞ = u+g ⊕ lg ⊕ u−g . The Lie algebras lg and g∞ share the same Cartan
subalgebra hg. Moreover, lg has a triangular decomposition induced from g∞. For
µ ∈ h∗g, we denote respectively by L(g∞, µ) and L(lg, µ) the irreducible highest weight
g∞-module and lg-module with highest weight µ with respect to the triangular decom-
positions.

For a root α ∈ ∆g, g = a, c, d, define the reflection σα by

σα(µ) := µ− 〈µ, α∨〉α, µ ∈ h∗g.

Here and after, α∨ denote the coroot of the root α. Let Ia = Z and Ig = N for g = c, d.
For j ∈ Ig ∪ {0}, let σj = σαj

. Let Wg be the subgroup of Aut(h∗g) generated by the
reflections σj with j ∈ Ig ∪ {0}, i.e. Wg is the Weyl group of g∞. For each w ∈ Wg,
ℓg(w) denote the length of w. We also define

w ◦ µ := w(µ + ρg)− ρg, µ ∈ h∗g, w ∈ Wg.

Consider Wg,0 the subgroup of Wg generated by σj with j 6= 0. Let W 0
g denote the set

of the minimal length left coset representatives of Wg/Wg,0 (cf. [V, Liu, Ku]). We have
Wg = W 0

gWg,0. For k ∈ Z+, set

W 0
g,k := {w ∈ W 0

g | ℓg(w) = k }.

Finally, for g = a, c, d, let (·|·) be a bilinear form defined on subspace of h∗g satisfying

(ǫi|ǫj) = δij , (ϑg|ǫi) = (ǫi|ϑg) = (ϑg|ϑg) = 0 for i, j ∈ Ig.

Recall that Ia = Z and Ig = N for g = c, d.

2.2. Finite dimensional Lie algebras. For the rest of the paper, let g stand for
a, c, d. We shall fix the following notations:

a := a, c := d, d := c.

Remark 2.1. For x = c, d, let gx and gx be the Lie algebras defined in [CLW, Section 2]
with m = 0. Then c∞ = gc, d∞ = gd, c∞ ∼= gc and d∞ ∼= gd. Note that K send to −K
for the isomorphisms c∞ ∼= gc and d∞ ∼= gd.
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For m,n ∈ N, the subalgebra of å∞ spanned by Eij with 1−m ≤ i, j ≤ n, denoted by
tm,na, is isomorphic to the general linear algebra gl(m+n). The subalgebras (tn,na)∩̊c∞
and (tn,na) ∩ d̊∞ are isomorphic to the symplectic Lie algebra sp(2n) and orthogonal
Lie algebra so(2n), denoted by tnc and tnd respectively. We shall drop the subscript of
t if there has no ambiguity.

For g = a, c, d, the embeddings ι̊
g
restricted to tg are also denoted by ι̊

g
. Let ∆+

tg

denote the set of positive roots of tg with respect to the triangular decomposition
induced from g∞. We also let ∆tg = ∆+

tg
∪−∆+

tg
and ∆+

tg,n = ∆+
g,n∩∆

+
tg
. Set htg = hg∩tg,

u±tg = u±g ∩ tg and ltg = lg ∩ tg. Note that tg and ltg share the same a Cartan subalgebra

htg. Moreover, ltg has a triangular decomposition induced from tg. For µ ∈ h∗tg, we

denote respectively by L(tg, µ) and L(ltg, µ) the irreducible highest weight tg-module
and ltg-module with highest weight µ with respect to the triangular decompositions.

For µ ∈ h∗tg, L(ltg, µ) is extended to an (ltg+u+tg)-module by letting u+tg act trivially. Let

ptg = ltg + u+tg. Define as usual the parabolic Verma module with highest weight µ by

N(tg, µ) = IndtgptgL(ltg, µ).

The space h∗tg is spanned by ǫi with 1 ≤ i ≤ n (resp. 1−m ≤ i ≤ n− 1) for g = c, d

(resp. a) and therefore h∗tg can be regarded as a subspace of h∗g. Note that h∗tg is an

invariant subspace of σi for 1 ≤ i ≤ n (resp. 1−m ≤ i ≤ n−1) for g = c or d (resp. a).
The restriction of these σi to h∗tg are also denoted by σi. Let Wtg be the subgroup of

Aut(h∗tg) generated by these σis. Then Wtg is the Weyl group of tg. For each w ∈ Wtg

we let ℓtg(w) denote the length of w. Consider Wtg,0 the subgroup of Wtg generated by
σj with j 6= 0. Let W 0

tg denote the set of the minimal length representatives of the left

coset space Wtg/Wtg,0 (cf. [Liu, Ku]). For k ∈ Z+, set W
0
tg,k := {w ∈ W 0

tg | ℓtg(w) = k }.
We also define

w ◦ µ := w(µ + ρtg)− ρtg, µ ∈ h∗tg, w ∈ Wtg.

Finally, let ρtg denote the half sum of the positive roots. Then ρtg(h) = ρg(h) (resp.

ρa(h) +
1
2(n−m+ 1)) for h ∈ htg with g = c, d (resp. g = a).

2.3. Combinatorial descriptions of Weyl groups. In this section, we present com-
binatorial descriptions of certain aspects of infinite Weyl groups Wg (cf. [BB]). Recall
that Z∗ := Z\{0}.

Define φg ∈ h∗g by

φg =

{
−
∑

i≤0 ǫi, if g = a;∑
i∈N ǫi, if g = c, d.

Every element σ ∈ h∗g can be uniquely represented by
∑

i∈Ig
ξiǫi + qϑg with ξi, q ∈ C.

For g = c, d and i ∈ N, we define ǫ−i = −ǫi. It is easy to see by computing the actions
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of σi that the actions of Wg on h∗g is given by

σ(
∑

i∈Z

ξiǫi + qϑa) =
∑

i≤0

(ξi + q)ǫσ̃(i) +
∑

i>0

ξiǫσ̃(i) + qφa + qϑa, if g = a;(2.3)

σ(
∑

i∈N

ξiǫi + qϑg) =
∑

i∈N

(ξi − q〈ϑg,K〉)ǫσ̃(i) + q〈ϑg,K〉φg + qϑg, if g = c, d,(2.4)

where σ̃ is a permutation of Z (i.e. σ̃ is a bijection on Z satisfying σ̃(j) = j for |j| ≫ 0)
for g = a and σ̃ is a signed permutation of Z∗ (i.e. σ̃ is a bijection on Z

∗ satisfying
σ̃(j) = j for |j| ≫ 0 and σ̃(−i) = −σ̃(i) for i ∈ Z

∗) for g = c, d. Therefore σ 7→ σ̃
is a representation on Z and Z

∗ for g = a and g = c, d, respectively. Moreover, they
are faithful representations. It is clear that the image of Wa in Aut(Z) is the set of
permutations of Z and the image of Wc (resp. Wd) in Aut(Z∗) is the set of a signed
(resp. even signed) permutations of Z∗. A signed permutation σ̃ of Z∗ is called even
signed permutation if |{i ∈ N | σ̃(i) < 0}| is a even number. We shall identify Wg with
the image of Wg in Aut(Z) (resp. Aut(Z∗)) for g = a (resp. c, d) for the rest of the
paper. Note that for i ∈ Z, σ̃i(i) = i+1, σ̃i(i+1) = i and σ̃i(j) = j for all j 6= i, i+ 1.
Also for g = c, d and i ∈ N, σ̃i(i) = i+ 1, σ̃i(i+ 1) = i and σ̃i(j) = j for all j 6= i, i+ 1
while σ̃0(1) = −1 (resp. −2), σ̃0(2) = 2 (resp. −1), and σ̃0(j) = j for all j ≥ 3 for
g = c (resp. d). We shall use these representations for the rest of the paper and we
shall simply write σ(j) instead of σ̃(j).

Recall that ℓg denote the length function onWg andW 0
g denote the set of the minimal

length left coset representatives of Wg/Wg,0. We have

W 0
g =

{
{σ ∈ Wa |σ(i) < σ(j) for i < j ≤ 0 and 0 < i < j}, if g = a;

{σ ∈ Wg|σ(i) < σ(j), for 1 ≤ i < j}, if g = c, d
(2.5)

(see, e.g. [BB, Lemma 2.4.7, Proposition 8.1.4 and Proposition 8.2.4]) and for σ ∈ W 0
g ,

ℓg(σ) =





|{(i, j) ∈ Z× Z | i < j, σ(i) > σ(j)}|, if g = a;

|{(i, j) ∈ N×N | i ≤ j, σ(−i) > σ(j)}|, if g = c;

|{(i, j) ∈ N×N | i < j, σ(−i) > σ(j)}|, if g = d

(2.6)

(see, e.g. [BB, Corollary 1.5.2, Corollary 8.1.1 and Corollary 8.2.1]).

Lemma 2.2. For σ ∈ W 0
c with σ(i) < 0 for i ≤ j, and σ(i) > 0 for i > j, define

σ ∈ W 0
d by

σ(i) =





σ(i) − 1, if i ≤ j;

1, if i = j + 1 and j is even;

−1, if i = j + 1 and j is odd;

σ(i− 1) + 1, if i ≥ j + 2.

For each k ≥ 0, the map from W 0
c,k to W 0

d,k sending σ to σ is a bijection.

Proof. By (2.5), it is a bijection from W 0
c to W 0

d . By (2.6), we have ℓc(σ) = ℓd(σ) for
σ ∈ W 0

c . The lemma follows. �
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Let {ξi}i∈N be a sequence of real numbers. Define ξ−i := −ξi for i ∈ N. For any
sequence of strictly decreasing negative real numbers {ξi}i∈N and σ ∈ W 0

g with g = c, d,
it is easy to see that {ξσ(i)}i∈N is a sequence of strictly decreasing real numbers. The
following lemma follows from the definition of σ.

Lemma 2.3. Let {ξi}i∈N be a sequence of strictly decreasing negative real numbers.
Define ξi+1 = ξi for i ∈ N and ξ1 = 0. Then for all σ ∈ W 0

c , we have

{ξσ(i) | i ∈ N} ∪ {0} = {ξσ(i) | i ∈ N},

where σ is defined in Lemma 2.2.

2.4. Unitarizable highest weight modules. Recall that g stand for a, c, d, and a =
a, c = d and d = c. In this subsection we classify the highest weights of irreducible
unitarizable quasi-finite highest weight g∞-modules with respect to the anti-linear anti-
involution ω defined below.

For a partition λ = (λ1, λ2, · · · ), the transpose partition of λ is denoted by λ′ =
(λ′

1, λ
′
2, · · · ). For g = c, d, a partition λ and d ∈ C, define

Λg(λ, d) :=
∑

i∈N

λ′
iǫi + dϑg ∈ h∗g, Λ

g
(λ, d) =

∑

i∈N

λiǫi −
d〈ϑg,K〉

〈ϑg,K〉
ϑg ∈ h∗g.(2.7)

Let D(g) denote the set of pairs (λ, d) with d ∈ Z+ satisfying λ′
1 ≤ d if g = c; and

λ′
1 + λ′

2 ≤ d if g = d. For a pair of partitions λ = (λ−, λ+) and d ∈ C, define

Λa(λ, d),Λ
a
(λ, d) ∈ h∗a by

Λa(λ, d) = −
∑

i∈Z+

(λ−)′i+1ǫ−i +
∑

i∈N

(λ+)′iǫi + dϑa,

Λ
a
(λ, d) = −

∑

i∈Z+

λ−
i+1ǫ−i +

∑

i∈N

λ+
i ǫi − dϑa.

Let D(a) denote the set of pairs (λ, d) satisfying d ∈ Z+ and (λ−)′1 + (λ+)′1 ≤ d.
Let k be a Lie algebra equipped with an anti-linear anti-involution ω, and let V be

a k-module. A Hermitian form 〈 · | · 〉 on V is said to be contravariant if 〈av|v′〉 =
〈v|ω(a)v′〉, for all a ∈ k, v, v′ ∈ V . A k-module equipped with a positive definite
contravariant Hermitian form is called a unitarizable k-module. Assume that k = ⊕j∈Zkj
(possibly dim kj = ∞) is a Z-graded Lie algebra and k0 is abelian. A graded k-module
M = ⊕j∈ZMj is called quasi-finite if dimMj < ∞ for all j ∈ Z [KR].

Remark 2.4. Let V be a highest weight g∞-module with highest weight ξ. Using the
arguments as in [LZ, Section 4], we have V is quasi-finite if and only if ξ satisfies

ξ(Eii) = 0 (resp. ξ(Ẽii) = 0) for |i| ≫ 0 (resp. i ≫ 0) for g = a (resp. c, d). Therefore
every quasi-finite integrable highest weight g∞-module is of the form L(g∞,Λg(λ, d))
for some (λ, d) ∈ D(g).

Now we consider the anti-linear anti-involution ω on a∞ defined by

ω(Eij) =

{
Eji, for i, j ≤ 0 or i, j > 0;

−Eji, for i > 0, j ≤ 0 or i ≤ 0, j > 0,
and ω(K) = K.
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For g = c, d, the restriction of the anti-linear anti-involution ω on a∞ to g∞ gives an
anti-linear anti-involution on g∞, which will also be denoted by ω.

For d ∈ C and a pair of partitions λ = (λ−, λ+) with λ+
n+1 = λ−

m+1 = 0, let Γta(λ, d)
be the element in h∗ta determined by

Γta(λ, d) =

m∑

i=1

(−d− λ−
i )ǫ−i+1 +

n∑

i=1

λ+
i ǫi.

For d ∈ C and a partition λ satisfying λn+1 = 0, let Γtg(λ, d) be the element in h∗tg
determined by

Γtg(λ, d) =

{∑n
i=1(λi +

d
2 )ǫi, for g = c,∑n

i=1(λi + d)ǫi, for g = d.

Let Dt(g) denote the subset of D(g) consisting of elements in (λ, d) satisfying λn+1 = 0
for g = c, d (resp. λ+

n+1 = 0 and λ−
m+1 = 0 for g = a).

Now we introduce the truncation functors [CLW, Section 3.4]. Let M =
⊕

β Mβ be
a semisimple hg-module such that Mβ is the weight space of M with weight β. The
truncation functor tr

th
is defined by sending M to

⊕
ν Mν , summed over

∑n
i=1−mCǫi+

Cϑg (resp.
∑n

i=1Cǫi +Cϑg) for g = a (resp. c, d). For (λ, d) ∈ D(g), L(g∞,Λ
g
(λ, d)) is

a tg-module through the embedding ι̊
g
defined in Section 2.2. tr

th
(L(g∞,Λ

g
(λ, d))) is

an irreducible tg-module and

(2.8) trth(L(g∞,Λ
g
(λ, d))) = L(tg,Γtg(λ, d))

for any partition λ with λn+1 = 0 and g = c, d [CLW, Lemma 3.2]. The same result is
also true for g = a and pair of partitions λ = (λ−, λ+) with λ+

n+1 = λ−
m+1 = 0 by using

the same arguments as in [CLW]. The anti-linear anti-involution ω on g∞ induces an
anti-linear anti-involution on tg, which will also be denoted by ω.

By cumbersome but straight forward computations, the following theorem is refor-
mulated the Theorem 2.4 and some results of sections 7, 8, 9 in [EHW] in terms of
partitions.

Theorem 2.5. For g = a, c, d, let ξ ∈ h∗tg.

i. L(ta, ξ) is unitarizable with respect to ω if and only if ξ = Γta(λ, d)+k
∑n

i=−m+1 ǫi
for some pair of partitions λ = (λ+, λ−) with λ−

m = λ+
n = 0 and d, k ∈ R satis-

fying d ≥ min{(λ−)′1 + n− 1, (λ+)′1 +m− 1}, or d ∈ Z and d ≥ (λ−)′1 + (λ+)′1.
Moreover, N(ta,Γta(λ, d) + k

∑n
i=−m+1 ǫi) are irreducible for pair of partitions

λ = (λ+, λ−) with λ−
m = λ+

n = 0 and d, k ∈ R satisfying d > min{(λ−)′1 + n −
1, (λ+)′1 +m− 1}.

ii. L(td, ξ) is unitarizable with respect to ω if and only if ξ = Γtd(λ, d) for some
partition λ with λn = 0 and d ∈ R satisfying d ≥ n − 1 + λ′

2, or d ∈ Z and
d ≥ λ′

1 + λ′
2. Moreover, N(td,Γtd(λ, d)) are irreducible for partition λ with

λn = 0 and d > n− 1 + λ′
2.

iii. Assume that ξ ∈ h∗tc with ξ(Ẽn−1) = ξ(Ẽn). L(tc, ξ) is unitarizable with respect
to ω if and only if ξ = Γtc(λ, d) for some partition λ with λn−1 = λn = 0 and
d ∈ R satisfying d ≥ 1

2(λ
′
1 + n) − 1 if n − λ′

1 is even; d ≥ 1
2(λ

′
1 + n − 1) − 1 if
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n − λ′
1 is odd, or d ∈ Z and d ≥ λ′

1. Moreover, N(tc,Γtc(λ, d)) are irreducible
for partition λ with λn−1 = λn = 0 and d ∈ R satisfying d > 1

2 (λ
′
1 + n) − 1 if

n− λ′
1 is even; d > 1

2(λ
′
1 + n− 1)− 1 if n− λ′

1 is odd.

Proposition 2.6. For g = a, c, d, let L(g∞, ξ) be an irreducible quasi-finite highest
weight g∞-module with highest weight ξ. Then L(g∞, ξ) is unitarizable with respect to

the anti-linear anti-involution ω if and only if ξ = Λ
g
(λ, d) for some (λ, d) ∈ D(g).

Proof. Let L(g∞, ξ) be a unitarizable irreducible quasi-finite highest weight g∞-module.

By Remark 2.4, ξ satisfies ξ(Eii) = 0 (resp. ξ(Ẽii) = 0) for |i| ≫ 0 (resp. i ≫ 0) for

g = a (resp. c, d). It is easy to see that d ∈ R and ξ(Ẽii) − ξ(Ẽi+1,i+1) ∈ Z+ (resp.
ξ(Eii) − ξ(Ei+1,i+1) ∈ Z+) for all i (resp. i 6= 0) for g = c, d (resp. a). This implies

ξ = Λ
g
(λ, d) for some partition λ (resp. pair of partitions λ = (λ+, λ−)) and d ∈ R

for g = c, d (resp. a). Now applying truncation functor to L(g∞, ξ) with n ≫ d
(resp. m,n ≫ d) for g = c, d (resp. a), tr

th
(L(g∞, ξ)) is a unitarizable tg-module

with respect to ω. By Theorem 2.5 and (2.8), we have d ∈ Z and (λ, d) ∈ Dt(g).

Hence ξ = Λ
g
(λ, d) for some (λ, d) ∈ D(g). Conversely, the irreducible highest weight

g∞-modules L(g∞,Λ
g
(λ, d)) are modules appearing in the Howe dualities at negative

levels described in [W]. These modules are unitarizable and quasi-finite. The proof is
completed. �

Remark 2.7. The modules described in the proposition are modules appearing in the
Howe dualities at negative levels described in [W] (cf. [LZ, Theorem 5.6, 5.8, 5.9]).

3. Numerical data of the highest weights

In this section, we shall provide combinatorial descriptions of Λ
g
(λ, d) in terms of

Λg(λ, d).

Definition 3.1. Let {ai}i∈N and {bi}i∈N be two strictly decreasing sequences of integers
(resp. half integers). Then the sequences {ai}i∈N and {bi}i∈N are said to form a dual
pair if Z (resp. 1

2 +Z) is the disjoint union of the two sequences {ai}i∈N and {−bi}i∈N.

Define the function ρ on N by ρ(i) = −i for all i ∈ N. The following lemma is well
known (see e.g. [M, (1.7)]).

Lemma 3.2. For any partition λ, the sequences {λi + ρ(i)}i∈N and {λ′
i + ρ(i) + 1}i∈N

form a dual pair.

Recall that φg =
∑

i∈N ǫi for g = c, d.

Lemma 3.3. For g = c, d and (λ, d) ∈ D(g), let {ζi}i∈N and {ζ i}i∈N be two sequences
determined by

Λg(λ, d) + ρg − d〈ϑg,K〉φg =
∑

i∈Ig

ζiǫi + dϑg,

Λ
g
(λ, d) + ρg + d〈ϑg,K〉φg =

∑

i∈Ig

ζiǫi −
d〈ϑg,K〉

〈ϑg,K〉
ϑg.
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Then {ζi}i∈N and {ζ i}i∈N form a dual pair. Moreover, ζi < 0 for i ∈ N and g 6= d. In
the case g = d, ζi < 0 for i ≥ 2, and ζ1 < 0 (resp. = 0 and > 0) for λ′

1 <
d
2 (resp. = d

2

and > d
2).

Proof. By Lemma 3.2, {ζi}i∈N and {ζi}i∈N form a dual pair. It is clear that ζi < 0
for i ∈ N and g = c. For g = d, we have λ′

2 ≤ d
2 and hence ζi < 0 for i ≥ 2. Also,

ζ1 = λ′
1 −

d
2 < 0 (resp. = 0 and > 0) for λ′

1 <
d
2 (resp. = d

2 and > d
2 ). �

Lemma 3.4. For g = c, d and (λ, d) ∈ D(g), let {ζi}i∈N and {ζ i}i∈N be two sequences
defined in Lemma 3.3. Define N(λ, d) = {(i, j) ∈ N × N | ζ i + ζj = 0, i, j ∈ N},

J = {j ∈ N | (j, k) /∈ N(λ, d), ∀k ∈ N}, S = {ζi | i ≥ 1} and S = {ζ i | i ∈ J }.

i. For g = c, we have S = S and ζd+1 = 0.
ii. For g = d, we have

S = S and ζi 6= 0 6= ζi for all i, if d is odd;

S ∪ {0} = S and ζ1 = 0, if d is even and λ′
1 =

d

2
;

S = S and ζ i = 0 for some i, if d is even and λ′
1 6=

d

2
.

Proof. We shall only prove the case g = d. The proof of the other cases are similar and
easier. For j ≥ 2, we have ζ1 + ζj ≤ λ′

1 + λ′
2 − d − j + 1 ≤ −1 and hence ζ1 6= −ζj

for j ≥ 2. Since {ζi}i∈N and {ζ i}i∈N form a dual pair, ζ1 6= ±ζj for j ≥ 2 and ζi are

negative for i ≥ 2, we have ζi ∈ S for i ≥ 2, and ζ1 ∈ S for ζ1 6= 0. This implies
S ⊇ S\{0}. For x ∈ S, we have −x /∈ S and hence −x ∈ −S. Therefore S = S\{0}. By
Lemma 3.2, S (resp. S) contains 0 if and only if d is even and λ′

1 = d
2 (resp. λ′

1 6= d
2).

The proof is completed. �

Recall that φa = −
∑

i≤0 ǫi.

Lemma 3.5. For (λ, d) ∈ D(a), let {ζi}i∈Z and {ζ i}i∈Z be two sequences determined
by

Λa(λ, d) + ρa − dφa =
∑

i∈Z

(ζi − 1)ǫi + dϑa,

Λ
a
(λ, d) + ρa + dφa =

∑

i∈Z

ζ iǫi − dϑa.

Define N(λ, d) = {(i, j) ∈ Ia × Ia | ζ i = ζj , i ≤ 0 < j}, J+ = {j ∈ N | (i, j) /∈
N(λ, d),∀i ≤ 0}, J− = {i ∈ Z | (i, j) /∈ N(λ, d),∀j ∈ N}, S+ = {ζi | i ≥ 1},
S− = {ζi | i ≤ 0}, S+ = {ζ i | i ∈ J+ } and S− = {ζ i | i ∈ J− }. Then we have
S+ = −S− and S− = −S+.

Proof. Let B+ = {ζ i | i ∈ N} and B− = {ζ i | i ≤ 0}. By Lemma 3.2, we have

(−S+) ⊔B+ = Z and (−S−) ⊔B− = Z.

For x ∈ S+, we have x /∈ B− by the definition of S+ and hence x ∈ −S−. Therefore
S+ ⊆ −S−. Now assume x ∈ −S−. We have x /∈ B−. Since {ζi}i∈Z is strictly increasing,
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we have x /∈ −S+ and hence x ∈ B+. Thus x ∈ B+\B− = S+ and therefore −S− ⊆ S+.
Similarly, we have −S+ = S−. The proof is completed. �

We shall use the notations defined in Lemma 3.4 and Lemma 3.5 for the rest of the
paper. By (2.3) and Lemma 3.5, we have (for (λ, d) ∈ D(a), σ ∈ Wa)

(3.1) σ−1(Λa(λ, d)+ρa) =
∑

i∈Z

(ζi−1)ǫσ−1(i)+dφa+dϑa =
∑

i∈Z

ζσ(i)ǫi−
∑

i∈Z

ǫi+dφa+dϑa.

By Lemma 3.4 and (2.4), we have (for (λ, d) ∈ D(g), σ ∈ Wg and g = c, d)

(3.2) σ−1(Λg(λ, d) + ρg) =
∑

i∈N

ζσ(i)ǫi + d〈ϑg,K〉φg + dϑg + dϑg.

For η belonging to the subspace of h∗g spanned by ǫjs and ϑg, let [η]+ denote the

unique ∆+
g,c-dominant element in Wg,0-orbit of η ∈ h∗g. The following two propositions

are important for proving the main theorem in the next section.

Proposition 3.6. Let {ji}i∈N be the strictly increasing sequence with J = {ji | i ∈ N}.
For (λ, d) ∈ D(g) with g = c, d and a partition µ with Λg(µ, d) = σ−1 ◦ Λg(λ, d) for
some σ ∈ W 0

g,k, we have

Λ
g
(µ, d) + ρg + d〈ϑg,K〉φg

=





[∑
i∈N\J ζ iǫi +

∑
i∈N ζjσ(i)

ǫji −
d〈ϑg,K〉
〈ϑg,K〉 ϑg

]+
, if 0 /∈ S;

[∑
i∈N\J ζ iǫi +

∑
i∈N ζj

σ0(i)
ǫji −

d〈ϑg,K〉
〈ϑg,K〉 ϑg

]+
, if 0 ∈ S.

Here σ0 appears only in the case g = d and it is determined by σ0 = σ (see Lemma 2.2
and Lemma 2.3).

Proof. In the proof, union means disjoint union. Let {ξi}i∈N and {ξi}i∈N be two se-
quences determined by

Λg(µ, d) + ρg − d〈ϑg,K〉φg =
∑

i∈Ig

ξiǫi + dϑg,

Λ
g
(µ, d) + ρg + d〈ϑg,K〉φg =

∑

i∈Ig

ξiǫi −
d〈ϑg,K〉

〈ϑg,K〉
ϑg.

Assume 0 /∈ S. We have {ζji}i∈N = {ζi}i∈N by Lemma 3.4. By Lemma 3.3, Lemma 3.4,
and the fact that σ acts on Z

∗ as a signed permutation, we have

{−ζσ(i) | i ∈ N} ⊔ {ζjσ(i)
| i ∈ N} ⊔ {ζ i | i ∈ N\J} = Z (or

1

2
+ Z).

Since {ξi}i∈N and {ξi}i∈N form a dual pair, and {ξi | i ∈ N} = {ζσ(i) | i ∈ N} by (3.2),

we have {ξi | i ∈ N} = {ζjσ(i)
| i ∈ N} ⊔ {ζ i | i ∈ N\J}. Therefore the proposition

holds for this case since {ξi}i∈N is a decreasing sequence.
The case of 0 ∈ S only occurs when g = d with ζ1 = 0. We have {ζji | i ∈ N} = {ζi |

i ∈ N}\{0}. Since σ acts on Z
∗ as a signed permutation, by Lemma 2.3, we have

{−ζσ(i) | i ∈ N} ⊔ {ζj
σ0(i)

| i ∈ N} ⊔ {ζi | i ∈ N\J} = Z.
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Now the proposition also follows in this case using the arguments above. �

Proposition 3.7. Let {ji}i∈Z be the strictly decreasing sequence such that J+ = {ji |
i ≤ 0} and J− = {ki | i ∈ N}, and let J = J− ⊔ J+. For (λ, d) ∈ D(a) and a partition
µ with Λa(µ, d) = σ−1 ◦ Λa(λ, d) for some σ ∈ W 0

a,k, we have

Λ
a
(µ, d) + ρa + dφa =

[ ∑

i∈Z\J

ζiǫi +
∑

i∈Z

ζjσ(i)
ǫji − dϑa

]+
.

Proof. In the proof, union means disjoint union. Let {ξi}i∈Z and {ξi}i∈Z be two se-
quences determined by

Λa(µ, d) + ρa +
∑

i∈Z

ǫi − dφa =
∑

i∈Z

ξiǫi + dϑa,

Λ
a
(µ, d) + ρa + dφa =

∑

i∈Z

ξiǫi − dϑa.

By Lemma 3.5, we have

Z = (−S+) ⊔ (S+) ⊔ {ζ i | i ∈ N\J+} = (−S+) ⊔ (−S−) ⊔ {ζ i | i ∈ N\J+}.

Therefore we have Z = {−ζσ(i) | i ∈ Z} ⊔ {ζ i | i ∈ N\J+} because σ acts as a

permutation on Z. Since ξi = ζσ(i) for i ∈ Z by (3.1) and ζσ(i) = −ζjσ(i)
for i ∈ Z by

Lemma 3.5, we have

Z = {−ζσ(i) | i ∈ N} ⊔ {−ζσ(i) | i ≤ 0} ⊔ {ζ i | i ∈ N\J+}

= {−ξi | i ∈ N} ⊔ {ζjσ(i)
| i ≤ 0} ⊔ {ζ i | i ∈ N\J+}.

Since {ξi}i∈N and {ξi}i∈N form a dual pair, we have {ξi | i ∈ N} = {ζjσ(i)
| i ≤ 0}⊔{ζ i |

i ∈ N\J+}. Similarly, we have {ξi | i ≤ 0} = {ζjσ(i)
| i ∈ N} ⊔ {ζ i | i ∈ (−Z+)\J−}.

Therefore the proposition holds since {ξi}i∈N is a decreasing sequence and {ξ−i}i∈Z+ is
an increasing sequence. �

4. u−
g
-homology formulas for g∞-modules

In this section we give a combinatorial proof of Enright’s u−
g
-homology formula [E]

for the unitarizable highest weight g∞-modules with highest weight Λ
g
(λ, d).

For a module V over Lie algebra G, let Hk(G;V ) denote k-th homology group of
G with coefficients in V . It is well known that the homology groups Hk(u

−
g ;V ) are

lg-modules. The u−g -homology of unitarizable highest weight modules are described by

the following theorem which was obtained in [CK, Theorem 7.2] for g∞ = a∞ and in
[CKW, Theorem 6.5] for g∞ = c∞, d∞. The following theorem holds for more general
situation by using the correspondence of homology group in the sense of super duality
[CLW, Theorem 4.10] together with Kostant’s formulas for integrable g∞-modules (cf.
[J, Ko, V, CK]).
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Theorem 4.1. For (λ, d) ∈ D(g) with g = c, d (resp. g = a), we have, as lg-modules,

Hk

(
u−
g
;L(g∞,Λ

g
(λ, d))

)
∼=

⊕

µ

L(lg ,Λ
g
(µ, d)),

where µ is summed over all partitions (resp. pairs of partitions) such that Λg(µ, d) =
w−1 ◦ Λg(λ, d) for some w ∈ W 0

g,k.

For ξ belonging the subspace of h∗g spanned by ǫjs and ϑg, let Ψ(ξ) = {α ∈ ∆+
g,n | (ξ+

ρg |α) = 0} and define Φ(ξ) to be the subset of ∆+
g,n consisting of roots β satisfying the

following conditions [E, DES]:

i. 〈ξ + ρg, β
∨〉 ∈ N;

ii. (β |α) = 0 for all α ∈ Ψ(ξ);
iii. β is short if Ψ(ξ) contains a long root.

Let Wg(ξ) be the subgroup of Wg that is generated by the reflections sβ with β ∈ Φ(ξ).
Define ∆g(ξ) to be the subset of ∆g consisting of the roots ϑ ∈ ∆g such that sϑ lies in
Wg(ξ).

For (λ, d) ∈ D(g), let ∆g(λ, d) = ∆g(Λ
g
(λ, d)) and Wg(λ, d) = Wg(Λ

g
(λ, d)). Then

∆g(λ, d) is an abstract root system andWg(λ, d) is the Weyl group of ∆g(λ, d) [E, EHW]

(see also Lemma 4.2 below). Let ∆+
g (λ, d) = ∆g(λ, d)∩∆

+
g be the set of positive roots of

∆g(λ, d). Set Wg,0(λ, d) = Wg(λ, d)∩Wg,0. Let W
0
g (λ, d) denote the set of the minimal

length representatives of the left coset space Wg(λ, d)/Wg,0(λ, d) and let W 0
g,k(λ, d) be

the subset of W 0
g (λ, d) consisting of elements σ with ℓ(λ,d)(σ) = k, where ℓ(λ,d) is the

length function on Wg(λ, d).

For (λ, d) ∈ D(g), let J0 = J ⊔ {j | ζj = 0} for g = c, d and define

Υ(λ, d) =





{ǫi − ǫj ∈ ∆+
g ; (i ∈ J−, j ∈ J+)}, for g = a;

{−ǫi − ǫj ∈ ∆+
g ; (i < j, i, j ∈ J0)}, for g = c;

{−ǫi − ǫj ∈ ∆+
g ; (i < j, i, j ∈ J)}, if J0 6= J or d

2 /∈ Z, for g = d;

{−ǫi − ǫj,−2ǫi ∈ ∆+
g ; (i < j, i, j ∈ J)}, if J0 = J and d

2 ∈ Z, for g = d.

Lemma 4.2. For (λ, d) ∈ D(g), we have

∆g(λ, d) =





{ǫi − ǫj ∈ ∆g; (i 6= j, i, j ∈ J− ⊔ J+)}, for g = a;

{±(±ǫi − ǫj) ∈ ∆g; (i < j, i, j ∈ J0)}, for g = c;

{±(±ǫi − ǫj) ∈ ∆g; (i < j, i, j ∈ J)}, if J0 6= J or d
2 /∈ Z, for g = d;

{±(±ǫi − ǫj),±2ǫi ∈ ∆g; (i < j, i, j ∈ J)}, if J0 = J and d
2 ∈ Z, for g = d.

Proof. For (λ, d) ∈ D(g), we have Φ(Λ
g
(λ, d)) ⊆ Υ(λ, d) by Lemma 3.4 and Lemma 3.5.

Using the relations of the Weyl groups, it is easy to observe that Υ(λ, d) ⊆ ∆g(λ, d).
Now the lemma follows by using the relations of the Weyl groups again.

�

Lemma 4.3. For (λ, d) ∈ D(g), there is a bijection from W 0
g,k to W 0

g,k(λ, d).
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Proof. By Lemma 4.2, it is clear that W 0
g,k = W 0

g,k(λ, d) for the cases g = a and g = d

with J0 6= J or d
2 /∈ Z. For the cases g = c and g = d with J0 = J and d

2 ∈ Z, the
lemma follows from Lemma 4.2 and Lemma 2.2. �

Using Theorem 4.1, Proposition 3.6, Proposition 3.7, Lemma 4.3 and Lemma 2.3
together with (2.3) and (2.4), we have the following theorem.

Theorem 4.4. For (λ, d) ∈ D(g) and k ∈ Z+, we have, as lg-modules,

Hk

(
u−
g
;L(g∞,Λ

g
(λ, d))

)
∼=

⊕

w∈W 0
g,k

(λ,d)

L
(
lg , [w

−1(Λ
g
(λ, d) + ρg)]

+ − ρg
)
.

Remark 4.5. There has the counterpart of the Theorem 4.11 in [CLW] for u+-cohomology
in the sense of [Liu, Section 4]. The analogous statement is also true for g = a. The
formulas for u+-cohomology can be proved by the same argument as in the proof in
[CLW]. Therefore, there is an analogue of Theorem 4.4 for u+

g
-cohomology in the sense

of [Liu]. The formulas for the cohomology can be proved by the same argument as in
the proof of the theorem above.

5. Homology formulas for unitarizable modules over finite dimensional

Lie algebras

In the section we shall give a new proof of Enright’s homology formulas for uni-
tarizable modules over classical Lie algebras corresponding to the three Hermitian
symmetric pairs of classical types (SU(p, q), SU(p) × SU(q)), (Sp(n,R), U(n)) and
(SO∗(2n), U(n)).

For ξ belonging to h∗tg, let Ψ(ξ) = {α ∈ ∆+
tg,n | (ξ+ ρtg |α) = 0} and define Φ(ξ) to be

the subset of ∆+
tg,n consisting of roots β satisfying the following conditions [E, DES]:

i. 〈ξ + ρtg, β
∨〉 ∈ N;

ii. (β |α) = 0 for all α ∈ Ψ(ξ);
iii. β is short if Ψ(ξ) contains a long root.

Let Wtg(ξ) be the subgroup of Wtg that is generated by the reflections sβ with β ∈ Φ(ξ).
Associated to Wtg(ξ), let ∆tg(ξ) denote the subset of ∆tg consisting of the roots ϑ such

that sϑ lies in Wtg(ξ). We also let [ξ]+ be the unique ∆+
tg,c-dominant element in the

Wtg,0-orbit of ξ.
Assume that the irreducible module L(tg, ξ) is unitarizable with highest weight ξ ∈

h∗tg. Then ∆tg(ξ) is an abstract root system andWtg(ξ) is the Weyl group of ∆tg(ξ) by [E,

EHW]. Let ∆+
tg
(ξ) = ∆tg(ξ)∩∆+

tg
be the set of positive roots of ∆tg(ξ). Set Wtg,0(ξ) =

Wtg(ξ)∩Wtg,0. Let W
0
tg(ξ) denotes the set of the minimal length representatives of the

left coset space Wtg(ξ)/Wtg,0(ξ) and let W 0
tg,k(ξ) be the subset of W 0

tg(ξ) consisting of

elements σ with ℓξ(σ) = k, where ℓξ is the length function on Wtg(ξ).

Theorem 5.1. For g = a, c or d, let L(tg, ξ) be a unitarizable tg-module with highest
weight ξ ∈ h∗tg. Assume that ξ satisfies the assumption of the Case (iii) of Theorem 2.5

(cf. Case (ii) of [EHW, Theorem 9.4]) for tg ∼= so(2n). For k ∈ Z+, we have, as
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ltg-modules,

Hk

(
u−
tg
;L(tg, ξ)

)
∼=

⊕

w∈W 0
tg,k

(ξ)

L
(
ltg , [w

−1(ξ + ρtg)]
+ − ρtg

)
.

Proof. Since Hk(u
−
ta
;L(ta, µ+k

∑n
i=−m+1 ǫi)) = Hk(u

−
ta
;L(ta, µ))⊗L(lta, k

∑n
i=−m+1 ǫi)

for all i ≥ 0 and µ ∈ h∗ta, it is sufficient to show all ξ with k = 0 appearing in the Case
(i) of Theorem 2.5 when g = a.

First we assume that ξ = Γtg(λ, d) with d /∈ Z. Then we have ∆tg(ξ) = ∅ and

L(tg, ξ) = N(tg, ξ) by Theorem 2.5. Therefore L(tg, ξ) is a free u−tg-modules and hence

Hk

(
u−tg;L(tg, ξ)

)
= L(ltg , ξ) (resp. = 0) for k = 0 (resp. k > 0). Thus the theorem

holds for this case.
Now we assume that ξ = Γtg(λ, d) for some (λ, d) ∈ Dt(g). By a direct calculation,

we have ∆tg(ξ) = ∆g(λ, d) ∩ ∆tg. Recall that trth(L(g∞,Λ
g
(λ, d))) = L(tg,Γtg(λ, d))

for (λ, d) ∈ Dt(g). Since trth(L(g∞,Λ
g
(λ, d))) = L(tg,Γtg(λ, d)) and the homology

commutes with the truncation functor, we have

Hk(u
−
tg
;L(tg, ξ)) = trth(Hk(u

−
g
;L(g∞,Λ

g
(λ, d)))).

Note that Hk(u
−
g
;L(g∞,Λ

g
(λ, d))) with k ≥ 0 decompose into the direct sum of ir-

reducible lg-modules of the form L(lg,Λ
g
(µ, d)) for some partition µ (resp. pair of

partitions µ = (µ−, µ+)) if g = c, d (resp. a) and trth(L(lg,Λ
g
(µ, d))) = L(ltg,Γtg(µ, d)).

Therefore, the theorem also holds for this case by Theorem 4.4. �

Remark 5.2. By Remark 4.5, Enright’s cohomology formulas for unitarizable modules
over classical Lie algebras with highest weights satisfying the assumption in the theorem
above can be proved in the same manner as in above.
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