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SUPER DUALITY AND HOMOLOGY OF UNITARIZABLE
MODULES OF LIE ALGEBRAS

PO-YI HUANG, NGAU LAM, AND TZE-MING TO

ABSTRACT. The u-homology formulas for unitarizable modules at negative levels
over classical Lie algebras of infinite rank of types gl(n), sp(2n) and so(2n) are ob-
tained. As a consequence, we recover the Enright’s formulas for three Hermitian
symmetric pairs of classical types (SU(p,q),SU(p) x SU(q)), (Sp(2n),U(n)) and
(SO*(2n),U(n)).

1. INTRODUCTION

In analogy to Kostant’s u-cohomology formulas [Ko|, Enright establishes similar for-
mulas [E] for unitarizable highest weight modules of Hermitian symmetric pairs in term
of certain complicated subsets of the Weyl groups. The argument there is intricate and
involves several equivalences of categories and non-trivial combinatorics of the Weyl
groups. Kostant’s formula can be rephrased by saying the Kazhdan-Lusztig polyno-
mials associated to finite-dimensional module are monomials. The same statement is
true by Enright’s formulas for unitarizable highest weight modules. Except for the re-
semblance of the formulas, there was no obvious connection between Enright’s formula
and Kostant’s formula.

However, the modules appearing in the Howe duality at negative levels [W, H1, H2]
over classical Lie algebras of infinite rank are unitarizable modules (cf. [EHW], see also
Proposition 2.6 and Remark 2.7 below) and the character formulas for these modules
can be obtained by applying the involution of the ring of symmetric functions with
infinite variables, which sends the elementary symmetric functions to the complete
symmetric functions, to the characters for the corresponding integrable modules over
the respective Lie algebras (cf. [CK, CKW]). Remarkably, the u-homology groups
of these modules are also dictated by those of the corresponding integrable modules
[CK, CKW]. Recently, the correspondence between u-homology groups of integrable
modules at positive levels and u-homology groups of unitarizable modules (at negative
levels) over the respective Lie algebras can be elucidated in terms of the so called super
duality [CWZ, CW], established in [BrS, CL, CLW]. So far there is no explanation
of the similarity of these two different u-homology groups. Super duality gives a first
conceptual explanation of this similarity [CLW, Theorem 4.13].

To the best of our knowledge, there is no other proof of Enright’s formulas. In this
paper, we give a proof of Enright’s homology formulas for unitarizable modules by using
Kostant’s formulas and super duality. The u-homology formulas (see Theorem 4.4 be-
low) for unitarizable modules over classical Lie algebras of infinite rank of types gl(n),
sp(2n) and so0(2n) are obtained by combinatorial method. The proof involves relating
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the combinatorial data of Kostant’s formulas for integrable modules over corresponding
Lie algebras, that are determined by the super duality, to the data of the Lie algebras
under consideration. By applying the truncation functors (cf. [CLW, Section 3.4] to
the u-homology formulas, see also Section 2.4 below), we recover the Enright’s for-
mula for three Hermitian symmetric pairs of classical types (SU(p, q), SU(p) x SU(q)),
(Sp(2n),U(n)) and (SO*(2n),U(n)). However, for s0(2n), our method can only recover
partially Enright’s formula for some unitarizable highest weight cases.

The paper is organized as follows. In Section 2, we review and set up notations
for the classical Lie algebras of finite and infinite rank. We describe the unitarizable
highest weight modules considered in this paper. Combinatorial description of Weyl
groups are also given in this section. In Section 3, we compare the actions of certain
subsets of Weyl groups on certain numerical data associated with the highest weights.
In Section 4, homology formulas for unitarizable modules over Lie algebras of infinite
rank are proved. In Section 5, Enright’s homology formulas are proved.

We shall use the following notations throughout this article. The symbols Z, N, and
Zy stand for the sets of all, positive and non-negative integers, respectively. We set
Z* := 7Z\{0}. For a partition A\, we denote by X’ the transpose partition of A\. Finally
all vector spaces, algebras, tensor products, et cetera, are over the field of complex
numbers C.
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suggestions. The first and second authors were partially supported by an NSC-grant
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2. PRELIMINARIES

2.1. Classical Lie algebras of infinite rank. In this subsection we review and fix

notations on Lie algebras of interest in this paper. For details we refer to the references
K, W, CK, CLW]|.

2.1.1. The Lie algebra as,. Let C* be the vector space over C with an ordered basis
{ei|i € Z} so that an element in End(C*) may be identified with a matrix (a;;)
(t,j € Z). Let E;j be the matrix with 1 at the i-th row and j-th column and zero
elsewhere. Let a., denote the subalgebra of the Lie algebra End(C>) spanned by
E;; with ¢,j € Z. Denote by s := 0o @ CK the central extension of d, by the
one-dimensional center CK given by the 2-cocycle

(2.1) 7(A, B) := Tr([J, A]B),

where J = Y. Ey and Tr(C) is the trace of the matrix C'. Observe that the cocycle
7 is a coboundary. Indeed, there is embedding ¢z from do to as defined by A € as
sending to A+ Tr(JA)K (cf. [CLW, Section 2.5]). It is clear that 1g(a) is an ideal of
0o and ay is a direct sum of the ideals 14(do) and CK. Note that 15(E;;) = B + K
(resp. Ey;) for i <0 (resp. ¢ > 1).
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The Cartan subalgebra )., CE;; ® CK is denoted by b,. By assigning degree 0 to
the Cartan subalgebra and setting degl;; = j — 7, a is equipped with a Z-gradation
oo = @ez (o). This leads to the following triangular decomposition:

O = (Cloo)+ @ (aoo)O ® (aoo)—7

where (a0 )+ = @ cin(foo)r and (aso)o = ba.
The set of simple coroots, simple roots and positive roots of a,, are respectively
Iy = {8 = Eii — Eiy1i1 + 00K | i€ Z},
II, = {/Bz =€ — €41 ‘ 1 GZ},
A;_:{Ei_ej |Z<J7 iijZ}7
where €; € b is determined by (e;, Ejj) = 0;; and (€;, K) = 0. We also let ¥, € b} be
defined by (¥4, K) =1 and (¥4, Ej;) = 0, for all j € Z. Let p, € b} be determined by
(pas Ejj) = —j, for all j € Z, and (p4, K) = 0, so that we have (pq, ;) = 1, for all
1 €.

2.1.2. The Lie algebras ¢, and 0. For g = ¢,0, let goo be the subalgebra of ..
preserving the following bilinear form on C*:

—1)%6;1—4, ifg=
(erleg) = § O o= g
03,15, if g =0,

Let goo = goo @ CK be the central extension of go, determined by the restriction of the
two-cocycle (2.1). Then go has a natural Z-gradation and a triangular decomposition
induced from 6., With (§oo)n = Goo N (Ao )n, for n € Z. Similar to the ay case, the
cocycle is a coboundary. Indeed, there are embeddings ¢z from goo to goo defined by
A € goo sending to A+ Tr(JA)K [CLW, Section 2.5]. It is clear that ¢5(gec) is an ideal

of goo and goo is a direct sum of the ideals ¢4(g) and CK. Note that 14(E;) = E; — K
for i € N where

E; = Eji — B1_i1-.
Note that (gec)o = X jen CE; & CK are Cartan subalgebras, which will be denoted by

hy. We let ¢; € by be defined by <e,~,Ej> = ¢;; for 7,7 € N and (¢, K) = 0. Then the
set of positive roots of ¢y, and 0, are respectively

Af={%xe—¢, -2 (i,jeNi<j)},
Af={%e—¢ (i,jENi<j)}
Set

o — By + K, for ¢y, o — —2€1, for ¢y,
o —F1 — Ey+ 2K, for 0, 0~

The set of simple coroots and simple roots of g, are respectively
Iy ={ay, o) = — Ei;1 (i €N)},
Hg = {Oé(], Q; = €; — €j41 (Z S N)}

—€1 — €9, for 0.
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Let ¥4 € by defined by <199,E2-> =0 for i € N and (Jy, K) = r with r =1 (resp. 1) for
g = ¢ (resp. 0). We also let p; € by be determined by

~ -7, forg=c, .
<Pgan>:{_j+1 for g = 0 7 €N, and (pg, K) =

We have (pg, ) =1 for i € N and g = ¢,0.

2.1.3. Levi subalgebras. For g = a,¢,0, let Ay := AT UAL, where Ay = —Af. Then
Ay is the set of roots of go. Let Af}t’c = Aat N (2#0 Zoy;) and Ain = Af}t \ AEEC.
Denote by g, the root space corresponding to o € Agy. Set

(2.2) Ug = D Ga = ) Ga® by

aEAE&n OCEAEEC

Then we have go, = ug @ lg @ uy . The Lie algebras l; and goo share the same Cartan
subalgebra hy. Moreover, [j has a triangular decomposition induced from g.,. For
v € by, we denote respectively by L(geo, i) and L(lg, p1) the irreducible highest weight
goo-module and [j-module with highest weight p with respect to the triangular decom-
positions.

For a root o € Ay, g = a,¢, 0, define the reflection o, by

Uoc(ﬂ) =R <M7av>a7 JUBS h;
Here and after, o denote the coroot of the root a. Let I, = Z and I; = N for g = ¢, 0.
For j € IgU {0}, let 0; = 04;. Let Wy be the subgroup of Aut(h;) generated by the
reflections o; with j € Iy U {0}, i.e. Wy is the Weyl group of g. For each w € Wy,
l4(w) denote the length of w. We also define
wo p:=w(p+ pg) —pg, HEbhywe W,

Consider Wy o the subgroup of Wy generated by o; with j # 0. Let Wg0 denote the set
of the minimal length left coset representatives of Wy /Wy o (cf. [V, Liu, Ku]). We have
Wy = WQOW&O. For k € Z, set
ng ={we VVg0 | lg(w) =k }.
Finally, for g = a,¢,, let (:|-) be a bilinear form defined on subspace of by satisfying
(€i|€j) = (5@', (199|€Z) = (€Z|’L99) = (19g|’£99) =0 for 1,] € Ig.
Recall that I, = Z and I; = N for g = ¢, 0.

2.2. Finite dimensional Lie algebras. For the rest of the paper, let g stand for
a,c,0. We shall fix the following notations:

A:=a, ¢c:=0, 0:=c.

Remark 2.1. For ¢ = ¢,0, let g* and g* be the Lie algebras defined in [CLW, Section 2]
with m = 0. Then ¢y = g%, 000 = g°, Too = g° and 0 = §°. Note that K send to —K
for the isomorphisms to, = g° and 05 = g°.
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For m,n € N, the subalgebra of a,, spanned by E;; with 1—m < i,j < n, denoted by
t,n 0, is isomorphic to the general linear algebra gl(m+mn). The subalgebras (¢, ,a) Nt
and (t, pa) N 04 are isomorphic to the symplectic Lie algebra sp(2n) and orthogonal
Lie algebra so(2n), denoted by t,,¢ and t,,0 respectively. We shall drop the subscript of
t if there has no ambiguity.

For g = a,¢,0, the embeddings Ly restricted to tg are also denoted by L Let A%

denote the set of positive roots of tg with respect to the triangular decomposition
induced from g,,. We also let Ag = A%U—A% and At%,n = AgnﬂA%. Set hg = bgNitg,
ufﬁ = u%t Ntg and [ = [FNtg. Note that tg and [ share the same a Cartan subalgebra
bg. Moreover, [ has a triangular decomposition induced from tg. For u € f)%, we
denote respectively by L(tg, ) and L(lg, 1) the irreducible highest weight tg-module
and [g-module with highest weight p with respect to the triangular decompositions.
For p € bz, L(lg, 1) is extended to an (lg —I—utg)-module by letting u% act trivially. Let

pg =g+ ut%. Define as usual the parabolic Verma module with highest weight p by

The space by is spanned by €; with 1 <i<n (resp. 1 —=-m<i<n-—1)forg=c0
(resp. a) and therefore b% can be regarded as a subspace of h%. Note that b% is an
invariant subspace of o; for 1 <i <n (resp. 1 —m <i<n-—1) forg=cord (resp. a).
The restriction of these o; to f)% are also denoted by o;. Let Wiz be the subgroup of
Aut(hifﬁ) generated by these o;s. Then Wy is the Weyl group of tg. For each w € Wig
we let /g(w) denote the length of w. Consider Wy o the subgroup of Wy generated by
oj with j # 0. Let Wt% denote the set of the minimal length representatives of the left
coset space Wig/Wygo (cf. [Liu, Ku]). For k € Z,, set W{%k ={we Wt% | lg(w) =k }.
We also define

wo p = w(p+ pg) — pg, 1€ hig,w € Wig.

Finally, let pg denote the half sum of the positive roots. Then pg(h) = pg(h) (resp.
pa(h) + 3(n—m+ 1)) for h € hg with §=¢,0 (resp. g = a).

2.3. Combinatorial descriptions of Weyl groups. In this section, we present com-
binatorial descriptions of certain aspects of infinite Weyl groups Wy (cf. [BB]). Recall
that Z* := Z\{0}.
Define ¢4 € by by
b, = _Zigo €, ifg=aq;
Y ien €is if g=r¢,0.

Every element o € by can be uniquely represented by Y ic I, &iei + q¥q with &, q € C.
For g =¢,0 and ¢ € N, we define e_; = —¢;. It is easy to see by computing the actions
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of o; that the actions of Wy on by is given by

(23) o) Geitada) =D (Gt Qe T Y Gicon + e+ e, ifg=a

1E€EL 1<0 1>0

(24) J(Z éiei + qﬁg) = Z(él - q<19gv K>)65(i) + q(ﬁga K>¢g + q1997 if g=g, 07
i€N i€EN

where G is a permutation of Z (i.e. & is a bijection on Z satisfying (j) = j for |j] > 0)
for g = a and & is a signed permutation of Z* (i.e. & is a bijection on Z* satisfying
a(j) = j for |j| > 0 and 6(—i) = —6(i) for i € Z*) for g = ¢,0. Therefore o — &
is a representation on Z and Z* for g = a and g = ¢, 0, respectively. Moreover, they
are faithful representations. It is clear that the image of W, in Aut(Z) is the set of
permutations of Z and the image of W, (resp. W;) in Aut(Z*) is the set of a signed
(resp. even signed) permutations of Z*. A signed permutation & of Z* is called even
signed permutation if [{i € N| (i) < 0}| is a even number. We shall identify W with
the image of Wy in Aut(Z) (resp. Aut(Z*)) for g = a (resp. ¢,0) for the rest of the
paper. Note that for i € Z, 6;(i) =i+ 1, 6;(i + 1) =i and &;(j) = j for all j #4,i+ 1.
Alsoforg=c,0and i€ N, 5;(i) =i+ 1,64(t+1) =i and 6;(j) = j for all j #i,i+1
while 69(1) = —1 (resp. —2), 60(2) = 2 (resp. —1), and Go(j) = j for all j > 3 for
g = ¢ (resp. ). We shall use these representations for the rest of the paper and we
shall simply write o(j) instead of &(j).

Recall that /4 denote the length function on Wy and Wg denote the set of the minimal
length left coset representatives of Wy /Wy o. We have

(2.5) WY =

{{aeWa|o—(z’)<a(j) fori<j<Oand 0<i<j}, ifg=a;
g

{0 e Wylo(i) < o(j), for 1 <i < j}, ifg=rc0
(see, e.g. [BB, Lemma 2.4.7, Proposition 8.1.4 and Proposition 8.2.4]) and for o € Wgo,
{(i,j) €eZXZ | i <j,o(i)>0c(i)}, ifg=a

(2.6) lo(o) = § {(i,4) e NXN | i <joo(—i) > o(j)}, ifg=c
{(i,j) eNXN | i < j,o(=i) >a(j)}], ifg=0

(see, e.g. [BB, Corollary 1.5.2, Corollary 8.1.1 and Corollary 8.2.1]).

Lemma 2.2. For 0 € W0 with (i) < 0 for i < j, and o(i) > 0 for i > j, define
g e WY by

O-(i)_17 Zf Zé]a
(i) 1, if i=j+1andj is even;
a(i) =

-1, if i=j+1andj is odd;

oli—1)+1, if i>j+2.

For each k > 0, the map from ng to ng sending o to @ is a bijection.

Proof. By (2.5), it is a bijection from W2 to W2. By (2.6), we have /. (0) = {,(7) for
o € W2, The lemma follows. u
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Let {&;}ieny be a sequence of real numbers. Define £_; := —¢; for i € N. For any
sequence of strictly decreasing negative real numbers {; };en and o € I/Vg0 with g = ¢, 0,
it is easy to see that {£J(i)}i€N is a sequence of strictly decreasing real numbers. The
following lemma follows from the definition of &.

Lemma 2.3. Let {{}ien be a sequence of strictly decreasing negative real numbers.
Define £2+1 & fori € N and & = 0. Then for all 0 € W2, we have

(&) | 1€ NFU{0} = {&5 | i €N},
where & is defined in Lemma 2.2.

2.4. Unitarizable highest weight modules. Recall that g stand for a,¢,0, and @ =
a, ¢ = 0 and 0 = ¢. In this subsection we classify the highest weights of irreducible
unitarizable quasi-finite highest weight g_.-modules with respect to the anti-linear anti-
involution w defined below.

For a partition A = (A1, Ag,---), the transpose partition of X is denoted by N =
(AN, Ay, -+ ). For g = ¢,0, a partition A and d € C, define

d{Vg, K)

(v
A9
(27) AT\ d) =D Nei+ddgebl, KN d) =D N — e R

ieN 1€N
Let D(g) denote the set of pairs (\,d) with d € Z, satisfying \| < d if g = ¢; and
AN+ M, < dif g =0 For a pair of partitions A = (A7,A") and d € C, define
A\, d),A"(\, d) € bt by

AN d) == > (A Nipremi + > (ANN)jei + dil,

U5 € by

=N ieN
= — Z Aj 1€ T Z )\jei — d,
i€y ieN

Let D(a) denote the set of pairs (), d) satisfying d € Z; and (A7)] + (A7)} < d.

Let ¢ be a Lie algebra equipped with an anti-linear anti-involution w, and let V' be
a t-module. A Hermitian form ( - | - ) on V is said to be contravariant if (av|v') =
(vlw(a)v'), for all a € ¢, v,v" € V. A tmodule equipped with a positive definite
contravariant Hermitian form is called a unitarizable £-module. Assume that £ = @©;czt;
(possibly dim¢; = 00) is a Z-graded Lie algebra and £ is abelian. A graded £-module
M = @®jczM; is called quasi-finite if dim M; < oo for all j € Z [KR].

Remark 2.4. Let V be a highest weight go.o-module with highest weight £. Using the
arguments as in [LZ Section 4], we have V is quasi-finite if and only if £ satisfies
E(E;;) =0 (resp. &( “) = 0) for |7] > 0 (resp. i > 0) for g = a (resp. ¢,0). Therefore
every quasi-finite integrable highest weight g..-module is of the form L(goo,Ag(/\,d))
for some (A, d) € D(g).

Now we consider the anti-linear anti-involution w on a,, defined by

By, fori,j<0ori,j>0:
w(Eij):{ 7 o o and w(K) =K.

—FEj;, fori>0,j<0ori<0,j5>0,
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For g = ¢,0, the restriction of the anti-linear anti-involution w on as t0 goo gives an
anti-linear anti-involution on g, which will also be denoted by w.
For d € C and a pair of partitions A = (A7, \") with )\n+1 = App1 = 0, let T'g(X, d)

be the element in b determined by

m

Ta(\d) =Y (—d— A\ )e_ip1 + Z Afer.

i=1
For d € C and a partition \ satisfying A\,11 = 0, let I‘@(/\,d) be the element in h;
determined by

r *()\ d) — Z?:l()\l + %)Eh for E =,
o Yim1 (A + d)es, for g = 0.

Let D¢(g) denote the subset of D(g) consisting of elements in (A, d) satisfying A, 41 =0
for §=1¢,0 (resp. A}, =0and A, ; =0 for g =a).

Now we introduce the truncation functors [CLW, Section 3.4]. Let M = P4 Mp be
a semisimple hg-module such that Mg is the weight space of M with weight 3. The
truncation functor teg is defined by sending M to €@, M,, summed over » .,  Ce; +

Cdg (resp. Y., Ce; + Cdyg) for § = a (resp. ¢,0). For (X, d) € D(g), L@, A (N, d)) is
a tﬁ-module through the embedding :; defined in Section 2.2. trg (L(9ec A (N, d))) is
an irreducible tg-module and

(2.8) te (L(Go0, A (N, ) = L(45, Tig(A, d))

for any partition A with A\,4+1 =0 and g = ¢,0 [CLW, Lemma 3.2]. The same result is
also true for § = a and pair of partitions A = (A7, \T) with )‘n+1 = A1 = 0 by using
the same arguments as in [CLW]. The anti-linear anti-involution w on g, induces an
anti-linear anti-involution on tg, which will also be denoted by w.

By cumbersome but straight forward computations, the following theorem is refor-
mulated the Theorem 2.4 and some results of sections 7,8,9 in [EHW] in terms of
partitions.

Theorem 2.5. For g =a,c,0, let £ € b%.

i. L(ta, &) is unitarizable with respect to w if and only if € = Tg(N, d)+k> 7 €
for some pair of partitions )\ = (AT, A7) with A, = AP =0 and d, k € R satis-
fying d > min{(A\"); +n—-1,(A")|+m—1}, ord € Z and d > ()\ )i+ (AL
Moreover, N (ta,T'g(A,d) + k: > iy €i) are irreducible for pair of partitions
)\ = (AT,\7) with \,,, = \f =0 and d,k € R satisfying d > min{ (A7)} +n —

L, (AT +m—1}.

ii. L(t0,€) is unitarizable with respect to w if and only if & = T'g(\,d) for some
partition X with A, = 0 and d € R satisfyingd > n—14+X,, or d € Z and
d > N+ X,. Moreover, N(t0,T'g(\,d)) are irreducible for partition X\ with
A =0andd>n—1+ M.

ili. Assume that £ € b with E(Ep_1) = &(Ey). L(£,€) is unitarizable with respect
to w if and only if & = I'g(\,d) for some partition A\ with )\n 1= X, =0 and
d € R satisfying d > (/\’ +n)—1 ifn— N is even; d > (/\’ +n—1)—114f
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n— M\, is odd, or d € Z and d > N;. Moreover, N(tc,I'g(), d)) are irreducible
for partztzon A with /\n 1 =Xy =0 and d € R satisfying d > 5 (/\' +n)—1if
n— A is even; d > (N +n—1) =1 if n — \| is odd.

Proposition 2.6. For g = a,c,0, let L(g..,&) be an irreducible quasi-finite highest
weight §..-module with highest weight £&. Then L(§..,&) is unitarizable with respect to
the anti-linear anti-involution w if and only if € = A°(\,d) for some (X, d) € D(g).

Proof. Let L(g.,,&) be a unitarizable irreducible quasi-finite highest weight g__-module.
By Remark 2.4, ¢ satisfies £(Ey) = 0 (resp. &(Ej) = 0) for |i| > 0 (resp. i > 0) for
G =a (resp. ¢,0). It is easy to see that d € R and &(Ey) — S(EHL,-H) € Zy (resp.
E(Eii) — &(Eit1,i+1) € Z4) for all i (resp. @ # 0) for g = ©,0 (resp. @). This implies
¢ = A%(\,d) for some partition A\ (resp. pair of partitions A = (AT,A\7)) and d € R
for g = ¢,0 (resp. a). Now applying truncation functor to L(g..,¢) with n > d
(resp. m,n > d) for g = ¢,0 (resp. a), trz(L(g,€)) is a unitarizable tg-module
with respect to w. By Theorem 2.5 and (2.8), we have d € Z and (\,d) € Di(g).
Hence & = A°(\,d) for some (\,d) € D(g). Conversely, the irreducible highest weight
§.,-modules L(g.,A°(\, d)) are modules appearing in the Howe dualities at negative
levels described in [W]. These modules are unitarizable and quasi-finite. The proof is
completed. 0

Remark 2.7. The modules described in the proposition are modules appearing in the
Howe dualities at negative levels described in [W] (cf. [LZ, Theorem 5.6, 5.8, 5.9]).

3. NUMERICAL DATA OF THE HIGHEST WEIGHTS

In this section, we shall provide combinatorial descriptions of Kg()\,d) in terms of
AS(N, d).

Definition 3.1. Let {a;}ien and {b; };en be two strictly decreasing sequences of integers
(resp. half integers). Then the sequences {a;};en and {b;}ien are said to form a dual
pair if Z (resp. § -+ Z) is the disjoint union of the two sequences {a;}ien and {—b; }ien.

Define the function p on N by p(i) = —i for all ¢ € N. The following lemma is well
known (see e.g. [M, (1.7)]).

Lemma 3.2. For any partition X\, the sequences {\; + p(i) }ien and {\; + p(i) + 1}ien
form a dual pair.

Recall that ¢g =3, € for g =¢,0.

Lemma 3.3. For g = ¢,0 and (\,d) € D(g), let {¢;}ien and {(,}ien be two sequences
determined by

AS(N, d) + pg — d{(Vy, K)dg = Y _ Giei + dig,

i€l

9., K
A\, d) + pg+ d(Vg, K )b = ZCZ 1_1997>

5.
i€ly @ K> ’
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Then {C}ien and {C;}Yien form a dual pair. Moreover, (; < 0 fori € N and g #0. In
the case g =0, ; <0 fori>2, and (; <0 (resp. =0 and > 0) for \] < %l (resp. = %
and > %)

Proof. By Lemma 3.2, {(;}ien and {;}ien form a dual pair. It is clear that ¢; < 0
for i € Nand g = ¢. For g =0, we have X}, < % and hence (; < 0 for ¢ > 2. Also,
G =X — %<0 (resp. =0and > 0) for | < & (resp. = ¢ and > 9). O

Lemma 3.4. For g =¢,0 and (\,d) € D(g), let {¢;Yien and {(;}ien be two sequences
defined in Lemma 3.8. Define N(\,d) = {(i,j) € NxN | (;+(; = 0,4,j € N},
J={jeN]| (k)¢ N\d),VEeN},8={¢ |i>1} and S={(; | i€ J}.

i. For g=c, we have 8§ =8 and (4,1 = 0.

ii. For g ="9, we have

8§ =28 and (; # 0 # (, for all 1, if d is odd,;
SU{0} =8 and (; =0, if d is even and | =

)

NN

8§ =8 and (; = 0 for some 1, if d is even and

Proof. We shall only prove the case g = 0. The proof of the other cases are similar and
easier. For j > 2, we have (; + (; < M|+ Xy —d—j+1 < —1 and hence (1 # —(j
for j > 2. Since {¢;}ien and {(;}ien form a dual pair, ¢; # £¢; for j > 2 and ¢; are
negative for i > 2, we have ; € 8 for i > 2, and (; € 8§ for ¢; # 0. This implies
8§ 2 8\{0}. For z € 8, we have —z ¢ § and hence —z € —8. Therefore § = 8\{0}. By
Lemma 3.2, § (resp. 8) contains 0 if and only if d is even and \| = %l (resp. \] # %)
The proof is completed. U

Recall that ¢, = — Zz‘go €.

Lemma 3.5. For (\,d) € D(a), let {(;i}iez and {(;}iez be two sequences determined
by
AN, d) + pa — depa = Y (G — D)ei + i,
1EL
AN d) + pa + depa =Y Ciei — dl,.
1E€EL
XIﬂ ‘ Zz:Z]azSO<j}7 J—i—:{jEN ’ (%])%
| i€ Jyr}and S ={(; | i € J_}. Then we have

Define N(A\,d) = {(i,j) €
N\ d),Vi < 0}, J- = {i
S_ = {CZ ’ i < 0}} g-i— =

S+ = —-8_ and g_ = —S+.
Proof. Let By ={(; | i € N} and B_ = {¢; | i <0}. By Lemma 3.2, we have
(=84)UBL =7Z and (—8_)UB_=7Z.

For z € 8., we have ¢ B_ by the definition of 8§, and hence x € —8_. Therefore
84+ € —8_. Now assume x € —8_. We have x ¢ B_. Since {(; }iez is strictly increasing,

Iy

€
{<i
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we have 2 ¢ —8, and hence x € B,. Thus 2 € B, \B_ = 8, and therefore —8_ C §,.
Similarly, we have —8, = &_. The proof is completed. O

We shall use the notations defined in Lemma 3.4 and Lemma 3.5 for the rest of the
paper. By (2.3) and Lemma 3.5, we have (for (\,d) € D(a), 0 € Wy)

(3.1) o AN d)+pa) = > (G—De1(y+dpatdia = Copyei— Y €i+dpa+dd,.

S/ 1EL 1EL
By Lemma 3.4 and (2.4), we have (for (A, d) € D(g), 0 € Wy and g = ¢,0)
(3.2 T AN ) 4 pg) = 3 Copies + (i, K)bg + i+ dd,
€N

For n belonging to the subspace of h% spanned by €;s and g, let [n]T denote the

unique A; ~dominant element in Wjo-orbit of n € hg. The following two propositions
are important for proving the main theorem in the next section.

Proposition 3.6. Let {ji}ien be the strictly increasing sequence with J = {j; | i € N}.
For (A, d) € D( ) with g = ¢,0 and a partition u with A%(u,d) = o= o A%(\,d) for
some o € W e We have
A (p,d) + pg + d(Vg, K) g
[ZieN\J Ci€i + X ien Cloiy €3 — <<19— >>19 ] , fO0ES;

9>

- = = d(9q, K .
[ZiEN\JCiei+ZieNCjao(i)€ji— <§9 >>19] , if0e€8s.

Here o appears only in the case g =0 and it is determined by o =¢ (see Lemma 2.2
and Lemma 2.3).

Proof. In the proof, union means disjoint union. Let {&}ien and {&;}ien be two se-
quences determined by

A%, d) + Pg — d<19g, K) ¢g Z ie; + diy,

i€lyg
_ Dy, K
A, d) + pg+ d(Vg, K)bg = > Esei — ﬁQKM—.
i€ly @ >

Assume 0 ¢ 8. We have {Zji}iEN = {(i}ien by Lemma 3.4. By Lemma 3.3, Lemma 3.4,
and the fact that o acts on Z* as a signed permutation, we have

. = . = . 1
{—Co) |1 €N}U {Cjo(i) |ieN}YU{¢(; |i e N\J} =Z (or 3 + 7).
Since {&;}iew and {; }ien form a dual pair, and {&; | i € N} = {(,(;) | i € N} by (3.2),
we have {§; | i € N} = {ij_) | i € N}U{¢; | i € N\J}. Therefore the proposition
holds for this case since {£;}ien is a decreasing sequence.

The case of 0 € 8 only occurs when g =0 with (; = 0. We have {Zyz |ie N} ={¢ |
i € N}\{0}. Since o acts on Z* as a signed permutation, by Lemma 2.3, we have

{6 11 ENYU{G,, 1ieNFU{G [ieN\} =2
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Now the proposition also follows in this case using the arguments above. O

Proposition 3.7. Let {j;}icz be the strictly decreasing sequence such that J. = {j; |
i1 <0} and J- ={k; | i € N}, and let J = J_ U Jy. For (\,d) € D(a) and a partition
w with A*(u,d) = o=t o A%(A\, d) for some o € ng, we have

Ka(u7d) + pa + dog = [ Z Ziei + szo(i)eji — dﬁu]-i_.

i€Z\J i€Z

Proof. In the proof, union means disjoint union. Let {&}icz and {&,}icz be two se-
quences determined by

AYpod) + pat Y€ —dda =D Eiei + d,

1EZ 1EZL
N, d) + po + dpa = > & — .
€L

By Lemma 3.5, we have
Z=(=8:)U(8:)U{¢ i€ N\J1} = (=84) U (=8-) U{(; [ i e N\Jy}

Therefore we have Z = {—(y) | @ € Z} U{(; | i € N\Jy} because o acts as a
permutation on Z. Since §; = (y(;) for i € Z by (3.1) and (o) = _Zja(i) for i € Z by
Lemma 3.5, we have

Z={=Co i€ NYU{—Copy i <0}L{C | i€ NJLY
={-& |1 e N}U{(,,, 11 <0FU{¢ |ie N\Ji )

Since {& }ien and {€; }ien form a dual pair, we have {¢; | i € N} = {Zjo(i) | i <0 U{C; |
i € N\J.}. Similarly, we have {¢; | i <0} = {Zja(i) |i e NYU{C; | i€ (=Z4)\J-}.

Therefore the proposition holds since {; };en is a decreasing sequence and {€_}icz L is
an increasing sequence. O

4. uZ-HOMOLOGY FORMULAS FOR §,,-MODULES

In this section we give a combinatorial proof of Enright’s ug -homology formula [E]

for the unitarizable highest weight g -modules with highest weight Kg()\, d).

For a module V over Lie algebra G, let H(G; V) denote k-th homology group of
G with coefficients in V. It is well known that the homology groups Hk(ug_ ; V) are
lg-modules. The Uz -homology of unitarizable highest weight modules are described by
the following theorem which was obtained in [CK, Theorem 7.2] for g,, = ao and in
[CKW, Theorem 6.5] for §,, = o0, 000- The following theorem holds for more general
situation by using the correspondence of homology group in the sense of super duality
[CLW, Theorem 4.10] together with Kostant’s formulas for integrable g,.,-modules (cf.
[J, Ko, V, CK]).
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Theorem 4.1. For (A, d) € D(g) with g = ¢,0 (resp. g = a), we have, as lg-modules,

Hy (u5; L(@o0, A7 (N, d))) @L[g,Ag (1, d

where p is summed over all partitions (resp. pairs of partitions) such that A®(u,d) =
w0 A%(\, d) for some w € quk.

For & belonging the subspace of bz spanned by €;s and g, let ¥(§) = {a € Agn &+
pgla) = 0} and define ®(£) to be the subset of Ag: ,, consisting of roots 3 satisfying the
following conditions [E, DES]:

i (4 pg, 07) €N
ii. (B|a)=0foral o€ ¥(¢);
iii. B is short if ¥(£) contains a long root.

Let W5(€) be the subgroup of W5 that is generated by the reflections sz with 3 € ®(£).
Define Ag(§) to be the subset of Ag consisting of the roots ¥ € Ag such that sy lies in
W5 (8).

For (\,d) € D(g), let Ag(\,d) = Az(A*(\,d)) and Wx(\, d) = W5(A(\,d)). Then
Ag(A, d) is an abstract root system and Wg(A, d) is the Weyl group of Ag(A, d) [E, EHW]
(see also Lemma 4.2 below). Let Ag’()\, d) = Ag(A, d)ﬂAg be the set of positive roots of
Ag(A, d). Set Wy (A, d) = Wg(A, d) N Wgo. Let WEO()\, d) denote the set of the minimal
length representatives of the left coset space Wg(A, d)/W50(A,d) and let Wﬁo’ x(A,d) be
the subset of Wﬁo()\,d) consisting of elements o with £ 4(0) = k, where £() ) is the
length function on Wg(A, d).

For (A, d) € D(g), let J° = JU{j|(; =0} for g = ¢,0 and define

{ei—ejEAg; (ied_,je Ji)}, for g=a;

{—ei—ejeAg; (i <j,i,je€J}, forg=c;

{—ei—e e AF; (i <j,ije )}, ifJO;éJorgqéZforg_a
{—ei—€j, =26 € AL; (i < j,i,j € )}, if JO=J and § € Z,for g = 0.

T\ d) =

Lemma 4.2. For (\,d) € D(g), we have

{ei —ej € Ag; (1 # 4, 4,5 € J-UJy)}, for g = a;

{i(iel - Ej) S Aﬁﬂ (Z <J,%,J € JO)}? for g=0q

{£(xe —€) €Ay (i< j,i,je )}, if JO# Jor & ¢Z, forg—D
{£(xe —€)), £2¢; € Ag; (i < 4, i,5 € J)}, if JO = Jand & € Z, for g =d.

Ag(A,d) =

Proof. For (\,d) € D(g), we have ®(A°(\,d)) C YT(),d) by Lemma 3.4 and Lemma 3.5.
Using the relations of the Weyl groups, it is easy to observe that Y(\,d) C Ag(A,d).
Now the lemma follows by using the relations of the Weyl groups again.

]

Lemma 4.3. For (\,d) € D(g), there is a bijection from Wgng to Wok()\ d).
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Proof. By Lemma 4.2, it is clear that ng = Wgok()\,d) for the cases g =a and g =0

WithJO#JorggéZ. Forthecasesg:candg:DWithJO:Jand%lGZ,the
lemma follows from Lemma 4.2 and Lemma 2.2. O

Using Theorem 4.1, Proposition 3.6, Proposition 3.7, Lemma 4.3 and Lemma 2.3
together with (2.3) and (2.4), we have the following theorem.

Theorem 4.4. For (A, d) € D(g) and k € Z,, we have, as lg-modules,

Hk (u§_§ L(ﬁoovxg(/\’ d))) = @ L([ﬁ’ [w—l(KB(/\’ d) + pﬁ)]+ - pﬁ)'
wewgk(x,d)

Remark 4.5. There has the counterpart of the Theorem 4.11 in [CLW]| for u™-cohomology
in the sense of [Liu, Section 4]. The analogous statement is also true for g = a. The
formulas for ut-cohomology can be proved by the same argument as in the proof in
[CLW]. Therefore, there is an analogue of Theorem 4.4 for ug -cohomology in the sense
of [Liu]. The formulas for the cohomology can be proved by the same argument as in
the proof of the theorem above.

5. HOMOLOGY FORMULAS FOR UNITARIZABLE MODULES OVER FINITE DIMENSIONAL
LIE ALGEBRAS

In the section we shall give a new proof of Enright’s homology formulas for uni-
tarizable modules over classical Lie algebras corresponding to the three Hermitian
symmetric pairs of classical types (SU(p,q),SU(p) x SU(q)), (Sp(n,R),U(n)) and
(SO*(2n),U(n)).

For ¢ belonging to b, let ¥(§) = {o € At%,n | (€4 pg | @) = 0} and define ®(§) to be
the subset of At%m consisting of roots 3 satisfying the following conditions [E, DES]:

L €+ pg BY) €N;
ii. (B|a)=0foral o€ ¥(¢);
iii. B is short if ¥(£) contains a long root.
Let Wig(&) be the subgroup of Wig that is generated by the reflections sg with 3 € ®(€).
Associated to Wig(&), let Ag(§) denote the subset of Ag consisting of the roots ¥ such
that sy lies in Wig(§). We also let [¢]T be the unique At% ~dominant element in the
Wig,o-orbit of &.

Assume that the irreducible module L(tg, &) is unitarizable with highest weight £ €
hiz- Then Ag(€) is an abstract root system and Wig(§) is the Weyl group of Ag(§) by [E,
EHW]. Let A%(f) =Ag&)nN A% be the set of positive roots of Ag(&). Set Wigo(§) =
Wig(§) N Wego. Let Wt%(é) denotes the set of the minimal length representatives of the
left coset space Wig(€)/Wig,o(€) and let Wt%k(g) be the subset of Wt%(f) consisting of
elements o with {¢(0) = k, where £¢ is the length function on Wg(§).

Theorem 5.1. Forg = a,c or 0, let L(tg,&) be a unitarizable tg-module with highest
weight § € biz. Assume that £ satisfies the assumption of the Case (iii) of Theorem 2.5
(cf. Case (ii) of [EHW, Theorem 9.4]|) for tg = so(2n). For k € Z,, we have, as
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lig-modules,

Hy(ug; L(4g,€)) = EB L(lg, [w™ (€ + pg)lT — peg)-
wEW%’k(E)

Proof. Since Hy,(ug; L(ta, p+k> 7" 1 €)) = Hp(ug; L(ta, 1) @ L(lg, kD011 €)
for all ¢ > 0 and p € by, it is sufficient to show all § with & = 0 appearing in the Case
(i) of Theorem 2.5 when g = a.

First we assume that £ = I'g(\,d) with d ¢ Z. Then we have Ag(§) = 0 and
L(tg,&) = N(tg,&) by Theorem 2.5. Therefore L(tg,£) is a free ug-modules and hence
Hk(ut_ﬁ;L(tﬁ, §)) = L(lg, &) (resp. = 0) for k = 0 (resp. k > 0). Thus the theorem
holds for this case.

Now we assume that { = I'g(A, d) for some (A, d) € Di(g). By a direct calculation,

we have A{@(g) = Aﬁ()\,d) N A{@. Recall that tttE(L(ﬁoo,Kg()\,d))) = L(tﬁ,th(A,d))
for (A\,d) € D¢(g). Since tttE(L(ﬁoo,Kg()\,d))) = L(tg,T'g(A,d)) and the homology
commutes with the truncation functor, we have

Note that Hk(uﬁ_;L(ﬁoo,Kg()\,d))) with & > 0 decompose into the direct sum of ir-
reducible lg-modules of the form L(I5, A%(11,d)) for some partition yu (resp. pair of
partitions p = (u~,u")) if g =¢,0 (resp. a) and tttE(L([g,Kg(,u,d))) = L(lg, I'g(p, d)).
Therefore, the theorem also holds for this case by Theorem 4.4. O
Remark 5.2. By Remark 4.5, Enright’s cohomology formulas for unitarizable modules

over classical Lie algebras with highest weights satisfying the assumption in the theorem
above can be proved in the same manner as in above.
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