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Abstract. In this paper, linear bases for the partially commutative Lie alge-
bras are found. The method of the Gröbner–Shirshov bases is used.

1. Introduction and Preliminaries

Let X be a finite set and let G = 〈X,E〉 be an undirected graph without loops
with the set of vertices X and the set of edges E. Since the graph G is undirected
the elements of E are unordered pairs that we denote by {x, y}, where x, y ∈ X .

Definition 1.1. Let R be a commutative associative ring with unit. A partially
commutative Lie algebra over R is just the Lie R-algebra under the ring R with
the set of generators X and the set of defining relations

(1) (xi, xj) = 0, for {xi, xj} ∈ E

(thereafter, we denote the Lie product of x and y) by (x, y).
The graph G is called a defining graph for the corresponding algebra that we

denote by LR(G). If there is no ambiguity we omit the subscript and write L(G)
instead of LR(G).

So, the definition of the partially commutative Lie algebras is analogous to ones
of other partially commutative structures such as groups, monoids etc. (see [8]).

Partially commutative groups (the term “graph groups” is also used) are studied
very heavily nowadays (see [11, 7, 12, 13, 9, 5, 17], for example). Although, there
are some results obtained for other partially commutative structures (see [10, 4, 6]).

For instance, it was shown in [10] that if two partially commutative associative
algebras (they are called “graph algebras” in that paper) are isomorphic then so are
their defining graphs. Actually, in that paper, the partially commutative algebra
corresponding to the graph G〈X,E〉 is defined as an algebra with the set of gener-
ators X and the set of defining relations xixj = xjxi, where {xi, xj} 6∈ E. It means
that the associative partially commutative algebra corresponding to the graph G
has the defining graph G (in meaning of the terminology used nowadays), i.e. the
complement of G. However, it makes no difference because, obviously, G ≃ G′ if
and only if G ≃ G′.

Some results are also obtained for partially commutative Lie algebras. So, in [6],
the algorithm finding a basis for any partially commutative Lie algebra is given.
However, this algorithm is based on a decomposition of the set X by two subsets
one of which is independent. For this reason, the final result depends essentially
on the structure of the graph and, therefore, there are deep difficulties in applying
this algorithm for the explicit description of the bases for partially commutative
Lie algebras in general.
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The goal of this paper is to make up for a deficiency and find the bases for par-
tially commutative Lie algebras explicitly. We are using totally different methods,
namely the technique of the Gröbner–Shirshov bases.

For a partially commutative algebra, the basis found in this paper consists of
Lyndon–Shirshov words. For this reason, we should remind the corresponding
definitions.

Let X∗ be the set of all associative words in the alphabet X (including the empty
word denoted by 1). Let us set a linear order on X and extend it to the linear order
on X∗ by two different ways:

(1) u < 1 for any non-empty word u. By induction, u < v, if u = xiu
′, v = xjv

′,
where xi, xj ∈ X , and either xi < xj or xi = xj and u′ < v′. This is so
called lexicographic order.

(2) u ≺ v if either ℓ(u) < ℓ(v) or ℓ(u) = ℓ(v) and u < v, where ℓ(u) is the
length of u. This order is denoted by deg-lex.

Definition 1.2. An associative word u ∈ X∗ is called an associative Lyndon–
Shirshov word, if for an arbitrary non-empty words v, w ∈ X∗ such that u = vw,
we have wv < u.

We also consider the set if all non-associative words in X (here, we exclude the
empty word from the consideration), i.e the set of words with all possible bracketings
(let us denote this set by X+). In the next definition, if [u] is an arbitrary non-
associative word then u denotes the word obtained from [u] by removing all brackets.

Definition 1.3. A non-associative word [u] is called a Lyndon–Shirshov word if

(i) u is an associative Lyndon-Shirshov word;
(ii) if [u] = ([u1], [u2]) then [u1] and [u2] are non-associative Lyndon–Shirshov

words and u1 > u2.
(iii) If [u1] = ([u11], [u12]) then u2 > u12.

Let us denote the set of all associative Lyndon–Shirshov words in X by LSA(X)
and the set of all non-associative Lyndon–Shirshov words in the same alphabet by
LS(X).

By [16], LS(X) is a linear basis of the free Lie algebra with the set in generators
X over an arbitrary field. We can easily conclude from this that this set is also a
basis of the free Lie R-algebra. Let us denote this algebra by LieR(X).

In [14], it was shown that for any associative Lyndon–Shirshov word there is the
unique bracketing making a non-associative Lyndon–Shirshov word. It means that
there exists a bijection [ · ] : LSA(X) → LS(X). So, from now on, we denote the
image of u ∈ LSA(X) under this bijection by [u]. Finally, for [u], [v] ∈ LS(X) we
write [u] < [v] ([u] ≺ [v]) if u < v (u ≺ v respectively). In a similar manner, we
understand the notations: [u] 6 [v], [u] � [v], [u] > [v], [u] ≻ [v], [u] > [v], [u] � [v].

Let f =
∑

i αi[vi] be a Lie polynomial that is a linear combination of non-

associative Lyndon–Shirshov words. Denote by f the monomial αk[vk] such that
[vk] ≻ [vi] for any i 6= k.

Now, let us remind the notion of the composition (see [15]). Let u = vdw, where
u, d ∈ LSA(X). By [14], the minimal non-associative subword [u′] of the word
[u] such that u′ covers d is easily seen to be of the form [dc], for some c ∈ X∗.
Obviously, if c 6= 1 then c = c1c2 . . . cm, where ci ∈ LSA(X) for i = 1, 2, . . .m and
c1 6 c2 6 · · · 6 cm. Denote by [vdw]d the non-associative word obtained from u
by replacing the subword [dc] by ((. . . (([d], [c1]), [c2]) . . . ), [cm]). Let f be a monic
Lie polynomial (i.e. a polynomial whose coefficient by f is equal to 1). Denote by

[vfw]f the Lie polynomial obtained from [vfw]f by replacing f by f .
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Definition 1.4. Let f and g be monic Lie polynomials and let w ∈ X∗ be such
that w = fa = bg, where a, b ∈ X∗ and ℓ(f) + ℓ(g) > ℓ(w). The composition of
intersection of f and g relative to w is defined by

(f, g)w = [fa]f − [bg]g.

Definition 1.5. Let f and g be monic Lie polynomials and let w ∈ X∗ be such
that w = f = agb, where a, b ∈ X∗. The composition of inclusion of f and g
relative to w is defined as follows:

(f, g)w,a = f − [agb]g.

For simplicity, we denote the composition of inclusion also by (f, g)w. Let us

note that (f, g)w ∈ Id(f, g) and (f, g)w ≺ w (here Id(f, g) is an ideal of LieR(X)
generated by f and g). Analogously, if S is a set of Lie polynomials in X , then
Id(S) denotes the ideal of LieR(X) generated by S.

Definition 1.6. Given a set S of monic Lie polynomials, the composition (f, g)w of
f, g ∈ S is trivial relative to S if (f, g)w =

∑
i αi[aisibi], where αi ∈ R, ai, bi ∈ X∗,

si ∈ S aisibi ≺ w.

Definition 1.7. Let S be the set of monic Lie polynomials. S is a Gröbner–
Shirshov basis of LieR(X)/Id(S) if every composition of any two elements is trivial
relative to S.

Definition 1.8. Let [u], [v] ∈ LS(X). We say that [v] is a subword of [u] if an
associative word v is a subword of an associative word u, i.e. if there exist a, b ∈ X∗

such that avb = u.

Definition 1.9. The word [u] ∈ LS(X) is called S-reduced if u 6= asb for any s ∈ S
and a, b ∈ X∗.

The main result we need is the following one:

Lemma 1.10 (CD-Lemma). (see [1, 2]) S is a Gröbner–Shirshov basis if and only if
the set of all Lyndon–Shirshov S-reduced words is a linear basis for LieR(X)/Id(S).

Finally, let us remind a couple properties of the Lyndon—Shirshov words that
we are going to use in this paper.

Lemma 1.11. ([3], Lemma 2.12) If u, v ∈ LSA(X) and u > v, then uv ∈ LSA(X).

Lemma 1.12. Let [u], [v] ∈ LS(X) and [u] > [v]. In LieR(X), we can write
([u], [v]) = [uv] +

∑
i[wi], where [wi] ∈ LS(X) and wi < uv.

Proof. It follows clearly from [14] (Lemmas 2 and 3) and from Lemma 1.11. �

2. A basis of L(G)

To find a linear basis of L(G), let us find its Gröbner–Shirshov basis.
LetG = 〈X,E〉. Consider the free Lie R-algebra LieR(X) whose set of generators

coincides with the set of the vertices of G. Let us denote by S(G) the set of Lyndon–
Shirshov words [u] such that [u] = ([ũ], b), where b ∈ X , [ũ] does not contain b, and
{b, y} ∈ E for any letter y appearing in [ũ].

Note that if [u] ∈ S(G) then its last letter is the second largest one in this word.
Indeed, condition (ii) of Definition 1.3 implies, the first letter of [ũ] is larger then b
(the last letter of [u]). We are left to show that all other letters of [ũ] are less than
b. If ℓ(ũ) = 1 then the statement is obvious. Otherwise, [ũ] = ([u1], [u2]), where
[u1], [u2] ∈ LS(X). If there is another letter of [ũ] which is not less than b then by
condition (ii) of Definition 1.3 we have the first letter of [u2] is greater than b (by
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the definition of S(G) it cannot be equal to b). But in this case, [u] 6∈ LS(X) by
condition (iii) of Definition 1.3.

The following statement holds:

Lemma 2.1. S(G) ⊆ I(G), where I(G) is the ideal of LieR(X) generated by the set
of relations (1).

Proof. Since the Lie product is a derivation (it is the consequence of the Jacobi
identity), ([ũ], b) is equal to a sum of ℓ(ũ) terms each of which contains a product
of the form (x, b), where x ∈ X is a letter appearing in u. This product is in I(G)
by (1).

�

Definition 2.2. Given an associative word d ∈ LSA(X), the word [u] ∈ LS(X)
is called d-decomposable if [u] = ([v], [w]), where [w] > [d] and d-indecomposable,
otherwise.

Let us take d ∈ LSA(X) and consider a word [u] ∈ LS(X) such that [u] > [d].
If [u] = ([v], [w]) is d-decomposable then consider the words [v] and [w]. Each of
which is also either d-decomposable or a product of two words each of them is
greater than [d] and so on. Since each word has a finite number of letters, any word
can be represented as a product of d-indecomposable words [u1], [u2], . . . , [uk] (with
some bracketing among them).

Definition 2.3. Let [u], [d] ∈ LS(X). The described above decomposition of [u]
as a product of d-indecomposable words [u1], [u2], . . . , [uk] is called d-decomposition
and denoted by ([u1], [u2], . . . , [uk])d or [u]d.

Definition 2.4. Let us define the notion of a pattern inductively:

(1) The symbol ∗ is a pattern;
(2) If p and q are patterns then (p, q) is also a pattern;
(3) There are no patterns except described in (1)-(2).

Definition 2.5. Let [u], [d] ∈ LS(X). Let us define a d-pattern of [u] as an object
obtained by replacing all d-indecomposable subwords of [u] by “∗”. Denote the
d-pattern of [u] by p(u, d).

Example 2.6. Let X = {x1, x2, . . . , x6}. Consider the order on it defined as

follows: (xi < xj) ⇔ (i < j). If [u] =
((

(x6, x3), (x5, x1)
)
,
(
((x6, x1), x3), (x5, x2)

))

and [d] = (x4, x2) then the set of (x4, x2)-indecomposable subwords of [u] consists
of (x6, x3), (x5, x1), ((x6x1)x3), and (x5x2). Therefore, (x4, x2)-pattern of [u] is
((∗ , ∗)(∗ , ∗)).

Remark. For any [u] ∈ LS(X), d-pattern shows the bracketing among its d-
indecomposable multipliers.

Note that any d-pattern is obviously a pattern.
Let f1, . . . , fk be Lie polynomials and let p be a pattern containing k symbols

“∗”. We denote by (f1, . . . , fk)p the Lie polynomial obtaining by simultaneous re-
placing ith symbol “∗” by fi (counting from left to right) for all i = 1, 2, . . . , k and
by transformations by the distributive law after that (we do not use the anticom-
mutative law and the Jacobi identity).

Lemma 2.7. Let [u] and [d] be Lyndon–Shirshov words such that [u] > [d] and all
letters of u which are greater than the the greatest letter of d appear in u exactly once
and the greatest letter of d is not contained in u. Let [u] = ([u1], [u2], . . . , [uk])d be a
d-composition of u and let u′ be a word obtaining from u by replacing ur by urd for
some r. Then ([ur], [d]) ∈ LS(X), [u′] = ([u1], [u2], . . . , ([ur], [d]), . . . , [uk])p(u,d),
i.e. p(u, d) = p(u′, d).
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Proof. The first statement is obvious since [ur] and [d] are Lyndon–Shirshov words,
[ur] > [d] and if [ur] = ([v], [w]) then [w] 6 [d] because [ur] is d-indecomposable.

Next, obviously ([ur], [d]) is d-indecomposable. We are left to show that d-
patterns of [u] and [u′] coincide.

Let us proceed by induction by the number of multipliers in d-decompositions
(denote this number by k). For k = 1, the assertion is obvious. Let k > 2. In this
case, [u] = ([v], [w]), where [v] = ([u1], . . . , [ul])d, [w] = ([ul+1], . . . , [uk])d. Since
all the letters of [u] which are greater than the greatest letter of d, appear in [u]
exactly once, the first letter of [u1] is the greatest letter of [u] and the first letter
of [ul+1] is the second greatest letter of [u].

Consider the word [u′]. Since [ui] > [d] for all i and since [u] does not contain
the greatest letter of [d] the greatest letter of [d] is less than the greatest letters of
[ui] (i = 1, 2, . . . , k). Consequently, the second greatest letter of [u′] is also the first
letter of [ul+1]. So, [u′] = ([v′], [w′]), where v′ w′ are words obtained from v and
w by replacing ur by urd (if ur is not a subword of v (respectively not a subword
of w), then we suppose v′ = v (w′ = w respectively)). By induction hypothesis,
p(v, d) = p(v′, d) and p(w, d) = p(w′, d). Therefore, p(u, d) = (p(v, d), p(w, d)) =
(p(v′, d), p(w′, d)) = p(u′, d). �

Lemma 2.8. Let [u] and [d] be Lyndon–Shirshov words such that all the letters
of u, which are greater than the greatest letter of d, appear in u exactly once and
the greatest letter of d is not contained in u. Let [u] = ([u1], [u2], . . . , [uk])y, where
y is a letter not contained in u and such that y > d. Finally, let the word u′ be
obtained from u by replacing ur by ury. Then the d-pattern of [u′] is obtained from
d-pattern of [u] by replacing its part p(ur, d), corresponding to [ur] by (p(ur, d), ∗).
In other words, if [u] = ([v1], . . . , [vt], . . . , [vs])d, where [vt] is the last multiplier in
the d-decomposition of [ur], then [u′] = ([v1, . . . , [vt], y, [vt+1] . . . , [vs])d.

Proof. It is obvious that if [u] ∈ LS(X) and y > d then

[u]d = ([u1,1], . . . , [u1,l1 ], . . . , [uk,1], . . . , [uk,lk ])d,

where ([ui1], . . . , [uil1 ])d = [ui]d for i = 1, 2, . . . , k. In other words, it means that
the d-pattern of [u] is obtained from the y-pattern of this word by simultaneous
replacing the ith symbol “∗” by d-pattern of the corresponding word [ui].

By Lemma 2.7, y-patterns of [u] and [u′] coincide. Consequently, we only need
to compare the d-patterns of [ur] and [ury]. We have [ury] = ([ur], y) since y > d
and ur is y-indecomposable. So, the assertion follows. �

Now, we can start computing compositions. Let [u], [v] ∈ S(G). Suppose that
[u] > [v]. It follows from the structure of the words of S(G) that a composition
of intersection for these two words in S(G) exists if and only if the first letter of
[v] is equal to the last letter of [u]. Moreover, in this case, there exists the unique
composition of [u] and [v]. This is the composition relative to w = ũv, where ũ is
the associative word obtained by deleting the last letter in u.

Given [u] ∈ LS(X), d ∈ LSA(X), we introduce the map ∂d:

∂d[u] =

k∑

i=1

([u1], . . . , ([ui], d), . . . [uk])d,

where [u] = ([u1], . . . , [uk])d. In other words, if the first letters of [u1] . . . [uk] are
distinct then applying this map to [u] gives us the representation of ([u], [d]) as a
sum of Lyndon–Shirshov words. It is clear that if ([v], [w]) is a Lyndon–Shirshov
word then

∂d([v], [w]) =
(
(∂d[v]), [w]

)
+
(
[v], (∂d[w])

)
,
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i.e. ∂d is a derivation. By induction, for Lyndon–Shirshov words [u] =
([u1], . . . , [uk])d and [v] < [d] we obtain:

∂v[u] =

k∑

i=1

([u1], . . . , ∂v[ui], . . . , [uk])p(u,d).

First of all, let us consider the case v = by1y2 . . . ykc, where b, c, y1, . . . , yk ∈ X
such that b > c > yk > · · · > y1. Let [u] = ([ũ], b) be such that each letter of [ũ]
that is greater than y1 appears in [u] exactly once, and [ũ] does not contain letters

of [v]. Let Ŝ(G, v) be the set of such words [u].

Lemma 2.9. Let v = by1y2 . . . ykc, where b, c, y1, . . . , yk ∈ X such that b > c >

yk > · · · > y1 and [u] ∈ Ŝ(G, v). Moreover, let [u] = ([ũ], b). Then the composition
of [u] and [v] is trivial relative to S(G).

Proof. Let us note that the vertex b is adjacent in G to the vertices corresponding
to the letters of ũ, and c is adjacent to b, y1, . . . , yk. We are going to compute the
composition ([u], [v])[ũv].

For an arbitrary set A = {v1, v2, . . . , vs} ⊆ LSA(X) such that v1 6 v2 6 · · · 6
vs, we use the following notation:

∂A[u] = ∂vs∂vs−1 . . . ∂v1 [u],

Let Ωm(A) be the set of all ordered decompositions of A by m subsets (some of
them may be empty), i.e.

Ωm(A) =

{
(A1, . . . , Am)

∣∣∣∣∣

m⋃

t=1

At = A; Ai ∩ Aj = ∅, if i 6= j

}
.

Henceforth, we will denote the set {y1, . . . , yk} by ∆ and the set {y1, . . . , yk, c} by
∆′. Let [ũ] = ([u1], . . . , [ur])c. We obtain

([u],[v])[ũv] = ∂∆′ [u]− ([ũ], ∂∆′b)

=
∑

(∆1,...,∆r+1)∈Ωr+1(∆′)

(
(∂∆1 [u1], . . . , ∂∆r

[ur])p(ũ,c), ∂∆r+1b
)
− ([ũ], ∂∆′b)

=
∑

(∆1,...,∆r+1)∈Ωr+1(∆)

(
(∂∆1 [u1], . . . , ∂∆r

[ur])p(ũ,c), ∂c∂∆r+1b
)

+
r∑

i=1

∑

(∆1,...,∆r+1)∈Ωr+1(∆)

(
(∂∆1 [u1], . . . , ∂c∂∆i

[ui], . . . , ∂∆r[ur])p(ũ,c)∂∆r+1b
)

− ([ũ], ∂∆′b)

(2)

In the first sum, all summands can be rewritten as sums of Lyndon–Shirshov
words by the distributive law. Moreover, if ∆r+1 6= ∆, then the corresponding
summand

(
(∂∆1 [u1], . . . , ∂∆r

[ur])p(ũ,c), ∂c∂∆r+1b
)
is a sum of words less than [ũv].

There is a multiplier of the form ∂c∂∆r+1b =
((
(. . . (b, yi1), . . . ), yil

)
, c
)
∈ S(G) in

each such word. If ∆r+1 = ∆ then we obtain
(
([u1], . . . , [ur])c, ∂c∂∆b

)
= ([ũ], ∂∆′b)

that is negative to the last summand.
So, (2) implies

([u], [v])[ũv]

≡[ũv]

r∑

i=1

∑

(∆1,...,∆r+1)∈Ωr+1(∆)

(
(∂∆1 [u1], . . . , ∂c∂∆i

[ui], . . . , ∂∆r[ur])p(ũ,c)∂∆r+1b
)
,

(3)
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where the sign “≡[w]” means that the LHS and the RHS are equal modulo sum-
mands in S(G) less than [w].

On the other hand,

0 ≡[ũv] ∂∆
(
([u1], . . . , ([ui], c), . . . [ur])c, b

)

=
∑

(∆1,...,∆r+1)∈Ωr+1(∆)

(
∂∆1 [u1], . . . , ∂∆i

([ui], c), . . . , ∂∆r
[ur])p(ũ,c), ∂∆r+1b

)(4)

Note that each summand of the LHS is a sum of Lyndon–Shirshov words less
than [ũv] and

(5) ∂∆i
([ui], c) =

∑

(∆i,1,∆i,2)∈Ω2(∆i)

(∂∆i,1 [ui], ∂∆i,2c).

moreover, if ∆i,2 6= ∅ then each word in the RHS of (5) is a sum of words containing
multipliers of the form (c, yj), for some j. But each such word is in S(G) since c > yj
and c is adjacent to yj for any j = 1, 2, . . . , k. Consequently, (4) is followed by

0 ≡[ũv] ∂∆
(
([u1], . . . , ([ui], c), . . . [ur])c, b

)

≡[ũv]

∑

(∆1,...,∆r+1)∈Ωr+1(∆)

(
(∂∆1 [u1], . . . , (∂∆i

[ui], c), . . . , ∂∆r
[ur])p(ũ,c), ∂∆r+1b

)

=
∑

(∆1,...,∆r+1)∈Ωr+1(∆)

(
(∂∆1 [u1], . . . , ∂c∂∆i

[ui], . . . , ∂∆r
[ur])p(ũ,c), ∂∆r+1b

)
,

(6)

Substituting (6) to (3) for i = 1, 2, . . . , r completes the proof of the lemma. �

Let us consider more general case.

Lemma 2.10. Let v = by1y2 . . . ykc, where b > c > yk > · · · > y1, and [u] ∈ S(G)
is such that [u] = ([ũ], b). Then the composition of [u] and [v] is trivial relative to
S(G).

Proof. Let G = 〈X,E〉 be an arbitrary graph. n-coping vertex x ∈ X is the process
of adding vertices x1, x2, . . . xn such that all of them are adjacent to each other, to
the vertex x, and to the same vertices as x. In particular, 0-coping any vertex of
a graph gives the graph itself. Let us order the vertices of the obtained graph as
follows: the order on X is same and xi > a for all i if and only if x > a in the
initial graph.

For an arbitrary Lyndon–Shirshov word [v] and an arbitrary letter x, let us
denote by X([v], x) the set of all letters of [v], each of which is not less than x and
has more than one occurrence in it.

Consider the set X([u], y1) and for each vertex x in this set let us perform m(x)-
coping, where m(x) is the number of occurrences of x in [u]. It is obvious that the
graph obtained after all such m(x)-copings does not depend on the order of making
them. Let us denote this graph by G+ = 〈X+, E+〉.

Let x be the greatest letter of X([u], y1). We denote by w′ the word obtained
from w by replacing all occurrences of the letter x by different letters xi.

Let us show that we can order the letters xi of [u
′] in such a way that [u′] is a

Lyndon–Shirshov word. We proceed by induction ℓ(u). If the length of [u] is equal
to 1 or 2 then the statement is obvious because such word cannot contain equal
letters. Consider an arbitrary Lyndon–Shirshov word [u] of the length greater than
2. We have [u] = ([w1], [w2]). Since the lengthes of [w1] and [w2] are less than the
length of [u], we can replace the occurrences of x in these words by different letters
xi and order these letters in both words [w′

1] and [w′
2] in such a way that either of

them is a Lyndon-Shirshov word.
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If ℓ(w1) = 1 (and so, ℓ(w′
1) = 1), then either [w1] > x or [w′

1] = xs. In the first
case, we are done, because all the letters xi are in [w′

2]. In the second case, let us
suppose xs to be greater than other xi’s (all other letters are in w′

2).
If ℓ(w1) > 1, then [w1] = ([w1,1], [w1,2]). There are two cases. If the first letter

of [w1,2] or the first letter of [w2] is not x then let us suppose that each letter xi of
[w′

1] is greater than all letters xi of [w
′
2]. If the first letters of both [w1,1] and [w2]

are equal to x, then let us suppose that the first letter of [w′
2] is greater than the

first letter of [w′
1,1], but less than other letters xi of [w

′
1], and all other letters xi of

[w′
2] are less than all letters xi of w

′
1.

So, we obtain a required order on the letters xi. Since x is the greatest let-
ter having more than one occurrence to [u], there are no possibilities except ones
considered above.

Let us repeat this procedure for [u′] and the greatest letter of X([u′], y1) =

X([u], y1)\{x} and so on. Finally, we obtain the word [ǔ] ∈ Ŝ(G+, v). The same
meaning we give to the notatiton [ǔi].

Moreover, for each x, let us suppose that x > xj for all j. Then the x-pattern
of [u] coincides with the x-pattern of [ǔ] for any x such that x = yi or x = c.

Applying Lemma 2.9 to [ǔ], we obtain

([ǔ],[v])[˜̌uv] = ∂∆′ [ǔ]− ([˜̌u], ∂∆′b)

=
∑

(∆1,...,∆r+1)∈Ωr+1(∆)

(
(∂∆1 [ǔ1], . . . , ∂∆r

[ǔr])p(˜̌u,c), ∂c∂∆r+1b
)(7)

− ([˜̌u], [v]) +

r∑

i=1

∂∆
(
([ǔ1], . . . , [ǔic], . . . , [ǔr])p(˜̌u,c), b

)

−
∑

(∆1,...,∆i,Γ,∆i+1,...∆r+1)∈Ωr+2(∆)

Γ6=∅

(
(∂∆1 [ǔ1], . . . , (∂∆i

[ǔi], ∂Γc), . . . ∂∆r
[ǔr])p(˜̌u,c), ∂∆r+1b

)
.

From this equality, we can easily see that ([ǔ], [v])[˜̌uv] ≡[˜̌uv] 0. In particu-

lar, ([ǔ], [v])[˜̌uv] = 0 in L(G+). Therefore, by construction of G+, we obtain

([u], [v])[ũv] = 0 L(G). We are left to prove that the words of the form
(
(∂∆1 [u1], . . . , ∂∆r

[ur])p(ũ,c), ∂c∂∆r+1b
)
, if ∆r+1 6= ∆′;

∂∆
(
([u1], . . . , [uic], . . . , [ur])p(ũ,c), b

)
;(

(∂∆1 [u1], . . . , (∂∆i
[ui], ∂Γc), . . . ∂∆r

[ur])p(ũ,c), ∂∆r+1b
)
, if Γ 6= ∅

can be represented as sums of words each of which contains a word in S(G)
as a multiplier, and, moreover, representing these words as linear combinations
of Lyndon–Shirshov words gives the words less than [ũv]. Since b is the sec-
ond greatest letter of [u], each summand of the first kind can be written as a
linear combination of Lyndon–Shirshov words of the form ([w], ∂c∂∆r+1b), where
∂c∂∆r+1b ∈ S(G). Analogously, each summand of the third kind can be writ-
ten as a linear combination of Lyndon–Shirshov words each of which contains a
multiplier of the form ∂Γc. Each such multiplier contains a product of the form
(c, yi) ∈ S(G) because all words [ui] are c-indecomposable. Since c is a letter,
the greatest letter of each [ui] is greater than c while the second greatest letter
of it is not greater than c. Finally, for the summand of the second form repre-
senting each word

(
([u1], . . . , [uic], . . . , [ur])p(ũ,c), b

)
as a sum of Lyndon–Shirshov

words, we obtain the sum of the terms of the form ([w], b), where w is a Lyndon–
Shirshov word each letter of which has the same number of occurrences in it as
in ([u1], . . . , [uic], . . . , [ur])p(ũ,c). Consequently, all words of this form are in S(G),
since the vertex corresponding to b is adjacent to the vertices corresponding to the
letters of ui (i = 1, 2, . . . , r) and to the vertex corresponding to c.
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By Lemma 1.12, for the words of the first kind, all terms in the corresponding
sum of Lyndon–Shirshov words are not greater than [ũv]. Moreover, the greatest
word of such sum is equal to ([ũ], [v]). We can see that for each such summand there
is its negative in the sum (note that we consider only some summands in the decom-
position of

(
((. . . ([u], y1), . . . , yr), c

)
, namely, only those of them, which are in the

decomposition of the corresponding word
(
(∂∆1 [u1], . . . , ∂∆r

[ur])p(ũ,c), ∂c∂∆r+1b)
))
.

Each word of the second and the third kinds has a decomposition to the sum of
words not greater than [u1, . . . , uic, . . . , urv]. Consequently, they are certainly less
than [ũv]. �

Let [v] ∈ S(G) that is [v] = ([ṽ], c), where c ∈ X . Let us show that this word
can be represented in the form

(8) [v] =
(
(. . . (b, [v1]), . . . ), [vk]), c

)
,

where [vi] ∈ LS(X) for i = 1, 2 . . . , k, b is a letter such that b > c > vk > · · · > v1.
Let us proceed by induction on ℓ(ṽ). If ṽ = b then k = 0 and the assertion follows.
Let ℓ(ṽ) > 1. Then [ṽ] = ([w1], [w2]) and b > w2 since [v] ∈ LS(X). By the
induction hypothesis, there is the decomposition [w1] = (. . . (b, [v1]), . . . ), [vk−1]),
such that b > vk−1 > · · · > v1. Suppose that vk = w2. Since [v] ∈ LS(X), we have
b > c > vk > vk−1, which is the required decomposition.

Now, we can go on to the most general case.

Lemma 2.11. Let [u], [v] ∈ S(G) and let the last letter of [u] be equal to the first
letter of [v]. Then the composition of [u] and [v] is trivial relative to S(G).

Proof. By Lemma 2.10, without loss of generality, we can suppose that all the
letters of ũ, which are greater than the greatest letter of v1, have no more than
one occurrence to ũ. In this case, ∂Γ[u] is a sum of Lyndon–Shirshov words, where
Γ = {[v1], . . . , [vk], c}. It is so because [u] = ([u1], . . . , [ur], b)v1 and all the greatest
letters of the words [ui] are distinct and are not equal to the greatest letter of [v1].
Consider the graph G′ = 〈X ′, E′〉, such that X ′ = X ∪ {y1, . . . , yk}, where X ∩
{y1, . . . , yk} = ∅ and E′ is obtained from E by adding to it all edges {x, yi}, where
x ∈ X and x is adjacent to all vertices such that the corresponding letters are in ui.
It is obvious that, in this case, c is adjacent to the vertices y1, . . . , yk. Consequently,
Lemma 2.9 implies the composition of u and

(
((. . . (b, y1), . . . ), yk), c

)
is trivial

relative to S(G′). It can be seen from the proof of this lemma that for the new set
of vertices, the composition of [u] and [v] can be represents as a sum of the words of
the form ([u0], ∂c∂∆0b) or

(
(. . . ((([u1], . . . , ([ui], c), . . . , [ur])p(ũ,c), b), y1), . . . ), yk

)
,

where ∆ = {y1, . . . , yk} and ∆0 is a proper subset of ∆. It is clear that replacing
yi by corresponding [vi] in these words, we obtain the words, containing subwords
in S(G) less than [ũv]. Consequently, ([u], [v])[ũv] ≡[ũv] 0 and we are done. �

Let [v] be a Lyndon—Shirshov word. We say that a Lyndon—Shirshov word [u]
is a subword of [v], if u is a subword of v.

Now, we can formulate the main results of this paper.

Theorem 2.12. Let G = 〈X,E〉 be an undirected graph. Then a linear basis of
L(G) consists of all non-associative Lyndon–Shirshov not containing subwords of
the form [u] = ([ũ], b), such that the greatest letter of u has exactly one occurrence
in it, b is the second largest letter of u and G contains all edges of the form {b, x},
where x is a letter of ũ.

Proof. By Lemma 2.1, the set S(G) (consisting of the words of the form [u] =
([ũ], b), such that the greatest letter of [u] has exactly one occurrence in it, b is the
second greatest letter of it and all vertices corresponding to the letters of [ũ] are
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adjacent to the vertex corresponding to b) is a subset of the ideal generated by the
subset of the ideal generated by the words (x, y), where {x, y} ∈ E.

On the other hand, since (x, y) ∈ S(G), for {x, y} ∈ E, we obtain I(G) ⊆
Id(S(G)).

By Lemma 2.9, Lemma 2.10, and Lemma 2.11, S(G) is complete under compo-
sitions. So the theorem holds. �

It clearly follows from Theorem 2.12 that the equality problem is algorithmically
solvable for the partially commutative Lie algebras. Indeed, any non-associative
word can be represented as a linear combination of Lyndon—Shirshov words. If
a summand of this linear combination (denote it by α[v], where α ∈ R) contains
a subword [u], then by computing corresponding compositions of inclusion (see
Definition 1.5) we can represent [v] as a linear combination of words not containing
elements in S(G) as subwords.

Let G = 〈X,E〉 be an undirected graph. Denote by L(G,n) the partially com-
mutative nilpotent Lie algebra with the level of nilpotence n corresponding to G,
i.e. the algebra L(G)/I, where I is an ideal consisting of all words of the length
not less than n.

Theorem 2.13. Let G = 〈X,E〉 be an undirected graph. Then a linear basis of
L(G,n) consists of all non-associative Lyndon–Shirshov words of the length not
greater than n− 1 not containing subwords of the form [u] = ([ũ], b), such that the
greatest letter of u has exactly one occurrence in it, b is the second largest letter of
u and G contains all edges of the form {b, x}, where x is a letter of ũ.

Proof. The proof of this theorem is analogous to the proof of the last one. We only
have to note that L(G,n) = LieR(X)/I(G,n), where I(G,n) is the ideal of the free
Lie algebra generated by S(G) together with the set of Lyndon–Shirshov words of
the length less than n. By Lemma 2.9, Lemma 2.10, and Lemma 2.11, this set is
complete under composition. So, we are done. �

Acknowledgments: The author is very grateful to Prof. E. I.Timoshenko for very
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