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Abstract

The BCH formula of Rezek and Kosloff is a convenient tool to
handle a family of density matrices, which occurs in the study of
quantum heat engines. We prove the formula using a known argument
from Lie theory.

1 Introduction

The Hamiltonian

H =
1

2
~ω(a†a + aa†) (1)

of the quantum harmonic oscillator belongs to the Lie algebra su(1,1) with
generators

S1 =
1

4
((a†)2 + a2),

S2 =
i

4
((a†)2 − a2),

S3 =
1

4
(a†a + aa†). (2)

As a consequence, it is possible to write down simplified Baker-Campbell-
Haussdorf (BCH) relations [1, 2]. These have been used to study the quantum
harmonic oscillator in a time-dependent external field [3, 4, 5, 6, 7, 8, 9].
The topic of the present paper is a new BCH relation, introduced recently
by Rezek and Kosloff [10]. They consider the family of density matrices

ρ =
1

Z(β, γ)
eγa

2

e−βHeγ(a
†)2 (3)
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with real β and complex γ, and with

Z(β, γ) = Tr eγa
2

e−βHeγ(a
†)2 . (4)

Because all operators appearing in (3) belong to the Lie algebra it is clear
from the general Baker-Campbell-Haussdorf relation that it must be possible
to write

eγa
2

e−βHeγ(a
†)2 = eχa

2−ξH+χ(a†)2 (5)

The explicit expression of the coefficients χ and ξ as a function of β and γ

is found in the Appendix of [10]. The functions were derived [11] using the
algebraic manipulation software Mathematica.

Note that the special case of (5) with ξ = 0 appeared in the physics
literature before (see Example I of Section II of [12]; see also [13, 14]). In the
present paper the relation (5) is derived using the argument of [12].

The relation (5) is of interest in its own. But it is also very useful in the
study of quasi-stationary processes [10, 15]. Indeed, from (5) it is clear that
the density matrix ρ describes a system in thermal equilibrium at inverse
temperature ξ. On the other hand, the expression (3) is more convenient for
practical calculations.

We derive the BCH formula in the next section. In Section 3 follows
a similar BCH formula valid for su(2). In the final section follows a short
discussion.

2 The identity

The the l.h.s. of (5) can be written in terms of the generators of the Lie
algebra su(1,1) as

e2γ(S1+iS2)e−2β~ωS3e2γ(S1−iS2). (6)

These generators satisfy the commutation relations

[S1, S2] = iS3,

[S2, S3] = −iS1,

[S3, S1] = −iS2. (7)

Introduce su(2) generators T1 = −iS1, T2 = iS2, and T3 = S3. Then (6)
becomes

X ≡ e2γ(iT1+T2)e−2β~ωT3e2γ(iT1−T2). (8)
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The relation (5) does not depend on the choice of the representation of the
su(2) algebra. Therefore, we may change it. A favourable choice is that of
the Pauli spin matrices σα = 2Tα. Using that (σ1 ± iσ2)

2 = 0 and σ2
α = I the

calculation becomes very easy. One obtains

X = eiγ(σ1−iσ2)e−β~ωσ3eiγ(σ1+iσ2)

= (I+ iγ(σ1 − iσ2))(cosh(~ω)− σ3 sinh(~ω))(I+ iγ(σ1 + iσ2))
= e−β~ωσ3 − 2κ|γ|2 + iκ(γ + γ)σ1 + κ(γ − γ)σ2 + 2κ|γ|2σ3,

(9)

with κ = e−β~ω as before. On the other hand is

exp
(

χa2 − ξH + χ(a†)2
)

= exp (2χ(S1 + iS2)− 2ξ~ωS3 + 2χ(S1 − iS2))
= exp (2χ(iT1 + T2)− 2ξ~ωT3 + 2χ(iT1 − T2)) .

(10)

In the Pauli spin representation this becomes eY with

Y = i(χ+ χ)σ1 + (χ− χ)σ2 − ξ~ωσ3. (11)

Because the Pauli matrices anti-commute and their squares equal I there
follows that

Y 2 = λ2
I with λ =

√

ξ2(~ω)2 − 4|χ|2. (12)

Hence one obtains

eY = cosh(λ) +
1

λ
sinh(λ)Y. (13)

Comparison with (9) gives the 4 conditions

cosh(λ) = α+ κ, (14)
1

λ
sinh(λ)(χ+ χ) = κ(γ + γ), (15)

1

λ
sinh(λ)(χ− χ) = κ(γ − γ), (16)

1

λ
sinh(λ)ξ~ω = α, (17)

with

α = sinh(β~ω)− 2κ|γ|2

=
1

2κ

[

1− κ2 − 4κ|γ|2
]

. (18)
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The solution of these equations is

ξ =
α

~ω

λ

sinh(λ)
, (19)

χ = κ
λ

sinh(λ)
γ. (20)

with

sinh(λ) =
√

α2 − 4κ2|γ|2 (21)

These results coincide with those found in the Appendix of [10].
Note that the expressions for ξ and χ can be inverted easily. Given ξ and

χ one obtains λ from (12). Then α follows by inverting (19). This gives

α = ~ωξ
sinh(λ)

λ
. (22)

Next β is obtained from (14)

κ = cosh(λ)− α. (23)

Finally, γ follows from (20)

γ =
sinh(λ)

κλ
χ. (24)

3 An example with SU(2) symmetry

Formulas similar to (5) can be derived for other symmetry groups than
SU(1,1). For instance, in the case of SU(2) one has

eγσ+e−βσzeγσ− = exp (χσ+ − ξσz + χσ−) (25)

with σ± = 1
2
(σx ± iσy). Using σ2

± = 0, σ2
z = I, σ±σz = ∓σ±, and σ+σ− =

1
2
(1 + σz) the l.h.s. becomes

l.h.s. = (1 + γσ+) (cosh(β)− sinh(β)σz) (1 + γσ−)

= cosh(β) +
1

2
|γ|2eβ + eβ(γσ+ + γσ−)− (sinh(β)−

1

2
eβ|γ|2)σz.

(26)

The r.h.s. of (25) is evaluated using

(χσ+ − ξσz + χσ−)
2 = λ2

I, (27)
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with λ =
√

ξ2 + |χ|2. One finds

r.h.s. = cosh(λ) +
1

λ
sinh(λ) (χσ+ − ξσz + χσ−) . (28)

Equating both expressions yields the set of equations

cosh(β) +
1

2
eβ|γ|2 = cosh(λ), (29)

− sinh(β) +
1

2
eβ|γ|2 = −

1

λ
sinh(λ)ξ, (30)

γeβ =
1

λ
sinh(λ)χ. (31)

Given ξ and χ, the value of λ can be obtained from its definition. The
solution then reads

eβ = cosh(λ) +
1

λ
sinh(λ)ξ

γ =
1
λ
sinh(λ)

cosh(λ) + 1
λ
sinh(λ)ξ

χ. (32)

Conversely, given β and γ one obtains λ from (29). Then ξ and χ follow from
(30) and (31), respectively.

4 Discussion

The BCH relation of Rezek and Kosloff is somewhat special because it is
written in a form suited for application to density matrices. Similar results
found in the literature [1, 2, 3, 4, 5, 6, 7, 8, 9] aim at the calculation of
time evolution operators and refer to similarity transformations, this is, to
expressions of the form eABe−A. But the l.h.s. of (5) is not a similarity
transformation. This is precisely the reason why this BCH relation is of
interest! The change of the spectrum implies that the average energy 〈H〉 =
Tr ρH will depend on the value of the parameter γ. This dependence is
essential in the context of heat engines.
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