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K-theory of λ-rings and tensorlike functors.

F.J.-B.J. Clauwens

December 7, 2010

Abstract

We refine the invariant on K2(A[Cpe
]/Im, (T − 1)) constructed in a

previous paper to one which is an isomorphism for all λ-rings A.

1 Introduction

This paper is part of a long term project aimed at the computation of K1(A[G])
for G a finite abelian group and A any λ-ring, for example a polynomial ring
over the integers. To achieve this aim some K2 groups have to be calculated.
In [4] an invariant was constructed on K2(A ⊗ B,A ⊗ IB) for B = Z[G]/Im.
Here G is a cyclic group of order q = pe and the Im form a system of λ-ideals
which is cofinal with the powers of the augmentation ideal IB. This invariant
map had values in an abelian group which is an explicit expression in A and
ΩA, the module of Kähler differentials for A. It was proved that this invariant
is an isomorphism as long as ΩA has no p-torsion. Unfortunately this excludes
the case that A is itself a group ring of a p-cyclic group. It is the aim of the
present paper to refine this invariant slightly so that it becomes an isomorphism
for all A.

The computation of K2(A[x]/x
n, (x)) reveals that it can be expressed as a

functor F of the homomorphism δ : A→ ΩA of abelian groups, at least for rings
A with the structure of λ-ring. The computation is done using a logarithm-like
map L, see [1] and [3].

However for B as above even the best choice of logarithm is not an isomor-
phism, but has a certain small kernel and cokernel. In [4] it is tried to remedy
this situation by combining with a second logarithmic invariant, which detects
elements which are in the kernel of the original one. The result is a map to
a fibered product of abelian groups, which is an isomorphism if ΩA has no p-
torsion. However the resulting functor F has not the nice ‘tensorlike’ properties
that the original one had.

The idea of this paper is to construct a new functor enforcing this nice
property, by taking the fibered product not on the level of abelian groups, but
on the level of the functors producing these groups. Finally we show that this
new invariant is an isomorphism for all A.
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2 Tensorlike functors

Write AG for the category of abelian groups and homomorphisms. Let S be
a ring, and write CS for the category of left S-modules. A right S-module K
yields a functor FK : CS → AG by the formula FK(M) = K ⊗S M .

We call a functor F from left R-modules to abelian groups

• Weakly additive if it commutes with finite direct sums. This we always
assume.

• Additive if it is weakly additive and commutes with direct limits.

• Weakly tensorlike if it is weakly additive and commutes with right exact
sequences.

• Tensorlike if it is additive and commutes with right exact sequences. This
is the case if it commutes with arbitrary colimits, for example if it has a
right adjoint.

Proposition 1. Every weakly additive functor F has a natural tensorlike cover.

If it is already weakly tensorlike it is an isomorphism for finitely presented mod-

ules. If it is already tensorlike then it is an isomorphism for all modules.

Proof. Let F : CS → AG be weakly additive. For M a left S-module and a ∈M
there is an S-module homomorphism ρa given by ρa(s) = sa. This induces a
map F (ρa) : F (S) → F (M). By varying a we get a pairing F (S)×M → F (M).
From the weak additivity it follows that this map is additive also in the second
entry. Therefore we get a map µ : F (S)⊗M → F (M).

ForM = R this yields a right S module structure on F (S). So we get a map
µ : F (S)⊗S M → F (M). This map is an isomorphism for M = S, with inverse
x 7→ x⊗1. By weak additivity it is therefore an isomorphism for M = Sm. If F
respects right exact sequences then µ is an isomorphism for all finitely presented
modules M . If F is even right exact then µ is an isomorphism for all M .

In our applications we have a category C which is not given as a category
of left S-modules, but as a category of diagrams of abelian groups, as discussed
in the next section 3. However by the Freyd-Mitchell theorem one can real-
ize this category as a category of left S-modules for some S. We make this
correspondence explicit in proposition 2.

Each logarithmic map is a tensorlike functor of the diagram of abelian groups
consisting of δ : A → ΩA. The combination of the logarithms is a map to a
pullback which is no longer a tensorlike functor. It has however a tensorlike
cover, which is constructed in section 4. We then lift our system of logarithms
to this cover by considering the case where A is the universal λ-ring. This is
done in section 5.
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3 A category of arrows.

Let R be a ring and τ : R → R an endomorphism.

Definition 1. Given a left R-module N the R-module N τ is defined to be the
one with the same additive structure as N , but with scalar multiplication given
by r ·τ n = τ(r) · n.

If M is a left R-module then a module homomorphism D : M → N τ is the
same as an additive homomorphismD : M → N such thatD(r·m) = τ(r)·D(m),
which we call a τ -crossed homomorphism. Note that a module homomorphism
β : N1 → N2 induces a module homomorphism βτ : N τ

1 → N τ
2 .

Definition 2. Given τ : R → R the category A(R, τ) is the one with as objects
the homomorphisms D : M → N τ and as morphisms the commutative diagrams

M1
α

//

D1

��

M2

D2

��

N τ
1

βτ

// N τ
2

where α : M1 →M2 and β : N1 → N2 are R-module homomorphisms.

Definition 3. Given a ring R and an endomorphism τ we construct a new ring
S(R, τ) by starting with the ring R〈u, v〉 of noncommutative polynomials and
dividing out by the relations uv = 0, v2 = 0, vu = v, u2 = u, ur = ru and
vr = τ(r)v.

Given R modulesM and N and a homomorphismD : M → N τ we construct
a left S(R, τ)-module P by P =M⊕N , u(m⊕n) = m⊕0, v(m⊕n) = 0⊕D(m),
r(m⊕ n) = rm⊕ rn.

Proposition 2. This produces an equivalence between the category A(R, τ) and
the category of left S(R, τ) modules.

Proof. If α : M1 → M2 and β : N1 → N2 are R-homomorphisms such that
β ◦D = D ◦α then we construct a S(R, τ)-homomorphism from P1 =M1 ⊕N1

to P2 =M2 ⊕N2 by γ(m⊕ n) = α(m)⊕ β(n).
On the other hand if P is a left S(R, τ) module then we define M = uP ,

N = (1 − u)P , D(m) = v ·m. Then M and N are left R modules and D is a
homomorphism fromM to N τ . Moreover a S(R, τ) homomorphism γ : P1 → P2

gives rise to R homomorphisms α : uP1 → uP2 and β : (1 − u)P1 → (1 − u)P2

such that β ◦D = D ◦ α.

We made the definitions with the following special case in mind. Let A be
a λ-ring.

• The abelian groupM = A given by addition, with a Z[t] module structure
fiven by t · a = ψp(a). Here ψp is the Adams operation.
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• The abelian group N = ΩA of Kähler differentials, with a Z[t] module
structure given by t · α = φp(α), Here φp is the operation introduced in
[1].

• The differential δ : A → ΩA. Since δψp(a) = pφpδ(a) this is a crossed
homomorphism D with respect to the endomorphism σ of Z[t] given by
σ(t) = pt.

The above construction defines a functor ∆ from λ-rings to to A(Z[t], σ).
By the above theory we get a from this a functor from λ-rings to left S(Z[t], σ)-
modules.

We now recall the main result of [4]. Consider the following diagram:

K2(A⊗B,A⊗ I)
L4◦pGM

//

L2

��

K2,L(A⊗ (B/I2), A⊗ I)

L3◦L
−1
4

��

K2,L(A⊗B,A⊗ I)
pGL

// K2,L(A⊗ (B/I2), A⊗ I)

(1)

Here K2 is relative algebraic K-theory, and for any commutative ring W and
ideal J the group K2,L(W,J) is defined as coker(δ∗ : J⊗J → J⊗W ΩW ), where
δ∗(a⊗ b) = a⊗ δb + b ⊗ δa. For the definitions of the homomorphisms L2, L3,
L4, pGL and pGM we refer to [4]. This diagram has the following properties:

• The map pGL is surjective.

• If an an element in the bottom left group and one in the upper right
group have the same image then they come both from an element in the
K2 group. In other words the K2 group maps surjectively to the fibre
product of the K2,L groups.

• In the case that ΩA has no p-torsion then this element is unique. In other
words the diagram is then cartesian.

The K2,L groups in this diagram are tensorlike functors of the diagram ∆(A)
and thus of the left S(Z[t], σ) module associated to A. However their fibre
product is not a tensorlike functor. The aim of this paper is to construct its
tensorlike cover, lift our invariants to this new group, and show that the new
invariant is an isomorphism for all A, without condition on ΩA. Thus the kernel
of the old combination of invariants is ‘explained’ by the fact that the tensorlike
cover maps not always injectively to the fibre product of K2,L groups.

We now exhibit the tensorlike structure of the K2,L groups in detail. A few
remarks:

• For simplicity we assume that m ≥ e and q > 2.

• ǫ(n) is defined as m+ e− i where pi ≤ n < pi+1.
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• z ∈ B is defined as T − 1, where T is the generator of the cyclic group G.

K2,L(A⊗B,A⊗I) is a direct sum CFa⊕CFb⊕CF2⊕· · ·⊕CFq−1, although
CFa⊕CFb is called CFlow in proposition 4 of [4]. Here the summands are defined
as follows:

CFa =
ΩA

pm+eΩA + peδA
, CFb =

A

peA
, CFn =

ΩA

pǫ(n)ΩA

⊕ A
peA

{δa⊕ na}

The correspondence is as follows:

• The class of α ∈ ΩA in CFa maps to the class of z⊗α inK2,L(A⊗B,A⊗I).

• The class of a ∈ A in CFb maps to zq−1 ⊗ aδz.

• The class of α⊕ a in CFn maps to zn ⊗ α+ zn−1 ⊗ aδz.

SimilarlyK2,L(A⊗(B/I2), A⊗I) is a direct sumDF1⊕DF2. Here the summands
are defined as follows:

DF1 =
ΩA

peΩA

, DF2 =
A

peA+ 2A

In particular DF2 vanishes if p > 2 and is A
2A if p = 2. The correspondence is

as follows:

• The class of α ∈ ΩA in DF1 maps to z ⊗ α in K2,L(A⊗ (B/I2), A⊗ I).

• The class of a ∈ A in DF2 maps to the class of z ⊗ aδz.

The map pGL maps CFa in the obvious way to DF1 and maps CF2 in the
obvious way to DF2; it vanishes on CFb and on the CFn with n > 2. The map
L3(L4)

−1 maps DF1 to itself by 1− φp and maps DF2 to itself by 1− ψp.

From the above enumeration we see the only nontrivial parts in the deter-
mination of the tensorlike cover are the parts involving CFa and CF2, and the
latter only if p = 2.

4 Determination of the covers.

Motivated by the above analysis we define the following functors on the category
A(Z[t], σ).

CFa(D : M → N) =
N

pm+eN + peD(M)
, DF1(D : M → N) =

N

peN

There is an obvious transformation π : CFa → DF1. We write χ : DF1 → DF1

for the transformation given by multiplication by 1− t.
We also define the following functor with the aim of showing that it is the

fibre product of π and χ:

EF1(D : M → N) =
N ⊕ N

pmN+D(M)

{peγ,−(1− t)γ}
=

N
pm+eN

⊕ N
pmN+D(M)

{peγ,−(1− t)γ}
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Proposition 3. Let π∗ : EF1 → DF1 be the projection on the first summand,

and let χ∗ : EF1 → CFa be given by χ∗(α, β) = (1−t)α+peβ. Then the diagram

of tensorlike functors

EF1
π∗

//

χ∗

��

DF1

χ

��

CFa
π

// DF1

is cartesian in the sense that the corresponding digram of right S(Z[t], σ)-modules

is cartesian.

Proof. The functors CFa and DF1 and EF1 can be viewed as functors on the
category of left S(Z[t], σ)-modules. By proposition 1 we only must show that
the diagram of abelian groups which one gets by applying those functors to
S = S(Z[t], σ) itself is cartesian. The diagram corresponding to S is the direct
sum of two diagrams: one has M = 0 and N = Z[t] and the other has M = Z[t]
and N = Z[t]. We only check the second case: the first is similar but easier.
Thus we have to consider the following diagram:

Z[t]⊕
Z[t]

pmZ[t] + {g(pt)}
{pef ⊕−(1− t)f}

π∗

//

χ∗

��

Z[t]
peZ[t]

χ

��

Z[t]
pm+eZ[t] + pe{h(pt)}

π
// Z[t]
peZ[t]

To check that this diagram is cartesian is elementary.

Again motivated by the analysis in the last section we define the following
functors in the case p = 2:

CF2(D : M → N) =
N

2m+e−1N
⊕ M

2eM

{Da⊕ 2a}
, DF2(D : M → N) =

M

2M

There is an obvious transformation π : CF2 → DF2. We write χ : DF2 → DF2

for the transformation given by multiplication by 1− t.
We also define the following functor with the aim of showing that it is the

fibre product of π and χ:

EF2(D : M → N) =
N

2m+e−1N
⊕M ⊕ M

2e−1M

{D(c)⊕ 2h⊕ (c− (1− t)h)}

=
N

2m+e−1N
⊕ M

2eM ⊕ M
2e−1M

{D(c)⊕ 2h⊕ (c− (1− t)h)}
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Proposition 4. Let π∗ : EF2 → DF2 be the projection on the second summand,

and let χ∗ : EF2 → CF2 be given by χ∗(α⊕ a⊕ b) = α⊕ ((1 − t)a+ 2b). Then

the diagram of tensorlike functors

EF2
π∗

//

χ∗

��

DF2

χ

��

CF2
π

// DF2

is cartesian in the sense that the corresponding digram of right S(Z[t], σ)-modules

is cartesian.

Proof. As in the proof of the last proposition we only have to check the case
M = Z[t] and N = Z[t]. Thus we have to consider the following diagram:

Z[t]

2m+e−1Z[t]
⊕ Z[t]⊕

Z[t]

2e−1Z[t]
{c(pt)⊕ 2h(t)⊕ (c(t)− (1− t)h(t))}

π∗

//

χ∗

��

Z[t]
2Z[t]

χ

��Z[t]

2m+e−1Z[t]
⊕

Z[t]

2eZ[t]
{g(2t)⊕ 2g(t)}

π
// Z[t]
2Z[t]

To check that this diagram is cartesian is elementary.

Corollary 1. The kernel of the surjective map from EF1(D : M → N) to the

fibre product of CFa(D : M → N) and DF1(D : M → N) is a quotient of the

pe-torsion in N .

The kernel of the surjective map from EF2(D : M → N) to the fibre product of

CF2(D : M → N) and DF2(D : M → N) is a quotient of the 2-torsion in M .

Proof. Straightforward.

Write FP (A) for the fibre product of the bottom arrow and right arrow in
diagram (1). Thus the old invariant can be seen as a map K2(A⊗B,A⊗ I) →
FP (A). Write TC(A) for its tensorlike cover viewing FP (A) as a functor of the
diagram ∆(A) associated to A. Thus the new invariant to be constructed can
be seen as a map K2(A⊗B,A⊗ I) → TC(A).

Let us call a ring A torsionfree if there is no p-torsion in A nor in ΩA. We
have seen that the canonical map TC(A) → FP (A) is an isomorphism if A is
torsionfree.

Corollary 2. If p > 2 then TC(A) is isomorphic to

EF1(A) ⊕ CFb(A)⊕ CF2(A)⊕ CF3(A)⊕ . . . CFq−1(A).

If p = 2 then TC(A) is isomorphic to

EF1(A)⊕ CFb(A)⊕ EF2(A)⊕ CF3(A) ⊕ . . . CFq−1(A).
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5 The invariant map and its inverse.

Recall that there exists a λ-ring U and an element u ∈ U with the following
property: for any λ-ring A and any x ∈ A there is a unique λ-ring homomor-
phism jx : U → A such that jx(u) = x. Similarly Ud = U⊗d has the following
property for any λ-ring A and any x1, . . . , xd ∈ A there is a unique λ-ring homo-
morphism jx1,...,xd

: Ud → A such that jx1,...,xd
(ui) = xi for i = 1, . . . , d. Here

ui = 1⊗ · · · ⊗ u ⊗ · · · ⊗ 1. The ring U is a polynomial ring over Z in infinitely
many variables; in particular the Ud are torsionfreee.

The key to the construction of the new invariant map is the following prin-
ciple:

Proposition 5. Let F and G be functors from the category of λ-rings to the

category of abelian groups. Let T : F → G be a transformation defined on the full

subcategory consisting of the rings Ud. Suppose that F (A) is given by generators

and relations associated to sequences of elements in A. Then T can be extended

to all λ-rings.

Proof. To simplify the presentation of the proof we consider the special case
that F (A) has a generator 〈a, b〉 for each a, b ∈ A, and that there is only one
type of relation, say 〈a, bc〉 = 〈ab, c〉 + 〈ac, b〉 for each a, b, c ∈ A. The general
case would involve lots of extra indices, which would only obfuscate the idea of
the proof.

In order to construct TA : F (A) → G(A) we define it on generators by
TA〈a, b〉 = G(ja,b)TU2〈u1, u2〉. We must then check that it maps the relations
to zero.

The description in terms of generators and relations also applies to F (U3);
in particular 〈u1, u2u3〉 = 〈u1u2, u3〉+ 〈u1u3, u2〉 in F (U3). Now we have

TA〈a, bc〉 = G(ja,bc)TU2〈u1, u2〉 = G(ja,b,c ◦ ju1,u2u3)TU2〈u1, u2〉

= G(ja,b,c)G(ju1,u2u3)TU2〈u1, u2〉

= G(ja,b,c)TU3F (ju1,u2u3)〈u1, u2〉 = G(ja,b,c)TU3〈u1, u2u3〉

and similarly

TA〈ab, c〉 = G(ja,b,c)TU3〈u1u2, u3〉

TA〈ac, b〉 = G(ja,b,c)TU3〈u1u3, u2〉

Thus the desired result follows by applying G(ja,b,c) ◦ TU3 to the relation in
F (U3).

We check that the extended T is still a transformation. Let f : A1 → A2 be
a λ-ring homomorphism. For a, b ∈ A1 we have

G(f)TA1〈a, b〉 = G(f)G(ja,b)TU2〈u1, u2〉 = G(jf(a),f(b))〈u1, u2〉

= TA2〈f(a), f(b)〉 = TA2F (f)〈a, b〉

since f ◦ ja,b = jf(a),f(b). Since G(f)TA1 and TA2F (f) agree on generators they
agrre on F1(A).
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Proposition 6. Let F and G be functors from the category of λ-rings to the

category of abelian groups. Suppose that F and G are both given by generators

and relations. Let T : F → G and S : G → F be transformations such that

TS = 1 and ST = 1 on the rings Ud. Then TS = 1 and ST = 1 on all λ-rings.

Proof. Again to simplify the proof we assume that F (A) has a generator 〈a, b〉
for each ab ∈ A, and that G(A) has a generator ⌊a, b⌋ for each a, b ∈ A. We
make no assumptions an the form of the relations. We will prove that ST = 1
on F (A).

The description in terms of generators and relations also applies to G(U2);
therefore TU2〈u1, u2〉 can be expressed in these generators, say

TU2〈u1, u2〉 =

r∑

i=1

ci⌊vi, wi⌋, with ci ∈ Z

This assumption implies that

TA〈a, b〉 = G(ja,b)

r∑

i=1

ci⌊vi, wi⌋ =

r∑

i=1

ci⌊xi, yi⌋

where xi = ja,b(vi) and yi = ja,b(wi). Therefore

SATA〈a, b〉 = SA

r∑

i=1

ci⌊xi, yi⌋ =

r∑

i=1

ciSAG(ja,b)⌊vi, wi⌋

=

r∑

i=1

ciF (ja,b)SU2⌊vi, wi⌋ = F (ja,b)SU2

r∑

i=1

ci⌊vi, wi⌋

= F (ja,b)SU2TU2〈u1, u2〉 = F (ja,b)〈u1, u2〉 = 〈a, b〉

Since SATA is the identity on generators, it is the identity on F (A).

The aim is now to use proposition 5 to construct our new invariant map from
K2(A ⊗ B,A ⊗ I) to TC(A), and proposition 6 to construct its inverse. The
point is of course that we already know what it should do on the rings Ud and
indeed on torsionfree λ-rings since there its should agree with the old invariant
map under the isomorphism TC(A) → FP (A). The only thing left to do is to
point out why K2(A ⊗ B,A ⊗ I) and TC(A) are described by generators and
relations.

For K2 this well known: in [5] its is proved that for a commutative ring W
and a nilpotent ideal J such that the projection W → W/J splits the group
K2(W,J) has a presentation with as generators 〈a, b〉 with a ∈ W and b ∈ I or
a ∈ I and b ∈ J . The relations are

• 〈a, b〉+ 〈b, a〉 for b ∈ J or a ∈ J .

• 〈a, b〉+ 〈a, c〉 − 〈a, b+ c− abc〉 for a ∈ J or and b, c ∈ J .

• 〈a, bc〉 − 〈ab, c〉 − 〈ac, b〉 for a ∈ J or b ∈ J or c ∈ J .
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So for W = A⊗B and J = A⊗ I we have generators

〈a0 + a1z + a2z
2 + · · ·+ aq−1z

q−1, b0 + b1z + b2z
2 + · · ·+ bq−1z

q−1〉

with ai, bi ∈ A and a0 = 0 or b0 = 0. This can be seen as a generator depending
on 2q−1 elements of A. The relations should of course be rewritten accordingly.
Also one should not forget the relation that two such generators agree if their
ai or their bi are equal module the order of zi, which is ǫ(i) for i > 0.

The group TC(A) is a direct sum of summands which each have a description
in terms of generators and relations. For example Ω has a presentation with
generators ⌊a, b⌋ for a, b ∈ A; the relations are

• ⌊a, b⌋+ ⌊a, c⌋ − ⌊a, b+ c⌋.

• ⌊a, c⌋+ ⌊b, c⌋ − ⌊a+ b, c⌋.

• ⌊a, bc⌋ − ⌊ab, c⌋ − ⌊ac, b⌋.

The generator ⌊a, b⌋ corresponds with the element aδb of ΩA. The image of aδb
under φp is

ψp(a)φp(δb) = ψp(a)(bp−1δb− δθp(b))

Thus in terms of the above presentation φp maps ⌊a, b⌋ to

⌊ψp(a)bp−1, b⌋ − ⌊ψp(a), θp(b)⌋

Here θp is the λ-operation introduced in [1]. Using this remark it is now easy
to write down presentations of the groups CFn, CFb, EF1 and EF2.

References

[1] Clauwens F.J.-B.J. The K-groups of λ-rings. Part I. Construction of the

logarithmic invariant. Compositio Mathematica 61 (1987), pp.295–328.

[2] Clauwens, F.J.-B.J. K-theory, λ-rings, and formal groups. Compositio
Mathematica 65 (1988), pp. 223-240.

[3] Clauwens, F.J.-B.J. The K-groups of λ-rings. Part II. Invertibility of the

logarithmic map. Compositio Mathematica 92 (1994), pp. 205–225.

[4] Clauwens, F.J.-B.J. K2 of cyclic group rings over λ–rings. Journal of
Algebra 201, Nr. 2, (1998), pp. 604-646(43)

[5] Maazen, H. and Stienstra, J. A presentation for K2 of split radical pairs.

J. of Pure and Appl. Alg. 10 (1977), pp. 271–294.

10


	1 Introduction
	2 Tensorlike functors
	3 A category of arrows.
	4 Determination of the covers.
	5 The invariant map and its inverse.

