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Abstract

Let D be a directed graph with vertex set V' and order n. An anti-directed
(hamiltonian) cycle H in D is a (hamiltonian) cycle in the graph underlying D
such that no pair of consecutive arcs in H form a directed path in D. An anti-
directed 2-factor in D is a vertex-disjoint collection of anti-directed cycles in D
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that span V. It was proved in [3] that if the indegree and the outdegree of each

vertex of D is greater than %n then D contains an anti-directed hamiltonian

cycle. In this paper we prove that given a directed graph D, the problem of
determining whether D has an anti-directed 2-factor is NP-complete, and we
use a proof technique similar to the one used in [3] to prove that if the indegree
and the outdegree of each vertex of D is greater than %n then D contains an
anti-directed 2-factor.

1 Introduction

Let G be a multigraph with vertex set V(G) and edge set E(G). For a vertex
v € V(G), the degree of v in G, denoted by deg(v, G) is the number of edges of G
incident on v. Let 0(G) = min,cy(g){deg(v,G)}. The simple graph underlying G
denoted by simp(G) is the graph obtained from G by replacing all multiple edges by
single edges. A 2-factor in G is a collection of vertex-disjoint cycles that span V(G).
Let D be a directed graph with vertex set V(D) and arc set A(D). For a vertex
v € V(D), the outdegree (respectively, indegree) of v in D denoted by d* (v, D)
(respectively, d~ (v, D)) is the number of arcs of D directed out of v (respectively,
directed into v). Let 6(D) = minyecy (p){min{d* (v, D),d™ (v, D)}}. The multigraph
underlying D is the multigraph obtained from D by ignoring the directions of the
arcs of D. A directed (Hamilton) cycle C'in D is a (Hamilton) cycle in the multigraph
underlying D such that all pairs of consecutive arcs in C' form a directed path in D.
An anti-directed (Hamilton) cycle C in D is a (Hamilton) cycle in the multigraph
underlying D such that no pair of consecutive arcs in C' form a directed path in D. A
directed 2-factor in D is a collection of vertex-disjoint directed cycles in D that span
V(D). An anti-directed 2-factor in D is a collection of vertex-disjoint anti-directed
cycles in D that span V(D). Note that every anti-directed cycle in D must have
an even number of vertices. We refer the reader to ([1,7]) for all terminology and
notation that is not defined in this paper.

The following classical theorems by Dirac [5] and Ghouila-Houri [6] give sufficient
conditions for the existence of a Hamilton cycle in a graph G and for the existence
of a directed Hamilton cycle in a directed graph D respectively.

Theorem 1 [5] If G is a graph of order n > 3 and 6(G) > 5, then G contains a
Hamilton cycle.

Theorem 2 [6] If D is a directed graph of order n and 6(D) > %, then D contains
a directed Hamilton cycle.



Note that if D is a directed graph of even order n and 6(D) > %n then D contains an
anti-directed Hamilton cycle. To see this, let G be the multigraph underlying D and
let G’ be the subgraph of G consisting of the parallel edges of G. Now, §(D) > %n
implies that ¢(simp(G’)) > 5 and hence Theorem 1 implies that simp(G’) contains
a Hamilton cycle which in turn implies that D contains an anti-directed Hamilton
cycle.

The following theorem by Grant [7] gives a sufficient condition for the existence
of an anti-directed Hamilton cycle in a directed graph D.

Theorem 3 [7] If D is a directed graph with even order n and if 6(D) > %n +
/nlog(n) then D contains an anti-directed Hamilton cycle.

In his paper Grant [7] conjectured that the theorem above can be strengthened
to assert that if D is a directed graph with even order n and if 6(D) > %n then
D contains an anti-directed Hamilton cycle. Mao-cheng Cai [11] gave a counter-
example to this conjecture. In [3] the following sufficient condition for the existence
of an anti-directed Hamilton cycle in a directed graph was proved.

Theorem 4 [3] Let D be a directed graph of even order n and suppose that % <p<

3. If5(D) > pn and n > — W then D contains an anti-directed Hamilton

' (-3 (52)
p—3 %

cycle.

It was shown in [3] that Theorem 4 implies the following corollary that is an im-

provement on the result in Theorem 3.

Corollary 1 [3] If D is a directed graph of even order n and 6(D) > %n then D
contains an anti-directed Hamilton cycle.

The following theorem (see [I]) gives a necessary and sufficient condition for the
existence of a directed 2-factor in a digraph D.

Theorem 5 A directed graph D = (V,A) has a directed 2-factor if and only if
|Upex NT(v)] > |X]| for all X C V.

We note here that given a directed graph D the problem of determining whether D
has a directed Hamilton cycle is known to be NP-complete, whereas, there exists an
O(y/nm) algorithm (see [I]) to check if a directed graph D of order n and size m
has a directed 2-factor. On the other hand, the following theorem proves that given
a directed graph D, the problem of determining whether D has a directed 2-factor
is NP-complete. We are indebted to Sundar Vishwanath for pointing out the short
proof of Theorem 6 given below.



Theorem 6 [14] Given a directed graph D, the problem of determining whether D
has an anti-directed 2-factor. is NP-complete.

Proof. Clearly the the problem of determining whether D has an anti-directed
2-factor is in NP. A graph G is said to be k-edge colorable if the edges of G can
be colored with k colors in such a way that no two adjacent edges receive the same
color. It is well known that given a cubic graph G, it is NP-complete to determine
if G is 3-edge colorable. Now, given a cubic graph G = (V| E), construct a directed
graph D = (V, A), where for each {u,v} € E, we have the oppositely directed arcs
(u,v) and (v,u) in A. It is clear that G is 3-edge colorable if and only if D contains
an anti-directed 2-factor. This proves that the the problem of determining whether
a directed graph D has an anti-directed 2-factor is NP-complete. W

In Section 1 of this paper we prove the following theorem that gives a sufficient
condition for the existence of an anti-directed 2-factor in a directed graph.

Theorem 7 Let D be a directed graph of even order n and suppose that % <p< %.

If 6(D) > pn and n > $(??), then D contains an anti-directed 2-factor.
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In Section 1 we will show that Theorem 7 implies the following corollary.

Corollary 2 [3] If D is a directed graph of even order n and §(D) > 23n then D
contains an anti-directed 2-factor.

2 Proof of Theorem 7 and its Corollary

A partition of a set S with |S| being even into S = X UY is an equipartition of S

if | X| =Y = @ The proof of Theorem 4 mentioned in the introduction made
extensive use of the following theorem by Chvatal [4].

Theorem 8 [4] Let G be a bipartite graph of even order n and with equipartition
V(G) = X UY. Let (dy,ds,...,d,) be the degree sequence of G with di < dy <
... <dp. If G does not contain a Hamilton cycle, then for some i < 3 we have that
d; <1 andd% S%—i.

We prepare for the proof of Theorem 7 by proving Theorems 10 and 11 which give
necessary degree conditions (similar to those in Theorem 8) for the non-existence of
a 2-factor in a bipartite graph G of even order n with equipartition V(G) = X UY.
Let G = (V, E) be a bipartite graph of even order n and with equipartition V(G) =



X UY. For U C X (respectively U C Y) define N®(U) as being the multiset of
vertices v € Y (respectively v € X) such that (u,v) € E for some u € U and with v
appearing twice in N)(U) if there are two or more vertices u € U with (u,v) € E
and v appearing once in N (U) if there is exactly one u € U with (u,v) € E.
We will use the following theorem by Ore [12] that gives a necessary and sufficient
condition for the non-existence of a 2-factor in a bipartite graph of even order n
with equipartition V(G) = X UY.

Theorem 9 Let G = (V, E) be a bipartite graph of even order n and with equiparti-
tion V(G) = X UY. G contains no 2-factor if and only if there exists some U C X
such that IN®)(U)| < 2|U].

For a bipartite graph G = (V, E) of even order n and with equipartition V(G) =
XUY,aset U C X or U CY is defined to be a deficient set of vertices in G if
IN®(U)| < 2|U].

We now prove four Lemmas that will be used in the proof of Theorems 10 and
11.

Lemma 1 Let G be a bipartite graph of even order n and with equipartition V(G) =
X UY. IfU is a minimal deficient set of vertices in G then 2|U| — 2 < [N@(U)].

Proof. Clear by the minimality of U. W

Lemma 2 Let G be a bipartite graph of even order n and with equipartition V(G) =
X UY, and let U be a minimal deficient set of vertices in G. Let M C N(U) be
the set of vertices in N(U) that are adjacent to exactly one vertex in U. Then, no
vertex of U is adjacent to more than one vertex of M.

Proof. If a vertex u € U is adjacent to two vertices of M, since U is a deficient set
of vertices in G, we have that [N® (U — )| < INO(U)| -2 < 2|U| -2 = 2|U —ul.
This implies that U — u is a deficient set of vertices in G, which in turn contradicts
the minimality of U. W

Lemma 3 Let G be a bipartite graph of even order n and with equipartition V(G) =
X UY, and suppose that G does not contain a 2-factor. If U is a minimal deficient
set in G with |U| = k, then deg(u) < k for each u € U and [{u € U : deg(u) <
kE—1} >k—1.

Proof. Suppose that deg(u) > k+1 for some u € U and let M C N(U) be the set of
vertices in N (U) that are adjacent to exactly one vertex in U. Then Lemma 2 implies



that u is adjacent to at most one vertex in M which implies that u is adjacent to at
least k vertices in N(U) — M. This implies that | N (U)| > 2k, which contradicts
the assumption that U is a deficient set. This proves that deg(u) < k for each
u € U. If two vertices in U have degree k then similarly Lemma 2 implies that
IN®(U)| > 2k, which contradicts the assumption that U is a deficient set. This
proves the second part of the Lemma. W

Lemma 4 Let G = (V, E) be a bipartite graph of even order n and with equipartition
V(G) = X UY and suppose that U C X is a minimal deficient set in G. Let
Yo={veY: vgNU)},Yi={veY : [UNNw)| =1}, and Yo = {v € Y :
[UNN(v)| >2}. Let U* =YyUY1. Then U* is a deficient set in G.

Proof. Let Xo = X — U, X; = {u € U : (u,v) € E for some v € Y1}, and Xy =
U—X;. Note that | X| = |Y| implies that | Xo|+|X;|+|X2| = |Yo|+|Y1]|+|Y2|. Now,
since by Lemma 2 we have that | X;| = |Y1|, this implies that | Xo|+|X2| = [Yo|+]|Y2].
Since U is a deficient set we have that [N (U)| = |Yy|+2|Ya| < 2|U| = 2(| X1 |+|X>].
Hence, |Y1| + 2(|Xo| + |X2| — |Yo|) < 2(|X1| + |X2|), which in turn implies that
2| Xo| + | X1| < 2(]Yp| + |Y1]). This proves that U* is a deficient set in G. W

We are now ready to prove two theorems which give necessary degree conditions
(similar to those in Theorem 8) for the non-existence of a 2-factor in a bipartite
graph G of even order n with equipartition V(G) = X UY.

Theorem 10 Let G be a bipartite graph of even order n = 4s > 12 and with
equipartition V(G) = X UY. Let (dy,ds,...,d,) be the degree sequence of G with
di <ds <...<d,. If G does not contain a 2-factor, then either

(1) for some k < % we have that di, < k and dp_; < k —1, or,
(2) d%_l <i—-1

Proof. We will prove that for some k& < %, G contains k vertices with degree at
most k, and that of these k vertices, (k — 1) vertices have degree at most (k — 1),
or, that GG contains at least 7 — 1 vertices of degree at most 7 — 1.

Since G does not contain a 2-factor, Theorem 9 implies that G contains a deficient
set of vertices. Let U C X be a minimal deficient set of vertices in G. If |U| < %,
then Lemma 3 implies that statement (1) is true and the result holds.

Now suppose that |U| > %. As in the statement of Lemma 4, let Yo ={v e Y :v ¢
NO}LYi={veY: [UNN@w)| =1} and Yo ={v e Y : [UNN(v)| > 2}. Let
U* =Yy UY;. Then Lemma 4 implies that U* is a deficient set in G. If |U*| < %



then again statement (1) is true and the result holds.

Now suppose that [U*| > %, and as in the proof of Lemma 4, let Xo = X —
UX1 ={ueU: (uv) € E for somev € Y1}, and Xo = U — X;. We have that
deg(u) < 1+ |Ya| for each u € U, and hence we may assume that [Ya| > % — 1, else
the result holds. Similarly, since deg(u) < 1+ |Xy| for each u € U*, we may assume
that [Xo| > 4 — 1. Note that |U| > § and |Xo| > § — 1 implies that [U| = § + 1,
and that |[U*| > 7 and |Y3| > % — 1 implies that |[U*| = § + 1. Now, since U is a
minimal deficient set of vertices in G, Lemma 1 implies that |X;| =2 or X; = 3. If
| X1| = 2 then at least § — 1 of the vertices in U must have degree at most § — 1,
and statement (2) of the theorem is true. Finally, if |X;| = 3 then at least 7 —4
(and hence at least 2 — 1 because n > 12) of the vertices in each of U and U* must

have degree at most % — 1, and statement (2) of the theorem is true. W

Theorem 11 Let G be a bipartite graph of even order n = 4s + 2 > 14 and with
equipartition V(G) = X UY. Let (dy,da,...,d,) be the degree sequence of G with
di <do <...<d,. If G does not contain a 2-factor, then either

(1) for some k < @ we have that d, < k and dj,_1 <k —1, or,

(2) dwa < 2,

Proof. We will prove that for some k& < %, GG contains k vertices with degree at
most k, and that of these k vertices, (kK — 1) vertices have degree at most (k — 1),
or, that G contains at least (";2) vertices of degree at most (" 2

Since GG does not contain a 2-factor, Theorem 9 implies that G contains a deficient
set of vertices. Without loss of generality let U C X be a minimum cardinality
deficient set of vertices in G. If |U| < ("22), then Lemma 3 implies that statement

(1) is true and the result holds.
(n 2)

Now suppose that |U| > . As in the statement of Lemma 4, let Yy = {v € Y :
vg NU)}LYi={veY: \UﬂN(v)\ =1},and Yo ={v €Y : [UNN(v)| > 2}. Let
U* =YyUY;. Then Lemma 4 implies that U* is a deficient set in G. Since U is a
minimum cardinality deficient set of vertices in G, we have that|{U*| > |U| > (n— 2)

Now, as in the proof of Lemma 4, let Xg = X — U, X7 = {u € U : (u, v) €
E for some v € Y1}, and X9 = U — X;. We have that deg(u) < 1+ |Y3| for each u €
U, and hence we may assume that |Ya| > (%2)
since deg(u) < 1+4|Xy| for each u € U*, we may assume that | X| > ("_2) —1. Note
that |U| > 5= "_2 ) and | Xo| > "_2) — 1 implies that ( D 11< |U| < (" 2 4 2. We

now examine the two cases: |U| (n— 2) +1and |U| = (" 2 49

— 1, else the result holds. Similarly,



(1)

\U| = (n 2 4 1. In this case we must have that |Xo| = "%2). Note that
| X1 <3 because if | X1| > 4 then since U is a minimal deficient set of vertices,
we would have that |Y3| < @

this point that |Ya| > @ — 1. We now examine the following four subcases
separately.

— 2, a contradiction to the assumption at

(Da |X;| = 0. In this case we have that |Y;| = 0 and |Xs| = (" 2 1 1. Since U

is a minimal deficient set of vertices, Lemma 1 implies that |Ya| = (" 2)
and |Yy| = (" D41 Thus, Xo UY) is a set of 5 +1 vertices of degree at
)

most ("% Whlch meets the requirement of the theorem..

()b |X;| = 1. In this case we have that |Y1| = 1 and |X3| = ("22). Since U
is a minimal deficient set of vertices, Lemma 1 implies that |Ys| = @
and |Yp| = "4 (n=2) Thus, Xo UYp is a set of 5 + 1 vertices of degree at
most 1 2 each as required by the theorem.

(1)c |X1| = 2. In this case we have that |Y7]| = 2 and | Xa| = @—1. Since U
("—2)_1
1

is a minimal deficient set of vertices, Lemma 1 implies that |Y3| =

and |Yp| = @. Thus, X U X1 UY) is a set of § vertices of degree at
2)

most ("f which meets the requirement of the theorem.

(1)d |X1| = 3. In this case we have that |Y| = 3 and | X3| = M 2. Since U

is a minimal deficient set of vertices, Lemma 1 implies that |Y2 = (" 2_q

and |Yp| = % — 1. Thus, Xo U X7 UYp is a set of 5 — 1 vertlces of
(n=2)
1

degree at most

as required by the theorem.

\U| = (n 2) 1 2. In this case we have that |Xo| = (" 2 _ 1. Since U is a

minimum cardinality deficient set of vertices, we also have that |U*| = |U| =

(n— )—1—2 Hence we now have that ]Yg\—]X]——) 1. Thus, UUU" is a
)

set of § + 3 vertices of degree at most (n 42 which meets the requirement of

the theorem.

Lemma 5 Let x,y,r be positive numbers such that © > y and r < y. Then
(z4r)(z—r) > (2)2
(y+r)(y—r) = ‘\y/ -

Proof. y%(z% —r?) > (y* — r?)z?, so the result follows. H



Proof of Theorem 7. For an equipartition of V(D) into V(D) = X UY, let
B(X — Y) be the bipartite directed graph with vertex set V(D), equipartition
V(D) =XUY, and with (z,y) € A(B(X = Y))ifandonly if z € X, y € Y, and,
(x,y) € A(D). Let B(X,Y) denote the bipartite graph underlying B(X — Y). It
is clear that B(X,Y’) contains a Hamilton cycle if and only if B(X — Y') contains
an anti-directed Hamilton cycle. We will prove that there exists an equipartition of
V(D) into V(D) = X UY such that B(X,Y’) contains a Hamilton cycle.

In the argument below, we make the simplifying assumption that d*(v) =
d=(v) = §(D) for each v € V(D). It is straightforward (see the remark at the
end of the proof) to see that the argument extends to the case in which some inde-
grees or outdegrees are greater than §(D).

Let v € V(D). Let ng denote the number of equipartitions of V(D) into V(D) =
X UY for which deg(v, B(X,Y)) = k. Since v € X or v € Y and since d*(v) =
d~—(v) = (D), we have that ny = 2(2) ("7575;1) Note that if k > S orif k <d—5 41
then ng = 0. Thus the total number of equipartitions of V(D) into V(D) =X UY

is
bl bl o
e B G
k=6—12+1 2 2

k=6—
Denote by N = ( .) the total number of equipartitions of V(D). For a particular
)

equipartition of V( into V(D) = X; UY], let (dg),dg), e ,dsf)) be the degree
sequence of B(X;,Y;) with d(l) < d() . < d&’, i=1,2,...,N,and, let P, ={j:
; < 4} If B(X;,Y;) does not contain a Hamilton cycle then Theorem 8 implies that
there exists & < % such that di. < k and hence, ]{d; : d;- <kj=12,...,n} >k
This in turn implies that > ;cp, % > 1. Hence, the number of equipartitions of
V(D) into V(D) = X UY for which B(X,Y) does not contain a Hamilton cycle is
nin
S:n<%+@+...+ il

at most

Thus, to show that there exists an equipartition of V(D) into V(D) = X UY such
that B(X,Y) contains a Hamilton cycle, it suffices to show that T > S, i.e.,

S\ (n-s-1) E2)055)
205 o

k=6— k=2

%
We break the proof of (3) into three cases.
Case 1: n = 4m and § = 2d for some positive integers m and d.



For i = 0,1,...,% — 2, let A; = ngy) = 2(dii)("_5_1), and let B; = na_; =

2m—d—i
2(.2) (";ﬁ;l) Clearly, (3) is satisfied if we can show that
B
A,->: Z,,foreachz’zO,l,...,%—Z (4)
o

We prove (4) by recursion on i. We first show that Ay > 282 ie. ns; >n (
4 2
4n%. Let 0 = 5 + 5. We have that

»J>|3|N§
~—
I

A (DO-DEE -6 1)
T T Vs
L @G +)IG s )
E+9G G -5 51!
_ (F+s)GF+s—1..3+5+D)H)E-1...(§—5+1
GHDE+) . GG -5-DE-3-2.. (5>
Now, applications of Lemma 1 give
A, GrEedG-ged
T O N AT
n oy sy 1)8
> Urity) (5)
(-1
Since 6 > pn, we have that s =6 — 5§ > (p — %)n Thus, (5) gives
n (p 2)” —=)n
@ %_‘_ (p 42) B p_i_% (p 2)
> ; =13 (6)
0 n (p_ﬁ)” §—p
] 7

In(4)

(-3 (52)

P

Because n > , (6) implies that % > 4, thus proving (4) for i = 0.

0

We now turn to the recursive step in proving (4) and assume that Ay > %, for 0 <
4
k <% —2. We will show that

Apr o (_a—F )\ Bin 1)
A % —k—-1 By,

10




This will suffice because (7) together with the recursive hypothesis implies that
7L_k
Ak+1 2 (n - 1) Bk Bk;+1 > (m) ﬁBkﬁ-l = #Bkﬁ-l' We have that

é n—o—1 n n
By (E—k 1)( +k+1) (Z_k) (3?—5_14;_1)

and, = = - - .
By, (%‘S_k)("%ikl) —24+k+1) (2 +k+1)

Hence, letting 6 = 5§ + s, we have that

A n n n

(%) _ (%—k‘)(5—%—k)(5—z+k+1)(z+k+1)

(%) (3-k)(-06-k-1)(§+k+1) (3 -5+F)
_ (% %—k)(————k)(ﬂ—l—s—i—k—l—)(4+k—|—l) (8)

G-k (G-s—k=-1)(G+5+k+1)(3-5+k)
Note that in equation (8) we have, (%(;%)k) > 1, ((EIZJ:ZJ;?) 1, ((?gi?) > 1,
and in addition because k < 7, it is easy to verify that (( _5;]? > ( £Z_;ﬁ)1) Now
4

(8) implies (7) which in turn proves (4). This completes the proof of Case 1.

Case 2: n =4m and 0 =25 + 1 for some positive integers m and j.
) é —6— .
For i = 0,1,...,% — 2, let A; = n(jy;) = 2(j+i) (27;,1—]'—11')7 and as in Case 1, let

By =n@_; = 2(m ;) ("m‘iil). As in Case 1, we prove by recursion on 7 that in-

equality ( ) is satisfied for A; and B; defined here. Towards this end, let § = & + s
where s is odd. We have that,

A (N - PUDICE 6 —1)!
By g6 =5 =g —d0+5—1)!
_ () +8) () —s —1)!
(G+3-DGE+5+)E -5+ —5-3)
_ Gs)(G+s—D. (G+5+DHE-D-(F-5+3)
G+s-2)G+5-3) . G+DE-5-)G-5-3)... (5 —3)
s GG ts-D. G5 +DE D (B354 g
TG DG ) GG (G s D (5 )

—_
—_



Now, applications of Lemma 1 give

Ao Gr3adIDa s plh
g = s_1 s_1y(n _
0 (%_’_24_%)(2 2) (%_%_%)(2 2)(4 3)
s—1
, @i+ 3
BRRCESRCEr
L gl
= T (@)
4 4

This is exactly inequality (5) obtained in proving Case 1. The rest of the proof for
Case 2 is similar to that of Case 1 and we omit it.

Case 3: n=2 (mod 4).
In this case we point out that a proof similar to that in cases 1 and 2 above verifies
the result.

Remark: We argue that there was no loss of generality in our assumption at the
beginning of the proof of Theorem 7 that d*(v) = d~(v) = §(D) for each v € V(D).
Let D* = (V*, A(D*) be a directed graph with d*(v) > §(D*), and d~(v) > §(D*)
for each v € V(D*). Let v € V(D*), and, let nj, denote the number of equipar-
titions of V(D*) into V(D*) = X UY for which deg(v, B(X,Y)) = k. We can
delete some arcs pointed into v and some arcs pointed out of v to get a directed
graph D = (V* A(D)) in which d*(v) = d (v) = §(D*). Now as before let
ng denote the number of equipartitions of V(D) into V(D) = X UY for which
deg(v,B(X,Y)) = k. It is clear that Y7 _,ng > >1_,n; for each ¢, and that
Z,f:é_%ﬂ ng = ZE:(;_%H ni* = total number of equipartitions of V/(D*). Hence,
the proof above that 7' > S holds with nj, replaced by n;. W

We now prove the corollaries of Theorem 7 mentioned in the introduction.

Proof of Corollary 1. If n < 10 then §(D) > 2n and Theorem 6 implies that D
has an anti-directed Hamilton cycle. Hence, assume that n > 10, and for given n,
let p be the unique real number such that % <p< % and n = %. The

(r-4)m(52)
result follows from Theorem 7 if §(D) > pn and since §(D) > in + /nIn(2),
it suffices to show that pn < 3n + /nIn(2). Let = = p — 5 and note that

12



0 <z < % Now, pn < In+ /nln(2) if and only if 2n < \/nIn(2) if and only
if \/xl:(l&) < \/12(2) if and only if 22 < In(1+ ) — In(1 — z). Since 0 < z < 1,

1-x o
2$2k+1

we have that In(1 +x) — In(1 — x) = >772 57 and this completes the proof of
Corollary 1. H

Proof of Corollary 2. For p = 1%, 177 < % < 178. Hence, Theo-
rem 7 implies that the corollary is true for all n > 178. If n < 178, §(D) > n,
and, n #0 (mod 4), we can verify that inequality (3) is satisfied by direct compu-
tation. If n < 178, §(D) > %n, and, n =0 (mod 4), a use of Theorem 8 that is
stronger than its use in deriving the bound S in equation (2) yields that the number
of equipartitions of V(D) into V(D) = X UY for which B(X,Y) does not contain

a Hamilton cycle is at most

p_ (2 M3 n4l
S—n<2+3+...+2L%J>. 9)

Direct computation now verifies that 7'> S’. W

Proof of Corollary 3. If n < 14 is even and §(D) > In then we have that
(D) > l%n and Corollary 2 implies Corollary 3. W
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