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Abstract

Let D be a directed graph with vertex set V and order n. An anti-directed
(hamiltonian) cycle H in D is a (hamiltonian) cycle in the graph underlying D

such that no pair of consecutive arcs in H form a directed path in D. An anti-
directed 2-factor in D is a vertex-disjoint collection of anti-directed cycles in D

http://arxiv.org/abs/1012.1231v1


that span V . It was proved in [3] that if the indegree and the outdegree of each
vertex of D is greater than 9

16
n then D contains an anti-directed hamiltonian

cycle. In this paper we prove that given a directed graph D, the problem of
determining whether D has an anti-directed 2-factor is NP-complete, and we
use a proof technique similar to the one used in [3] to prove that if the indegree
and the outdegree of each vertex of D is greater than 25

48
n then D contains an

anti-directed 2-factor.

1 Introduction

Let G be a multigraph with vertex set V (G) and edge set E(G). For a vertex
v ∈ V (G), the degree of v in G, denoted by deg(v,G) is the number of edges of G
incident on v. Let δ(G) = minv∈V (G){deg(v,G)}. The simple graph underlying G

denoted by simp(G) is the graph obtained from G by replacing all multiple edges by
single edges. A 2-factor in G is a collection of vertex-disjoint cycles that span V (G).
Let D be a directed graph with vertex set V (D) and arc set A(D). For a vertex
v ∈ V (D), the outdegree (respectively, indegree) of v in D denoted by d+(v,D)
(respectively, d−(v,D)) is the number of arcs of D directed out of v (respectively,
directed into v). Let δ(D) = minv∈V (D){min{d+(v,D), d−(v,D)}}. The multigraph
underlying D is the multigraph obtained from D by ignoring the directions of the
arcs ofD. A directed (Hamilton) cycle C inD is a (Hamilton) cycle in the multigraph
underlying D such that all pairs of consecutive arcs in C form a directed path in D.
An anti-directed (Hamilton) cycle C in D is a (Hamilton) cycle in the multigraph
underlyingD such that no pair of consecutive arcs in C form a directed path in D. A
directed 2-factor in D is a collection of vertex-disjoint directed cycles in D that span
V (D). An anti-directed 2-factor in D is a collection of vertex-disjoint anti-directed
cycles in D that span V (D). Note that every anti-directed cycle in D must have
an even number of vertices. We refer the reader to ([1,7]) for all terminology and
notation that is not defined in this paper.

The following classical theorems by Dirac [5] and Ghouila-Houri [6] give sufficient
conditions for the existence of a Hamilton cycle in a graph G and for the existence
of a directed Hamilton cycle in a directed graph D respectively.

Theorem 1 [5] If G is a graph of order n ≥ 3 and δ(G) ≥ n
2 , then G contains a

Hamilton cycle.

Theorem 2 [6] If D is a directed graph of order n and δ(D) ≥ n
2 , then D contains

a directed Hamilton cycle.
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Note that if D is a directed graph of even order n and δ(D) ≥ 3
4n then D contains an

anti-directed Hamilton cycle. To see this, let G be the multigraph underlying D and
let G′ be the subgraph of G consisting of the parallel edges of G. Now, δ(D) ≥ 3

4n

implies that δ(simp(G′)) ≥ n
2 and hence Theorem 1 implies that simp(G′) contains

a Hamilton cycle which in turn implies that D contains an anti-directed Hamilton
cycle.

The following theorem by Grant [7] gives a sufficient condition for the existence
of an anti-directed Hamilton cycle in a directed graph D.

Theorem 3 [7] If D is a directed graph with even order n and if δ(D) ≥ 2
3n +

√

nlog(n) then D contains an anti-directed Hamilton cycle.

In his paper Grant [7] conjectured that the theorem above can be strengthened
to assert that if D is a directed graph with even order n and if δ(D) ≥ 1

2n then
D contains an anti-directed Hamilton cycle. Mao-cheng Cai [11] gave a counter-
example to this conjecture. In [3] the following sufficient condition for the existence
of an anti-directed Hamilton cycle in a directed graph was proved.

Theorem 4 [3] Let D be a directed graph of even order n and suppose that 1
2 < p <

3
4 . If δ(D) ≥ pn and n >

ln(4)

(p− 1
2)ln

(

p+1
2

3
2
−p

) , then D contains an anti-directed Hamilton

cycle.

It was shown in [3] that Theorem 4 implies the following corollary that is an im-
provement on the result in Theorem 3.

Corollary 1 [3] If D is a directed graph of even order n and δ(D) > 9
16n then D

contains an anti-directed Hamilton cycle.

The following theorem (see [1]) gives a necessary and sufficient condition for the
existence of a directed 2-factor in a digraph D.

Theorem 5 A directed graph D = (V,A) has a directed 2-factor if and only if
|⋃v∈X N+(v)| ≥ |X| for all X ⊆ V .

We note here that given a directed graph D the problem of determining whether D
has a directed Hamilton cycle is known to be NP-complete, whereas, there exists an
O(

√
nm) algorithm (see [1]) to check if a directed graph D of order n and size m

has a directed 2-factor. On the other hand, the following theorem proves that given
a directed graph D, the problem of determining whether D has a directed 2-factor
is NP-complete. We are indebted to Sundar Vishwanath for pointing out the short
proof of Theorem 6 given below.
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Theorem 6 [14] Given a directed graph D, the problem of determining whether D

has an anti-directed 2-factor. is NP-complete.

Proof. Clearly the the problem of determining whether D has an anti-directed
2-factor is in NP. A graph G is said to be k-edge colorable if the edges of G can
be colored with k colors in such a way that no two adjacent edges receive the same
color. It is well known that given a cubic graph G, it is NP-complete to determine
if G is 3-edge colorable. Now, given a cubic graph G = (V,E), construct a directed
graph D = (V,A), where for each {u, v} ∈ E, we have the oppositely directed arcs
(u, v) and (v, u) in A. It is clear that G is 3-edge colorable if and only if D contains
an anti-directed 2-factor. This proves that the the problem of determining whether
a directed graph D has an anti-directed 2-factor is NP-complete.

In Section 1 of this paper we prove the following theorem that gives a sufficient
condition for the existence of an anti-directed 2-factor in a directed graph.

Theorem 7 Let D be a directed graph of even order n and suppose that 1
2 < p < 3

4 .

If δ(D) ≥ pn and n >
ln(4)

(p− 1
2)ln

(

p+1
2

3
2−p

)(??), then D contains an anti-directed 2-factor.

In Section 1 we will show that Theorem 7 implies the following corollary.

Corollary 2 [3] If D is a directed graph of even order n and δ(D) > 25
48n then D

contains an anti-directed 2-factor.

2 Proof of Theorem 7 and its Corollary

A partition of a set S with |S| being even into S = X ∪ Y is an equipartition of S

if |X| = |Y | = |S|
2 . The proof of Theorem 4 mentioned in the introduction made

extensive use of the following theorem by Chvátal [4].

Theorem 8 [4] Let G be a bipartite graph of even order n and with equipartition
V (G) = X ∪ Y . Let (d1, d2, . . . , dn) be the degree sequence of G with d1 ≤ d2 ≤
. . . ≤ dn. If G does not contain a Hamilton cycle, then for some i ≤ n

4 we have that
di ≤ i and dn

2
≤ n

2 − i.

We prepare for the proof of Theorem 7 by proving Theorems 10 and 11 which give
necessary degree conditions (similar to those in Theorem 8) for the non-existence of
a 2-factor in a bipartite graph G of even order n with equipartition V (G) = X ∪ Y .
Let G = (V,E) be a bipartite graph of even order n and with equipartition V (G) =
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X ∪ Y . For U ⊆ X (respectively U ⊆ Y ) define N (2)(U) as being the multiset of
vertices v ∈ Y (respectively v ∈ X) such that (u, v) ∈ E for some u ∈ U and with v

appearing twice in N (2)(U) if there are two or more vertices u ∈ U with (u, v) ∈ E

and v appearing once in N (2)(U) if there is exactly one u ∈ U with (u, v) ∈ E.
We will use the following theorem by Ore [12] that gives a necessary and sufficient
condition for the non-existence of a 2-factor in a bipartite graph of even order n

with equipartition V (G) = X ∪ Y .

Theorem 9 Let G = (V,E) be a bipartite graph of even order n and with equiparti-
tion V (G) = X ∪ Y . G contains no 2-factor if and only if there exists some U ⊆ X

such that |N (2)(U)| < 2|U |.

For a bipartite graph G = (V,E) of even order n and with equipartition V (G) =
X ∪ Y , a set U ⊆ X or U ⊆ Y is defined to be a deficient set of vertices in G if
|N (2)(U)| < 2|U |.

We now prove four Lemmas that will be used in the proof of Theorems 10 and
11.

Lemma 1 Let G be a bipartite graph of even order n and with equipartition V (G) =
X ∪ Y . If U is a minimal deficient set of vertices in G then 2|U | − 2 ≤ |N (2)(U)|.

Proof. Clear by the minimality of U .

Lemma 2 Let G be a bipartite graph of even order n and with equipartition V (G) =
X ∪ Y , and let U be a minimal deficient set of vertices in G. Let M ⊆ N(U) be
the set of vertices in N(U) that are adjacent to exactly one vertex in U . Then, no
vertex of U is adjacent to more than one vertex of M .

Proof. If a vertex u ∈ U is adjacent to two vertices of M , since U is a deficient set
of vertices in G, we have that |N (2)(U − u)| ≤ |N (2)(U)| − 2 < 2|U | − 2 = 2|U − u|.
This implies that U − u is a deficient set of vertices in G, which in turn contradicts
the minimality of U .

Lemma 3 Let G be a bipartite graph of even order n and with equipartition V (G) =
X ∪ Y , and suppose that G does not contain a 2-factor. If U is a minimal deficient
set in G with |U | = k, then deg(u) ≤ k for each u ∈ U and |{u ∈ U : deg(u) ≤
k − 1}| ≥ k − 1.

Proof. Suppose that deg(u) ≥ k+1 for some u ∈ U and let M ⊆ N(U) be the set of
vertices inN(U) that are adjacent to exactly one vertex in U . Then Lemma 2 implies
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that u is adjacent to at most one vertex in M which implies that u is adjacent to at
least k vertices in N(U) −M . This implies that |N (2)(U)| ≥ 2k, which contradicts
the assumption that U is a deficient set. This proves that deg(u) ≤ k for each
u ∈ U . If two vertices in U have degree k then similarly Lemma 2 implies that
|N (2)(U)| ≥ 2k, which contradicts the assumption that U is a deficient set. This
proves the second part of the Lemma.

Lemma 4 Let G = (V,E) be a bipartite graph of even order n and with equipartition
V (G) = X ∪ Y and suppose that U ⊆ X is a minimal deficient set in G. Let
Y0 = {v ∈ Y : v 6∈ N(U)}, Y1 = {v ∈ Y : |U ∩ N(v)| = 1}, and Y2 = {v ∈ Y :
|U ∩N(v)| ≥ 2}. Let U∗ = Y0 ∪ Y1. Then U∗ is a deficient set in G.

Proof. Let X0 = X − U,X1 = {u ∈ U : (u, v) ∈ E for some v ∈ Y1}, and X2 =
U−X1. Note that |X| = |Y | implies that |X0|+ |X1|+ |X2| = |Y0|+ |Y1|+ |Y2|. Now,
since by Lemma 2 we have that |X1| = |Y1|, this implies that |X0|+|X2| = |Y0|+|Y2|.
Since U is a deficient set we have that |N (2)(U)| = |Y0|+2|Y2| < 2|U | = 2(|X1|+|X2|.
Hence, |Y1| + 2(|X0| + |X2| − |Y0|) < 2(|X1| + |X2|), which in turn implies that
2|X0|+ |X1| < 2(|Y0|+ |Y1|). This proves that U∗ is a deficient set in G.

We are now ready to prove two theorems which give necessary degree conditions
(similar to those in Theorem 8) for the non-existence of a 2-factor in a bipartite
graph G of even order n with equipartition V (G) = X ∪ Y .

Theorem 10 Let G be a bipartite graph of even order n = 4s ≥ 12 and with
equipartition V (G) = X ∪ Y . Let (d1, d2, . . . , dn) be the degree sequence of G with
d1 ≤ d2 ≤ . . . ≤ dn. If G does not contain a 2-factor, then either

(1) for some k ≤ n
4 we have that dk ≤ k and dk−1 ≤ k − 1, or,

(2) dn
4
−1 ≤ n

4 − 1.

Proof. We will prove that for some k ≤ n
4 , G contains k vertices with degree at

most k, and that of these k vertices, (k − 1) vertices have degree at most (k − 1),
or, that G contains at least n

4 − 1 vertices of degree at most n
4 − 1.

Since G does not contain a 2-factor, Theorem 9 implies that G contains a deficient
set of vertices. Let U ⊆ X be a minimal deficient set of vertices in G. If |U | ≤ n

4 ,
then Lemma 3 implies that statement (1) is true and the result holds.
Now suppose that |U | > n

4 . As in the statement of Lemma 4, let Y0 = {v ∈ Y : v 6∈
N(U)}, Y1 = {v ∈ Y : |U ∩ N(v)| = 1}, and Y2 = {v ∈ Y : |U ∩ N(v)| ≥ 2}. Let
U∗ = Y0 ∪ Y1. Then Lemma 4 implies that U∗ is a deficient set in G. If |U∗| ≤ n

4
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then again statement (1) is true and the result holds.
Now suppose that |U∗| > n

4 , and as in the proof of Lemma 4, let X0 = X −
U,X1 = {u ∈ U : (u, v) ∈ E for some v ∈ Y1}, and X2 = U − X1. We have that
deg(u) ≤ 1 + |Y2| for each u ∈ U , and hence we may assume that |Y2| ≥ n

4 − 1, else
the result holds. Similarly, since deg(u) ≤ 1+ |X0| for each u ∈ U∗, we may assume
that |X0| ≥ n

4 − 1. Note that |U | > n
4 and |X0| ≥ n

4 − 1 implies that |U | = n
4 + 1,

and that |U∗| > n
4 and |Y2| ≥ n

4 − 1 implies that |U∗| = n
4 + 1. Now, since U is a

minimal deficient set of vertices in G, Lemma 1 implies that |X1| = 2 or X1 = 3. If
|X1| = 2 then at least n

4 − 1 of the vertices in U must have degree at most n
4 − 1,

and statement (2) of the theorem is true. Finally, if |X1| = 3 then at least n
2 − 4

(and hence at least n
4 − 1 because n ≥ 12) of the vertices in each of U and U∗ must

have degree at most n
4 − 1, and statement (2) of the theorem is true.

Theorem 11 Let G be a bipartite graph of even order n = 4s + 2 ≥ 14 and with
equipartition V (G) = X ∪ Y . Let (d1, d2, . . . , dn) be the degree sequence of G with
d1 ≤ d2 ≤ . . . ≤ dn. If G does not contain a 2-factor, then either

(1) for some k ≤ (n−2)
4 we have that dk ≤ k and dk−1 ≤ k − 1, or,

(2) d (n−2)
2

≤ (n−2)
4 .

Proof. We will prove that for some k ≤ n
4 , G contains k vertices with degree at

most k, and that of these k vertices, (k − 1) vertices have degree at most (k − 1),

or, that G contains at least (n−2)
2 vertices of degree at most (n−2)

4 .
Since G does not contain a 2-factor, Theorem 9 implies that G contains a deficient
set of vertices. Without loss of generality let U ⊆ X be a minimum cardinality
deficient set of vertices in G. If |U | ≤ (n−2)

4 , then Lemma 3 implies that statement
(1) is true and the result holds.

Now suppose that |U | > (n−2)
4 . As in the statement of Lemma 4, let Y0 = {v ∈ Y :

v 6∈ N(U)}, Y1 = {v ∈ Y : |U ∩N(v)| = 1}, and Y2 = {v ∈ Y : |U ∩N(v)| ≥ 2}. Let
U∗ = Y0 ∪ Y1. Then Lemma 4 implies that U∗ is a deficient set in G. Since U is a
minimum cardinality deficient set of vertices in G, we have that|U∗| ≥ |U | > (n−2)

4 .
Now, as in the proof of Lemma 4, let X0 = X − U,X1 = {u ∈ U : (u, v) ∈
E for some v ∈ Y1}, and X2 = U −X1. We have that deg(u) ≤ 1+ |Y2| for each u ∈
U , and hence we may assume that |Y2| ≥ (n−2)

4 − 1, else the result holds. Similarly,

since deg(u) ≤ 1+ |X0| for each u ∈ U∗, we may assume that |X0| ≥ (n−2)
4 −1. Note

that |U | > (n−2)
4 and |X0| ≥ (n−2)

4 − 1 implies that (n−2)
4 +1 ≤ |U | ≤ (n−2)

4 +2. We

now examine the two cases: |U | = (n−2)
4 + 1 and |U | = (n−2)

4 + 2.
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(1) |U | = (n−2)
4 + 1. In this case we must have that |X0| = (n−2)

4 . Note that
|X1| ≤ 3 because if |X1| ≥ 4 then since U is a minimal deficient set of vertices,

we would have that |Y2| ≤ (n−2)
4 − 2, a contradiction to the assumption at

this point that |Y2| ≥ (n−2)
4 − 1. We now examine the following four subcases

separately.

(1)a |X1| = 0. In this case we have that |Y1| = 0 and |X2| = (n−2)
4 +1. Since U

is a minimal deficient set of vertices, Lemma 1 implies that |Y2| = (n−2)
4

and |Y0| = (n−2)
4 +1. Thus, X2 ∪Y0 is a set of n

2 +1 vertices of degree at

most (n−2)
4 which meets the requirement of the theorem..

(1)b |X1| = 1. In this case we have that |Y1| = 1 and |X2| = (n−2)
4 . Since U

is a minimal deficient set of vertices, Lemma 1 implies that |Y2| = (n−2)
4

and |Y0| = (n−2)
4 . Thus, X2 ∪ Y0 is a set of n

2 + 1 vertices of degree at

most (n−2)
4 each as required by the theorem.

(1)c |X1| = 2. In this case we have that |Y1| = 2 and |X2| = (n−2)
4 −1. Since U

is a minimal deficient set of vertices, Lemma 1 implies that |Y2| = (n−2)
4 −1

and |Y0| = (n−2)
4 . Thus, X2 ∪X1 ∪ Y0 is a set of n

2 vertices of degree at

most (n−2)
4 which meets the requirement of the theorem.

(1)d |X1| = 3. In this case we have that |Y1| = 3 and |X2| = (n−2)
4 −2. Since U

is a minimal deficient set of vertices, Lemma 1 implies that |Y2| = (n−2)
4 −1

and |Y0| = (n−2)
4 − 1. Thus, X2 ∪ X1 ∪ Y0 is a set of n

2 − 1 vertices of

degree at most (n−2)
4 as required by the theorem.

(2) |U | = (n−2)
4 + 2. In this case we have that |X0| = (n−2)

4 − 1. Since U is a
minimum cardinality deficient set of vertices, we also have that |U∗| = |U | =
(n−2)

4 +2. Hence we now have that |Y2| = |X0| = (n−2)
4 − 1. Thus, U ∪U∗ is a

set of n
2 + 3 vertices of degree at most (n−2)

4 which meets the requirement of
the theorem.

Lemma 5 Let x, y, r be positive numbers such that x ≥ y and r < y. Then
(x+r)(x−r)
(y+r)(y−r) ≥ (x

y
)2.

Proof. y2(x2 − r2) ≥ (y2 − r2)x2, so the result follows.

8



Proof of Theorem 7. For an equipartition of V (D) into V (D) = X ∪ Y , let
B(X → Y ) be the bipartite directed graph with vertex set V (D), equipartition
V (D) = X ∪ Y , and with (x, y) ∈ A(B(X → Y )) if and only if x ∈ X, y ∈ Y , and,
(x, y) ∈ A(D). Let B(X,Y ) denote the bipartite graph underlying B(X → Y ). It
is clear that B(X,Y ) contains a Hamilton cycle if and only if B(X → Y ) contains
an anti-directed Hamilton cycle. We will prove that there exists an equipartition of
V (D) into V (D) = X ∪ Y such that B(X,Y ) contains a Hamilton cycle.

In the argument below, we make the simplifying assumption that d+(v) =
d−(v) = δ(D) for each v ∈ V (D). It is straightforward (see the remark at the
end of the proof) to see that the argument extends to the case in which some inde-
grees or outdegrees are greater than δ(D).
Let v ∈ V (D). Let nk denote the number of equipartitions of V (D) into V (D) =
X ∪ Y for which deg(v,B(X,Y )) = k. Since v ∈ X or v ∈ Y and since d+(v) =
d−(v) = δ(D), we have that nk = 2

(δ
k

)(n−δ−1
n
2
−k

)

. Note that if k > n
2 or if k < δ− n

2 +1

then nk = 0. Thus the total number of equipartitions of V (D) into V (D) = X ∪ Y

is

T =

n
2
∑

k=δ−n
2
+1

nk =

n
2
∑

k=δ−n
2
+1

2

(

δ

k

)(

n− δ − 1
n
2 − k

)

=

(

n
n
2

)

. (1)

Denote by N =
(n
n
2

)

the total number of equipartitions of V (D). For a particular

equipartition of V (D) into V (D) = Xi ∪ Yi, let (d
(i)
1 , d

(i)
2 , . . . , d

(i)
n ) be the degree

sequence of B(Xi, Yi) with d
(i)
1 ≤ d

(i)
2 ≤ . . . ≤ d

(i)
n , i = 1, 2, . . . , N , and, let Pi = {j :

dij ≤ n
4 }. If B(Xi, Yi) does not contain a Hamilton cycle then Theorem 8 implies that

there exists k ≤ n
4 such that dik ≤ k and hence, |{dij : dij ≤ k, j = 1, 2, . . . , n}| ≥ k.

This in turn implies that
∑

j∈Pi

1
di
j

≥ 1. Hence, the number of equipartitions of

V (D) into V (D) = X ∪ Y for which B(X,Y ) does not contain a Hamilton cycle is
at most

S = n

(

n2

2
+

n3

3
+ . . .+

n⌊n
4
⌋

⌊n4 ⌋

)

(2)

Thus, to show that there exists an equipartition of V (D) into V (D) = X ∪ Y such
that B(X,Y ) contains a Hamilton cycle, it suffices to show that T > S, i.e.,

n
2
∑

k=δ−n
2
+1

2

(

δ

k

)(

n− δ − 1
n
2 − k

)

> n

⌊n
4
⌋

∑

k=2

2
(δ
k

)(n−δ−1
n
2
−k

)

k
(3)

We break the proof of (3) into three cases.
Case 1: n = 4m and δ = 2d for some positive integers m and d.

9



For i = 0, 1, . . . , n4 − 2, let Ai = n(d+i) = 2
( δ
d+i

)( n−δ−1
2m−d−i

)

, and let Bi = n(n
4
−i) =

2
( δ
m−i

)(n−δ−1
m+i

)

. Clearly, (3) is satisfied if we can show that

Ai >
nBi
n
4 − i

, for each i = 0, 1, . . . ,
n

4
− 2. (4)

We prove (4) by recursion on i. We first show that A0 > nB0
n
4
, i.e. n δ

2
> n

(nn
4
n
4

)

=

4nn
4
. Let δ = n

2 + s. We have that

A0

B0
=

(n4 )!(δ − n
4 )!(

n
4 )!(

3n
4 − δ − 1)!

δ
2 !

δ
2 !(

n
2 − δ

2)!(
n
2 − δ

2 − 1)!

=
(n4 )!(

n
4 + s)!(n4 )!(

n
4 − s− 1)!

(n4 + s
2)!(

n
4 + s

2)!(
n
4 − s

2)!(
n
4 − s

2 − 1)!

=
(n4 + s)(n4 + s− 1) . . . (n4 + s

2 + 1)(n4 )(
n
4 − 1) . . . (n4 − s

2 + 1)

(n4 + 1)(n4 + 2) . . . (n4 + s
2)(

n
4 − s

2 − 1)(n4 − s
2 − 2) . . . (n4 − s)

Now, applications of Lemma 1 give

A0

B0
≥ (n4 + 3s

4 + 1
2 )

s
2

(n4 + s
4 +

1
2)

s
2

(n4 − s
4 +

1
2 )

s
2

(n4 − 3s
4 − 1

2)
s
2

≥ (n4 + s
4 + 1

2)
s

(n4 − s
4)

s (5)

Since δ ≥ pn, we have that s = δ − n
2 ≥ (p − 1

2)n. Thus, (5) gives

A0

B0
≥




n
4 +

(p− 1
2
)n

4

n
4 − (p− 1

2
)n

4





(p− 1
2)n

=

(

p+ 1
2

3
2 − p

)(p− 1
2)n

(6)

Because n >
ln(4)

(p− 1
2)ln

(

p+1
2

3
2
−p

) , (6) implies that A0
B0

> 4, thus proving (4) for i = 0.

We now turn to the recursive step in proving (4) and assume that Ak > nBk
n
4
−k

, for 0 <

k < n
4 − 2. We will show that

Ak+1

Ak

≥
(

n
4 − k

n
4 − k − 1

)

Bk+1

Bk

(7)
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This will suffice because (7) together with the recursive hypothesis implies that

Ak+1 ≥
( n

4
−k

n
4
−k−1

)

Ak

Bk
Bk+1 >

( n
4
−k

n
4
−k−1

)

n
n
4
−k

Bk+1 =
n

n
4
−k−1Bk+1. We have that

Ak+1

Ak

=

( δ
δ
2
+k+1

)( n−δ−1
n
2
− δ

2
−k−1

)

( δ
δ
2
+k

)( n−δ−1
n
2
− δ

2
−k

)
=

(

δ
2 − k

) (

n
2 − δ

2 − k
)

(

δ
2 + k + 1

) (

n
2 − δ

2 + k
) ,

and,
Bk+1

Bk

=

( δ
n
4
−k−1

)(n−δ−1
n
4
+k+1

)

( δ
n
4
−k

)(n−δ−1
n
4
+k

)
=

(

n
4 − k

)

(

3n
4 − δ − k − 1

)

(

δ − n
4 + k + 1

) (

n
4 + k + 1

) .

Hence, letting δ = n
2 + s, we have that

(

Ak+1

Ak

)

(

Bk+1

Bk

) =

(

δ
2 − k

) (

n
2 − δ

2 − k
)

(

δ − n
4 + k + 1

) (

n
4 + k + 1

)

(

n
4 − k

)

(

3n
4 − δ − k − 1

) (

δ
2 + k + 1

) (

n
2 − δ

2 + k
)

=

(

n
4 + s

2 − k
) (

n
4 − s

2 − k
) (

n
4 + s+ k + 1

) (

n
4 + k + 1

)

(

n
4 − k

) (

n
4 − s− k − 1

) (

n
4 + s

2 + k + 1
) (

n
4 − s

2 + k
) (8)

Note that in equation (8) we have,
(n
4
+ s

2
−k)

(n
4
−k)

> 1,
(n
4
+s+k+1)

(n
4
+ s

2
+k+1)

> 1,
(n

4
+k+1)

(n
4
− s

2
+k)

> 1,

and in addition because k < n
4 , it is easy to verify that

(n
4
− s

2
−k)

(n
4
−s−k−1)

>
(n
4
−k)

(n
4
−k−1)

. Now

(8) implies (7) which in turn proves (4). This completes the proof of Case 1.

Case 2: n = 4m and δ = 2j + 1 for some positive integers m and j.
For i = 0, 1, . . . , n4 − 2, let Ai = n(j+i) = 2

( δ
j+i

)( n−δ−1
2m−j−i

)

, and as in Case 1, let

Bi = n(n
4
−i) = 2

( δ
m−i

)(n−δ−1
m+i

)

. As in Case 1, we prove by recursion on i that in-
equality (4) is satisfied for Ai and Bi defined here. Towards this end, let δ = n

2 + s

where s is odd. We have that,

A0

B0
=

(n4 )!(δ − n
4 )!(

n
4 )!(

3n
4 − δ − 1)!

j!(δ − j)!(n2 − j)!(n2 − δ + j − 1)!

=
(n4 )!(

n
4 + s)!(n4 )!(

n
4 − s− 1)!

(n4 + s
2 − 1

2)!(
n
4 + s

2 +
1
2)!(

n
4 − s

2 + 1
2)!(

n
4 − s

2 − 3
2)!

=
(n4 + s)(n4 + s− 1) . . . (n4 + s

2 + 3
2)(

n
4 )(

n
4 − 1) . . . (n4 − s

2 + 3
2)

(n4 + s
2 − 1

2)(
n
4 + s

2 − 3
2) . . . (

n
4 + 1)(n4 − s

2 − 3
2 )(

n
4 − s

2 − 5
2) . . . (

n
4 − s)

≥ (n4 + s)(n4 + s− 1) . . . (n4 + s
2 + 3

2)(
n
4 − 1) . . . (n4 − s

2 +
3
2)

(n4 + s
2 − 1

2)(
n
4 + s

2 − 3
2) . . . (

n
4 + 1)(n4 − s

2 − 3
2 ) . . . (

n
4 − s+ 1)

n
4

(n4 − s)
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Now, applications of Lemma 1 give

A0

B0
≥ (n4 + 3s

4 + 3
4)
( s
2
− 1

2)

(n4 + s
4 + 1

4)
( s
2
− 1

2)

(n4 − s
4 + 1

4)
( s
2
− 1

2)

(n4 − 3s
4 − 1

4)
( s
2
− 1

2)

n
4

(n4 − s)

≥ (n4 + s
4 +

1
2 )

s−1

(n4 − s
4)

s−1

n
4

(n4 − s)

≥ (n4 + s
4 +

1
2 )

s

(n4 − s
4)

s

This is exactly inequality (5) obtained in proving Case 1. The rest of the proof for
Case 2 is similar to that of Case 1 and we omit it.

Case 3: n ≡ 2 (mod 4).
In this case we point out that a proof similar to that in cases 1 and 2 above verifies
the result.

Remark: We argue that there was no loss of generality in our assumption at the
beginning of the proof of Theorem 7 that d+(v) = d−(v) = δ(D) for each v ∈ V (D).
Let D∗ = (V ∗, A(D∗) be a directed graph with d+(v) ≥ δ(D∗), and d−(v) ≥ δ(D∗)
for each v ∈ V (D∗). Let v ∈ V (D∗), and, let n∗

k denote the number of equipar-
titions of V (D∗) into V (D∗) = X ∪ Y for which deg(v,B(X,Y )) = k. We can
delete some arcs pointed into v and some arcs pointed out of v to get a directed
graph D = (V ∗, A(D)) in which d+(v) = d−(v) = δ(D∗). Now as before let
nk denote the number of equipartitions of V (D) into V (D) = X ∪ Y for which
deg(v,B(X,Y )) = k. It is clear that

∑q
k=2 nk ≥ ∑q

k=2 n
∗
k for each q, and that

∑

n
2
k=δ−n

2
+1 nk =

∑

n
2
k=δ−n

2
+1 nk

∗ = total number of equipartitions of V (D∗). Hence,

the proof above that T > S holds with nk replaced by n∗
k.

We now prove the corollaries of Theorem 7 mentioned in the introduction.

Proof of Corollary 1. If n ≤ 10 then δ(D) > 2
3n and Theorem 6 implies that D

has an anti-directed Hamilton cycle. Hence, assume that n > 10, and for given n,
let p be the unique real number such that 1

2 < p < 3
4 and n = ln(4)

(p− 1
2)ln

(

p+1
2

3
2
−p

) . The

result follows from Theorem 7 if δ(D) > pn and since δ(D) > 1
2n +

√

n ln(2),
it suffices to show that pn ≤ 1

2n +
√

n ln(2). Let x = p − 1
2 and note that

12



0 < x < 1
4 . Now, pn ≤ 1

2n +
√

n ln(2) if and only if xn ≤
√

n ln(2) if and only

if
√

ln(4)

x ln( 1+x
1−x )

≤
√

ln(2)

x
if and only if 2x ≤ ln(1 + x) − ln(1 − x). Since 0 < x < 1

4 ,

we have that ln(1 + x) − ln(1 − x) =
∑∞

k=0
2x2k+1

2k+1 and this completes the proof of
Corollary 1.

Proof of Corollary 2. For p = 9
16 , 177 <

ln(4)

(p− 1
2)ln

(

p+1
2

3
2
−p

) < 178. Hence, Theo-

rem 7 implies that the corollary is true for all n ≥ 178. If n < 178, δ(D) > 9
16n,

and, n 6≡ 0 (mod 4), we can verify that inequality (3) is satisfied by direct compu-
tation. If n < 178, δ(D) > 9

16n, and, n ≡ 0 (mod 4), a use of Theorem 8 that is
stronger than its use in deriving the bound S in equation (2) yields that the number
of equipartitions of V (D) into V (D) = X ∪ Y for which B(X,Y ) does not contain
a Hamilton cycle is at most

S′ = n

(

n2

2
+

n3

3
+ . . . +

n⌊n
4
⌋

2⌊n4 ⌋

)

. (9)

Direct computation now verifies that T > S′.

Proof of Corollary 3. If n ≤ 14 is even and δ(D) > 1
2n then we have that

δ(D) > 9
16n and Corollary 2 implies Corollary 3.
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[4] V. Chvátal, On Hamilton’s ideals, J. Comb. Th. B 12 (1972), 163-168.

[5] Dirac G.A., Some theorems on abstract graphs, Proc. London Math. Soc. 2
(1952), 69-81.

13



[6] A. Ghouila-Houri, Une condition suffisante d’existence d’un circuit Hamiltonien,
C.R. Acad. Sci. Paris 156 (1960) 495-497.

[7] D.D. Grant, Anti-directed Hamilton cycles in digraphs, Ars Combinatoria 10
(1980) 205-209.
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