A sufficient condition for the existence of an anti-directed 2-factor in a directed graph

Ajit A. Diwan
Department of Computer Science and Engineering
Indian Institute of Technology
Mumbai, India
Josh B. Frye
Department of Mathematics
Illinois State University
Normal, IL 61790-4520
Email: jbfrye@ilstu.edu
Michael J. Plantholt
Department of Mathematics
Illinois State University
Normal, IL 61790-4520
E-mail: mikep@ilstu.edu
Shailesh K. Tipnis
Department of Mathematics
Illinois State University
Normal, IL 61790-4520
Email: tipnis@ilstu.edu

December 7, 2010

Abstract

Let D be a directed graph with vertex set V and order n. An anti-directed (hamiltonian) cycle H in D is a (hamiltonian) cycle in the graph underlying D such that no pair of consecutive arcs in H form a directed path in D. An antidirected 2-factor in D is a vertex-disjoint collection of anti-directed cycles in D

that span V. It was proved in [3] that if the indegree and the outdegree of each vertex of D is greater than $\frac{9}{16} n$ then D contains an anti-directed hamiltonian cycle. In this paper we prove that given a directed graph D, the problem of determining whether D has an anti-directed 2 -factor is NP-complete, and we use a proof technique similar to the one used in [3] to prove that if the indegree and the outdegree of each vertex of D is greater than $\frac{25}{48} n$ then D contains an anti-directed 2 -factor.

1 Introduction

Let G be a multigraph with vertex set $V(G)$ and edge set $E(G)$. For a vertex $v \in V(G)$, the degree of v in G, denoted by $\operatorname{deg}(v, G)$ is the number of edges of G incident on v. Let $\delta(G)=\min _{v \in V(G)}\{\operatorname{deg}(v, G)\}$. The simple graph underlying G denoted by $\operatorname{simp}(G)$ is the graph obtained from G by replacing all multiple edges by single edges. A 2-factor in G is a collection of vertex-disjoint cycles that span $V(G)$. Let D be a directed graph with vertex set $V(D)$ and arc set $A(D)$. For a vertex $v \in V(D)$, the outdegree (respectively, indegree) of v in D denoted by $d^{+}(v, D)$ (respectively, $d^{-}(v, D)$) is the number of arcs of D directed out of v (respectively, directed into v). Let $\delta(D)=\min _{v \in V(D)}\left\{\min \left\{d^{+}(v, D), d^{-}(v, D)\right\}\right\}$. The multigraph underlying D is the multigraph obtained from D by ignoring the directions of the arcs of D. A directed (Hamilton) cycle C in D is a (Hamilton) cycle in the multigraph underlying D such that all pairs of consecutive arcs in C form a directed path in D. An anti-directed (Hamilton) cycle C in D is a (Hamilton) cycle in the multigraph underlying D such that no pair of consecutive arcs in C form a directed path in D. A directed 2-factor in D is a collection of vertex-disjoint directed cycles in D that span $V(D)$. An anti-directed 2-factor in D is a collection of vertex-disjoint anti-directed cycles in D that span $V(D)$. Note that every anti-directed cycle in D must have an even number of vertices. We refer the reader to ($[1,7]$) for all terminology and notation that is not defined in this paper.

The following classical theorems by Dirac (5] and Ghouila-Houri [6] give sufficient conditions for the existence of a Hamilton cycle in a graph G and for the existence of a directed Hamilton cycle in a directed graph D respectively.

Theorem 1 [5] If G is a graph of order $n \geq 3$ and $\delta(G) \geq \frac{n}{2}$, then G contains a Hamilton cycle.

Theorem 2 [6] If D is a directed graph of order n and $\delta(D) \geq \frac{n}{2}$, then D contains a directed Hamilton cycle.

Note that if D is a directed graph of even order n and $\delta(D) \geq \frac{3}{4} n$ then D contains an anti-directed Hamilton cycle. To see this, let G be the multigraph underlying D and let G^{\prime} be the subgraph of G consisting of the parallel edges of G. Now, $\delta(D) \geq \frac{3}{4} n$ implies that $\delta\left(\operatorname{simp}\left(G^{\prime}\right)\right) \geq \frac{n}{2}$ and hence Theorem 1 implies that $\operatorname{simp}\left(G^{\prime}\right)$ contains a Hamilton cycle which in turn implies that D contains an anti-directed Hamilton cycle.

The following theorem by Grant [7] gives a sufficient condition for the existence of an anti-directed Hamilton cycle in a directed graph D.

Theorem 3 [7] If D is a directed graph with even order n and if $\delta(D) \geq \frac{2}{3} n+$ $\sqrt{n \log (n)}$ then D contains an anti-directed Hamilton cycle.
In his paper Grant [7] conjectured that the theorem above can be strengthened to assert that if D is a directed graph with even order n and if $\delta(D) \geq \frac{1}{2} n$ then D contains an anti-directed Hamilton cycle. Mao-cheng Cai [11] gave a counterexample to this conjecture. In [3] the following sufficient condition for the existence of an anti-directed Hamilton cycle in a directed graph was proved.

Theorem 4 [3] Let D be a directed graph of even order n and suppose that $\frac{1}{2}<p<$ $\frac{3}{4}$. If $\delta(D) \geq p n$ and $n>\frac{\ln (4)}{\left(p-\frac{1}{2}\right) \ln \left(\frac{p+\frac{1}{2}}{\frac{3}{2}-p}\right)}$, then D contains an anti-directed Hamilton cycle.

It was shown in [3] that Theorem 4 implies the following corollary that is an improvement on the result in Theorem 3.

Corollary 1 [3 If D is a directed graph of even order n and $\delta(D)>\frac{9}{16} n$ then D contains an anti-directed Hamilton cycle.

The following theorem (see [1) gives a necessary and sufficient condition for the existence of a directed 2 -factor in a digraph D.

Theorem $5 A$ directed graph $D=(V, A)$ has a directed 2-factor if and only if $\left|\bigcup_{v \in X} N^{+}(v)\right| \geq|X|$ for all $X \subseteq V$.
We note here that given a directed graph D the problem of determining whether D has a directed Hamilton cycle is known to be NP-complete, whereas, there exists an $\mathrm{O}(\sqrt{n} m)$ algorithm (see [1]) to check if a directed graph D of order n and size m has a directed 2 -factor. On the other hand, the following theorem proves that given a directed graph D, the problem of determining whether D has a directed 2-factor is NP-complete. We are indebted to Sundar Vishwanath for pointing out the short proof of Theorem 6 given below.

Theorem 6 [14] Given a directed graph D, the problem of determining whether D has an anti-directed 2-factor. is NP-complete.

Proof. Clearly the the problem of determining whether D has an anti-directed 2 -factor is in NP. A graph G is said to be k-edge colorable if the edges of G can be colored with k colors in such a way that no two adjacent edges receive the same color. It is well known that given a cubic graph G, it is NP-complete to determine if G is 3-edge colorable. Now, given a cubic graph $G=(V, E)$, construct a directed graph $D=(V, A)$, where for each $\{u, v\} \in E$, we have the oppositely directed arcs (u, v) and (v, u) in A. It is clear that G is 3 -edge colorable if and only if D contains an anti-directed 2 -factor. This proves that the the problem of determining whether a directed graph D has an anti-directed 2-factor is NP-complete.

In Section 1 of this paper we prove the following theorem that gives a sufficient condition for the existence of an anti-directed 2 -factor in a directed graph.

Theorem 7 Let D be a directed graph of even order n and suppose that $\frac{1}{2}<p<\frac{3}{4}$. If $\delta(D) \geq p n$ and $n>\frac{\ln (4)}{\left(p-\frac{1}{2}\right) \ln \left(\frac{p+\frac{1}{2}}{\frac{3}{2}-p}\right)}(? ?)$, then D contains an anti-directed 2 -factor.
In Section 1 we will show that Theorem 7 implies the following corollary.
Corollary 2 [3] If D is a directed graph of even order n and $\delta(D)>\frac{25}{48} n$ then D contains an anti-directed 2-factor.

2 Proof of Theorem 7 and its Corollary

A partition of a set S with $|S|$ being even into $S=X \cup Y$ is an equipartition of S if $|X|=|Y|=\frac{|S|}{2}$. The proof of Theorem 4 mentioned in the introduction made extensive use of the following theorem by Chvátal [4].

Theorem 8 [4] Let G be a bipartite graph of even order n and with equipartition $V(G)=X \cup Y$. Let $\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ be the degree sequence of G with $d_{1} \leq d_{2} \leq$ $\ldots \leq d_{n}$. If G does not contain a Hamilton cycle, then for some $i \leq \frac{n}{4}$ we have that $d_{i} \leq i$ and $d_{\frac{n}{2}} \leq \frac{n}{2}-i$.
We prepare for the proof of Theorem 7 by proving Theorems 10 and 11 which give necessary degree conditions (similar to those in Theorem 8) for the non-existence of a 2-factor in a bipartite graph G of even order n with equipartition $V(G)=X \cup Y$. Let $G=(V, E)$ be a bipartite graph of even order n and with equipartition $V(G)=$
$X \cup Y$. For $U \subseteq X$ (respectively $U \subseteq Y$) define $N^{(2)}(U)$ as being the multiset of vertices $v \in Y$ (respectively $v \in X$) such that $(u, v) \in E$ for some $u \in U$ and with v appearing twice in $N^{(2)}(U)$ if there are two or more vertices $u \in U$ with $(u, v) \in E$ and v appearing once in $N^{(2)}(U)$ if there is exactly one $u \in U$ with $(u, v) \in E$. We will use the following theorem by Ore [12] that gives a necessary and sufficient condition for the non-existence of a 2 -factor in a bipartite graph of even order n with equipartition $V(G)=X \cup Y$.

Theorem 9 Let $G=(V, E)$ be a bipartite graph of even order n and with equipartition $V(G)=X \cup Y . G$ contains no 2-factor if and only if there exists some $U \subseteq X$ such that $\left|N^{(2)}(U)\right|<2|U|$.

For a bipartite graph $G=(V, E)$ of even order n and with equipartition $V(G)=$ $X \cup Y$, a set $U \subseteq X$ or $U \subseteq Y$ is defined to be a deficient set of vertices in G if $\left|N^{(2)}(U)\right|<2|U|$.

We now prove four Lemmas that will be used in the proof of Theorems 10 and 11.

Lemma 1 Let G be a bipartite graph of even order n and with equipartition $V(G)=$ $X \cup Y$. If U is a minimal deficient set of vertices in G then $2|U|-2 \leq\left|N^{(2)}(U)\right|$.

Proof. Clear by the minimality of U.
Lemma 2 Let G be a bipartite graph of even order n and with equipartition $V(G)=$ $X \cup Y$, and let U be a minimal deficient set of vertices in G. Let $M \subseteq N(U)$ be the set of vertices in $N(U)$ that are adjacent to exactly one vertex in U. Then, no vertex of U is adjacent to more than one vertex of M.

Proof. If a vertex $u \in U$ is adjacent to two vertices of M, since U is a deficient set of vertices in G, we have that $\left|N^{(2)}(U-u)\right| \leq\left|N^{(2)}(U)\right|-2<2|U|-2=2|U-u|$. This implies that $U-u$ is a deficient set of vertices in G, which in turn contradicts the minimality of U.

Lemma 3 Let G be a bipartite graph of even order n and with equipartition $V(G)=$ $X \cup Y$, and suppose that G does not contain a 2-factor. If U is a minimal deficient set in G with $|U|=k$, then $\operatorname{deg}(u) \leq k$ for each $u \in U$ and $\mid\{u \in U: \operatorname{deg}(u) \leq$ $k-1\} \mid \geq k-1$.

Proof. Suppose that $\operatorname{deg}(u) \geq k+1$ for some $u \in U$ and let $M \subseteq N(U)$ be the set of vertices in $N(U)$ that are adjacent to exactly one vertex in U. Then Lemma 2 implies
that u is adjacent to at most one vertex in M which implies that u is adjacent to at least k vertices in $N(U)-M$. This implies that $\left|N^{(2)}(U)\right| \geq 2 k$, which contradicts the assumption that U is a deficient set. This proves that $\operatorname{deg}(u) \leq k$ for each $u \in U$. If two vertices in U have degree k then similarly Lemma 2 implies that $\left|N^{(2)}(U)\right| \geq 2 k$, which contradicts the assumption that U is a deficient set. This proves the second part of the Lemma.

Lemma 4 Let $G=(V, E)$ be a bipartite graph of even order n and with equipartition $V(G)=X \cup Y$ and suppose that $U \subseteq X$ is a minimal deficient set in G. Let $Y_{0}=\{v \in Y: v \notin N(U)\}, Y_{1}=\{v \in Y:|U \cap N(v)|=1\}$, and $Y_{2}=\{v \in Y:$ $|U \cap N(v)| \geq 2\}$. Let $U^{*}=Y_{0} \cup Y_{1}$. Then U^{*} is a deficient set in G.

Proof. Let $X_{0}=X-U, X_{1}=\left\{u \in U:(u, v) \in E\right.$ for some $\left.v \in Y_{1}\right\}$, and $X_{2}=$ $U-X_{1}$. Note that $|X|=|Y|$ implies that $\left|X_{0}\right|+\left|X_{1}\right|+\left|X_{2}\right|=\left|Y_{0}\right|+\left|Y_{1}\right|+\left|Y_{2}\right|$. Now, since by Lemma 2 we have that $\left|X_{1}\right|=\left|Y_{1}\right|$, this implies that $\left|X_{0}\right|+\left|X_{2}\right|=\left|Y_{0}\right|+\left|Y_{2}\right|$. Since U is a deficient set we have that $\left|N^{(2)}(U)\right|=\left|Y_{0}\right|+2\left|Y_{2}\right|<2|U|=2\left(\left|X_{1}\right|+\left|X_{2}\right|\right.$. Hence, $\left|Y_{1}\right|+2\left(\left|X_{0}\right|+\left|X_{2}\right|-\left|Y_{0}\right|\right)<2\left(\left|X_{1}\right|+\left|X_{2}\right|\right)$, which in turn implies that $2\left|X_{0}\right|+\left|X_{1}\right|<2\left(\left|Y_{0}\right|+\left|Y_{1}\right|\right)$. This proves that U^{*} is a deficient set in G.

We are now ready to prove two theorems which give necessary degree conditions (similar to those in Theorem 8) for the non-existence of a 2-factor in a bipartite graph G of even order n with equipartition $V(G)=X \cup Y$.

Theorem 10 Let G be a bipartite graph of even order $n=4 s \geq 12$ and with equipartition $V(G)=X \cup Y$. Let $\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ be the degree sequence of G with $d_{1} \leq d_{2} \leq \ldots \leq d_{n}$. If G does not contain a 2 -factor, then either
(1) for some $k \leq \frac{n}{4}$ we have that $d_{k} \leq k$ and $d_{k-1} \leq k-1$, or,
(2) $d_{\frac{n}{4}-1} \leq \frac{n}{4}-1$.

Proof. We will prove that for some $k \leq \frac{n}{4}, G$ contains k vertices with degree at most k, and that of these k vertices, $(k-1)$ vertices have degree at most $(k-1)$, or, that G contains at least $\frac{n}{4}-1$ vertices of degree at most $\frac{n}{4}-1$.
Since G does not contain a 2 -factor, Theorem 9 implies that G contains a deficient set of vertices. Let $U \subseteq X$ be a minimal deficient set of vertices in G. If $|U| \leq \frac{n}{4}$, then Lemma 3 implies that statement (1) is true and the result holds.
Now suppose that $|U|>\frac{n}{4}$. As in the statement of Lemma 4, let $Y_{0}=\{v \in Y: v \notin$ $N(U)\}, Y_{1}=\{v \in Y:|U \cap N(v)|=1\}$, and $Y_{2}=\{v \in Y:|U \cap N(v)| \geq 2\}$. Let $U^{*}=Y_{0} \cup Y_{1}$. Then Lemma 4 implies that U^{*} is a deficient set in G. If $\left|U^{*}\right| \leq \frac{n}{4}$
then again statement (1) is true and the result holds.
Now suppose that $\left|U^{*}\right|>\frac{n}{4}$, and as in the proof of Lemma 4, let $X_{0}=X-$ $U, X_{1}=\left\{u \in U:(u, v) \in E\right.$ for some $\left.v \in Y_{1}\right\}$, and $X_{2}=U-X_{1}$. We have that $\operatorname{deg}(u) \leq 1+\left|Y_{2}\right|$ for each $u \in U$, and hence we may assume that $\left|Y_{2}\right| \geq \frac{n}{4}-1$, else the result holds. Similarly, since $\operatorname{deg}(u) \leq 1+\left|X_{0}\right|$ for each $u \in U^{*}$, we may assume that $\left|X_{0}\right| \geq \frac{n}{4}-1$. Note that $|U|>\frac{n}{4}$ and $\left|X_{0}\right| \geq \frac{n}{4}-1$ implies that $|U|=\frac{n}{4}+1$, and that $\left|U^{*}\right|>\frac{n}{4}$ and $\left|Y_{2}\right| \geq \frac{n}{4}-1$ implies that $\left|U^{*}\right|=\frac{n}{4}+1$. Now, since U is a minimal deficient set of vertices in G, Lemma 1 implies that $\left|X_{1}\right|=2$ or $X_{1}=3$. If $\left|X_{1}\right|=2$ then at least $\frac{n}{4}-1$ of the vertices in U must have degree at most $\frac{n}{4}-1$, and statement (2) of the theorem is true. Finally, if $\left|X_{1}\right|=3$ then at least $\frac{n}{2}-4$ (and hence at least $\frac{n}{4}-1$ because $n \geq 12$) of the vertices in each of U and U^{*} must have degree at most $\frac{n}{4}-1$, and statement (2) of the theorem is true.

Theorem 11 Let G be a bipartite graph of even order $n=4 s+2 \geq 14$ and with equipartition $V(G)=X \cup Y$. Let $\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ be the degree sequence of G with $d_{1} \leq d_{2} \leq \ldots \leq d_{n}$. If G does not contain a 2-factor, then either
(1) for some $k \leq \frac{(n-2)}{4}$ we have that $d_{k} \leq k$ and $d_{k-1} \leq k-1$, or,
(2) $d_{\frac{(n-2)}{2}} \leq \frac{(n-2)}{4}$.

Proof. We will prove that for some $k \leq \frac{n}{4}, G$ contains k vertices with degree at most k, and that of these k vertices, $(k-1)$ vertices have degree at most $(k-1)$, or, that G contains at least $\frac{(n-2)}{2}$ vertices of degree at most $\frac{(n-2)}{4}$.
Since G does not contain a 2-factor, Theorem 9 implies that G contains a deficient set of vertices. Without loss of generality let $U \subseteq X$ be a minimum cardinality deficient set of vertices in G. If $|U| \leq \frac{(n-2)}{4}$, then Lemma 3 implies that statement (1) is true and the result holds.

Now suppose that $|U|>\frac{(n-2)}{4}$. As in the statement of Lemma 4, let $Y_{0}=\{v \in Y$: $v \notin N(U)\}, Y_{1}=\{v \in Y:|U \cap N(v)|=1\}$, and $Y_{2}=\{v \in Y:|U \cap N(v)| \geq 2\}$. Let $U^{*}=Y_{0} \cup Y_{1}$. Then Lemma 4 implies that U^{*} is a deficient set in G. Since U is a minimum cardinality deficient set of vertices in G, we have that $\left|U^{*}\right| \geq|U|>\frac{(n-2)}{4}$. Now, as in the proof of Lemma 4, let $X_{0}=X-U, X_{1}=\{u \in U:(u, v) \in$ E for some $\left.v \in Y_{1}\right\}$, and $X_{2}=U-X_{1}$. We have that $\operatorname{deg}(u) \leq 1+\left|Y_{2}\right|$ for each $u \in$ U, and hence we may assume that $\left|Y_{2}\right| \geq \frac{(n-2)}{4}-1$, else the result holds. Similarly, since $\operatorname{deg}(u) \leq 1+\left|X_{0}\right|$ for each $u \in U^{*}$, we may assume that $\left|X_{0}\right| \geq \frac{(n-2)}{4}-1$. Note that $|U|>\frac{(n-2)}{4}$ and $\left|X_{0}\right| \geq \frac{(n-2)}{4}-1$ implies that $\frac{(n-2)}{4}+1 \leq|U| \leq \frac{(n-2)}{4}+2$. We now examine the two cases: $|U|=\frac{(n-2)}{4}+1$ and $|U|=\frac{(n-2)}{4}+2$.
(1) $|U|=\frac{(n-2)}{4}+1$. In this case we must have that $\left|X_{0}\right|=\frac{(n-2)}{4}$. Note that $\left|X_{1}\right| \leq 3$ because if $\left|X_{1}\right| \geq 4$ then since U is a minimal deficient set of vertices, we would have that $\left|Y_{2}\right| \leq \frac{(n-2)}{4}-2$, a contradiction to the assumption at this point that $\left|Y_{2}\right| \geq \frac{(n-2)}{4}-1$. We now examine the following four subcases separately.
(1)a $\left|X_{1}\right|=0$. In this case we have that $\left|Y_{1}\right|=0$ and $\left|X_{2}\right|=\frac{(n-2)}{4}+1$. Since U is a minimal deficient set of vertices, Lemma 1 implies that $\left|Y_{2}\right|=\frac{(n-2)}{4}$ and $\left|Y_{0}\right|=\frac{(n-2)}{4}+1$. Thus, $X_{2} \cup Y_{0}$ is a set of $\frac{n}{2}+1$ vertices of degree at most $\frac{(n-2)}{4}$ which meets the requirement of the theorem..
(1)b $\left|X_{1}\right|=1$. In this case we have that $\left|Y_{1}\right|=1$ and $\left|X_{2}\right|=\frac{(n-2)}{4}$. Since U is a minimal deficient set of vertices, Lemma 1 implies that $\left|Y_{2}\right|=\frac{(n-2)}{4}$ and $\left|Y_{0}\right|=\frac{(n-2)}{4}$. Thus, $X_{2} \cup Y_{0}$ is a set of $\frac{n}{2}+1$ vertices of degree at most $\frac{(n-2)}{4}$ each as required by the theorem.
(1)c $\left|X_{1}\right|=2$. In this case we have that $\left|Y_{1}\right|=2$ and $\left|X_{2}\right|=\frac{(n-2)}{4}-1$. Since U is a minimal deficient set of vertices, Lemma 1 implies that $\left|Y_{2}\right|=\frac{(n-2)}{4}-1$ and $\left|Y_{0}\right|=\frac{(n-2)}{4}$. Thus, $X_{2} \cup X_{1} \cup Y_{0}$ is a set of $\frac{n}{2}$ vertices of degree at most $\frac{(n-2)}{4}$ which meets the requirement of the theorem.
(1)d $\left|X_{1}\right|=3$. In this case we have that $\left|Y_{1}\right|=3$ and $\left|X_{2}\right|=\frac{(n-2)}{4}-2$. Since U is a minimal deficient set of vertices, Lemma 1 implies that $\left|Y_{2}\right|=\frac{(n-2)}{4}-1$ and $\left|Y_{0}\right|=\frac{(n-2)}{4}-1$. Thus, $X_{2} \cup X_{1} \cup Y_{0}$ is a set of $\frac{n}{2}-1$ vertices of degree at most $\frac{(n-2)}{4}$ as required by the theorem.
(2) $|U|=\frac{(n-2)}{4}+2$. In this case we have that $\left|X_{0}\right|=\frac{(n-2)}{4}-1$. Since U is a minimum cardinality deficient set of vertices, we also have that $\left|U^{*}\right|=|U|=$ $\frac{(n-2)}{4}+2$. Hence we now have that $\left|Y_{2}\right|=\left|X_{0}\right|=\frac{(n-2)}{4}-1$. Thus, $U \cup U^{*}$ is a set of $\frac{n}{2}+3$ vertices of degree at most $\frac{(n-2)}{4}$ which meets the requirement of the theorem.

Lemma 5 Let x, y, r be positive numbers such that $x \geq y$ and $r<y$. Then $\frac{(x+r)(x-r)}{(y+r)(y-r)} \geq\left(\frac{x}{y}\right)^{2}$.
Proof. $y^{2}\left(x^{2}-r^{2}\right) \geq\left(y^{2}-r^{2}\right) x^{2}$, so the result follows.

Proof of Theorem 7. For an equipartition of $V(D)$ into $V(D)=X \cup Y$, let $B(X \rightarrow Y)$ be the bipartite directed graph with vertex set $V(D)$, equipartition $V(D)=X \cup Y$, and with $(x, y) \in A(B(X \rightarrow Y))$ if and only if $x \in X, y \in Y$, and, $(x, y) \in A(D)$. Let $B(X, Y)$ denote the bipartite graph underlying $B(X \rightarrow Y)$. It is clear that $B(X, Y)$ contains a Hamilton cycle if and only if $B(X \rightarrow Y)$ contains an anti-directed Hamilton cycle. We will prove that there exists an equipartition of $V(D)$ into $V(D)=X \cup Y$ such that $B(X, Y)$ contains a Hamilton cycle.

In the argument below, we make the simplifying assumption that $d^{+}(v)=$ $d^{-}(v)=\delta(D)$ for each $v \in V(D)$. It is straightforward (see the remark at the end of the proof) to see that the argument extends to the case in which some indegrees or outdegrees are greater than $\delta(D)$.
Let $v \in V(D)$. Let n_{k} denote the number of equipartitions of $V(D)$ into $V(D)=$ $X \cup Y$ for which $\operatorname{deg}(v, B(X, Y))=k$. Since $v \in X$ or $v \in Y$ and since $d^{+}(v)=$ $d^{-}(v)=\delta(D)$, we have that $n_{k}=2\binom{\delta}{k}\binom{n-\delta-1}{\frac{n}{2}-k}$. Note that if $k>\frac{n}{2}$ or if $k<\delta-\frac{n}{2}+1$ then $n_{k}=0$. Thus the total number of equipartitions of $V(D)$ into $V(D)=X \cup Y$ is

$$
\begin{equation*}
T=\sum_{k=\delta-\frac{n}{2}+1}^{\frac{n}{2}} n_{k}=\sum_{k=\delta-\frac{n}{2}+1}^{\frac{n}{2}} 2\binom{\delta}{k}\binom{n-\delta-1}{\frac{n}{2}-k}=\binom{n}{\frac{n}{2}} . \tag{1}
\end{equation*}
$$

Denote by $N=\binom{n}{\frac{n}{2}}$ the total number of equipartitions of $V(D)$. For a particular equipartition of $V(D)$ into $V(D)=X_{i} \cup Y_{i}$, let $\left(d_{1}^{(i)}, d_{2}^{(i)}, \ldots, d_{n}^{(i)}\right)$ be the degree sequence of $B\left(X_{i}, Y_{i}\right)$ with $d_{1}^{(i)} \leq d_{2}^{(i)} \leq \ldots \leq d_{n}^{(i)}, i=1,2, \ldots, N$, and, let $P_{i}=\{j$: $\left.d_{j}^{i} \leq \frac{n}{4}\right\}$. If $B\left(X_{i}, Y_{i}\right)$ does not contain a Hamilton cycle then Theorem 8 implies that there exists $k \leq \frac{n}{4}$ such that $d_{k}^{i} \leq k$ and hence, $\left|\left\{d_{j}^{i}: d_{j}^{i} \leq k, j=1,2, \ldots, n\right\}\right| \geq k$. This in turn implies that $\sum_{j \in P_{i}} \frac{1}{d_{j}^{\imath}} \geq 1$. Hence, the number of equipartitions of $V(D)$ into $V(D)=X \cup Y$ for which $B(X, Y)$ does not contain a Hamilton cycle is at most

$$
\begin{equation*}
S=n\left(\frac{n_{2}}{2}+\frac{n_{3}}{3}+\ldots+\frac{n_{\left\lfloor\frac{n}{4}\right\rfloor}}{\left\lfloor\frac{n}{4}\right\rfloor}\right) \tag{2}
\end{equation*}
$$

Thus, to show that there exists an equipartition of $V(D)$ into $V(D)=X \cup Y$ such that $B(X, Y)$ contains a Hamilton cycle, it suffices to show that $T>S$, i.e.,

$$
\begin{equation*}
\sum_{k=\delta-\frac{n}{2}+1}^{\frac{n}{2}} 2\binom{\delta}{k}\binom{n-\delta-1}{\frac{n}{2}-k}>n \sum_{k=2}^{\left\lfloor\frac{n}{4}\right\rfloor} \frac{2\binom{\delta}{k}\binom{n-\delta-1}{\frac{n}{2}-k}}{k} \tag{3}
\end{equation*}
$$

We break the proof of (3) into three cases.
Case 1: $n=4 m$ and $\delta=2 d$ for some positive integers m and d.

For $i=0,1, \ldots, \frac{n}{4}-2$, let $A_{i}=n_{(d+i)}=2\binom{\delta}{d+i}\binom{n-\delta-1}{2 m-d-i}$, and let $B_{i}=n_{\left(\frac{n}{4}-i\right)}=$ $2\binom{\delta}{m-i}\binom{n-\delta-1}{m+i}$. Clearly, (3) is satisfied if we can show that

$$
\begin{equation*}
A_{i}>\frac{n B_{i}}{\frac{n}{4}-i}, \text { for each } i=0,1, \ldots, \frac{n}{4}-2 \tag{4}
\end{equation*}
$$

We prove (4) by recursion on i. We first show that $A_{0}>\frac{n B_{0}}{\frac{n}{4}}$, i.e. $n_{\frac{\delta}{2}}>n\left(\frac{n \frac{n}{4}}{\frac{\pi}{4}}\right)=$ $4 n_{\frac{n}{4}}$. Let $\delta=\frac{n}{2}+s$. We have that

$$
\begin{aligned}
\frac{A_{0}}{B_{0}} & =\frac{\left(\frac{n}{4}\right)!\left(\delta-\frac{n}{4}\right)!\left(\frac{n}{4}\right)!\left(\frac{3 n}{4}-\delta-1\right)!}{\frac{\delta}{2}!\frac{\delta}{2}!\left(\frac{n}{2}-\frac{\delta}{2}\right)!\left(\frac{n}{2}-\frac{\delta}{2}-1\right)!} \\
& =\frac{\left(\frac{n}{4}\right)!\left(\frac{n}{4}+s\right)!\left(\frac{n}{4}\right)!\left(\frac{n}{4}-s-1\right)!}{\left(\frac{n}{4}+\frac{s}{2}\right)!\left(\frac{n}{4}+\frac{s}{2}\right)!\left(\frac{n}{4}-\frac{s}{2}\right)!\left(\frac{n}{4}-\frac{s}{2}-1\right)!} \\
& =\frac{\left(\frac{n}{4}+s\right)\left(\frac{n}{4}+s-1\right) \ldots\left(\frac{n}{4}+\frac{s}{2}+1\right)\left(\frac{n}{4}\right)\left(\frac{n}{4}-1\right) \ldots\left(\frac{n}{4}-\frac{s}{2}+1\right)}{\left(\frac{n}{4}+1\right)\left(\frac{n}{4}+2\right) \ldots\left(\frac{n}{4}+\frac{s}{2}\right)\left(\frac{n}{4}-\frac{s}{2}-1\right)\left(\frac{n}{4}-\frac{s}{2}-2\right) \ldots\left(\frac{n}{4}-s\right)}
\end{aligned}
$$

Now, applications of Lemma 1 give

$$
\begin{align*}
\frac{A_{0}}{B_{0}} & \geq \frac{\left(\frac{n}{4}+\frac{3 s}{4}+\frac{1}{2}\right)^{\frac{s}{2}}}{\left(\frac{n}{4}+\frac{s}{4}+\frac{1}{2}\right)^{\frac{s}{2}}} \frac{\left(\frac{n}{4}-\frac{s}{4}+\frac{1}{2}\right)^{\frac{s}{2}}}{\left(\frac{n}{4}-\frac{3 s}{4}-\frac{1}{2}\right)^{\frac{s}{2}}} \\
& \geq \frac{\left(\frac{n}{4}+\frac{s}{4}+\frac{1}{2}\right)^{s}}{\left(\frac{n}{4}-\frac{s}{4}\right)^{s}} \tag{5}
\end{align*}
$$

Since $\delta \geq p n$, we have that $s=\delta-\frac{n}{2} \geq\left(p-\frac{1}{2}\right) n$. Thus, (5) gives

$$
\begin{equation*}
\frac{A_{0}}{B_{0}} \geq\left(\frac{\frac{n}{4}+\frac{\left(p-\frac{1}{2}\right) n}{4}}{\frac{n}{4}-\frac{\left(p-\frac{1}{2}\right) n}{4}}\right)^{\left(p-\frac{1}{2}\right) n}=\left(\frac{p+\frac{1}{2}}{\frac{3}{2}-p}\right)^{\left(p-\frac{1}{2}\right) n} \tag{6}
\end{equation*}
$$

Because $n>\frac{\ln (4)}{\left(p-\frac{1}{2}\right) \ln \left(\frac{p+\frac{1}{2}}{\frac{3}{2}-p}\right)}$, (6) implies that $\frac{A_{0}}{B_{0}}>4$, thus proving (4) for $i=0$.
We now turn to the recursive step in proving (4) and assume that $A_{k}>\frac{n B_{k}}{\frac{n}{4}-k}$, for $0<$ $k<\frac{n}{4}-2$. We will show that

$$
\begin{equation*}
\frac{A_{k+1}}{A_{k}} \geq\left(\frac{\frac{n}{4}-k}{\frac{n}{4}-k-1}\right) \frac{B_{k+1}}{B_{k}} \tag{7}
\end{equation*}
$$

This will suffice because (7) together with the recursive hypothesis implies that $A_{k+1} \geq\left(\frac{\frac{n}{4}-k}{\frac{n}{4}-k-1}\right) \frac{A_{k}}{B_{k}} B_{k+1}>\left(\frac{\frac{n}{4}-k}{\frac{n}{4}-k-1}\right) \frac{n}{\frac{n}{4}-k} B_{k+1}=\frac{n}{\frac{n}{4}-k-1} B_{k+1}$. We have that

$$
\begin{gathered}
\left.\frac{A_{k+1}}{A_{k}}=\frac{\binom{\delta}{\frac{\delta}{2}+k+1}\binom{n-\delta-1}{\frac{n}{2}-\frac{\delta}{2}-k-1}}{\left(\frac{\delta}{2}+k\right.}\right)\binom{n-\delta-1}{\frac{n}{2}-\frac{\delta}{2}-k}
\end{gathered}=\frac{\left(\frac{\delta}{2}-k\right)\left(\frac{n}{2}-\frac{\delta}{2}-k\right)}{\left(\frac{\delta}{2}+k+1\right)\left(\frac{n}{2}-\frac{\delta}{2}+k\right)}, ~=\frac{\left(\frac{n}{4}-k\right)\left(\frac{3 n}{4}-\delta-k-1\right)}{\left(\delta-\frac{n}{4}+k+1\right)\left(\frac{n}{4}+k+1\right) .} .
$$

Hence, letting $\delta=\frac{n}{2}+s$, we have that

$$
\begin{align*}
\frac{\left(\frac{A_{k+1}}{A_{k}}\right)}{\left(\frac{B_{k+1}}{B_{k}}\right)} & =\frac{\left(\frac{\delta}{2}-k\right)\left(\frac{n}{2}-\frac{\delta}{2}-k\right)\left(\delta-\frac{n}{4}+k+1\right)\left(\frac{n}{4}+k+1\right)}{\left(\frac{n}{4}-k\right)\left(\frac{3 n}{4}-\delta-k-1\right)\left(\frac{\delta}{2}+k+1\right)\left(\frac{n}{2}-\frac{\delta}{2}+k\right)} \\
& =\frac{\left(\frac{n}{4}+\frac{s}{2}-k\right)\left(\frac{n}{4}-\frac{s}{2}-k\right)\left(\frac{n}{4}+s+k+1\right)\left(\frac{n}{4}+k+1\right)}{\left(\frac{n}{4}-k\right)\left(\frac{n}{4}-s-k-1\right)\left(\frac{n}{4}+\frac{s}{2}+k+1\right)\left(\frac{n}{4}-\frac{s}{2}+k\right)} \tag{8}
\end{align*}
$$

Note that in equation (8) we have, $\frac{\left(\frac{n}{4}+\frac{s}{2}-k\right)}{\left(\frac{n}{4}-k\right)}>1, \frac{\left(\frac{n}{4}+s+k+1\right)}{\left(\frac{n}{4}+\frac{s}{2}+k+1\right)}>1, \frac{\left(\frac{n}{4}+k+1\right)}{\left(\frac{n}{4}-\frac{s}{2}+k\right)}>1$, and in addition because $k<\frac{n}{4}$, it is easy to verify that $\frac{\left(\frac{n}{4}-\frac{s}{2}-k\right)}{\left(\frac{n}{4}-s-k-1\right)}>\frac{\left(\frac{n}{4}-k\right)}{\left(\frac{n}{4}-k-1\right)}$. Now (8) implies (7) which in turn proves (4). This completes the proof of Case 1.

Case 2: $n=4 m$ and $\delta=2 j+1$ for some positive integers m and j.
For $i=0,1, \ldots, \frac{n}{4}-2$, let $A_{i}=n_{(j+i)}=2\binom{\delta}{j+i}\binom{n-\delta-1}{2 m-j-i}$, and as in Case 1, let $B_{i}=n_{\left(\frac{n}{4}-i\right)}=2\binom{\delta-i}{m-i}\binom{n-\delta-1}{m+i}$. As in Case 1 , we prove by recursion on i that inequality (4) is satisfied for A_{i} and B_{i} defined here. Towards this end, let $\delta=\frac{n}{2}+s$ where s is odd. We have that,

$$
\begin{aligned}
\frac{A_{0}}{B_{0}} & =\frac{\left(\frac{n}{4}\right)!\left(\delta-\frac{n}{4}\right)!\left(\frac{n}{4}\right)!\left(\frac{3 n}{4}-\delta-1\right)!}{j!(\delta-j)!\left(\frac{n}{2}-j\right)!\left(\frac{n}{2}-\delta+j-1\right)!} \\
& =\frac{\left(\frac{n}{4}\right)!\left(\frac{n}{4}+s\right)!\left(\frac{n}{4}\right)!\left(\frac{n}{4}-s-1\right)!}{\left(\frac{n}{4}+\frac{s}{2}-\frac{1}{2}\right)!\left(\frac{n}{4}+\frac{s}{2}+\frac{1}{2}\right)!\left(\frac{n}{4}-\frac{s}{2}+\frac{1}{2}\right)!\left(\frac{n}{4}-\frac{s}{2}-\frac{3}{2}\right)!} \\
& =\frac{\left(\frac{n}{4}+s\right)\left(\frac{n}{4}+s-1\right) \ldots\left(\frac{n}{4}+\frac{s}{2}+\frac{3}{2}\right)\left(\frac{n}{4}\right)\left(\frac{n}{4}-1\right) \ldots\left(\frac{n}{4}-\frac{s}{2}+\frac{3}{2}\right)}{\left(\frac{n}{4}+\frac{s}{2}-\frac{1}{2}\right)\left(\frac{n}{4}+\frac{s}{2}-\frac{3}{2}\right) \ldots\left(\frac{n}{4}+1\right)\left(\frac{n}{4}-\frac{s}{2}-\frac{3}{2}\right)\left(\frac{n}{4}-\frac{s}{2}-\frac{5}{2}\right) \ldots\left(\frac{n}{4}-s\right)} \\
& \geq \frac{\left(\frac{n}{4}+s\right)\left(\frac{n}{4}+s-1\right) \ldots\left(\frac{n}{4}+\frac{s}{2}+\frac{3}{2}\right)\left(\frac{n}{4}-1\right) \ldots\left(\frac{n}{4}-\frac{s}{2}+\frac{3}{2}\right)}{\left(\frac{n}{4}+\frac{s}{2}-\frac{1}{2}\right)\left(\frac{n}{4}+\frac{s}{2}-\frac{3}{2}\right) \ldots\left(\frac{n}{4}+1\right)\left(\frac{n}{4}-\frac{s}{2}-\frac{3}{2}\right) \ldots\left(\frac{n}{4}-s+1\right)} \frac{\frac{n}{4}}{\left(\frac{n}{4}-s\right)}
\end{aligned}
$$

Now, applications of Lemma 1 give

$$
\begin{aligned}
\frac{A_{0}}{B_{0}} & \geq \frac{\left(\frac{n}{4}+\frac{3 s}{4}+\frac{3}{4}\right)^{\left(\frac{s}{2}-\frac{1}{2}\right)}}{\left(\frac{n}{4}+\frac{s}{4}+\frac{1}{4}\right)^{\left(\frac{s}{2}-\frac{1}{2}\right)}} \frac{\left(\frac{n}{4}-\frac{s}{4}+\frac{1}{4}\right)^{\left(\frac{s}{2}-\frac{1}{2}\right)}}{\left(\frac{n}{4}-\frac{3 s}{4}-\frac{1}{4}\right)^{\left(\frac{s}{2}-\frac{1}{2}\right)}} \frac{\frac{n}{4}}{\left(\frac{n}{4}-s\right)} \\
& \geq \frac{\left(\frac{n}{4}+\frac{s}{4}+\frac{1}{2}\right)^{s-1}}{\left(\frac{n}{4}-\frac{s}{4}\right)^{s-1}} \frac{\frac{n}{4}}{\left(\frac{n}{4}-s\right)} \\
& \geq \frac{\left(\frac{n}{4}+\frac{s}{4}+\frac{1}{2}\right)^{s}}{\left(\frac{n}{4}-\frac{s}{4}\right)^{s}}
\end{aligned}
$$

This is exactly inequality (5) obtained in proving Case 1. The rest of the proof for Case 2 is similar to that of Case 1 and we omit it.

Case 3: $n \equiv 2 \quad(\bmod 4)$.
In this case we point out that a proof similar to that in cases 1 and 2 above verifies the result.

Remark: We argue that there was no loss of generality in our assumption at the beginning of the proof of Theorem 7 that $d^{+}(v)=d^{-}(v)=\delta(D)$ for each $v \in V(D)$. Let $D^{*}=\left(V^{*}, A\left(D^{*}\right)\right.$ be a directed graph with $d^{+}(v) \geq \delta\left(D^{*}\right)$, and $d^{-}(v) \geq \delta\left(D^{*}\right)$ for each $v \in V\left(D^{*}\right)$. Let $v \in V\left(D^{*}\right)$, and, let n_{k}^{*} denote the number of equipartitions of $V\left(D^{*}\right)$ into $V\left(D^{*}\right)=X \cup Y$ for which $\operatorname{deg}(v, B(X, Y))=k$. We can delete some arcs pointed into v and some arcs pointed out of v to get a directed graph $D=\left(V^{*}, A(D)\right)$ in which $d^{+}(v)=d^{-}(v)=\delta\left(D^{*}\right)$. Now as before let n_{k} denote the number of equipartitions of $V(D)$ into $V(D)=X \cup Y$ for which $\operatorname{deg}(v, B(X, Y))=k$. It is clear that $\sum_{k=2}^{q} n_{k} \geq \sum_{k=2}^{q} n_{k}^{*}$ for each q, and that $\sum_{k=\delta-\frac{n}{2}+1}^{\frac{n}{2}} n_{k}=\sum_{k=\delta-\frac{n}{2}+1}^{\frac{n}{2}} n_{k}{ }^{*}=$ total number of equipartitions of $V\left(D^{*}\right)$. Hence, the proof above that $T>S$ holds with n_{k} replaced by n_{k}^{*}.

We now prove the corollaries of Theorem 7 mentioned in the introduction.
Proof of Corollary 1. If $n \leq 10$ then $\delta(D)>\frac{2}{3} n$ and Theorem 6 implies that D has an anti-directed Hamilton cycle. Hence, assume that $n>10$, and for given n, let p be the unique real number such that $\frac{1}{2}<p<\frac{3}{4}$ and $n=\frac{\ln (4)}{\left(p-\frac{1}{2}\right) \ln \left(\frac{p+\frac{1}{2}}{\frac{3}{2}-p}\right)}$. The result follows from Theorem 7 if $\delta(D)>p n$ and since $\delta(D)>\frac{1}{2} n+\sqrt{n \ln (2)}$, it suffices to show that $p n \leq \frac{1}{2} n+\sqrt{n \ln (2)}$. Let $x=p-\frac{1}{2}$ and note that
$0<x<\frac{1}{4}$. Now, $p n \leq \frac{1}{2} n+\sqrt{n \ln (2)}$ if and only if $x n \leq \sqrt{n \ln (2)}$ if and only if $\sqrt{\frac{\ln (4)}{x \ln \left(\frac{1+x}{1-x}\right)}} \leq \frac{\sqrt{\ln (2)}}{x}$ if and only if $2 x \leq \ln (1+x)-\ln (1-x)$. Since $0<x<\frac{1}{4}$, we have that $\ln (1+x)-\ln (1-x)=\sum_{k=0}^{\infty} \frac{2 x^{2 k+1}}{2 k+1}$ and this completes the proof of Corollary 1.

Proof of Corollary 2. For $p=\frac{9}{16}, 177<\frac{\ln (4)}{\left(p-\frac{1}{2}\right) \ln \left(\frac{p+\frac{1}{2}}{\frac{3}{2}-p}\right)}<178$. Hence, Theorem 7 implies that the corollary is true for all $n \geq 178$. If $n<178, \delta(D)>\frac{9}{16} n$, and, $n \not \equiv 0 \quad(\bmod 4)$, we can verify that inequality (3) is satisfied by direct computation. If $n<178, \delta(D)>\frac{9}{16} n$, and, $n \equiv 0(\bmod 4)$, a use of Theorem 8 that is stronger than its use in deriving the bound S in equation (2) yields that the number of equipartitions of $V(D)$ into $V(D)=X \cup Y$ for which $B(X, Y)$ does not contain a Hamilton cycle is at most

$$
\begin{equation*}
S^{\prime}=n\left(\frac{n_{2}}{2}+\frac{n_{3}}{3}+\ldots+\frac{n_{\left\lfloor\frac{n}{4}\right\rfloor}}{2\left\lfloor\frac{n}{4}\right\rfloor}\right) \tag{9}
\end{equation*}
$$

Direct computation now verifies that $T>S^{\prime}$.
Proof of Corollary 3. If $n \leq 14$ is even and $\delta(D)>\frac{1}{2} n$ then we have that $\delta(D)>\frac{9}{16} n$ and Corollary 2 implies Corollary 3.

References

[1] Jørgen Bang-Jensen, Gregory Z. Gutin, Digraphs: Theory, Algorithms and Applications, Springer Monographs in Mathematics (2008).
[2] J.A. Bondy and U.S.R. Murty, Graph Theory, Springer, GTM 244 (2008).
[3] Arthur H. Busch, Michael S. Jacobson, Timothy Morris, Michael J. Plantholt, and Shailesh K. Tipnis, Improved sufficient conditions for the existence of antidirected Hamilton cycles in digraphs, submitted.
[4] V. Chvátal, On Hamilton's ideals, J. Comb. Th. B 12 (1972), 163-168.
[5] Dirac G.A., Some theorems on abstract graphs, Proc. London Math. Soc. 2 (1952), 69-81.
[6] A. Ghouila-Houri, Une condition suffisante d'existence d'un circuit Hamiltonien, C.R. Acad. Sci. Paris 156 (1960) 495-497.
[7] D.D. Grant, Anti-directed Hamilton cycles in digraphs, Ars Combinatoria 10 (1980) 205-209.
[8] R. Häggkvist and A. Thomason, Oriented Hamilton cycles in digraphs, J. of Graph Theory, 19, No. 4, (1995) 471-479.
[9] F. Harary, Graph Theory, Addison-Wesley, Reading, MA(1969).
[10] R. Häggkvist and A. Thomason, Oriented hamilton cycles in oriented graphs, Combinatorics, geometry and probability Cambridge University Press, Cambridge 1997, MR 1476456.
[11] Mao-cheng Cai, A counterexample to a conjecture of Grant, Discrete Mathematics 44 (1983), 111.
[12], O. Ore, Studies in directed graphs I, Ann. Math. 63 (1956), 383-406.
[13] Michael Plantholt and Shailesh Tipnis, Vertex-oriented Hamilton cycles in digraphs, submitted to Electronic Journal of Combinatorics.
[14] Sundar Vishwanath, personal communication.

