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Abstract

In this paper we investigate the regularizing behavior of two-phase
Stefan problem near initial data. The main step in the analysis is to
establish that in any given scale, the scaled solution is very close to a Lip-
schitz profile in space-time. We introduce a new decomposition argument
to generalize the preceding ones ([CJK1]-[CJK2] and [CK]) on one-phase
free boundary problems.

1 Introduction

Consider u0(x) : BR(0) → IR with R >> 1 and u0 ≥ −1, |{u0 = 0}| = 0 and
u0(x) = −1 on ∂BR(0). (See Figure 1.) The two-phase Stefan problem can be
formally written as

(ST 2)
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ut −∆u = 0 in {u > 0} ∪ {u < 0}

ut

|Du+| = |Du+| − |Du−| on ∂{u > 0}

u(·, 0) = u0

u = −1 on ∂BR(0)

where u+ and u− respectively denotes the positive and negative parts of u, i.e,

u+ := max(u, 0) and u− := −min(u, 0).

The classical Stefan problem describes the phase transition between solid/liquid
or liquid/liquid interface (see [M] and also [OPR].) In our setting, we consider a
bounded domain Ω0 ⊂ BR(0) and the initial data u0(x) such that {u0 > 0} = Ω0
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Figure 1: Initial setting of the problem

and {u0 < 0} = IRn − Ω0. To avoid complicity at the infinity, we consider the
problem in the domain Q = BR(0)× [0,∞), with Dirichlet condition

u = f(x, t) < 0 on ∂BR(0),

where f(x, t) is smooth. In (ST2) we have set f = −1 for simplicity. Since
our initial data will be only locally Hölder continuous, we employ the notion of
viscosity solutions to discuss the evolution of the problem. Viscosity solutions
for (ST2) is originally introduced by [ACS1] (also see [CS]). As for existence
and uniqueness of viscosity solutions, we refer to [KP].

Note that the second condition of (ST ) states that the normal velocity Vx,t

at each free boundary point (x, t) ∈ ∂{u > 0} is given by

Vx,t = |Du+| − |Du−|(x, t) = (Du+(x, t)−Du−(x, t)) · νx,t,

where νx,t denotes the spatial unit normal vector of ∂{u > 0} at (x, t), pointing
inward with respect to the positive phase {u > 0}.

In this paper we investigate the regularizing behavior of the free boundary
∂{u > 0}. Our main result states that when Γ0 has no sharp corner, then
the free boundary immediately regularizes after t = 0, and stays regular for a
small amount of time. Note that, in general, after some time the free boundary
may move away from its initial profile and develop singularities by topological
changes, such as merging of two boundary parts. Whether this happens with
star-shaped initial data is an open question (see Remark 3.1.)

The well-known results of [ACS1]-[ACS2] states that if a solution as well
as its free boundary of (ST 2) stays close to a locally Lipschitz profile in a
unit space-time neighborhood, then the solution is indeed smooth in a smaller
neighborhood. Hence the main step in our analysis is to prove that the free
boundary ∂{u > 0} stays close to a locally Lipschitz profile over a unit time
interval. Indeed proving this step has been the main challenge in the previous
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work of the authors and Jerison ([CJK1], [CJK2], [CK]) on the study of one-
phase free boundary problems. Once this step is established, using the fact that
u is a caloric function in almost Lipschitz domain, we will have some control over
the behavior of re-scaled solutions following the arguments in [CJK1]. Then the
appropriate modification of iteration arguments taken in [ACS1]-[ACS2] applies
to derive further regularity results (see section 5). In extension of the ideas
from one-phase case to our setting, the main obstacle lies in the competition
between fluxes of positive and negative phase: to overcome this, we introduce a
new decomposition procedure which we explain below.

Before discussing our result in detail, let us introduce precise conditions on
the initial data.

(I-a) Ω0 and u0 are star-shaped with respect to a ball Br0(0) ⊂ Ω0.

Observe that then the Lipschitz constant L of ∂Ω0 is determined by r0 and
d0, where d0 := sup{d(x,Br0(0) : x ∈ ∂Ω0}: i.e., there exist h = h(r0) and
L = L( r0d0

) such that for any x0 ∈ ∂Ω0, after rotation of coordinates one can
represent

Bh(x0) ∩Ω0 = {(x′, xn) : x
′ ∈ IRn−1, xn ≤ f(x)} with Lipf ≤ L. (1.1)

For simplicity of the presentation we set h = 1.

For a locally Lipschitz domain such as Ω0, there exist growth rates 0 < β <
1 < α such that the following holds: Let H be a positive harmonic function in
Ω0∩B2(x), x ∈ ∂Ω0, with Dirichlet condition on ∂Ω0∩B2(x), and with value 1
at x− en. (Here let en be the direction of the axis for the Lipschitz graph near
x.) Then for x− sen ∈ Ω0 ∩B1(x)

sα ≤ H(x− sen) ≤ sβ . (1.2)

Now we precisely describe the range of the Lipschitz constant L of Ω0.

(I-b) L < Ln for a sufficiently small dimensional constant Ln so that

5/6 ≤ β < α ≤ 7/6.

The remaining conditions are on the regularity of u0.

(I-c) −N0 ≤ ∆u0 ≤ N0 in Ω0 ∪ (BR(0)− Ω0),

(I-d) For x ∈ ∂Ω0, en = x/|x| and small s > 0 (for 0 < s < 1/10),

|Du0(x± sen)| ≥ Csα−1.
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Note that (I-c) and (I-d) holds for u0 which is smooth in its positive and negative
phases and is harmonic near the initial free boundary: i.e., −∆u0 = 0 in the set
({u0 > 0} ∪ {u0 < 0}) ∩ {x : d(x, ∂Ω0) ≤ 1}.

For a function u(x, t) : IRn × [0,∞) → IR, let us denote

Ω(u) := {u > 0}, Ωt(u) := {u(·, t) > 0}

and
Γ(u) := ∂{u > 0}, Γt(u) := ∂{u(·, t) > 0}.

Since Γ0 = ∂{u(·, 0) < 0} in our setting, the property is preserved for later
times, i.e.,

Γt(u) = ∂{u(·, t) > 0} = ∂{u(·, t) < 0} for all t > 0

(see [RB], [GZ], and [KP]).
In the one-phase case the problem can be written as follows:

(ST 1)



























ut −∆u = 0 in {u > 0}

ut

|Du| = |Du| on ∂{u > 0}

u(·, 0) = u+
0 .

In [CK] the following has been proved for (ST1).

Theorem 1.1. ([CK] Theorem 0.1.) Suppose u is a solution of (ST 1) in
B2(0) × [0, 1], 0 ∈ Γ0(u), with the initial data u0 ≥ 0 satisfying (I-b), (I-c)
and (I-d) in B2(0). Suppose u0(−en) = 1. If supB2(0)×[0,1] u ≤ M0, then there
exists a small s > 0 depending on N0, M0 and n such that the free boundary
Γt(u) becomes smooth and averages out in Bs(0). More precisely,

(a) The free boundary Γt(u) is C1 and is a Lipschitz graph with respect to en
with Lipschitz constant L′ < Ln in Bs(0) ⊂ IRn.

(b) The spatial normal of Γt(u) is continuous in space and time, in Bs(0).

(c) If x ∈ Γ0(u) ∩Bs(0) and x+ den ∈ Γt(u) ∩Bs(0), then

C−1u(x− den, 0)

d
≤ |Du(x+ den, t)| = Vx+den,t ≤ C

u(x− den, 0)

d

where C depends on n and M0. Hence

d

t
∼ |Du(x+ den, t)| ∼

u(x− den, 0)

d
.

4



Theorem 1.1 states that the free boundary regularizes in space, in a scale
proportional to the distance it has traveled. Note that the regularity results
hold up to the initial time and all the regularity assumptions are imposed only
on the initial data.

Our aim in this paper is to extend the above theorem to the two-phase
case. Here the intuition is rather straightforward, based on the previous results.
There are two cases:

(a) One of the phases has much bigger flux than the other: in this case one-
phase like phenomena (regularization by the dominant phase proportional
to the distance the free oundary traveled) is expected.

(b) Both phases are in balance: in this case one expects regularization due to
competition between two phases, resulting in Lipschitz-like behavior over
time.

The difficulty in making above heuristics rigorous lies in introducing a proper
“sorting” procedure which divides the cases (a) and (b) in a given scale. To
enable such procedure, it is essential to show Harnack-type inequalities for so-
lutions of (ST2) in both cases, ensuring that the behavior of solutions can be
localized in a proper time-space scale.

To state the main result, we introduce one more notation.

• For x0 ∈ Γ0 = Γ0(u) and en := x0/|x0|, define

R+(x0, d) :=
u+(x0 − den, 0)

u−(x0 + den, 0)
, R−(x0, d) :=

u−(x0 + den, 0)

u+(x0 − den, 0)

and

t(x0, d) := min[
d2

u+(x0 − den, 0)
,

d2

u−(x0 + den, 0)
].

Theorem 1.2 (Main Theorem). Suppose u is a solution of (ST2) with ini-
tial data u0 satisfying (Ia)-(Id) with Ω0(u) ⊂ B2(0). Then there exists a
constant d0 depending on the dimension n and N0 such that the following
holds. If x0 ∈ Γ0(u) and d ≤ d0, then Γ(u) is a Lipschitz graph in space-
time in the region B2d(x0) × [t(x0, d)/2, t(x0, d)] with Γ(u) intersecting with
Bd(x0) × [t(x0, d)/2, t(x0, d)]. Further, there exists a positive dimensional con-
stant M such that the following holds.

(a) If R+(x0, d) ≥ M , then

|Du+|(x, t) ∼ u+(x0 − den, 0)

d

in B2d(x0)× [
t(x0, d)

2
, t(x0, d)] and

Vx,t ∼
u+(x0 − den, 0)

d
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on Γ(u) ∩ (B2d(x0)× [
t(x0, d)

2
, t(x0, d)]).

The parallel statements hold for u− if R−(x0, d) ≥ M .

(b) If R+(d), R−(d) ≤ M , then

|Du±|(x, t) ∼ u+(x0 − den, 0)

d
∼ u−(x0 + den, 0)

d

in B2d(x0)× [t(x0, d)/2, t(x0, d)].

Remark 1.3. 1. Note that in the first case, t(x0, d) indeed is comparable to
the time that Γ(u) has traveled from x0 to x0 ± den, and thus we can say
that the free boundary regularizes in a scale proportional to the distance it
has traveled.

2. Our result extends to the case where the star-shaped condition (I-a) is
replaced by

(I-a)’ Ω0 is locally Lipschitz with a sufficiently small Lipschitz constant.

We discuss the difference in the proof in this case, in section 6.

Let us finish this section with an outline of the paper. In section 2 we
introduce preliminary results and notations, to be used in the paper. In section
3 we prove some properties on the evolution of solutions of (ST2) with star-
shaped data. In addition to Harnack inequalities, we show that the solution
stays near the star-shaped profile for a unit time (Lemma 3.1), which in turn
yields that the solution stays very close to harmonic functions (Lemma 3.6).
Making use of the results in section 3, in section 4 we perform a decomposition
procedure to show that for a unit time all parts of the free boundary stay close
to Lipschitz profiles, regardless of the local dynamics between the phases. This
completes our main step in the analysis. In section 5 we describe the procedure
leading to further regularization, pointing out the main difference between the
previous results. In section 6 we discuss a generalized proof for the corresponding
regularization result (Theorem6.1) when the star-shapedness of the initial data
(I-a) is replaced by a local version (I-a)’.

2 Preliminary lemmas and notations

We introduce some notations.

• For x ∈ IRn, denote x = (x′, xn) ∈ IRn−1 × IR where xn = x · en.
• Let Br(x) be the space ball of radius r, centered at x.

• Let Qr := Br(0)× [−r2, r2] be the parabolic cube and let Kr := Br(0)× [−r, r]
be the hyperbolic cube.
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• A caloric function in Ω ∩ Qr will denote a nonnegative solution of the heat
equation, vanishing along the lateral boundary of Ω.

• For x0 ∈ Γ0 and en = x0/|x0|, define

t(x0, d) := min[
d2

u+(x0 − den, 0)
,

d2

u−(x0 + den, 0)
].

• Given ǫ > 0, a function w is called ǫ-monotone in the direction τ if

u(p+ λτ) ≥ u(p) for any λ ≥ ǫ.

• Wx(θ
x, e) and Wt(θ

t, ν) with e ∈ IRn and ν ∈ span(en, et) respectively denote
a spatial circular cone of aperture 2θx and axis in the direction of e, and a
two-dimensional space-time cone in (en, et) plane of aperture 2θt and axis in
the direction of ν.

• w is ǫ-monotone in a cone of directions if w is ǫ-monotone in every direction
in the cone.

• C is called an universal constant if it depends only on the dimension n and
the regularity constant N0 of u0.

The first lemma is a direct consequence of the interior Harnack inequalities
proved in [C-C].

Lemma 2.1 ([C-C]). Suppose w(x) : IRn → IR has bounded Laplacian. Then
w is Hölder continuous with its constant depending on the Laplacian bound.

Lemma 2.2 ([FGS1], Theorem 3). Let Ω be a domain in IRn × IR such that
(0, 0) is on its lateral boundary. Suppose Ω is a Lip1,1/2 domain, i.e.,

Ω = {(x′, xn, t) : |x′| < 1, |xn| < 2L, |t| < 1, xn ≤ f(x′, t)},

where f satisfies |f(x′, t) − f(y′, s)| ≤ L(|x′ − y′|+ |t − s|1/2.) If u is a caloric
function in Ω, then there exists C = C(n, L), where L is the Lipschitz constant
for Ω, such that

u(x, t)

v(x, t)
≤ C

u(−Len, 1/2)

v(−Len,−1/2)
.

for (x, t) ∈ Q1/2.

Lemma 2.3 ([ACS1], Theorem 1). Let Ω be a Lipschitz domain in IRn × IR,
i.e.,

Q1 ∩ Ω = Q1 ∩ {(x, t) : xn ≤ f(x′, t)},
where f satisfies |f(x, t) − f(y, s)| ≤ L(|x − y| + |t − s|). Let u be a caloric
function in Q1 ∩ Ω with (0, 0) ∈ ∂Ω and u(−en, 0) = m > 0 and supQ1

u = M .
Then there exists a constant C, depending only on n, L, m

M such that

u(x, t+ ρ2) ≤ Cu(x, t− ρ2)

for all (x, t) ∈ Q1/2 ∩ Ω and for 0 ≤ ρ ≤ dx,t.
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Lemma 2.4 ([ACS1], Lemma 5). Let u and Ω be as in Lemma 2.3. Then there
exist a, δ > 0 depending only on n, L, m

M such that

w+ := u+ u1+a and w− := u− u1+a

are subharmonic and superharmonic, respectively, in Qδ ∩ Ω ∩ {t = 0}.

Next we state several properties of harmonic functions:

Lemma 2.5 ([D]). Let u1, u2 be two nonnegative harmonic functions in a do-
main D of IRn of the form

D = {(x′, xn) ∈ IRn−1 × IR : |x′| < 2, |xn| < 2L, xn > f(x′)}

with f a Lipschitz function with constant less than L and f(0) = 0. Assume
further that u1 = u2 = 0 along the graph of f . Then in

D1/2 = {|x′| < 1, |xn| < L, xn > f(x′)}

we have

0 < C1 ≤ u1(x
′, xn)

u2(x′, xn)
· u2(0, L)

u1(0, L)
≤ C2

with C1, C2 depending only on L.

Lemma 2.6 ([JK]). Let D, u1 and u2 be as in Lemma 2.5. Assume further
that

u1(0, L/2)

u2(0, L/2)
= 1.

Then, u1(x
′, xn)/u2(x

′, xn) is Hölder continuous in D̄1/2 for some coefficient α,
both α and the Cα norm of u1/u2 depending only on L.

Lemma 2.7 ([C2]). Let u be as in Lemma 2.5. Then there exists c > 0 depend-
ing only on L such that for 0 < d < c, ∂

∂xn
u(0, d) ≥ 0 and

C1
u(0, d)

d
≤ ∂u

∂xn
(0, d) ≤ C2

u(0, d)

d

where Ci = Ci(M).

Lemma 2.8 ([JK], Lemma 4.1). Let Ω be Lipschitz domain contained in B10(0).
There exists a dimensional constant βn > 0 such that for any ζ ∈ ∂Ω, 0 < 2r < 1
and positive harmonic function u in Ω ∩ B2r(ζ), if u vanishes continuously on
B2r(ζ) ∩ ∂Ω, then for x ∈ Ω ∩Br(ζ),

u(x) ≤ C(
|x− ζ|

r
)βnsup{u(y) : y ∈ ∂B2r(ζ) ∩ Ω}

where C depends only on the Lipchitz constants of Ω.
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Next, we point out that we use the notion of viscosity solutions for our
investigation. When {u0 = 0} is of zero Lebesgue measure, it was proved
in [KP] that the viscosity solution of (ST 2) is unique and coincides with the
usual weak solutions. (See [KP] for the definition as well as other properties of
viscosity solutions.) Below we state important properties of viscosity solutions.

Lemma 2.9. Suppose u is a viscosity solution of (ST2). Then

(a) u is caloric in its positive and negative phases.

(b) −u is also a viscosity solution of (ST2) with boundary data −g.

(c) u+ = max(u, 0) (or u− = −min(u, 0)) is a viscosity subsolution (or su-
persolution) of (ST2) with initial data u+

0 (or u−
0 ).

Lemma 2.10 (Comparison principle, [KP]). Let u, v be respectively viscosity
sub- and supersolutions of (ST2) in D× (0, T ) ⊂ Q with initial data u0 ≺ v0 in
D. If u ≤ v on ∂D and u < v on ∂D ∩ Ω̄(u) for 0 ≤ t < T , then u(·, t) ≺ v(·, t)
in D for t ∈ [0, T ).

Below we state a distance estimate for the free boundary and Harnack in-
equality for the one-phase solution u of (ST1).

Lemma 2.11 ([CK], Lemma 2.2). Let u be given as in Theorem 1.1. There
exists t0 = t0(N0,M0, n) > 0 such that if x0 ∈ Γ0 and t ≤ t0, then

1

C
t1/(2−α) ≤ d(x0, t) ≤ Ct1/(2−β) (2.1)

where α and β are given in (1.2), C depends on N0, M0 and n, and d(x0, t)
denotes the distance that Γ moved from the point x0 during the time t, i.e.,

d(x0, t) := sup{d : u(x0 + den, t) > 0}.

Lemma 2.12 ([CK], Lemma 2.3). Let u be given as in Theorem 1.1. There
exists d0 depending on N0, M0 and n such that if x0 ∈ Γ0 and d ≤ d0, then

u(x0 − den, t) ≤ Cu(x0 − den, 0) for 0 ≤ t ≤ t(x0, d)

where C depends on N0, M0 and n.

The following monotonicity formula by Alt-Caffarelli-Friedman prevents the
scenario that both phases compete with large pressure in our problem.

Lemma 2.13 ([ACF]). Let h+ and h− be nonnegative continuous functions in
B1(0) such that ∆h± ≥ 0 and h+ · h− = 0 in B1(0). Then the functional

φ(r) =
1

r4

∫

Br(0)

|∇h+|2
|x|n−2

dx

∫

Br(0)

|∇h−|2
|x|n−2

dx

is monotone increasing in r, 0 < r < 1.

9



Corollary 2.14. Let ∂Ω0 ⊂ IRn be star-shaped with respect to B1(0) ⊂ Ω0 and
suppose B4/3(0) ⊂ Ω0 ⊂ B5/3(0). Let h+ be the harmonic function in Ω0−B1(0)
with boundary values h+ = 0 on ∂Ω0, and h+ = 1 on ∂B1(0). Let h− be the
harmonic function in B2(0) − Ω0 with boundary values h− = 0 on ∂Ω0, and
h− = 1 on ∂B2(0). Then there exists a sufficiently large dimensional constant
M > 0 such that

h+(x0 − ren)

r
≥ M implies

h−(x0 + ren)

r
≤ 1

for x0 ∈ ∂Ω0, en = x/|x| and 0 ≤ r ≤ 1/6.

Proof. It follows from Lemma 2.13 since

(

h+(x0 − ren)

r
· h−(x0 + ren)

r

)2

∼ 1

(2r)4

∫

Br/2(x0−ren)

|∇h+|2
|x− x0|n−2

dx ·
∫

Br/2(x0+ren)

|∇h−|2
|x− x0|n−2

dx

≤ 1

(2r)4

∫

B2r(x0)

|∇h+|2
|x− x0|n−2

dx ·
∫

B2r(x0)

|∇h−|2
|x− x0|n−2

dx

= φ(2r) ≤ φ(1/3) ≤ Cn.

3 Properties of solutions with star-shaped ini-

tial data

Lemma 3.1. If Ω0 and u0 are star-shaped with respect to the ball Br0(0) ⊂ Ω0,
then Ωt(u) and u(·, t) stays σ-close to star-shaped for all 0 ≤ t ≤ 1

3σ
1/5. (See

Figure 2)

Proof. 1. Observe that, for any a > 0, the parabolic scaling (x, t) → (ax, a2t)
preserves both the heat operator and the boundary motion law in (ST 2). There-
fore, for any σ > 0 the function

u1(x, t) := u((1 + σ)(x − x0) + x0, (1 + σ)2t)

is also a viscosity solution of (ST2) with corresponding initial data.

2. Choose x0 ∈ Br0(0). Take a small c0 > 0 such that Br0+c0(0) ⊂ Ω0. We
claim that for 0 ≤ δ ≤ σ6/5,

u1(x, 0) ≤ u(x, δ) in BR(0)−Br0+c0(0) (3.1)

10



if σ is small enough. To show (3.1), let us introduce another function

ũ(x, 0) := u((1 +
σ

2
)(x − x0) + x0, 0).

Also let v− be the solution of (ST1) with initial data u−
0 , and with v− = 1 on

∂BR(0). Then by comparison, −v− ≤ u and BR(0)−Ωt(−v−) ⊂ Ωt(u). Hence
by Lemma 2.11 applied for −v−,

Ω0(ũ) ⊂ Ωt(u) for 0 ≤ t ≤ σ7/6.

Moreover, due to our assumption,

ũ(x, 0) ≤ u0(x).

Therefore, the maximum principle for caloric functions implies

w(x, t) ≤ u(x, t)

where w solves the heat equation in the cylindrical domain D = Ω0(ũ)× [0, σ7/6]
with initial data ũ(x, 0) and zero boundary data on ∂Ω0(ũ)× [0, σ7/6].

Now wt solves the heat equation in D,

wt = ∆w ≥ −C at t = 0, and wt = 0 on ∂Ω0(ũ).

Therefore we conclude that wt ≥ −C in D. In particular

w(x, δ) ≥ ũ(x, 0)− Cδ. (3.2)

Next we compare u1(x, 0) with w(x, δ). Observe that for x ∈ BR(0)−Br0+c0(0),

u1(x, 0) = ũ(x, 0) +
∫ σ

σ/2((x − x0) ·Du((1 + s)(x− x0) + x0, 0))ds

≤ ũ(x, 0)− c0σ
7/6

≤ ũ(x, 0)− Cσ6/5

≤ w(x, δ) ≤ u(x, δ)

for 0 ≤ δ ≤ σ6/5, where the first inequality follows from our assumption (I-
d) on u0, the second inequality follows if σ is sufficiently small, and the third
inequality follows from (3.2). Hence we conclude (3.1).

3. Our goal is to prove that for 0 ≤ δ ≤ σ6/5,

u1(x, t) ≤ u2(x, t) := u(x, t+ δ) (3.3)

in (BR(0)−Br0+c0(0))× [0, σ1/5]. Note that the inequality holds at t = 0 by step
2. However, we needs a bit more arguments since we do not know yet whether
the lateral boundary data on ∂Br0+c0(0) is properly ordered.
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Suppose
Ω(u1) ⊂ Ω(u) for 0 ≤ t ≤ t0

and Ω(u1) contacts ∂Ω(u) for the first time at t = t0. Observe then that

f(x, t) := u(x, t+ δ)− u1(x, t)

solves the heat equation in Ω(u1) with nonnegative boundary data for 0 ≤ t ≤ t0,
with

f(x, 0) ≥ 0 in BR(0)−Br0+c0(0).

Indeed following the computation given above, it follows that

f(x, 0) ≥ c0σ in Br0+c0(0)−Br0+
c0
2
(0).

On the other hand, due to the fact that wt ≥ −C and δ ≤ σ6/5, we have

f(x, 0) ≥ (w(x, δ) − w(x, 0)) + (w(x, 0) − u1(x, 0)) ≥ −Cσ6/5 in Br0+
c0
2
(0).

Therefore we have

f(x, t) > 0 on ∂Br0+c0(0)× [0, t0]

if t0 << 1. But then this contradicts Theorem 2.10 applied to the region
(BR(0)−Br0+c0(0))× [0, t0].

4. From (3.3) of step 3, we obtain

u((1 + σ)(x − x0) + x0, (1 + σ)2t) ≤ u(x, t+ δ) (3.4)

in (BR(0) − Br0+c0(0)) × [0, σ1/5] for any x0 ∈ Br0(0), as long as σ and δ are
sufficiently small and satisfy 0 ≤ δ ≤ σ6/5. As a result, for 0 ≤ t ≤ 1

3σ
1/5, we

can choose δ = σ(2 + σ)t ≤ σ6/5 such that

(1 + σ)2t = t+ δ.

It follows then from (3.4) that the function u(·, t) is σ-monotone with respect
to the cone of directions Wx in (BR(0)−Br0+c0(0)) for t ∈ [0, 13σ

1/5].

( Here Wx = {ν ∈ Sn : ν =
x− x0

|x− x0|
for some x0 ∈ Br0(0)}.)

Remark 3.2. Observe that, due to (I − b), we have for x ∈ Γ0

t(x, d) := min[
d2

u+(x− den, 0)
,

d2

u−(x+ den, 0)
] ∈ [d7/6, d5/6] << d4/5 (3.5)

where t(x, d) is the time it takes for the free boundary to regularize in Bd(0).
Therefore, u(·, t) is at least d4-monotone with respect toWx in (BR(0)−Br0+c0(0))
for 0 ≤ t ≤ t(x0, d). This property will serve as a basis for our regularization
argument in section 3.
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Lemma 3.3. (Harnack at t = 0) Let x ∈ Γ0, then for all s > 0 and for
0 ≤ t ≤ t(x, s) we have

u+(x − sen, t) ≤ C1u
+(x − sen, 0)

and
u−(x + sen, t) ≤ C1u

−(x+ sen, 0)

where en = x/|x|.

Proof. Let v+ solve the one-phase Stefan problem (ST1) with initial data v+0 (x) =
u+
0 (x). Then v+ is also a solution of (ST2) with u0(x) ≤ v+0 (x), and thus by

Theorem 2.10 we have
u(x, t) ≤ v+(x, t).

Therefore it follows from one-phase Harnack inequality applied for v+(x, t) that

u+(x− sen, t) ≤ v+(x− sen, t) ≤ C1v
+(x− sen, 0) = C1u(x− en, 0)

for 0 ≤ t ≤ t0 where t0 = s2/u(x− sen, 0) ≥ t(x, s).
As for u−(x, t), we compare u− with the solution v− of (ST1) with initial

data v−0 (x) = u−
0 (x) and with boundary data v− = 1 on ∂BR(0). The rest of

the argument is parallel to above.

Lemma 3.4. (Backward Harnack at t = 0) Let x ∈ Γ0 and let s > 0. Then
for 0 ≤ t ≤ t(x, s)

u+(x − sen, 0) ≤ C1u
+(x− sen, t)

and
u−(x + sen, 0) ≤ C1u

−(x+ sen, t)

Proof. We will only show the lemma for u+. The other part follows by a parallel
argument. Let v− solve (ST1) with initial data u−

0 and with boundary data 1
on ∂BR(0). Then −v− is also a solution of (ST2) with −v−0 ≤ u0, and thus by
Theorem 2.10, −v− ≤ u and

{v− = 0} ⊂ {u ≥ 0}.

Note that Ω(v−) moves according to the one-phase dynamics, which has
been studied in detail by [CK2]. In particular we know that Ω(v−) will be
Lipschitz at each time. Moreover, for a boundary point (x, t) ∈ Γ(v−) and
d := dist(x,Γ0(v

−)), the normal velocity Vx,t satisfies

Vx,t = |Dv−(x, t)| ∼ v−(x + 2den, 0)

2d
≤ dβ−1 ≤ t

β−1
2−α (3.6)

where the last inequality follows from Lemma 2.11. Let v∗(x, t) solve the heat
equation in {v− = 0} with initial data u0(x) and boundary data 0 on ∂{v− = 0}.
Since

Ω(v∗) = {v− = 0} ⊂ {u ≥ 0},

13



we have v∗(x, t) ≤ u(x, t). Moreover, for any given t > 0, ṽ−(x, s) := v−(
√
tx, ts)

satisfies the assumptions of Lemma 2.4. Thus it follows that v−(·, t) is ta-close
to a harmonic function in B√

t(x) for some a > 0, where x ∈ Γ0. Moreover, due
to the assumption on the initial data, (v∗)t = ∆v∗ ≥ −C at t = 0. Also on
Γ(v∗),

(v∗)t/|Dv∗| = −(v−)t/|Dv−| = −|Dv−| ≥ −t
β−1
2−α

where the last inequality follows from (3.6). Since Ω(v∗) is Lipschitz and
Γt(v

∗) = Γt(v
−) is regularized in time (Theorem 1.1), (3.6) also holds for |Dv∗|.

Hence on Γ(v∗),

(v∗)t = −|Dv−||Dv∗| ≥ −t
2(β−1)
2−α > −t−2/5.

Since (v∗)t solves a heat equation in Ω(v∗), it follows that for x ∈ Γ0,

(v∗)t ≥ −t−2/5 in B√
t/2(x−

√
ten)× [0, t]. (3.7)

Then since v∗(x−
√
ten, 0) ≥ (

√
t)α ≥ (

√
t)7/6 = t7/12,

u+(x−
√
ten, 0) = v∗(x−

√
ten, 0) ≤ C1v

∗(x−
√
ten, t)

≤ C1u
+(x −

√
ten, t)

where the first inequality follows from (3.7). Since Γ(v∗) = Γ(v−) is Lipschitz
in a parabolic scaling, v∗ is almost harmonic. Hence v∗(·, t) is bigger than the
harmonic function ωt(x) in Ωt(v

∗) ∩B√
t(x) with its value

ωt(x−
√
ten) = (C1)

−1u+(x−
√
ten, 0).

Note that if 0 ≤ t ≤ t(x, s), then s <
√
t. Hence for 0 ≤ t ≤ t(x, s),

C1u
+(x− sen, t) ≥ C1v

∗(x− sen, t) ≥ C1ω
t(x− sen) ≥ Cu+(x− sen, 0),

where the last inequality follows since the one-phase result implies a power law
on the movement of Γ(v−) = Γ(v∗) (see Lemma 2.5 of [CJK1]), and this yields
a bound on u+(x− sen, 0)/ω

t(x− sen).

Similar arguments apply to u−, if we consider the function v+ solving (ST1)
with initial data u+

0 , and the function v⋆ solving the heat equation in {v+ = 0}
with initial data u0 and with boundary data 0 on Γ(v+) and −1 on ∂BR(0).

Lemma 3.5. (Distance estimate at t = 0) Let x ∈ Γ0 and let s be a suffi-
ciently small positive constant. If

|u+(x − sen, 0)|
s

≤ m and
|u−(x+ sen, 0)|

s
≤ m,

then for t ∈ [0, s
m ],

d(x, t) = sup{r : x+ ren or x− ren ∈ Γt(u)} ≤ s.

14



Proof. Let v+ solve (ST1) with initial data u+
0 , and let v− solve (ST1) with

initial data u−
0 and with v− = 1 on ∂BR(0). Then by comparison, −v− ≤ u ≤

v+ and the lemma follows from the one-phase result Theorem 1.1.

In the following lemma, we approximate our solution by harmonic functions.

Lemma 3.6. (Spatial regularity in the whole domain) For x0 ∈ Γ0 and
r > 0, there exists a function ω(x, t) := ω+(x, t)− ω−(x, t) such that

(a) ω(·, t) is harmonic in its positive and negative phase in
(1 + r)Ωt(u)− (1 − r)Ωt(u), and Ω(ω+), Ω(ω−) are star-shaped;

(b) For a dimensional constant C > 0, we have

ω+(x, t) ≤ u+(x, t) ≤ Cω+((1− r5/4)x, t)

and
ω−(x, t) ≤ u−(x, t) ≤ Cω−((1 + r5/4)x, t)

in Br(x0)× [r2, t(x0, r)].

Remark 3.7. Note that we do not know yet whether the solution is close to a
Lipschitz graph in time. Also, note that t(x0, r) ≥ r7/6 ≫ r2, and ∂{ω+ > 0}
need not be ∂{ω− > 0}.
Proof. 1. We will only show the lemma for u+. Let Γ⋆ be the free boundary
obtained from the one-phase problem (ST1) with the initial data u+

0 , and let
Ω∗ be the region bounded by Γ⋆. Let v1 solve the heat equation in Ω∗ and in
BR(0)× [0, 1]−Ω∗, with initial data u0 and with v1 = −1 on ∂BR(0). Similarly,
we define v2, whose free boundary is obtained from the one-phase solution with
initial data u−

0 . Then by comparison,

v2 ≤ u ≤ v1.

Hence the free boundary of u is trapped between the free boundaries of v1
and v2. Also, since one-phase versions v1 and v2 behave nicely, we have those
functions almost harmonic up to r-neighborhood of their free boundaries for
r2/2 ≤ t ≤ r2. Next note that the range of t is 0 ≤ t ≤ t(x0, r), and thus
both of the sets Γt(v1) and Γt(v2) are within distance r of Γ0(u) in Br(x0). In
particular, using the one-phase result, i.e., arguing as in Lemmas 2.1 and 2.3 of
[CK], we obtain

v2(x0 − 2ren, t) ∼ u0(x0 − 2ren, 0) ∼ v1(x0 − 2ren, t) (3.8)

for 0 ≤ t ≤ t(x0, r).

2. Observe that
t(x0, r) ≤ r2−α ≤ r5/6 := τ.

Due to Lemma 3.1, we know that at each time, Ωt(u) is τ
5 -close to a star-shaped

domain Dt up to the time t = τ , i.e.,

Dt ⊂ Ωt(u) ⊂ (1 + τ5)Dt ⊂ (1 + r4)Dt (3.9)
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Figure 2: Approximation of the positive phase by a star-shaped domain

for 0 ≤ t ≤ τ .
Then by Lemma 3.3 and (3.9) with β ≥ 5/6,

u(x, t) ≤ r(13/20)(5/6) = r13/24 on ∂(1− r13/20)D0

for 0 ≤ t ≤ τ . (Here note that we can apply Lemma 3.3 up to the time τ since

t(z, r13/20) ≥ r13(2−β)/20 > τ for any z ∈ Γ0.)

Then by the τ5-monotonicity of u,

u(x, t) ≤ r13/24 on BR(0)− (1 − r13/20 + r4)D0 (3.10)

for 0 ≤ t ≤ τ . Since Γt(u) stays in the τ5/6-neighborhood of Γ0(u) up to τ ,
we obtain that ∂Dt stays in the r25/36-neighborhood of ∂D0 up to the time τ .
Since r25/36 < r13/20, (3.10) implies

u(x, t) ≤ r13/24 on BR(0)−Ds (3.11)

for any 0 ≤ s, t ≤ τ .

3. Let
t0 = 0 ≤ t1 = r2 ≤ t2 = 2r2 ≤ ... ≤ tk0 = k0r

2 ≤ τ

and fix a number b such that

5/4 ≤ b < 61/48.

We will construct a supersolution of (ST2) in

(BR(0)− (1 + rb)Dtk)× [tk, tk+1].

Let wk(x) be the harmonic function in

Σ := (1 + 4rb)Dtk −Dtk

16



with boundary data zero on ∂(1 + 4rb)Dtk and Cnr
13/24 on ∂Dtk , where Cn is

a sufficiently large dimensional constant. Extend w(x) = 0 in IRn − Σ. Next
define

Φ(x, t) := inf{ω(y) : |x− y| ≤ rb − (t− tk)
rb−2

2
}

in (BR(0)−(1+rb)Dtk)× [tk, tk+1]. We claim that ω is a supersolution of (ST2)
since our constant b satisfies

rb−2 > r
13
24−b. (3.12)

To check this, first note that Φ(·, t) is superharmonic in its positive set and
Φt ≥ 0. Hence we only need to show that

Φt

|DΦ| ≥ |DΦ| on Γ(Φ). (3.13)

Due to the definition of Φ, Γt(Φ) has an interior ball of radius at least rb/2 for
tk ≤ t ≤ tk+1. This and the superharmonicity of Φ in the positive set yields
that

|DΦ| ≤ Cr13/24

rb
on Γ(Φ)

for a dimensional constant C > 0. Moreover Γ(Φ) evolves with normal velocity
1
2r

b−2. Since (3.12) holds for our choice of b (i.e., for 5/4 ≤ b < 61/48), we
conclude (3.13) for r smaller than a dimensional constant r(n). Now we compare
u with Φ in

(BR(0)− (1 + rb)Dtk)× [tk, tk+1].

Note that by (3.11),
u+ ≤ Φ on ∂(1 + rb)Dtk

if Cn is chosen sufficiently large. Also at t = tk, (3.9) implies

u(·, tk) ≤ 0 ≤ Φ(·, tk) on BR(0)− (1 + rb)Dtk .

Hence we get u ≤ Φ in (IRn − (1 + rb)Dtk)× [tk, tk+1]. This implies

Ω(u) ⊂ Ω(Φ) ∪ ((1 + rb)Dtk × [tk, tk+1]) := Ω̃(Φ) (3.14)

for tk ≤ t ≤ tk+1.

4. Next we let v(x, t) solve the heat equation in

Ω̃(Φ)− ((1 − 3r)Ω0(u)× [tk, tk+1])

with initial data v(·, tk) = u(·, tk) and boundary data zero on Γ(Φ) and v = u
on (1−3r)Γ0(u). Observe that, due to (3.14), we have u+ ≤ v for tk ≤ t ≤ tk+1.

Since Ω̃(Φ) is star-shaped and expands with its normal velocity < rb−2 which
is less than r−1, Lemma 2.4 applies to ṽ(x, t) := v(rx, r2t). In particular there
exists a constant C > 0 such that

(1/C)v(x, t) ≤ h1(x, t) ≤ Cv(x, t)
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for (tk + tk+1)/2 ≤ t ≤ tk+1, where h1(·, t) is the harmonic function in
Ωt(v)− (1−2r)Ω0(u) with boundary data zero on Γt(v) and v on (1−2r)Γ0(u).

Hence we conclude that
u+ ≤ v ≤ Ch1

in (BR(0)− (1− 2r)Ω0(u))× [(tk + tk+1)/2, tk+1].

5. Similar arguments, now pushing the boundary purely by the minus phase
given by the harmonic function yields that

BR(0)− Ω̃t(Ψ) := Πt ⊂ Ωt(u)

for tk ≤ t ≤ tk+1, where

Πt = {x ∈ Dtk : dist(x, ∂Dtk) ≥ 3rb +
rb−2

2
(t− tk)}.

Let w(x, t) solve the heat equation in

Π− ((1 − 3r)Ω0(u)× [tk, tk+1]))

with initial data u(·, tk) and boundary data zero on ∂Π, and u on (1−3r)Γ0(u).
Then u ≥ w(x, t).

Since Π is star-shaped and shrinks with its normal velocity < rb−2 which is
less than r−1, Lemma 2.4 applies to w̃(x, t) := w(rx, r2t). In particular there
exists C > 0 such that

u+ ≥ w ≥ (1/C)h2

for (tk + tk+1)/2 ≤ t ≤ tk+1, where h2(·, t) is the harmonic function in
Πt − (1− 2r)Ω0(u) with boundary data coinciding with that of w.

6. Lastly we will show that h1 and h2 are not too far away, i.e.

h1(x, t) ≤ Ch2(x− 8rben, t)

with a dimensional constant C > 0. Since u is between (1/C)h2 and Ch1,
this will conclude our lemma for (tk + tk+1)/2 ≤ t ≤ tk+1. Then by changing
the time intervals [tk, tk+1] to [tk + r2/2, tk+1 + r2/2], we obtain lemma for
r2 ≤ r ≤ t(x0, r).

To prove the claim, observe that

Ωt(w) ⊂ Ωt(v) ⊂ (1 + 8rb)Ωt(w)

Moreover, observe that

v2((1 + rb)x, (1 + rb)2(t− tk) + tk) ≤ v(x, t), w(x, t)

≤ v1((1− rb)x, (1 − rb)2(t− tk) + tk)

for tk ≤ t ≤ tk+1. This and (3.8) yield

v(x0 − 2ren, t) ∼ w(x0 − 2ren, t) ∼ u(x0 − 2ren, 0).
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It follows that

w(x, t) ≤ v(x, t) ≤ Cw(x − 8rben, t) on (1− 2r)Γ0 × [tk, tk+1].

Hence due to Dahlberg’s lemma, we conclude that

h1(x, t) ≤ C1v(x, t) ≤ C2w(x − 8rben, t) ≤ C3h2(x− 8rben, t)

in Br(x0) × [(tk + tk+1)/2, tk+1]. Since the inequality holds for any 5/4 ≤ b <
61/48, we can conclude the lemma.

Proposition 3.8. (Regularization in bad balls) For a fixed x0 ∈ Γ0(u),
suppose that either

u+(x0 − ren, t0) ≥ Mu−(x0 + ren, t0)

or
u−(x0 + ren, t0) ≥ Mu+(x0 − ren, t0)

for M > Mn, where Mn is a sufficiently large dimensional constant. Then for
r ≤ 1/Mn, there exists a dimensional constant C > 0 such that

|∇u+(x, t)| ≤ C
u+(x0 − ren, t0)

r
and |∇u−(x, t)| ≤ C

u−(x0 + ren, t0)

r

in Br(x0)× [t(x0, r)/2, t(x0, r)].

Remark 3.9. 1. In the next section, we will extend this Lemma for later times,
i.e., for x0 ∈ Γt0 . (See Lemma 4.7.)

2. Note that the situation given in Proposition 3.8 is essentially a perturba-
tion of the one-phase case in [CK]. The main step in the proof is in verification
of this observation: i.e., by barrier arguments we will show that our solution is
very close to a re-scaled version of the one-phase solution of (ST), for which the
regularity of solutions are well-understood (see Theorem 1.1).

Proof. Without loss of generality, we may assume that

u+(x0 − ren, 0) ≥ Mu−(x0 + ren, 0).

1. First we show that after a small amount of time u become almost harmonic
near the free bounadry. By Lemmas 3.3 and 3.4 imply that for 0 ≤ t ≤ t(x0, r),

u+(x0 − ren, t) ∼ u+(x0 − ren, 0), u−(x0 + ren, t) ∼ u−(x0 + ren, 0) (3.15)

Also note that, by the assumption on the initial data u0, Lemma 3.6 holds at
t = 0. In other words, there exists a function ω(x, 0) = ω0(x) such that

(a) ω0 is harmonic in its positive and negative phases in
(1 + r)Ω0(u)− (1 − r)Ω0(u);
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(b) Ω(ω+
0 ) and Ω(ω−

0 ) are star-shaped;

(c) In Br(x0) , we have

ω+
0 (x) ≤ u+

0 (x) ≤ Cω+
0 ((1 − r5/4)x) (3.16)

and
ω−
0 (x) ≤ u−

0 (x) ≤ Cω−
0 ((1 + r5/4)x). (3.17)

Next we improve (3.16) and (3.17) for later times, and obtained the inequal-
ities with C = (1 + ra) for t ≥ r3/2. By the distance estimate-Lemma 2.11, the
free boundary of u moves less that r9/7 < r5/4 during the time t = r3/2. Then
we let v1 solve the heat equation in cylindrical domains

(1 + 2r5/4)Ω0(ω
+)× [0, r3/2] ∪ (B2(0)− (1 + 2r5/4)Ω0(ω

+))× [0, r3/2],

with initial data u0 and lateral boundary data zero on (1 + 2r5/4)Γ0(ω
+) ×

[0, r3/2], and −1 on ∂B2(0)×[0, r3/2]. Similarly, we let v2 solve the heat equation
in cylindrical domains

(1− 2r5/4)Ω0(ω
+)× [0, r3/2] ∪ (B2(0)− (1− 2r5/4)Ω0(ω

+))× [0, r3/2]

with initial data u0 and lateral boundary data zero on (1 − 2r5/4)Γ0(ω
+) ×

[0, r3/2], and −1 on ∂B2(0)× [0, r3/2]. Then by comparison, v2 < u < v1. Also
by Lemma 2.4 and β ≥ 5/6,

|v1 − v2| ≤ r
5
4× 5

6 = r25/24

in the domain. Note that on (1− r6/7)Γ0(ω
+), |v1| ≥ r

6
7× 7

6 = r and thus

|v1 − v2| ≤ ra1 |v1| on (1− r6/7)Γ0(ω
+) for a1 = 1/24.

Similarly,
|v1 − v2| ≤ ra1 |v2| on (1 + r6/7)Γ0(ω

+).

Then since v1 and v2 are almost harmonic in the r3/4-neighborhood of their
boundaries for 1

2r
3/2 ≤ t ≤ r3/2, the above inequalities on |v1 − v2| imply the

following: for 1
2r

3/2 ≤ t ≤ r3/2, there exist positive harmonic functions ω̃+(·, t)
and ω̃−(·, t) defined respectively in

Ωt(v
+
2 ) ∩ (BR(0)− (1− r1−b)Ω0(ω

+)) and Ωt(v
−
1 ) ∩ (1 + r1−b)Ω0(ω

+))

where b = 1/7, such that for some a > 0

ω̃+(x, t) ≤ u+(x, t) ≤ (1 + ra)ω̃+((1 − 4r5/4)x, t) (3.18)

and
ω̃−(x, t) ≤ u−(x, t) ≤ (1 + ra)ω̃−((1 + 4r5/4)x, t). (3.19)
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Now on the time interval [0, r3/2] + k
2r

3/2, 1 ≤ k ≤ m, we construct v1 and
v2 so that they solve the heat equation in the cylindrical domains with

Γ(v1) = (1 + 2r5/4)Γ k
2 r

3/2(ω+)× [
k

2
r3/2, (1 +

k

2
)r3/2]

and

Γ(v2) = (1− 2r5/4)Γ k
2 r

3/2(ω+)× [
k

2
r3/2, (1 +

k

2
)r3/2].

Then by a similar argument as above, we obtain harmonic functions ω̃±(·, t)
satisfying (3.18) and (3.19) for

1 + k

2
r3/2 ≤ t ≤ (1 +

k

2
)r3/2.

Hence we conclude (3.18) and (3.19) for r3/2 ≤ t ≤ t(x0, r).

2. Next we re-scale u(x, t) as follows:

ũ(x, t) := α−1u(rx+ x0, r
2α−1t) in 2Qx0 ,

where α := u+(x0 − ren, t0) < 1. Then ũ(x, t) solves







































(α∂t −∆)ũ = 0 in Ω(ũ)

V = |Dũ+| − |Dũ−| on Γ(ũ)

ũ(−en, 0) = 1

ũ(en, 0) = −1/N where N ≥ M.

Furthermore, (3.15) implies that for 0 ≤ t ≤ 1,

ũ+(−en, t) ∼ 1, ũ−(en, t) ∼
1

N
.

Let w̃ be the corresponding re-scaled version of ω̃ given in (3.18) and (3.19),
then in Br−b(0) ∩ Ω0(ũ) we have

(1− ra)w̃+((1 + 4r5/4)x, αr−1/2) ≤ ũ+(x, αr−1/2) ≤ w̃+(x, αr−1/2) (3.20)

and

(1− ra)w̃−(x, αr−1/2) ≤ ũ−(x, αr−1/2) ≤ w̃−((1 + 4r5/4)x, αr−1/2) (3.21)

Here note that

αr−1/2 =
√
r · u

+(x0 − ren, t0)

r
≤ r1/3.

Lastly, for given x0 ∈ Γ(ũ) ∩B1(0), a similar argument as in (3.7) implies that

ũ(x, t) ≤ (1 + rb)ũ(x, 0) in ∂B 1
2 r

−b(r−ben)× [0, 1]. (3.22)
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3. We claim that we can construct a supersolution U1 and a subsolution U2

of (ST2) such that

U2(x, t) ≤ ũ(x, t) ≤ U1(x, t) ≤ U2(x−
√
ǫen, t) in B1(0)× [αr−1/2, 1]

and that U2 is a smooth solution with uniformly Lipschitz boundary in space
and time. Then for sufficiently small r > 0 the lemma will follow from analysis
parallel to that of [ACS2].

To illustrate the main ideas, let us first assume that

(a) (3.20) and (3.21) hold in the entire ring domain R× [0, 1], where

R = {x : d(x,Γ0(ũ)) ≤ r−b};

(b) ũ(x, t) ≤ (1 + rb)ũ(x, 0) on ∂R× [0, 1].

Let U+
1 be the solution of (HS) in Σ = (IRn − (Ω0 −R))× [0, 1] with initial

data w̃(x, t) and boundary data (1 + rb)ũ(x, 0), and let

U1 = U+
1 − U−

1 in R× [0, 1],

where U−
1 (·, t) is the harmonic function in R−Ω(U+

1 ) with fixed boundary data
zero on Γ(U+

1 ) and C/N on ∂R− Ω(U+
1 ). Then U1 is a supersolution of (ST2)

in Σ, and thus by Theorem 2.10 and the assumptions (a)-(b) we have ũ ≤ U1

in Σ.

4. The construction of the subsolution U2 is a bit less straightforward. We
use

U+
2 (x, t) := (1− ǫ) sup

|y−x|≤√
ǫ(1−c(t))

U+
1 ((1 +

√
ǫ)y, t),

where ǫ = 1/N and c(t) := t4/5. Then we define

U2 = U+
2 − U−

2 in R× [0, 1],

where R is the ring domain as given above and U−
2 (·, t) is the harmonic function

in R−Ω(U+
2 ) with fixed boundary data zero on Γ(U+

2 ) and C/N on ∂R−Ω(U+
2 ).

Then U2 satisfies the free boundary condition

VU2 ≤ (1 + ǫ)|DU+
2 | −

√
ǫc′(t).

Therefore, U2 is a subsolution of (ST2) if we can show that

√
ǫc′(t) ≥ ǫ|DU+

2 |+ |DU−
2 | on Γ(U2) (3.23)

and
∫ 1

0 c′(s)ds ≤ 1.

The analysis performed in [CK], as in the proof of (c) of Theorem 1.1, yields
the following: at a fixed time t, Γ(U1) regularizes in the scale of d := d(t) which
solves

t =
d2

U1(−den, 0)
.
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Therefore,

|DU+
2 | ∼ U+

2 (−den, 0)

d
and |DU−

2 | ∼ U−
2 (den, 0)

d
on

Γ(U2)× [t/2, t].

Observe that since β ≥ 5/6,

U+
2 (−den, 0) ≤ d5/6 and U−

2 (den, 0) ≤ ǫd5/6,

then we have

ǫ
U+
2 (−den, 0)

d
+

U−
2 (den, 0)

d
≤ ǫd−1/6 ≤

√
ǫt−1/5.

where the last inequality follows from

t = d2/U1(−den, 0) ≤ d2/dα ≤ d5/6.

Hence c(t) = t4/5 satisfies (3.23), and we conclude that U2 is a subsolution of
(ST2).

Now we can use the fact

U2 ≤ ũ ≤ U1 in Bc(0)× [0, c]

to conclude that ũ is
√
ǫ- close to U1: a Lipschitz (and smooth) solution in

B1(0)× [1/2, 1]. Once we can confirm this, everything else follows from analysis
parallel to that of [ACS2] with the choice of a sufficiently small ǫ.

5. Now we proceed to the general proof without the simplified assumptions
(a) and (b) in step 3, which are replaced with local inequalities (3.20)-(3.21)
and (3.22). For this we need to perturb the initial data outside of B1(0) (see
section 4, p 2781-2783 of [CJK2]), to obtain functions W1(x) and W2(x) which
satisfies the followings:

(a) {Wk > 0} with k = 1, 2 is star-shaped and coincides with Ωαr−1/2(w̃) in
Br−b(0);

(b) {W2 > 0} ⊂ Ωαr−1/2(w̃) ⊂ {W1 > 0} ;

(c) d(x, {Wk > 0}) ≥ r−b with k = 1, 2 for x ∈ Γαr−1/2(w̃)∩ (IRn−B2r−b(0));

(d) Wk is harmonic in {Wk > 0}−K with boundary data zero on Γ(Wk) and
(1 + rb)w̃(x, αr−1/2) on ∂K, where

K = {x : d(x,Γ(Wk)) ≥ r−b}.

Let Uk be the solution of Hele-Shaw problem in

IRn − 1

2
{Wk > 0} × [αr−1/2, 1]

with initial data W1 and with lateral boundary data (1 + rb)w̃(x, αr−1/2). Due
to Proposition 4.1 of [CJK2], for sufficiently small r > 0, the level sets of U1 is
then ǫc-close to those of U2 in B1(0)× [0, 1]. Hence we can use U2 instead of U1

in step 4. and proceed as in step 4 to conclude.

23



4 Decomposition based on local phase dynamics

Throughout the rest of the paper, we fix x0 ∈ Γ0 and a sufficiently small con-
stant r > 0, and will prove the regularization of the solution in Br(x0) ×
[t(x0, r)/2, t(x0, r)]. We also fix a constant M ≥ Mn, where Mn is a suffi-
ciently large dimensional constant. If the ratio between u+(x0 − ren, 0) and
u−(x0 + ren, 0) is bigger than M , then we can directly apply Proposition 3.8 to
prove the main theorem. Therefore we assume that

M−1u−(x0 + ren, 0) ≤ u+(x0 − ren, 0) ≤ Mu−(x0 + ren, 0). (4.1)

Let

C0 := max[
u+(x0 − ren, 0)

r
,
u−(x0 + ren, 0)

r
].

Then since u+
0 and u−

0 are comparable with harmonic functions, C0 is less than
a constant depending on n and M (See Corollary 2.14). Also note that

C0 ≥ rα−1 ≥ r1/6.

Let

A+ = {x ∈ Γ0 ∩B2r(x0) :
u+(x− sen, 0)

s
≥ MC0 for some r5/4 ≤ s ≤ r}

and

A− = {x ∈ Γ0 ∩B2r(x0) :
u−(x+ sen, 0)

s
≥ MC0 for some r5/4 ≤ s ≤ r}.

Denote
A = A+ ∪A−.

Lemma 4.1. If

u±(x∓ sen, 0)

s
≥ MC0 for some s ≤ r,

then
u∓(x± sen, 0)

s
≤ C0.

Proof. Since u±
0 are comparable with harmonic functions h±, we can argue

similarly as in Corollary 2.14. Observe

u+
0 (x − sen)

s
· u

−
0 (x+ sen)

s
∼ h+(x− sen)

s
· h

−(x+ sen)

s

.
√

φ(r) . C2
0 .
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Figure 3: Decomposition of the domain

Now for x ∈ A+, we can find the largest constant rx < r such that

u+(x− rxen, 0)

rx
= MC0

then let
Qx = Brx(x)× [0,

rx
MC0

].

Also for x ∈ A−, we can similarly define rx and Qx. Let

Σ := Br(x0)× [0, t(x0, r)] −
⋃

x∈A

Qx. (4.2)

(See Figure 3)
The following statement is a direct consequence of the definition (4.2).

Lemma 4.2. If x ∈ Γ0 ∩ Σ0, then for all r5/4 ≤ s ≤ r

u+(x − sen, 0)

s
,
u−(x + sen, 0)

s
≤ MC0.

The next proposition is the main result in this section, which states that the
solution is “well-behaved” in Σ.

Proposition 4.3. There exists a dimensional constant K > 0 such that for all
(x, t) ∈ Γ ∩ Σ

(A)
u+(x− sen, t)

s
,
u−(x+ sen, t)

s
< KMC0 for r5/4 ≤ s ≤ r.

Before proving Proposition 4.3, we show an immediate consequence of the
proposition: we are ready to show that Γ(u) is close to a Lipschitz graph in time
as well as in space.
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Corollary 4.4. for (x, t) ∈ Γ ∩ Σ, suppose (x + ken, t+ τ) ∈ Γ. Then

|k| ≤ r5/4 if τ ∈ [0,
r5/4

K1MC0
].

where K1 is a dimensional constant.

Proof. Due to Lemma 3.6, at any time 0 ≤ t ≤ t(x0, r), we have

h±(x, t) ≤ u±(x, t) ≤ C1h
±(x∓ r5/4en, t). (4.3)

in Br(x0), where h := h+(·, t)− h−(·, t) is harmonic in its positive and negative
phase in (1 + r)Ωt(u) − (1 − r)Ωt(u), and the domains Ω(h+) and Ω(h−) are
both star-shaped with respect to Br0(0). Let us pick (y0, t0) ∈ Γ ∩ Σ. Due to
Proposition 4.3, (4.3) and the Harnack inequality for harmonic functions, we
have

sup
y∈B

10r5/4
(y0)

u(y, t0) ≤ CC1KMC0r
5/4 (4.4)

where C is a dimensional constant. On the other hand, due to Lemma 3.1 and
t50 ≤ r25/6, we have

u(·, t0) ≤ 0 in B 1
2 r

5/4(y0 + r5/4en). (4.5)

Let

y1 := y0 + r5/4en, C2 := CC1KMC0, r(t) :=
1

2
r5/4 − C3(t− t0)

where C3 = CC2. Next we define φ(x, t) in the domain

Π := B2r5/4(y1)× [t0, t0 +
r5/4

C3
]

such that






















−∆φ(·, t) = 0 in B2r5/4(y1)−Br(t)(y1)

φ = 2C2r
5/4 on ∂B2r5/4(y1)

φ = 0 in Br(t)(y1).

Then by (4.3), (4.4) and (4.5), u ≺ φ at t = t0 in Π. Let T0 be the first time
where u hits φ from below in Π. Since (4.4) also holds for any (x, t) ∈ Γ ∩Σ in
place of (y0, t0), we have u < φ on the parabolic boundary of Π∩{t0 ≤ t ≤ T0}.
On the other hand, if C is chosen sufficiently large, then

φt

|Dφ| = C3 ≥ |Dφ| on ∂Br(t)(y1)× [t0, t1 := t0 +
r5/4

4C3
],

and thus φ is a supersolution of (ST). This and Theorem 2.10 applied to u
and φ in Π yields a contradiction, and we conclude that Γ(u) lies outside of
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B 1
4 r

5/4(y0 + r5/4en) for t0 ≤ t ≤ t1. Similarly, by constructing a negative

radial barrier and comparing it with u, one can show that Γ(u) lies outside of
B 1

4 r
5/4(y0 − r5/4en) for t0 ≤ t ≤ t1. Hence we conclude.

We proceed to show our main result, Proposition 4.3. The following lemmas
are used in the proof of the proposition.

• For x0 ∈ Γt0 , define

t(x0, r) := min[
r2

u+(x0 − ren, t0)
,

r2

u−(x0 + ren, t0)
].

Lemma 4.5 (Harnack at later times). Fix s ∈ [r5/4, r]. If (y0, t0) ∈ Γ ∩ Σ,
then

u+(y0 − sen, t0) ≥ c1u
+(y0 − sen, t0 + τ)

and
u−(y0 + sen, t0) ≥ c1u

−(y0 + sen, t0 + τ)

for 0 ≤ τ ≤ t(y0, s)/2 and c1 > 0.

Proof. We will show the lemma for u+: the statement on u− follows via parallel
arguments.

1. Let (y0, t0) ∈ Γ∩Σ and let s ∈ [r5/4, r]. Let h+ be given as in (4.3). Due
to Lemma 3.3 and Lemma 3.4, we have

h+(y0 − 2ren, t1) ≤ u+(y0 − 2ren, t1)

≤ Cu+(y0 − 2ren, t2) ≤ Ch+(y0 − (2r + r5/4)en, t2)

for 0 ≤ t1, t2 ≤ t0 + t(y0, r)/2. (Here note that y0 ∈ Br(x0).) In particular

u+(y0 − 2ren, t) ≤ Ch+(y0 − (2r + r5/4)en, t0) ≤ C1h
+(y0 − 2ren, t0) (4.6)

for t ≤ t0 + t(y0, s)/2.

2. Now let v+ solve (ST1) in (IRn − (1 − 2r)Dt0)× [t0, t0 + t(y0, s)/2] with
initial and boundary data C2h

+(x − 2sen, t). Since s ≥ r5/4, (4.3) implies

Ωt(u) ⊂ Ωt0(v
+) ⊂ Ωt(v

+) in B2s(y0)× [t0, t0 + t(y0, s)/2]. (4.7)

Then by (4.7), (4.6) and (4.3),

u+ ≤ v+ in Bs(y0)× [t0, t0 + t(y0, s)/2]

27



if we choose C2 as a multiple of C1 by a dimensional constant. Moreover, due
to the Harnack inequality for one-phase (ST1), one can conclude that

u+(y0 − sen, t0 + τ) ≤ v+(y0 − sen, t0 + τ)

≤ Cv+(y0 − sen, t0)

= CC2h
+(y0 − 3sen, t0)

≤ C3h
+(y0 − sen, t0)

≤ C3u
+(y0 − sen, t0)

for 0 ≤ τ ≤ s2

v+(y0 − sen, t0)
∼ t(y0, s)/2. Here the first inequality uses

u+ ≤ v+, the second uses the Harnack inequality for v+, the third one uses
the Harnack inequality for harmonic functions and the last one uses (4.3).

Lemma 4.6 (Backward harnack). Suppose that (A) holds up to time t =
T0 ≤ t(x0, r). If (y0, t0) ∈ Γ and t0 ≤ T0, then for 0 ≤ τ ≤ t(y0, s)/2,

u+(y0 − sen, t0) ≤ Cu+(y0 − sen, t0 + τ)

and
u−(y0 + sen, t0) ≤ Cu−(y0 + sen, t0 + τ)

where 0 ≤ s ≤ r and C is a universal constant.

Proof. We will show the argument for u+, due to the symmetric nature of the
claim. The argument here will be similar to that of Lemma 3.4, replacing the
initial data u+

0 and u−
0 (used in the construction of barriers) by h+(x, t0) and

h−(x, t0) given in (4.3).
We consider v1: a one-phase solution of (ST1) in

Π := (1 + r)Ωt0 × [t0, t0 + t(y0, s)/2]

with initial and lateral boundary data C1h
−. Then v1 ≤ u in Π. Now let v2

solve the heat equation in {v1 = 0} × [t0, t0 + t(y0, s)/2] with initial data

v2(·, t0) =







h+(·, t0) in {v1(·, t0) = 0} − (1− r){h+(·, t0) > 0}

h̃(·) in (1− r){h+(·, t0) > 0},

where h̃(·) is a C2 extension function of h+(·, t0) chosen so that h̃(·) ≤ u+(·, t0).
The rest of the proof is the same as that of Lemma 3.4.
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Lemma 4.7. (Regularization in bad balls) For a fixed (x0, t0) ∈ Γ(u), and
suppose

u+(x0 − ren, t0) ≥ Mu−(x0 + ren, t0)

or
u−(x0 + ren, t0) ≥ Mu+(x0 − ren, t0)

for M > Mn, where Mn is a dimensional constant. Then for r ≤ 1/Mn, there
exists a dimensional constant C > 0 such that

|∇u+| ≤ C
u+(x0 − ren, t0)

r
and |∇u−| ≤ C

u−(x0 + ren, t0)

r

in Br(x0)× [t0 + t(x0, r)/2, t0 + t(x0, r)].

Proof. The proof of this lemma is parallel to that of Proposition 3.8. We use
Harnack and backward Harnack inequalities (Lemmas 4.5 and 4.6) instead of
Lemmas 3.3 and 3.4. Also we have Lemma 3.6.

We are now ready to prove our main result, Proposition 4.3. Observe that
(A) holds up to some T0 > 0 by Lemma 4.2 and Lemma 3.3.

Proof of Proposition 4.3. Let K be a sufficiently large dimensional constant
such that K ≫ M . Let us assume that (A) breaks down for u+ for the first
time at t = T0. Then

u+(z0 − sen, T0)

s
= KMC0 (4.8)

for some (z0, T0) ∈ Γ ∩ Σ and r5/4 ≤ s ≤ r. Let

h = sup{h :
u+(z0 − ken, T0)

k
≥ M2C0 for s ≤ k ≤ h}. (4.9)

Note that h < r/2 due to Lemma 3.3 and the definition of C0, and h > 2s due
to Lemma 3.6. By the definition of h we have

u+(z0 − hen, T0)

h
= M2C0. (4.10)

Let us find t0: the closest time before T0 such that for some (y0, t0) ∈ Γ

T0 − t0 = t(y0, h)/2 and y0/|y0| = z0/|z0|.

Then Lemma 4.5 implies

u+(y0 − hen, t0)

h
∼ u+(y0 − hen, T0)

h
∼ u+(z0 − hen, T0)

h
= M2C0.

Since u+(·, t0) and u−(·, t0) are comparable to harmonic functions (Lemma 3.6),
a similar argument as in Lemma 4.1 implies that

u−(y0 + hen, t0)

h
. C0 .

1

M2

u+(y0 − hen, t0)

h
.
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Hence by Lemma 4.7, we have

|∇u+(·, T0)| ∼ M2C0 in Bh(y0)

Since Bs(z0) ⊂ Bh(y0), this would contradict (4.8) since K ≫ M .
2

5 Regularization after t = t(r).

Recall that x0 ∈ Γ0 and r > 0 are fixed, and they satisfy (4.1). Our goal is to
prove the regularization of the free boundary after the time t(x0, r)/2 in Br(x0).
Define

Qr(x0) := Br(x0)× [t(x0, r)/2, t(x0, r)] ⊂ Σ.

Let us briefly review the information we have on u so far. Due to Lemma 3.6
and Corollary 4.4, our solution u is ǫ-monotone in Qr(x0), with respect to a
space and time cone, where the space cone Wx(en, θ0) satisfies

|θ0 − π| = O(L),

where L is the Lipschitz constant of the initial domain Ω0 given by (1.1). More-
over, due to Proposition 4.3, u does not grow too big over time, which along
with Lemma 3.8 guarantees that there is no big flux of u coming in from outside
of Br(x0) to perturb our solution. Therefore the theory developed in [ACS1]-
[ACS2], which says localized solutions with flat free bondaries are smooth, ap-
plies with appropriate modifications if we have L small enough such that the
waiting time phenomena as seen in [CK2] is prevented. More precise description
of the situation as well as precise modifications are detailed below.

As a result of Proposition 4.3, (A) holds up to

t = t(x0, r) ≤ Cr2−α < r3/4.

MoreoverQr(x0) ⊂ Σ, and thus Corollary 4.4 and Lemma 3.1, the free boundary
Γ(u) is r4/3-monotone in Qr(x0) with respect to the time cone
Wt(en, tan

−1(1/K1MC0)) and the space cone Wx(en, θ0). Here θ0 is the angle
corresponding to the Lipschitz constant of Γ0, and t(x0, r) =

r
C0

.

On the other hand, by Lemma 3.3 and the definition of C0,

u(x0 − ren,
t(x0,r)

2 )

C0r
∼ 1.

Since Qr(x0) ⊂ Σ, Proposition 4.3 implies

u(x, t)

C0r
. KM in Br(x0)× [t(x0, r)/2, t(x0, r)].
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Motivated from the above estimates, we consider the re-scaled function

ũ(x, t) :=
1

C0r
u(rx + x0, r

2t+
t(x0, r)

2
).

The main difficulty in applying the Method of [ACS]-[ACS2] lies in the fact
that we cannot guarantee the ǫ-monotonicity of the solution u in time variable
(although we can obtain, as above, the r4/3-monotonicity of the free boundary
Γ(u)). In [ACS]-[ACS2], it was important that initially the time derivative of
the solution was assumed to be controlled by the spatial derivative, i.e.,

|ut| ≤ C(|Du+|+ |Du−|). (5.1)

Using (5.1) one can prove that the direction vectors

Du+

|Du+| (−len, t),
Du−

|Du−| (len, t)

do not change much for 0 ≤ t ≤ l. This is pivotal in regularization procedure
since then Γ(u) regularizes along the direction of the“common gain” obtained by
those two direction vectors, the regularity of Γ(u) then makes above two vectors
line up better in a smaller scale, which contributes to further regularization of
Γ(u) in a finer scale. In our case we do not have (5.1), which requires an extra
care in showing that the vectors do not change their directions too rapidly.

◦ ǫ-monotonicity of Γ(ũ) to full monotonicity of ũ

First we prove that the ǫ-monotonicity of Γ(ũ) improves to Lipschitz conti-
nuity. Let a = C0r. Then in the domain B1(0)× [− 1

a ,
1
a ], ũ(x, t) solves







ũt −∆ũ = 0 in {ũ > 0}

V = a(|Dũ+| − |Dũ−|) on ∂{ũ > 0}.

Here note that r7/6 ≤ rα ≤ a ≤ rβ ≤ r5/6. In this scale, since ũ is Caloric and
Γ(ũ) is r1/3-close to a Lipschitz graph in space and time, it follows that so does
ũ in B1/2(0)× [− 1

a + 1, 1
a ].

Note that in above step we are losing a lot of information over time: Γ(ũ) is
in fact r1/3-close to a Lipschitz graph moving very slow in time, but this does
not guarantee that ũ also changes slowly in time.

We then follow the iteration process in Lemma 7.2 of [ACS] to show the
following:

Lemma 5.1. If r is sufficiently small, then there exists 0 < c, d < 1/2 such that
the following is true: ũ is λr1/3-monotone in the cone of directions Wx(θx −
rd, en) and Wt(θt − rd, ν) in the domain B1−rc(0)× [ (−1+rc)

a , 1
a ].

One can then iterate above lemma to improve the ǫ-monotonicity to full
monotonicity, and state the result in terms of ũ:
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Lemma 5.2. ũ is fully monotone in B1/2(0)× [0, 1
a ] for the cone

C1 := Wx(θx − rd, en) ∪Wt(θt − rd, ν),

for some constant 0 < d < 1/2.

◦ Further regularity in space

Now we suppose ũ is Lipschitz in space and time. Then in particular, we
have the Lipschitz regularity of u in space (and very weak Lipschitz regularity
of u in time.) We are interested in proving the following type of statement:

Lemma 5.3 (enlargement for the cone of monotonicity). There exists λ > 0
such that the following holds: Suppose ũ is Lipschitz with respect to the cone of
monotonicity Λx(en, θ0) in B1(0)× [− 1

a ,
1
a ]. Then in the half domain B1/2(0)×

[− 1
2a ,

1
2a ], ũ is Lipschitz with respect to the cone of monotonicity Λx(ν, (1+λ)θ0)

with some unit vector ν.

To prove the enlargement of the cone, we take a closer look at the change of
ũ over time, in the interior region. More precisely, we need the following lemma
which follows the approach taken in [CJK1] and [CJK2].

Lemma 5.4.

|ũt| ≤ a|Dũ|2 ≤ Ca in [B1/2(en) ∪B1/2(−en)]× [−1/2a, 1/2a],

where C is a dimensional constant.

Proof. 1. The proof is similar to that of Lemma 8.3 of [CJK2]. Note that ũt is
a caloric function in Ω+(ũ) and Ω−(ũ). Let us prove the lemma for ũ+, since
parallel arguments apply to ũ−.

2. We divide ũt into two parts. More precisely, let

ũt = v1 + v2,

where both v1 and v2 are caloric in Ω+(ũ), v1 has initial data zero and the
boundary data a|Dũ+|(|Dũ+| − |Dũ−|) on Γ(ũ), and v2 has the initial data
ũt(·,−1/a) and the boundary data zero on Γ(ũ).

3. As for v1, we need to use the absolute continuity of the caloric measure
with respect to the harmonic measure, as well as the Lipschitz continuity of the
free boundary. we proceed as in Lemma 8.3 of [CJK1]. Note that we have

|Dũ+| ∼ |Dũ−| ∼ 1

in [B1/2(en)∪B1/2(−en)]× [−1/a, 1/a]: this follows from the assumption (4.1),
and Lemmas 3.3 and 3.4. Therefore we can proceed as in Lemma 8.3 of [CJK1]
to obtain

v1(x, t) ≤ a

∫

Γ(ũ)∩{−1/a≤s≤t}
|Dũ+|2dω(x,t) ≤ a|Dũ|2(x, t)
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where ω(x,t) is the caloric measure for Ω(ũ).

v1(x, t) ≥ a

∫

Γ(ũ)∩{−1/a≤s≤t}
−|Dũ−|2dω(x,t) ≥ −a|Dũ|2(x, t).

4. As for v2, we conclude that it must be smaller than that of caloric
function solved in the whole domain with the absolute value of its initial data.
The advantage is that then we can use the heat kernel. Note that the initial data
is given at t = −1/a and has a compact support. The initial data is given by
vt ≤ C

a ven , where ven(x, t) is comparable to the derivative of harmonic function
in Lipschitz domain.

Therefore the heat kernel representation is given as

1

(t+ 1/a)
n
2 +1

∫

|xn − yn| exp−|x−y|2/(t+1/a) v(y,−1/a)dy.

Since t ∈ [0, 1/a], and k exp−ak2 ≤ C exp−
a
2 k

2

, we get the effect of O(a).

Now we change the scale, and consider the function

v(x, t) :=
1

C0r
u(rx+ x0,

r

C0
t+ 1) (5.2)

Then this function is Lipschitz continuous, in space and time, away from
the free boundary. The following lemma suggests that the cone of monotonicity
improves away from the free boundary, as we look at smaller scales. The proof
is parallel to that of Lemma 8.4 in [ACS2].

Lemma 5.5. Let v given by (5.2). Suppose that there exists constants δ > 0
and 0 ≤ A ≤ B, µ := B −A such that

α(Dv,−en) ≤ δ and A ≤ vt
−en ·Dv

≤ B

in B1/6(− 3
4en)×(−δ/µ, δ/µ) with δ

µ < r. Then there exist a unit vector ν ∈ IRn

and positive constants r0, b0 < 1 depending only on A, B and n such that

α(Dv(x, t), ν) ≤ b0δ in B1/8(−
3

4
en)× (−r0

δ

µ
, r0

δ

µ
).

Now we can proceed as in section 6 of [CJK2] to obtain further regularity,
using Lemma 5.4 instead of the uniform upper bound on |Du| up to the free
boundary.

Theorem 5.6. Γ(v) is C1 in space in Q1/2. In particular, three exist constants
l0, C0 > 0 depending only on L, n and M such that for a free boundary point
(x0, t0) ∈ Γ(v), Γ(v) ∩B2−l(x0, t0) is a Lipschitz graph with Lipschitz constant

less than
C0

l
if l ≥ l0.
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Figure 4: Locally Lipschitz initial domain

◦ Regularity in time

Lastly, proceeding as in section 7-8 of [CJK2] yields the differentiability of
Γ(v) in time. The main step in the argument is the following proposition: the
statement and its proof is parallel to those of Theorem 7.2 in [CJK2].

Proposition 5.7. There exist constants l0 > 0 and 1 < γ < 2 depending only
on L, n,M such that for (x0, t0) ∈ Γ(v) ∩ Q1, if l > l0 then Γ(v) ∩B2−l(x0, t0)
is a Lipschitz graph with Lipschitz constant less than l−γ.

Above proposition and the blow-up argument in section 8 of [CJK2] yields
the desired result:

Theorem 5.8. Γ(v) is differentiable in time. Moreover

C−1 ≤ |Dv|(x, t) ≤ C in Ω(ũ) ∩Q1/2,

where C = C(M,n).

6 General case: solutions with Locally Lipschitz

Initial data

In this section, we present how to extend the result of the main theorem to
solutions with locally Lipschitz initial data. Our setting is as follows. Suppose
Ω0 is a bounded region in BR(0). Suppose u is a solution of (ST2) with u0 ≥ −1,
u0 = −1 on BR(0) and u0 ≤ M0. Further suppose that Ω0 is locally Lipschitz:
that is, for any x0 ∈ Γ0, Γ0 ∩ B1(x0) is Lipschitz with a Lipschitz constant
L ≤ Ln.

Let the initial data u0 solve ∆u0 = 0 in B1(x0). Then we claim that the
parallel statements as in Theorem 1.2 hold in B2d0(x0)× [t(x0, d0)/2, t(x0, d0)],
where d0 is a constant depending on n and M0. More precisely:
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Theorem 6.1. Suppose u is a solution of (ST2) with initial data u0 such that
−1 ≤ u0 ≤ M0. Further suppose that for x0 ∈ Γ0, Γ0 ∩B1(x0) is Lipschitz with
a Lipschitz constant L ≤ Ln and ∆u0 = 0 in the positive and negative phases
of u0 in B1(x0). Then there exists a constant d0 > 0 depending on n and M0

such that (a) and (b) of Theorem 1.2 hold for u and d ≤ d0.

The proof of the above theorem is parallel to that of Theorem 1.2 in section
5, after proving the following lemma.

Lemma 6.2. There exists a solution v of (ST2) with a star-shaped initial data
such that the level sets of u and v are ǫd0-close to each other in B2d0(x0) up
to the time t(x0, d0;u), where d0 > 0 is sufficiently small. In particular, u and
Γ(u) is ǫ-monotone in a cone of Wx and Wt in B2d0(x0)× [t(x0, d0)/2, t(x0, d0)].

Even though our equation is nonlocal, the behavior of far-away region would
not affect much the behavior of solution in the unit ball, if the solution behaves
“reasonably” outside the unit ball. For example, in the star-shaped case, we
know at least that the free boundary is almost locally Lipschitz at each time.
In the locally Lipschitz case, we control the solution by putting an upper bound
M0 on the initial data u0. We will argue that in a sufficiently small subregion
of B1(x0)× [0, 1], the solution is mostly determined by the local initial data in
B1(x0). The perturbation method in the proof of Lemma 2.4 in [CJK1] will be
adopted here. Denote B1(x0) = B1.

1. Construct a star-shaped region Ω′ ⊂ BR(0) such that

(a) Ω′ ∩B1 = Ω0 ∩B1.

(b) Ω′ is star-shaped with respect to every x ∈ K ⊂ Ω′ for a sufficiently large
ball K.

Let v+0 be the harmonic function in Ω′ −K with boundary data 1 on ∂K, and
0 on ∂Ω′. Next, let v−0 be the harmonic function in BR(0)− Ω′ with boundary
data 1 on ∂BR(0), and 0 on ∂Ω′. Let B2 be a concentric ball in B1 with the
radius of ǫk0 , i.e.,

B2 = Bǫk0 (x0) ⊂ B1(x0) = B1.

Let k0 be sufficiently large. Then by Lemma 2.6, a normalization of v±0 by a
suitable constant multiple yields that for any x ∈ B2

1− ǫ ≤ u0(x)

v0(x)
≤ 1 + ǫ. (6.1)

Let v solve (ST2) with initial data v0 = v+0 − v−0 . Then Theorem 1.2 applies for
v since v0 is star-shaped with respect to K.

For the proof of the claim, we will find a sufficiently small d0 such that v
is ǫd0-close to u in B2d0(x0) up to the time t(x0, d0). More precisely, we will
construct a supersolution w1 and a subsolution w2 of (ST2) such that in some
small ball Bh(x0), we have

w2 ≤ u ≤ w1
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and the level sets of w1 and w2 are hǫ close to the level sets of v.

2. Let k1 and k2 be large constants which will be determined later. Define

H± := (Γ0(v)± ǫk0+k1en) ∩B2.

Let
d0 := ǫk0+k1+k2 .

and let t(d0) := t(x0, d0; v) = t(x0, d0;u). First note that

t(d0) ≥ d2−β
0 ≥ ǫ7(k0+k1+k2)/6.

Hence for v to be almost harmonic in a scale much larger than ǫk0+k1 , we need
√

t(d0) > ǫk0 , i.e.,
7(k0 + k1 + k2)/12 < k0.

Observe that by the construction of H± and d0,
√

t(d0) ≫ radius(B2) ≫ dist(H±,Γ0) ≫ max
x∈Γt∩B2,0≤t≤t(d0)

dist(x,Γ0) (6.2)

where the last inequality follows from Lemma 2.11 if we choose k2 ≥ 2k1. If k2
is sufficiently large, then one can prove from the last inequality of (6.2) and the
bound on vt that

1− ǫ ≤ |v(x, t)|
|v0(x)|

=
|v(x, t)|
|u0(x)|

≤ 1 + ǫ on H± × [0, t(d0)]. (6.3)

3. We do have an estimate, Lemma 2.11, on how far the boundaries move
away for the local one-phase case. If we take the one-phase versions with initial
data u+

0 and u−
0 , and compare with u, then we obtain that Γ(u) ∩ B2 stays in

the d
2−α
2−β

0 -neighborhood of Γ0(u) ∩B2 up to the time t(d0) = t(x0, d0). In other

words, the free boundary of u moves less than d
5/7
0 in B2 up to the time t(d0).

Now we let S be the region between H+ and H−. To construct a sub (or
super) solution in S, we take the fixed boundary data (1 − ǫ)v0(x) on H− (or
H+), and (1 + ǫ)v0(x) on H+ (or H−). To control the effect from the side

∂B2 ∩ S, we bend the free boundary Γt(v) by d
5/7
0 on each side of ∂B2 ∩ S,

using the conformal mapping Φ̂ (or Φ̆). (See section 4 of for the definition of Φ̂
and Φ̆.) More precisely, we bend the free boundary of v downward (or upward)
using the conformal map Φ̂ (or Φ̆), and solve the heat equation in there. Then
similar arguments as in Lemmas 4.1 and 4.3 of [CK] yield that the solution is
still (almost) a supersolution, and it stays close to the original solution.
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