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Quasi-periodic solutions with Sobolev regularity of

NLS on T
d with a multiplicative potential

Massimiliano Berti, Philippe Bolle

Abstract: We prove the existence of quasi-periodic solutions for Schrödinger equations with a multiplica-
tive potential on T

d, d ≥ 1, merely differentiable nonlinearities, and tangential frequencies constrained
along a pre-assigned direction. The solutions have only Sobolev regularity both in time and space. If
the nonlinearity and the potential are C∞ then the solutions are C∞. The proofs are based on an im-
proved Nash-Moser iterative scheme, which assumes the weakest tame estimates for the inverse linearized
operators (“Green functions”) along scales of Sobolev spaces. The key off-diagonal decay estimates of
the Green functions are proved via a new multiscale inductive analysis. The main novelty concerns the
measure and “complexity” estimates.
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tions, Small Divisors, Infinite Dimensional Hamiltonian Systems.
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1 Introduction

The first existence results of quasi-periodic solutions of Hamiltonian PDEs have been proved by Kuksin
[28] and Wayne [38] for one dimensional, analytic, nonlinear perturbations of linear wave and Schrödinger
equations. The main difficulty, namely the presence of arbitrarily “small divisors” in the expansion series
of the solutions, is handled via KAM theory. These pioneering results were limited to Dirichlet boundary
conditions because the eigenvalues of the Laplacian had to be simple. In this case one can impose the so-
called “second order Melnikov” non-resonance conditions to solve the linear homological equations which
arise at each KAM step, see also Pöschel [35]. Such equations are linear PDEs with constant coefficients
and can be solved using Fourier series. Already for periodic boundary conditions, where two consecutive
eigenvalues are possibly equal, the second order Melnikov non-resonance conditions are violated.

Later on, another more direct bifurcation approach has been proposed by Craig and Wayne [17],
who introduced the Lyapunov-Schmidt decomposition method for PDEs and solved the small divisors
problem, for periodic solutions, with an analytic Newton iterative scheme. The advantage of this approach
is to require only the “first order Melnikov” non-resonance conditions, which are essentially the minimal
assumptions. On the other hand, the main difficulty of this strategy lies in the inversion of the linearized
operators obtained at each step of the iteration, and in achieving suitable estimates for their inverses in
high (analytic) norms. Indeed these operators come from linear PDEs with non-constant coefficients and
are small perturbations of a diagonal operator having arbitrarily small eigenvalues.

In order to get estimates in analytic norms for the inverses, called Green functions by the analogy with
Anderson localization theory, Craig and Wayne developed a coupling technique inspired by the methods
of Fröhlich-Spencer [24]. The key properties are:

(i) “separations” between singular sites, namely the Fourier indexes of the small divisors,

(ii) “localization” of the eigenfunctions of −∂xx + V (x) with respect to the exponentials.

Property (ii) implies that the matrix which represents, in the eigenfunction basis, the multiplication
operator for an analytic function has an exponentially fast decay off the diagonal. Then the “separa-
tion properties” (i) imply a very “weak interaction” between the singular sites. Property (ii) holds in
dimension 1, i.e. x ∈ T

1, but, for x ∈ T
d, d ≥ 2, some counterexamples are known, see [23].
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The “separation properties” (i) are quite different for periodic or quasi-periodic solutions. In the first
case the singular sites are “separated at infinity”, namely the distance between distinct singular sites
increases when the Fourier indexes tend to infinity. This property is exploited in [17]. On the contrary,
it never holds for quasi-periodic solutions, even for finite dimensional systems. For example, in the ODE
case where the small divisors are ω · k, k ∈ Z

ν , if the frequency vector ω ∈ R
ν is diophantine, then

the singular sites k where |ω · k| ≤ ρ are “uniformly distributed” in a neighborhood of the hyperplane
ω · k = 0, with nearby indices at distance O(ρ−α) for some α > 0.

This difficulty has been overcome by Bourgain [6], who extended the approach of Craig-Wayne in [17]
via a multiscale inductive argument, proving the existence of quasi-periodic solutions of 1-dimensional
wave and Schrödinger equations with polynomial nonlinearities. In order to get estimates of the Green
functions, Bourgain imposed lower bounds for the determinants of most “singular sub-matrices” along the
diagonal. This implies, by a repeated use of the “resolvent identity” (see [24], [10]), a sub-exponentially
fast decay of the Green functions. As a consequence, at the end of the iteration, the quasi-periodic
solutions are Gevrey regular.

At present, KAM theory for 1-dimensional semilinear PDEs has been sufficiently understood, see e.g.
[29], [30], [16], but much work remains for PDEs in higher space dimensions, due to the more complex
properties of the eigenfunctions and eigenvalues of

(−∆+ V (x))ψj(x) = µj ψj(x) .

The main difficulties for PDEs in higher dimensions are:

1. the multiplicity of the eigenvalues µj tends to infinity as µj → +∞,

2. the eigenfunctions ψj(x) are (in general) “not localized” with respect to the exponentials.

Problem 2 has been often bypassed considering pseudo-differential PDEs substituting the multiplica-
tive potential V (x) by a “convolution potential”

V ∗ (eij·x) = mje
ij·x , mj ∈ R , j ∈ Z

d ,

which, by definition, is diagonal on the exponentials. The scalars mj are called the “Fourier multipliers”.

Concerning problem 1, since the approach of Craig-Wayne and Bourgain requires only the first order
Melnikov non-resonance conditions, it works well, in principle, in case of multiple eigenvalues, in particular
for PDEs in higher spatial dimensions.

Actually the first existence results of periodic solutions for NLW and NLS on T
d, d ≥ 2, have been

established by Bourgain in [7]-[10]. Here the singular sites form huge clusters (not only points as in d = 1)
but are still “separated at infinity”. The nonlinearities are polynomial and the solutions have Gevrey
regularity in space and time.

Recently these results were extended in [2]-[5] to prove the existence of periodic solutions, with only
Sobolev regularity, for NLS and NLW in any dimension and with merely differentiable nonlinearities.
Actually in [4], [5] the PDEs are defined not only on tori, but on any compact Zoll manifold, Lie group
and homogeneous space. These results are proved via an abstract Nash-Moser implicit function theorem
(a simple Newton method is not sufficient). Clearly, a difficulty when working with functions having only
Sobolev regularity is that the Green functions will exhibit only a polynomial decay off the diagonal, and
not exponential (or sub-exponential). A key concept that one must exploit are the interpolation/tame
estimates. For PDEs on Lie groups only weak properties of “localization” (ii) of the eigenfunctions hold,
see [5]. Nevertheless these properties imply a block diagonal decay, for the matrix which represents the
multiplication operator in the eigenfunctions basis, sufficient to achieve the tame estimates.

We also mention that existence of periodic solutions for NLS on T
d has been proved, for analytic

nonlinearities, by Gentile-Procesi [26] via the Lindstedt series techniques, and, in the differentiable case,
by Delort [18] using paradifferential calculus.

Regarding quasi-periodic solutions, Bourgain [10] was the first to prove their existence for PDEs in
higher dimension, actually for nonlinear Schrödinger equations with Fourier multipliers and polynomial
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nonlinearities on T
d with d = 2. The Fourier multipliers, in number equal to the tangential frequencies of

the quasi-periodic solution, play the role of external parameters. The main difficulty arises in the multi-
scale argument to estimate the decay of the Green functions. Due to the degeneracy of the eigenvalues of
the Laplacian the singular sub-matrices that one has to control are huge. If d = 2, careful estimates on the
number of integer vectors on a sphere, allowed anyway Bourgain to show that the required non-resonance
conditions are fulfilled for “most” Fourier multipliers.

More recently Bourgain [13] improved the techniques in [10] proving the existence of quasi-periodic
solutions for nonlinear wave and Schrödinger equations with Fourier multipliers on any T

d, d > 2, still for
polynomial nonlinearities. The improvement in [13] comes from the use of sophisticated techniques de-
veloped in the context of Anderson localization theory in Bourgain-Goldstein-Schlag [14], Bourgain [11],
see also Bourgain-Wang [15]. These techniques (sub-harmonic functions, Cartan theorem, semi-algebraic
sets) mainly concern fine properties of rational and analytic functions, especially measure estimates of
sublevels. Actually the nonlinearities in [13] are taken to be polynomials in order to use semialgebraic
techniques. Very recently, Wang [37] has generalized the results in [13] for NLS with no Fourier multi-
pliers and with supercritical nonlinearities. The main step is a Lyapunov-Schmidt reduction in order to
introduce parameters and then be able to apply the results of [13].

We also remark that, in the last years, the KAM approach has been extended by Eliasson-Kuksin [21]
for nonlinear Schrödinger equations on T

d with a convolution potential and analytic nonlinearities. The
potential plays the role of “external parameters”. The quasi-periodic solutions are C∞ in space. Clearly
an advantage of the KAM approach is to provide also a stability result: the linearized equations on the
perturbed invariant tori are reducible to constant coefficients, see also [22].

For the cubic NLS in d = 2 the existence of quasi-periodic solutions has been recently proved by
Geng-Xu-You [25] via a Birkhoff normal form and a modification of the KAM approach in [21], see also
Procesi-Procesi [36], valid in any dimension.

In the present paper we prove -see Theorem 1.1- the existence of quasi-periodic solutions for nonlinear
Schrödinger equations on T

d, d ≥ 1, with:

1. merely differentiable nonlinearities, see (1.2),

2. a multiplicative (merely differentiable) potential V (x), see (1.3),

3. a pre-assigned (Diophantine) direction of the tangential frequencies, see (1.4)-(1.5) .

The quasi-periodic solutions in Theorem 1.1 have the same Sobolev regularity both in time and space,
see remark 5.3. Moreover, we prove that, if the potential and the nonlinearity are of class C∞, then the
quasi-periodic solutions are C∞-functions of (t, x).

Let us make some comments on the results.

1. Theorem 1.1 confirms the natural conjecture about the persistence of quasi-periodic solutions for
Hamiltonian PDEs into a setting of finitely many derivatives (as in the classical KAM theory [33], [34],
[39]), stated for example by Bourgain [9], page 97. The nonlinearities in Theorem 1.1, as well as the
potential, are sufficiently many times differentiable, depending on the dimension and the number of the
frequencies. Of course we can not expect the existence of quasi-periodic solutions of the Schrödinger
equation under too weak regularity assumptions on the nonlinearities. Actually, for finite dimensional
Hamiltonian systems, it has been rigorously proved that, if the vector field is not sufficiently smooth, then
all the invariant tori could be destroyed and only discontinuous Aubry-Mather invariant sets survive, see
e.g. [27]. We have not tried to estimate the minimal smoothness exponents, see however remark 1.2. This
could be interesting for comparing Theorem 1.1 with the well posedness results of the Cauchy problem.

2. Theorem 1.1 is the first existence result of quasi-periodic solutions with a multiplicative potential
V (x) on T

d, d ≥ 2. We never exploit properties of “localizations” of the eigenfunctions of −∆+V (x) with
respect to the exponentials, that actually might not be true, see [23]. Along the multiscale analysis we
use the exponential basis which diagonalizes −∆+m where m is the average of V (x), see (2.5), and not
the eigenfunctions of −∆+ V (x). In [10] Bourgain considered analytic multiplicative periodic potentials
of the special form V1(x1) + . . . + Vd(xd) to ensure localization properties of the eigenfunctions, leaving
open the natural problem for a general multiplicative potential V (x).
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We also underline that Theorem 1.1 holds for any fixed potential V (x): we do not extract parameters
from V , the role of external parameters being played by the frequency ω = λω̄.

3. For finite dimensional systems, the existence of quasi-periodic solutions with tangential frequencies
constrained along a fixed direction has been proved by Eliasson [19] (with KAM theory) and Bourgain [8]
(with a multiscale approach). The main difficulty clearly relies in satisfying the Melnikov non-resonance
conditions, required at each step of the iterative process, using only one parameter. Bourgain raised in
[8] the question if a similar result holds true also for infinite dimensional Hamiltonian systems. This has
been recently proved in [1] for 1-dimensional PDEs, verifying the second order Melnikov non-resonance
conditions of KAM theory. Theorem 1.1 (and its method of proof) answers positively to Bourgain’s
conjecture also for PDEs in higher space dimension. The non-resonance conditions that we have to fulfill
are of first order Melnikov type, see the end of section 1.2.

The proof of Theorem 1.1 is based on a Nash-Moser iterative scheme and a multiscale analysis of
the linearized operators as in [13]. However, our approach presents many differences with respect to
Bourgain’s one [13], about:

1. the iterative scheme,

2. the multiscale proof of the Green’s functions polynomial decay estimates.

Referring to section 1.2 for a detailed exposition of our approach, we outline here the main differences.

1. Since we deal with merely differentiable nonlinearities we need all the power of the Nash-Moser
theory in scales of Sobolev functions spaces. A Newton method valid in analytic Banach scales is not
sufficient. This means that the superexponential smallness of the error terms due to finite dimensional
truncations, see (7.60), can not be obtained, in Sobolev scales, decreasing the analyticity strips, but using
the structure of the iteration and the interpolation estimates of the Green functions, see lemmas 7.8, 7.9,
7.12. This is a key idea when dealing with matrices with a merely polynomial off-diagonal decay.

Actually, the Nash-Moser scheme developed in section 7 also improves the one in [2]-[4], requiring the
minimal tame properties (7.62) for the inverse linearized operators, see comments after (1.14).

Another comment is in order: we do not follow the “analytic smoothing technique” suggested by
Moser in [33] of approximating the differentiable Hamiltonian PDE by analytic ones. This technique is
very efficient for finite dimensional Hamiltonian systems, see [34], [39], but it seems quite delicate for
PDEs (especially in dimensions d ≥ 2) because of the presence of large clusters of small divisors. So we
prefer a more direct Nash-Moser iterative procedure more similar, in spirit, to [32].

2. The main difference between our multiscale approach, which is developed to prove the Green
functions estimates (7.62), and the one in [13], [14], [11], [15], concerns the way we prove inductively
the existence of “large sets” of Nn-good parameters, see Definition 5.2. Quoting Bourgain [12] “...the
results in [13] make essential use of the general perturbative technology (based on subharmonicity and
semi-algebraic set theory) [...]. This technique enables us to deal with large sets of ‘singular sites’ [...],
something difficult to achieve with conventional eigenvalue methods.”. Actually, exploiting that−∆+V (x)
is positive definite, we are able to prove the necessary measure and “complexity” estimates by using only
elementary eigenvalue variation arguments, see section 6.

Another deep difference is required for dealing with a multiplicative potential V (x): we define “very
regular” sites (see Definition 4.2) depending on the potential V .

We hope that this novel approach will be useful also for extending the results of [11], [13], [14], [15].

We tried to present the steps of proof in an abstract setting (as much as possible) in order to develop
a systematic procedure, alternative to KAM theory, for the search of quasi-periodic solutions of PDEs.
The proof of Theorem 1.1 is completely self-contained. All the techniques employed are elementary and
based on abstract arguments valid for many PDEs. Only the “separation properties” of the bad sites
(section 5) will change, of course, for different PDEs.

Since the aim of the present paper is to focus on the small divisors problem for quasi-periodic solutions
with Sobolev regularity of NLS with a multiplicative potential on T

d and differentiable nonlinearities,
we have considered, among many possible variations, quasi-periodically forced nonlinear perturbations of
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linear Schrödinger equations. In this way, we avoid the Lyapunov-Schmidt decomposition. Clearly the
small divisors difficulty for quasi-periodically forced NLS is the same as for autonomous NLS.

We now state precisely our results.

1.1 Main result

We consider d-dimensional nonlinear Schrödinger equations with a potential V , like

iut −∆u + V (x)u = εf(ωt, x, |u|2)u+ εg(ωt, x) , x ∈ T
d , (1.1)

where V ∈ Cq(Td;R) for some q large enough, ε > 0 is a small parameter, the frequency vector ω ∈
R

ν is non resonant (see (1.5)), the nonlinearity is quasi-periodic in time and only finitely many times
differentiable, more precisely

f ∈ Cq(Tν × T
d × R;R) , g ∈ Cq(Tν × T

d;C) (1.2)

for some q ∈ N large enough. Moreover we suppose

−∆+ V (x) ≥ β0I , β0 > 0 . (1.3)

Remark 1.1. Condition (1.3) is used for the measure estimates of section 6. Actually for autonomous
NLS it can be always verified after a gauge-transformation u 7→ e−iσtu for σ large enough.

We assume that the frequency vector ω is a small dilatation of a fixed Diophantine vector ω̄ ∈ R
ν ,

namely
ω = λω̄ , λ ∈ Λ := [1/2, 3/2] , |ω̄| ≤ 1 , (1.4)

where, for some γ0 ∈ (0, 1), τ0 > ν − 1,

|ω̄ · l| ≥ 2γ0
|l|τ0 , ∀l ∈ Z

ν \ {0} , (1.5)

and |l| := max{|l1|, . . . , |lν |}. For definiteness we fix τ0 := ν.

If g(ωt, x) 6≡ 0 then u = 0 is not a solution of (1.1) for ε 6= 0.

• Question: do there exist quasi-periodic solutions of (1.1) for sets of parameters (ε, λ) of positive
measure?

This means looking for (2π)ν+d-periodic solutions u(ϕ, x) of

iω · ∂ϕu−∆u+ V (x)u = εf(ϕ, x, |u|2)u+ εg(ϕ, x) . (1.6)

These solutions will be, for some (ν + d)/2 < s ≤ q, in the Sobolev space

Hs := Hs(Tν × T
d;C) :=

{
u(ϕ, x) =

∑

(l,j)∈Zν×Zd

ul,je
i(l·ϕ+j·x) (1.7)

such that ‖u‖2s := K0

∑

i∈Zν+d

|ui|2〈i〉2s < +∞
}

where
i := (l, j) , 〈i〉 := max(|l|, |j|, 1) , |j| := max{|j1|, . . . , |jd|}.

For the sequel we fix s0 > (d+ ν)/2 so that there is the continuous embedding

Hs(Tν+d) →֒ L∞(Tν+d) , ∀s ≥ s0 , (1.8)
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and Hs is a Banach algebra with respect to the multiplication of functions. The constant K0 > 0 in the
definition (1.7) of the Sobolev norm ‖ ‖s is independent of s. The value of K0 is fixed (large enough) so
that |u|L∞ ≤ ‖u‖s0 and the interpolation inequality

‖u1u2‖s ≤
1

2
‖u1‖s0‖u2‖s +

C(s)

2
‖u1‖s‖u2‖s0 , ∀s ≥ s0 , u1, u2 ∈ Hs , (1.9)

holds with C(s) ≥ 1 and C(s) = 1, ∀s ∈ [s0, s1]; the constant s1 is defined in (7.16) and depends only on
d, ν, τ0 := ν. With respect to the standard Moser-Nirenberg interpolation estimate in Sobolev spaces, see
e.g. [31], the additional property in (1.9) is that one of the constants is independent of s. The proof of
(1.9) is given for example in Appendix of [4], see also [31].

The main result of this paper is:

Theorem 1.1. Assume (1.5). There are s := s(d, ν), q := q(d, ν) ∈ N, such that: ∀V ∈ Cq satisfying
(1.3), ∀f, g ∈ Cq, there exist ε0 > 0, a map

u ∈ C1([0, ε0]× Λ;Hs) with u(0, λ) = 0 ,

and a Cantor like set C∞ ⊂ [0, ε0]× Λ of asymptotically full Lebesgue measure, i.e.

|C∞|/ε0 → 1 as ε0 → 0 , (1.10)

such that, ∀(ε, λ) ∈ C∞, u(ε, λ) is a solution of (1.6) with ω = λω̄.

Moreover, if V, f, g are of class C∞ then u(ε, λ) ∈ C∞(Td × T
ν ;C).

We have not tried to optimize the estimates for q := q(d, ν) and s := s(d, ν).

Remark 1.2. In [2] we proved the existence of periodic solutions in Hs
t (T;H

1
x(T

d)) with s > 1/2, for
one dimensional NLW equations with nonlinearities of class C6, see the bounds (1.9), (4.28) in [2].

1.2 Ideas of the proof

Vector NLS. We prove Theorem 1.1 finding solutions of the “vector” NLS equation

{
iω · ∂ϕu+ −∆u+ + V (x)u+ = εf(ϕ, x, u−u+)u+ + εg(ϕ, x)

−iω · ∂ϕu− −∆u− + V (x)u− = εf(ϕ, x, u−u+)u− + εḡ(ϕ, x)
(1.11)

where
u := (u+, u−) ∈ Hs := Hs ×Hs (1.12)

(the second equation is obtained by formal complex conjugation of the first one). In the system (1.11)
the variables u+, u− are independent. However, note that (1.11) reduces to the scalar NLS equation (1.1)
in the set

U :=
{
u := (u+, u−) : u+ = u−

}
(1.13)

in which u− is the complex conjugate of u+ (and viceversa).

Linearized equations. We look for solutions of the vector NLS equation (1.11) in Hs ∩ U by a Nash-
Moser iterative scheme. The main step concerns the invertibility of (any finite dimensional restriction
of) the linearized operators at any u ∈ Hs ∩ U , namely

L(u) := Lω − εT1 = Dω + T

described in (2.1)-(2.8), with suitable estimates of the inverse in high Sobolev norm.
An advantage of the vector NLS formulation, with respect to the scalar NLS equation (1.6), is that

the operators L(u) are C-linear and selfadjoint. This is convenient for proving the measure estimates via
eigenvalue variation arguments. Moreover the matrix T is Töplitz, see (2.13), and its entries on the lines
parallel to the diagonal decay to zero at a polynomial rate.
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Matrices with off-diagonal decay. In section 3 we develop an abstract setting for dealing with matrices
with polynomial off-diagonal decay. In Definition 3.2 we introduce the s-norm of a matrix and we prove
the algebra and interpolation properties (3.16), (3.15). The s-norms are inspired to mimic the behavior
of matrices representing the multiplication operator by a function of Hs. This intrinsic setting is very
convenient (in particular for the multiscale Proposition 4.1) to estimate the decay of inverse matrices via
Neumann series, because product, and then powers, of matrices with finite s-norm will exhibit the same
off-diagonal decay.

Improved Nash-Moser iteration. We construct inductively better and better approximate solutions
un of the NLS equation (1.11) by a Nash-Moser iterative scheme, see the “truncated” equations (Pn) in
Theorem 7.1. The un ∈ Hn, see (7.1), are trigonometric polynomials with a super-exponential number
Nn of harmonics, see (7.2).

At each step we impose that, for “most” parameters (ε, λ) ∈ [0, ε0) × [1/2, 3/2], the eigenvalues of
the restricted linearized operators Ln := PnL(un)|Hn

are in modulus bounded from below by O(N−τ
n ),

see Lemma 6.7. The proof exploits that −∆ + V is positive definite, see (1.3) and remark 1.1. Then
the L2-norm of the inverse satisfies ‖L−1

n ‖0 = O(N τ
n ). By Lemma 3.6 this implies that the s-norm (see

Definition 3.2) satisfies

||L−1
n ||s ≤ Ns+d+ν

n ‖L−1
n ‖0 = O(Ns+d+ν+τ

n ) , ∀s > 0 .

Such an estimate is not sufficient for the convergence of the Nash-Moser scheme. We need sharper
estimates for the Green functions (sublinear decay), of the form

||L−1
n ||s = O(N τ ′+δs

n ) , δ ∈ (0, 1) , τ ′ > 0 , ∀s > 0 , (1.14)

which imply an off-diagonal decay of the inverse matrix coefficients like

|(L−1
n )ii′ | ≤ C

N τ ′+δs
n

〈i− i′〉s , |i|, |i′| ≤ Nn ,

see Definition 3.10. Actually the conditions (1.14) are optimal for the convergence of the Nash-Moser
iterative scheme, as a famous counter-example of Lojasiewicz-Zehnder [32] shows: if δ = 1 the scheme
does not converge. By Lemma 3.5 the bound (1.14) implies the interpolation estimate in Sobolev norms

‖L−1
n h‖s ≤ C(s)(N τ ′+δs

n ‖h‖s1 +N τ ′+δs1
n ‖h‖s) , ∀s ≥ s1 ,

which is sufficient for the Nash-Moser convergence. Note that the exponent τ ′ + δs in (1.14) grows with
s, unlike the usual Nash-Moser theory, see e.g. [39], where the “tame” exponents are s-independent.
Actually it is easier to prove these weaker tame estimates, see, in particular, Step II of Lemma 4.3.

In order to prove (1.14) we have to exploit (mild) “separation properties” of the small divisors: several
eigenvalues of Ln are actually much bigger (in modulus) than N−τ

n .

Estimates of Green functions. The core of the paper is to establish the Green functions estimates
(1.14) at each step of the iteration, see Lemma 7.7. These follow by an inductive application of the
multiscale Proposition 4.1, once verified the “separation property” (H3), see Lemma 7.5.

The “separation properties” of the Nn-bad and singular sites are obtained by Proposition 5.1 for
all the parameters (ε, λ) which are Nn-good, see Definition 5.2 and assumption (i). We first use the
covariance property (2.20) and the “complexity” information (5.3) on the set BN (j0; ε, λ) in (5.2) (the
set of the “bad” θ) to bound the number of “bad” time-Fourier components, see Lemma 5.1 (this idea
goes back to [20]). Next we use also the information that the sites are “singular” to bound the length of
a “chain” of Nn-bad and singular sites (with ideas similar to [13]), see Lemma 5.2.

In order to conclude the inductive proof we have to verify that “most” parameters (ε, λ) are Nn-good.
For this, we do not invoke sub-harmonic functions theory, Cartan theorem as in [13], [14], [11].

Measure and “complexity” estimates. Using Proposition 6.1 we prove first that most parameters
(ε, λ) are Nn-good in a weak sense. The proof of Proposition 6.1 is based on simple eigenvalue variation
arguments and Fubini theorem. The main novelty is to use that −∆+V (x) is positive definite, see (1.3)
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and remark 1.1, and to perform the measure estimates in the new set of variables (6.19). In this way
we prove that for “most” parameters (ε, λ) the set B0

N (j0; ε, λ) in (6.1) (of “strongly” bad θ) has a small
measure. This fact and the Lipschitz dependence of the eigenvalues with respect to parameters imply
also the complexity bound (6.3), see Lemma 6.3. Finally, using again the multiscale Proposition 4.1 and
the separation Proposition 5.1 we conclude inductively that most of these parameters (ε, λ) are actually
Nn-good (in the strong sense), see Lemma 7.6.

Definition of regular sites. In order to deal with a multiplicative potential the key idea is to define
“very regular” sites, i.e. in Definition 4.2 the constant Θ will be taken large with respect to the potential
V , so that the diagonal terms (2.21) dominate also the off diagonal part V0(x) of the potential, see Lemma
4.1. Taking a large value for the constant Θ does not affect the qualitative properties of the chains of
singular sites proved in Lemma 5.2. Then we achieve in section 5 the separation properties for the clusters
of small divisors, and the multiscale Proposition 4.1 applies. We refer also to Lemmas 7.3 and 7.4 for a
similar construction at the initial step of the iteration.

Melnikov non-resonance conditions. An advantage of the Nash-Moser iterative scheme is to require
weaker non-resonance conditions than for the KAM approach. For clarity we collect all the non-resonance
conditions that we make along the paper below:

- ω = λω̄ is diophantine, see (1.5), (5.6). It is used only in Lemma 5.1 to get separation properties of
the bad sites in the time Fourier components.

- ω = λω̄ satisfies the non-resonance condition (7.19) of first order Melnikov type. Physically, this
assumption means that the forcing frequencies ω do not enter in resonance with the first N0 normal mode
frequencies of the linearized Schrödinger equation at the origin. This is used for the initialization of the
Nash-Moser scheme, see subsection 7.1.

- (λω̄, ε) satisfy the “first order Melnikov” non-resonance conditions at each step of the Nash-Moser
iteration: the eigenvalues of ANn

(λω̄, ε) have to be ≥ 2N−τ
n , see also Lemma 6.7.

- We also verify that most frequencies are N -good (see Definition 5.2) imposing conditions on the
eigenvalues of the matrices AN,j0(λω̄, ε, θ) as in Lemma 6.6. These requirements can then be seen as
other “first order Melnikov” non-resonance conditions.

Sobolev regularities. Along the proof we make use of three different Sobolev regularity thresholds

s0 < s1 < S .

The scale s0 > (d + ν)/2 is simply required to establish the algebra and interpolation estimates, see
e.g. (1.9). The Sobolev index s1 is large enough to have a sufficiently strong decay when proving the
multiscale Proposition 4.1, see (4.5). Finally the Sobolev regularity S is large enough (see (7.16)) for
proving the convergence of the Nash-Moser iterative scheme in section 7.

Acknowledgments: The authors thank Luca Biasco for useful comments on the paper.

2 The linearized equation

We look for solutions of the vector NLS equation (1.11) in Hs ∩U (see (1.13)) by a Nash-Moser iterative
scheme. The main step concerns the invertibility of (any finite dimensional restriction of) the family of
linearized operators

L(u) := L(ω, ε,u) := Lω − εT1 (2.1)

acting on Hs, where u = (u+, u−) ∈ C1([0, ε0]× Λ,Hs ∩ U),

Lω :=

(
iω · ∂ϕ −∆+ V (x) 0

0 −iω · ∂ϕ −∆+ V (x)

)
(2.2)

and

T1 :=

(
p(ϕ, x) q(ϕ, x)
q̄(ϕ, x) p(ϕ, x)

)
(2.3)
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with
p(ϕ, x) := f(ϕ, x, |u+|2) + f ′(ϕ, x, |u+|2)|u+|2 , q(ϕ, x) := f ′(ϕ, x, |u+|2)(u+)2 . (2.4)

Above f ′ denotes the derivative of f(ϕ, x, s) with respect to s. The functions p, q depend also on ε, λ
through u. Note that u+u− = |u+|2 ∈ R since u ∈ U , see (1.13).

Decomposing the multiplicative potential

V (x) = m+ V0(x) (2.5)

where m is the average of V (x) and V0(x) has zero mean value, we also write

Lω = Dω + T2 (2.6)

where Dω is the constant coefficient differential operator

Dω :=

(
iω · ∂ϕ −∆+m 0

0 −iω · ∂ϕ −∆+m

)
and T2 :=

(
V0(x) 0
0 V0(x)

)
. (2.7)

Hence the operator L(u) in (2.1) can also be written as

L(u) = Dω + T , T := T2 − εT1 . (2.8)

Lemma 2.1. L(u) is symmetric in H0, i.e. (L(u)h, k)L2 = (h,L(u)k)L2 for all h, k in the domain of
L(u).

Proof. The operator Lω is symmetric with respect to the L2-scalar product in H0, because each
±iω ·∂ϕ−∆+V (x) is symmetric in H0(Tν ×T

d;C). Moreover T2, T1 are selfadjoint in H0 because V (x)
and p(ϕ, x) are real valued, being |u+|2 ∈ R and f real by (1.2), see [5].

The Fourier basis diagonalizes the differential operator Dω. In what follows we sometimes identify an
operator with the associated (infinite dimensional) matrix in the Fourier basis. The operator L(ω, ε,u)
is represented by the infinite dimensional Hermitian matrix

A(ω) := A(ω, ε,u) := Dω + T , (2.9)

where

Dω := diagi∈Zb

(
−ω · l+ ‖j‖2 +m 0

0 ω · l + ‖j‖2 +m

)
, (2.10)

i := (l, j) ∈ Z
b := Z

ν × Z
d , ‖j‖2 := j21 + . . .+ j2d , (2.11)

and
T := (T i′

i )i∈Zb,i′∈Zb , T i′

i := −ε(T1)i
′

i + (T2)
i′

i , (2.12)

(T1)
i′

i =

(
pi−i′ qi−i′

(q)i−i′ pi−i′

)
, (T2)

i′

i =

(
(V0)j−j′ 0

0 (V0)j−j′

)
, (2.13)

where pi, qi, (V0)j denote the Fourier coefficients of p(ϕ, x), q(ϕ, x), V0(x).

Note that (T i′

i )† = T i
i′ (the symbol † denotes the conjugate transpose ) because (q)i−i′ = qi′−i and

pi = p−i, since p is real-valued. The matrix T is Töplitz, namely T i′

i depends only on the difference of
the indices i− i′. Moreover, since the functions p, q in (2.4), as well as the potential V , are in Hs, then

T i′

i → 0 as |i− i′| → ∞ at a polynomial rate. In the next section we introduce precise norms to measure
such off-diagonal decay.

Moreover we shall introduce a further index a ∈ {0, 1} to distinguish the two eigenvalues ±ω · l +
‖j‖2 +m (see (2.21)) and the four elements of each of these 2× 2 matrices, see Definition 3.1 and (3.2).

We introduce the one-parameter family of infinite dimensional matrices

A(ω, θ) := A(ω) + θY := Dω + T + θ Y (2.14)
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where

Y := diagi∈Zb

(
−1 0
0 1

)
. (2.15)

The reason for adding θY is that, translating the time Fourier indices

(l, j) 7→ (l + l0, j)

in A(ω), gives A(ω, θ) with θ = ω · l0, see (2.20): the matrix T remains unchanged under translation
because it is Töplitz.

Remark 2.1. The covariance property (2.20) will be exploited in section 5 to prove “separation proper-
ties” of the “singular sites”.

We shall study properties of the linearized systems A(ω, ε,u)v = h in sections 3 − 6. To apply the
results of these sections to the Nash-Moser scheme of section 7, we have to keep in mind that u itself
depends on the parameters (ω, ε) (in a C1 way, with some bound on ‖u‖s1 + ‖∂(ω,ε)u‖s1). Therefore the
frame of sections 3 − 6 will be the following: we study parametrized families of (infinite dimensional)
matrices

A(ε, λ, θ) = D(λ) + T (ε, λ) + θY, (2.16)

where D(λ) is defined by (2.10) with ω = λω̄, and T is a Töplitz matrix such that ||T ||s1 + ||∂(λ,ε)T ||s1 ≤ C
(C depending on V ).

The main goal of the following sections is to prove polynomial off-diagonal decay for the inverse of
the 2(2N + 1)b-dimensional sub-matrices of A(ε, λ, θ) centered at (l0, j0) denoted by

AN,l0,j0(ε, λ, θ) := A|l−l0|≤N,|j−j0|≤N(ε, λ, θ) (2.17)

where
|l| := max{|l1|, . . . , |lν |} , |j| := max{|j1|, . . . , |jd|} , |j| ≤ ‖j‖ ≤

√
d|j| , . (2.18)

If l0 = 0 we use the simpler notation

AN,j0(ε, λ, θ) := AN,0,j0(ε, λ, θ) . (2.19)

If also j0 = 0, we simply write
AN (ε, λ, θ) := AN,0(ε, λ, θ) ,

and, for θ = 0, we denote
AN,j0(ε, λ) := AN,j0(ε, λ, 0) .

We have the following crucial covariance property

AN,l1,j1(ε, λ, θ) = AN,j1(ε, λ, θ + λω̄ · l1) , (2.20)

which will be exploited in Lemma 5.1.
A major role is played by the eigenvalues of D(λ) + θY ,

d±i := d±i (λ, θ) := ±λω̄ · l + ‖j‖2 +m± θ .

In order to distinguish between the ± sites we introduce an index

a ∈ {0, 1}

and we denote

di,a(λ, θ) =

{
λω̄ · l + ‖j‖2 +m+ θ if a = 0

−λω̄ · l + ‖j‖2 +m− θ if a = 1 .
(2.21)
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3 Matrices with off-diagonal decay

Let us consider the basis of the vector-space Hs := Hs ×Hs made up by

ei,0 := (ei(l·ϕ+j·x), 0), ei,1 := (0, ei(l·ϕ+j·x)), i := (l, j) ∈ Z
b := Z

ν × Z
d . (3.1)

Then we write any u = (u+, u−) ∈ Hs ×Hs as

u =
∑

k∈Zb×{0,1}

ukek , k := (i, a) ∈ Z
b × {0, 1} ,

where ul,j,0 := u+l,j , resp. ul,j,1 := u−l,j , denote the Fourier indices of u+, resp. u−, see (1.7).

For B ⊂ Z
b × {0, 1}, we introduce the subspace

Hs
B :=

{
u ∈ Hs ×Hs : uk = 0 if k /∈ B

}
.

When B is finite, the space Hs
B does not depend on s and will be denoted HB. We define

ΠB : Hs → HB

the L2-orthogonal projector onto HB.
In what follows B,C,D,E are finite subsets of Zb × {0, 1}.
We identify the space LB

C of the linear maps L : HB → HC with the space of matrices

MB
C :=

{
M = (Mk′

k )k′∈B,k∈C , M
k′

k ∈ C

}

according to the following usual definition.

Definition 3.1. The matrix M ∈ MB
C represents the linear operator L ∈ LB

C , if

∀k′ = (i′, a′) ∈ B, k = (i, a) ∈ C , ΠkLek′ =Mk′

k ek ,

where ei,0, ei,1 are defined in (3.1) and Mk′

k ∈ C.

For example, with the above notation, the matrix elements of the matrix (T1)
i′

i in (2.13) are

(T1)
i′,0
i,0 = pi−i′ , (T1)

i′,1
i,0 = qi−i′ , (T1)

i′,0
i,1 = (q)i−i′ = qi′−i , (T1)

i′,1
i,1 = pi−i′ . (3.2)

Notations. For any subset B of Zb × {0, 1}, we denote by

B := proj
ZbB (3.3)

the projection of B in Z
b.

Given B ⊂ B′, C ⊂ C′ ⊂ Z
b × {0, 1} and M ∈ MB′

C′ we can introduce the restricted matrices

MB
C := ΠCM|HB

, MC := ΠCM , MB :=M|HB
. (3.4)

If D ⊂ proj
ZbB′, E ⊂ proj

ZbC′, then we define

MD
E as MB

C where B := (D × {0, 1})∩B′, C := (E × {0, 1}) ∩C′ . (3.5)

In the particular case D = {i′}, E := {i}, i, i′ ∈ Z
b, we use the simpler notations

Mi :=M{i} (it is either a line or a group of two lines of M), (3.6)

M i′ :=M{i′} (it is either a column or a group of two columns of M), (3.7)
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and
M i′

i :=M
{i′}
{i} , (3.8)

it is a m×m′-complex matrix, where m ∈ {1, 2} (resp. m′ ∈ {1, 2}) is the cardinality of C (resp. of B)
defined in (3.5) with E := {i} (resp. D = {i′}).

We endow the vector-space of the 2× 2 (resp. 2× 1, 1 × 2, 1 × 1) complex matrices with a norm | |
such that

|UW | ≤ |U‖W | ,
whenever the dimensions of the matrices make their multiplication possible, and |U | ≤ |V | if U is a
submatrix of V .

Remark 3.1. The notations in (3.5), (3.6), (3.7), (3.8), may be not very specific, but it is deliberate: it
is convenient not to distinguish the index a ∈ {0, 1}, which is irrelevant in the definition of the s-norms,
in Definition 3.2.

We also set the L2-operatorial norm

‖MB
C ‖0 := sup

h∈HB ,h 6=0

‖MB
C h‖0

‖h‖0
(3.9)

where ‖ ‖0 := ‖ ‖L2 .

Definition 3.2. (s-norm) The s-norm of a matrix M ∈ MB
C is defined by

||M ||2s := K0

∑

n∈Zb

[M(n)]2〈n〉2s (3.10)

where 〈n〉 := max(|n|, 1) ,

[M(n)] :=





max

i−i′=n,i∈C,i′∈B
|M i′

i | if n ∈ C −B

0 if n /∈ C −B
(3.11)

with B := proj
ZbB, C := proj

ZbC (see (3.3)), and the constant K0 > 0 is introduced in (1.7).

It is easy to check that || ||s is a norm on MB
C . It verifies || ||s ≤ || ||s′ , ∀s ≤ s′, and

∀M ∈ MB
C , ∀B′ ⊆ B , C′ ⊆ C , ||MB′

C′ ||s ≤ ||M ||s .

The s-norm is designed to estimate the off-diagonal decay of matrices like T in (2.12) with p, q, V ∈ Hs.

Lemma 3.1. The matrices T1, T2 in (2.3), (2.7) with p, q, V ∈ Hs, satisfy

||T1||s ≤ K‖(q, p)‖s , ||T2||s ≤ K‖V ‖s . (3.12)

Proof. By (3.11), (2.13) we get

[T1(n)] := max
i−i′=n

∣∣∣
(
pi−i′ qi−i′

qi−i′ pi−i′

) ∣∣∣ ≤ K(|pn|+ |qn|) .

Hence, the definition in (3.10) implies

||T1||2s = K0

∑

n∈Zb

[T1(n)]
2〈n〉2s ≤ K1

∑

n∈Zb

(|pn|+ |qn|)2〈n〉2s ≤ K2‖(p, q)‖2s

and (3.12) follows. The estimate for ||T2||s is similar.

In order to prove that the matrices with finite s-norm satisfy the interpolation inequalities (3.15), and
then the algebra property (3.16), the guiding principle is the analogy between these matrices and the
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operators of the form (2.3), i.e. the multiplication operators for functions. We introduce the subset H+

of ∩s≥0H
s formed by the trigonometric polynomials with positive Fourier coefficients

H+ :=
{
h =

∑
hl,je

i(l·ϕ+j·x) with hl,j 6= 0 for a finite number of (l, j) only and hl,j ∈ R+

}
.

Note that the sum and the product of two functions in H+ remain in H+.

Definition 3.3. Given M ∈ MB
C , h ∈ H+, we say that M is dominated by h, and we write M ≺ h, if

[M(n)] ≤ hn , ∀n ∈ Z
b , (3.13)

in other words if |M i′

i | ≤ hi−i′ , ∀i′ ∈ proj
ZbB, i ∈ proj

ZbC.

It is easy to check (B and C being finite) that

||M ||s = min
{
‖h‖s : h ∈ H+ , M ≺ h

}
and ∃h ∈ H+ , ∀s ≥ 0 , ||M ||s = ‖h‖s . (3.14)

Lemma 3.2. For M1 ∈ MC
D, M2 ∈ MB

C , M3 ∈ MC
D, we have

M1 ≺ h1 , M2 ≺ h2 , M3 ≺ h3 =⇒ M1 +M3 ≺ h1 + h3 and M1M2 ≺ h1h2 .

Proof. Property M1 +M3 ≺ h1 + h3 is straightforward. For i ∈ proj
ZbD, i′ ∈ proj

ZbB, we have

|(M1M2)
i′

i | =
∣∣∣

∑

q∈C:=proj
Zb

C

(M1)
q
i (M2)

i′

q

∣∣∣ ≤
∑

q∈C

|(M1)
q
i ||(M2)

i′

q | ≤
∑

q∈C

(h1)i−q(h2)q−i′

≤
∑

q∈Zb

(h1)i−q(h2)q−i′ = (h1h2)i−i′

implying M1M2 ≺ h1h2 by Definition 3.3.

We immediately deduce from (1.9) and (3.14) the following interpolation estimates.

Lemma 3.3. (Interpolation) ∀s ≥ s0 > (d + ν)/2 there is C(s) ≥ 1, with C(s0) = 1, such that, for
any finite subset B,C,D ⊂ Z

b × {0, 1}, ∀M1 ∈ MC
D, M2 ∈ MB

C ,

||M1M2||s ≤ (1/2)||M1||s0 ||M2||s + (C(s)/2)||M1||s||M2||s0 , (3.15)

in particular,
||M1M2||s ≤ C(s)||M1||s||M2||s . (3.16)

Note that the constant C(s) in Lemma 3.3 is independent of B, C, D. By (3.16) with s = s0, we get
(recall that C(s0) = 1)

Lemma 3.4. For any finite subset B,C,D ⊂ Z
b × {0, 1}, for all M1 ∈ MC

D, M2 ∈ MB
C , we have

||M1M2||s0 ≤ ||M1||s0 ||M2||s0 , (3.17)

and, ∀M ∈ MB
B, ∀n ≥ 1,

||Mn||s0 ≤ ||M ||ns0 and ||Mn||s ≤ C(s)||M ||n−1
s0 ||M ||s , ∀s ≥ s0 . (3.18)

Proof. The second estimate in (3.18) is obtained from (3.15), using C(s) ≥ 1.

The s-norm of a matrix M ∈ MB
C controls also the Sobolev Hs-norm. Indeed, we identify HB with

the space M{0}
B of column matrices and the Sobolev norm ‖ ‖s is equal to the s-norm || ||s, i.e.

∀w ∈ HB , ‖w‖s = ||w||s , ∀s ≥ 0 . (3.19)

Then Mw ∈ HC and the next lemma is a particular case of Lemma 3.3.
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Lemma 3.5. (Sobolev norm) ∀s ≥ s0 there is C(s) ≥ 1 such that, for any finite subset B,C ⊂
Z
b × {0, 1},

‖Mw‖s ≤ (1/2)||M ||s0‖w‖s + (C(s)/2)||M ||s‖w‖s0 , ∀M ∈ MB
C , w ∈ HB . (3.20)

The following lemma is the analogue of the smoothing properties (7.4)-(7.5) of the projection operators.

Lemma 3.6. (Smoothing) Let M ∈ MB
C and N ≥ 2. Then, ∀s′ ≥ s ≥ 0,

M i′

i = 0 , ∀|i− i′| < N =⇒ ||M ||s ≤ N−(s′−s)||M ||s′ , (3.21)

M i′

i = 0 , ∀|i− i′| > N =⇒
{
||M ||s′ ≤ Ns′−s||M ||s
||M ||s ≤ Ns+b‖M‖0 .

(3.22)

Proof. Estimate (3.21) and the first bound of (3.22) follow from the definition of the norms || ||s. The

second bound of (3.22) follows by the first bound in (3.22), noting that |M i′

i | ≤ ‖M‖0, ∀i, i′,

||M ||s ≤ Ns||M ||0 ≤ Ns
√
(2N + 1)b‖M‖0 ≤ Ns+b‖M‖0

for N ≥ 3.

In the next lemma we bound the s-norm of a matrix in terms of the (s+ b)-norms of its lines.

Lemma 3.7. (Decay along lines) Let M ∈ MB
C . Then, ∀s ≥ 0,

||M ||s ≤ K1 max
i∈proj

Zb
C
||M{i}||s+b (3.23)

(we could replace the index b with any α > b/2).

Proof. For all i ∈ C := proj
ZbC, i′ ∈ B := proj

ZbB, ∀s ≥ 0,

|M i′

i | ≤
||M{i}||s+b

〈i− i′〉s+b
≤ m(s+ b)

〈i− i′〉s+b

where m(s+ b) := max
i∈C

||M{i}||s+b. As a consequence

||M ||s =
( ∑

n∈C−B

(M [n])2〈n〉2s
)1/2

≤ m(s+ b)
( ∑

n∈Zb

〈n〉−2b
)1/2

= m(s+ b)K(b)

implying (3.23).

The L2-norm and s0-norm of a matrix are related.

Lemma 3.8. Let M ∈ MC
B. Then, for s0 > (d+ ν)/2,

‖M‖0 ≤ ||M ||s0 . (3.24)

Proof. Letm ∈ H+ be such thatM ≺ m and ||M ||s = ‖m‖s for all s ≥ 0, see (3.14). Also forH ∈ M{0}
C ,

there is h ∈ H+ such that H ≺ h and ||H ||s = ‖h‖s, ∀s ≥ 0. Lemma 3.2 implies that MH ≺ mh and so

||MH ||0 ≤ ‖mh‖0 ≤ |m|L∞‖h‖0
(1.8)

≤ ‖m‖s0‖h‖0 = ||M ||s0 ||H ||0 , ∀H ∈ M{0}
C .

Then (3.24) follows (recall (3.19)).

It will be convenient to use the notion of left invertible operators.
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Definition 3.4. (Left Inverse) A matrix M ∈ MB
C is left invertible if there exists N ∈ MC

B such that
NM = IB . Then N is called a left inverse of M .

Note thatM is left invertible if and only ifM (considered as a linear map) is injective (then dimHC ≥
dimHB). The left inverses of M are not unique if dimHC > dimHB : they are uniquely defined only
on the range of M .

We shall often use the following perturbation lemma for left invertible operators. Note that the bound
(3.25) for the perturbation in s0-norm only, allows to estimate the inverse (3.28) also in s ≥ s0 norm.

Lemma 3.9. (Perturbation of left invertible matrices) If M ∈ MB
C has a left inverse N ∈ MC

B ,
then

∀P ∈ MB
C with ||N ||s0 ||P ||s0 ≤ 1/2 , (3.25)

the matrix M + P has a left inverse NP that satisfies

||NP ||s0 ≤ 2||N ||s0 , (3.26)

and, ∀s ≥ s0,

||NP ||s ≤
(
1 + C(s)||N ||s0 ||P ||s0

)
||N ||s + C(s)||N ||2s0 ||P ||s (3.27)

≤ C(s)
(
||N ||s + ||N ||2s0 ||P ||s

)
. (3.28)

Moreover,
∀P ∈ MB

C with ‖N‖0‖P‖0 ≤ 1/2 , (3.29)

the matrix M + P has a left inverse NP that satisfies

‖NP ‖0 ≤ 2‖N‖0 . (3.30)

Proof. We simplify notations denoting C(s) any constant that depends on s only.

Step I. Proof of (3.26).

The matrix NP = AN with A ∈ MB
B is a left inverse of M + P if and only if

IB = AN(M + P ) = A(IB +NP ) ,

i.e. if and only if A is the inverse of IB +NP ∈ MB
B. By (3.25) ||NP ||s0 ≤ 1/2, hence the matrix IB +NP

is invertible and

NP = AN = (IB +NP )−1N =

∞∑

p=0

(−1)p(NP )pN (3.31)

is a left inverse of M + P . Estimate (3.26) is an immediate consequence of (3.31), (3.17) and (3.25).

Step II. Proof of (3.27).

For all s ≥ s0

∀p ≥ 1, ||(NP )pN ||s
(3.15)
≤ C(s)||N ||s0 ||(NP )p||s + C(s)||N ||s||(NP )p||s0

(3.18)
≤ C(s)||N ||s0 ||NP ||p−1

s0 ||NP ||s + C(s)||N ||s||NP ||ps0
(3.25),(3.15)

≤ C(s)2−p(||N ||s0 ||P ||s0 ||N ||s + ||N ||2s0 ||P ||s) . (3.32)

We derive (3.27) by

||NP ||s
(3.31)
≤ ||N ||s +

∞∑

p=1

||(NP )pN ||s
(3.32)
≤ ||N ||s + C(s)(||N ||s0 ||P ||s0 ||N ||s + ||N ||2s0 ||P ||s) .

Finally (3.30) follows from (3.29) as in Step I because the operatorial L2-norm (see (3.9)) satisfies the
algebra property as the s0-norm in (3.17).
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4 The multiscale analysis: estimates of Green functions

The main result of this section is the multiscale Proposition 4.1. In the whole section δ ∈ (0, 1) is fixed
and τ ′ > 0, Θ ≥ 1 are real parameters, on which we shall impose some condition in Proposition 4.1.

Given Ω,Ω′ ⊂ E ⊂ Z
b × {0, 1} we define

diam(E) := sup
k,k′∈E

|k − k′| , d(Ω,Ω′) := inf
k∈Ω,k′∈Ω′

|k − k′| ,

where, for k = (i, a), k′ := (i′, a′) we set

|k − k′| := max{|i− i′|, |a− a′|} .

Definition 4.1. (N-good/bad matrix) The matrix A ∈ ME
E, with E ⊂ Z

b × {0, 1}, diam(E) ≤ 4N ,
is N -good if A is invertible and

∀s ∈ [s0, s1] , ||A−1||s ≤ N τ ′+δs. (4.1)

Otherwise A is N -bad.

We first define the regular and singular sites of a matrix.

Definition 4.2. (Regular/Singular sites) The index k := (i, a) ∈ Z
b × {0, 1} is regular for A if

|Ak
k| ≥ Θ. Otherwise k is singular.

Now we need a more precise notion adapted to the induction process.

Definition 4.3. ((A,N)-good/bad site) For A ∈ ME
E, we say that k ∈ E ⊂ Z

b × {0, 1} is

• (A,N)-regular if there is F ⊂ E such that diam(F ) ≤ 4N , d(k,E\F ) ≥ N and AF
F is N -good.

• (A,N)-good if it is regular for A or (A,N)-regular. Otherwise we say that k is (A,N)-bad.

Let us consider the new larger scale
N ′ = Nχ (4.2)

with χ > 1.

For a matrix A ∈ ME
E we define Diag(A) := (δkk′Ak′

k )k,k′∈E .

Proposition 4.1. (Multiscale step) Assume

δ ∈ (0, 1/2) , τ ′ > 2τ + b+ 1 , C1 ≥ 2 , (4.3)

and, setting κ := τ ′ + b+ s0,

χ(τ ′ − 2τ − b) > 3(κ+ (s0 + b)C1) , χδ > C1 , (4.4)

S ≥ s1 > 3κ+ χ(τ + b) + C1s0 . (4.5)

For any given Υ > 0, there exist Θ := Θ(Υ, s1) > 0 large enough (appearing in Definition 4.2), and
N0(Υ,Θ, S) ∈ N such that:

∀N ≥ N0(Υ,Θ, S), ∀E ⊂ Z
b × {0, 1} with diam(E) ≤ 4N ′ = 4Nχ (see (4.2)), if A ∈ ME

E satisfies

• (H1) ||A−Diag(A)||s1 ≤ Υ

• (H2) ‖A−1‖0 ≤ (N ′)τ

• (H3) There is a partition of the (A,N)-bad sites B = ∪αΩα with

diam(Ωα) ≤ NC1 , d(Ωα,Ωβ) ≥ N2 , ∀α 6= β , (4.6)
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then A is N ′-good. More precisely

∀s ∈ [s0, S] , ||A−1||s ≤
1

4
(N ′)τ

′

(
(N ′)δs + ||A−Diag(A)||s

)
. (4.7)

The above proposition says, roughly, the following. If A has a sufficient off-diagonal decay (assumption
(H1) and (4.5)), and if the sites that can not be inserted in good “small” submatrices (of size O(N))
along the diagonal of A are sufficiently separated (assumption (H3)), then the L2-bound (H2) for A−1

implies that the “large” matrix A (of size N ′ = Nχ with χ as in (4.4)) is good, and A−1 satisfies also the
bounds (4.7) in s-norm for s > s1. It is remarkable that the bounds for s > s1 follow only by informations
on the N -good submatrices in s1-norm (see Definition 4.1) plus, of course, the s-decay of A.

According to (4.4) the exponent χ, which measures the new scale N ′ >> N , is large with respect to
the size of the bad clusters Ωα, i.e. with respect to C1. The intuitive meaning is that, for χ large enough,
the “resonance effects” due to the bad clusters are “negligible” at the new larger scale.

The constant Θ ≥ 1 which defines the regular sites (see Definition 4.2) must be large enough with
respect to Υ, i.e. with respect to the off diagonal part T := A − Diag(A), see (H1) and Lemma 4.1. In
the application to matrices like A in (2.9) the constant Υ is proportional to ‖V ‖s1 + ε‖(p, q)‖s1 .

The exponent τ ≥ τ(b) shall be taken large in order to verify condition (H2), imposing lower bounds
on the modulus of the eigenvalues of A. Note that χ in (4.4) can be taken large independently of τ ,
choosing, for example, τ ′ := 3τ + 2b (see remark 7.2).

Finally, the Sobolev index s1 has to be large with respect to χ and τ , according to (4.5). This is also
natural: if the decay is sufficiently strong, then the “interaction” between different clusters of N -bad sites
is weak enough.

Remark 4.1. In (4.6) we have fixed the separation N2 between the bad clusters just for definiteness:
any separation Nµ, µ > 0, would be sufficient. Of course, the smaller µ > 0 is, the larger the Sobolev
exponent s1 has to be. See remark 5.2 for other comments on assumption (H3).

Remark 4.2. An advantage of the multiscale Proposition 4.1 with respect to analogous lemmata in [13]
(see for example Lemma 14.31-[13]) is to require only an L2-bound for the inverse of A, and not for
submatrices. For this we use the notion of left inverse matrix in the proof.

The proof of Proposition 4.1 is divided in several lemmas. In each of them we shall assume that the
hypotheses of Proposition 4.1 are satisfied. We set

T := A− Diag(A) , ||T ||s1
(H1)

≤ Υ . (4.8)

Call G (resp. B) the set of the (A,N)-good (resp. bad) sites. The partition E = B ∪ G induces the
orthogonal decomposition HE = HB ⊕HG and we write

u = uB + uG where uB := ΠBu , uG := ΠGu .

The next Lemmas 4.1 and 4.2 say that the Cramer system Au = h can be nicely reduced along the good
sites G, giving rise to a (non-square) system A′uB = Zh, with a good control of the s-norms of the
matrices A′ and Z. Moreover A−1 is a left inverse of A′.

Lemma 4.1. (Semi-reduction on the good sites) Let Θ−1Υ ≤ c0(s1) be small enough. There exist
M ∈ ME

G, N ∈ MB
G satisfying, if N ≥ N1(Υ) is large enough,

||M||s0 ≤ cNκ , ||N ||s0 ≤ cΘ−1Υ , (4.9)

for some c := c(s1) > 0, and, ∀s ≥ s0,

||M||s ≤ C(s)N2κ(Ns−s0 +N−b||T ||s+b) , ||N ||s ≤ C(s)Nκ(Ns−s0 +N−b||T ||s+b) , (4.10)

such that
Au = h =⇒ uG = NuB +Mh .

Moreover
uG = NuB +Mh =⇒ ∀k regular , (Au)k = hk . (4.11)
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Proof. It is based on “resolvent identity” arguments like in [13]. The use of the s-norms introduced in
section 3 makes the proof very neat.

Step I. There exist Γ, L ∈ ME
G satisfying

||Γ||s0 ≤ C0(s1)Θ
−1Υ , ||L||s0 ≤ Nκ , (4.12)

and, ∀s ≥ s0,
||Γ||s ≤ C(s)Nκ(Ns−s0 +N−b||T ||s+b) , ||L||s ≤ C(s)Nκ+s−s0 , (4.13)

such that
Au = h =⇒ uG + Γu = Lh . (4.14)

Fix any k ∈ G (see Definition 4.3). If k is regular, let F := {k}, and, if k is not regular but (A,N)-regular,
let F ⊂ E such that d(k,E\F ) ≥ N , diam(F ) ≤ 4N , AF

F is N -good. We have

Au = h =⇒ AF
FuF +A

E\F
F uE\F = hF =⇒ uF +QuE\F = (AF

F )
−1hF (4.15)

where
Q := (AF

F )
−1A

E\F
F = (AF

F )
−1T E\F

F ∈ ME\F
F . (4.16)

The matrix Q satisfies

||Q||s1
(3.16)
≤ C(s1)||(AF

F )
−1||s1 ||T ||s1

(4.1),(4.8)
≤ C(s1)N

τ ′+δs1Υ (4.17)

(the matrix AF
F is N -good). Moreover, ∀s ≥ s0, using the interpolation Lemma 3.3, and diam(F ) ≤ 4N ,

||Q||s+b

(3.15)
≤ C(s)(||(AF

F )
−1||s+b||T ||s0 + ||(AF

F )
−1||s0 ||T ||s+b)

(3.22)
≤ C(s)(Ns+b−s0 ||(AF

F )
−1||s0 ||T ||s0 + ||(AF

F )
−1||s0 ||T ||s+b)

(4.1),(4.8)
≤ C(s)N (δ−1)s0 (Ns+b+τ ′

Υ+N τ ′+s0 ||T ||s+b) . (4.18)

Applying the projector Π{k} in (4.15), we obtain

Au = h =⇒ uk +
∑

k′∈E

Γk′

k uk′ =
∑

k′∈E

Lk′

k hk′ (4.19)

that is (4.14) with

Γk′

k :=

{
0 if k′ ∈ F

Qk′

k if k′ ∈ E \ F and Lk′

k :=

{
[(AF

F )
−1]k

′

k if k′ ∈ F

0 if k′ ∈ E \ F. (4.20)

If k is regular then F = {k}, and, by Definition 4.2,

|Ak
k| ≥ Θ . (4.21)

Therefore, by (4.20) and (4.16), the k-line of Γ satisfies

||Γk||s0+b ≤ ||(Ak
k)

−1Tk||s0+b

(4.21),(4.8)
≤ C(s0)Θ

−1Υ . (4.22)

If k is not regular but (A,N)-regular, since d(k,E\F ) ≥ N we have, by (4.20), that Γk′

k = 0 for |k−k′| ≤
N . Hence, by Lemma 3.6,

||Γk||s0+b

(3.21)
≤ N−(s1−s0−b)||Γk||s1

(4.20)
≤ N−(s1−s0−b)||Q||s1

(4.17)
≤ C(s1)ΥN

τ ′+s0+b−(1−δ)s1

≤ C(s1)Θ
−1Υ (4.23)
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for N ≥ N0(Θ) large enough. Indeed the exponent τ ′ + s0 + b− (1− δ)s1 < 0 because s1 is large enough
according to (4.5) and δ ∈ (0, 1/2) (recall κ := τ ′ + s0 + b). In both cases (4.22)-(4.23) imply that each
line Γk decays like

||Γk||s0+b ≤ C(s1)Θ
−1Υ , ∀k ∈ G .

Hence, by Lemma 3.7, ||Γ||s0 ≤ C′(s1)Θ
−1Υ, which is the first inequality in (4.12). Likewise we prove the

second estimate in (4.12). Moreover, ∀s ≥ s0, still by Lemma 3.7,

||Γ||s ≤ K sup
k∈G

||Γk||s+b

(4.20)
≤ K||Q||s+b

(4.18)
≤ C(s)Nκ(Ns−s0 +N−b||T ||s+b)

where κ := τ ′ + s0 + b and for N ≥ N0(Υ).
The second estimate in (4.13) follows by ||L||s0 ≤ Nκ (see (4.12)) and (3.22) (note that by (4.20), since

diamF ≤ 4N , we have Lk′

k = 0 for all |k − k′| > 4N).

Step II. By (4.14) we have

Au = h =⇒ (IG + ΓG)uG = Lh− ΓBuB . (4.24)

By (4.12), if Θ is large enough (depending on Υ, namely on the potential V0), we have ||ΓG||s0 ≤ 1/2.
Hence, by Lemma 3.9, IG + ΓG is invertible and

||(IG + ΓG)−1||s0
(3.26)
≤ 2 , (4.25)

∀s ≥ s0 , ||(IG + ΓG)−1||s
(3.28)
≤ C(s)(1 + ||ΓG||s)

(4.13)
≤ C(s)Nκ(Ns−s0 +N−b||T ||s+b) . (4.26)

By (4.24), Au = h =⇒ uG = Mh+NuB , with

M := (IG + ΓG)−1L and N := −(IG + ΓG)−1ΓB (4.27)

and estimates (4.9)-(4.10) follow by Lemma 3.3, (4.25)-(4.26) and (4.12)-(4.13).
Note that

uG + Γu = Lh ⇐⇒ uG = Mh+NuB . (4.28)

As a consequence, if uG = Mh+NuB then, by (4.20), for k regular,

uk + (Ak
k)

−1
∑

k′ 6=k

Ak′

k uk′ = (Ak
k)

−1hk ,

hence (Au)k = hk, proving (4.11).

Lemma 4.2. (Reduction on the bad sites) We have

Au = h =⇒ A′uB = Zh

where
A′ := AB +AGN ∈ MB

E , Z := IE −AGM ∈ ME
E , (4.29)

satisfy
||A′||s0 ≤ c(Θ) , ||A′||s ≤ C(s,Θ)Nκ(Ns−s0 +N−b||T ||s+b) , (4.30)

||Z||s0 ≤ cNκ , ||Z||s ≤ C(s,Θ)N2κ(Ns−s0 +N−b||T ||s+b) . (4.31)

Moreover (A−1)B is a left inverse of A′.
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Proof. By Lemma 4.1,

Au = h =⇒
{
AGuG +ABuB = h

uG = NuB +Mh
=⇒ (AGN +AB)uB = h−AGMh ,

i.e. A′uB = Zh. Let us prove estimates (4.30)-(4.31) for A′ and Z.

Step I. ∀ k regular we have A′
k = 0, Zk = 0.

By (4.11), for all k regular,

∀h , ∀uB ∈ HB ,
(
AG(NuB +Mh) +ABuB

)

k
= hk , i.e. (A′uB)k = (Zh)k ,

which implies A′
k = 0 and Zk = 0.

Step II. Proof of (4.30)-(4.31).

Call R ⊂ E the regular sites in E. For all k ∈ E\R, we have |Ak
k| < Θ (see Definition 4.2). Then (4.8)

implies
||AE\R||s0 ≤ Θ+ ||T ||s0 ≤ c(Θ) , ||AE\R||s ≤ Θ+ ||T ||s , ∀s ≥ s0 . (4.32)

By Step I and the definition of A′ in (4.29) we get

||A′||s = ||A′
E\R||s ≤ ||AB

E\R||s + ||AG
E\RN||s .

Therefore, Lemma 3.3, (4.32), (4.9), (4.10), imply

||A′||s ≤ C(s,Θ)Nκ(Ns−s0 +N−b||T ||s+b) and ||A′||s0 ≤ c(Θ) ,

proving (4.30). The bound (4.31) follows similarly.

Step III. (A−1)B is a left inverse of A′.

By A−1A′ = A−1(AB +AGN ) = IBE + IGEN we get

(A−1)BA
′ = (A−1A′)B = IBB − 0 = IBB

proving that (A−1)B is a left inverse of A′.

NowA′ ∈ MB
E , and the setB is partitioned in clusters Ωα of sizeO(NC1), far enough one from another,

see (H3). Then, up to a remainder of very small s0-norm (see (4.35)), A′ is defined by the submatrices
(A′)Ωα

Ω′

α
where Ω′

α is some neighborhood of Ωα (the distance between two distinct Ω′
α and Ω′

β remains large).

Since A′ has a left inverse with L2-norm O(N ′τ ), so have the submatrices (A′)Ωα

Ω′

α
. Since these submatrices

are of size O(NC1), the s-norms of their inverse will be estimated as O(NC1sN ′τ ) = O(N ′τ+χ−1C1s), see
(4.41). By Lemma 3.9, provided χ is chosen large enough, A′ has a left inverse V with s-norms satisfying
(4.33). The details are given in the following lemma.

Lemma 4.3. (Left inverse with decay) The matrix A′ defined in Lemma 4.2 has a left inverse V
which satisfies

∀s ≥ s0 , ||V ||s ≤ C(s)N2χτ+κ+2(s0+b)C1(NC1s + ||T ||s+b) . (4.33)

Proof. Define D ∈ MB
E by

Dk
k′ :=

{
(A′)kk′ if (k , k ′) ∈ ∪α(Ωα × Ω′

α)

0 if (k , k ′) /∈ ∪α(Ωα × Ω′
α)

where Ω′
α := {k ∈ E : d(k,Ωα) ≤ N2/4} . (4.34)

Step I. D has a left inverse W ∈ ME
B with ‖W‖0 ≤ 2(N ′)τ .

We define R := A′ −D. By the definition (4.34), if d(k′, k) < N2/4 then Rk
k′ = 0 and so

||R||s0
(3.21)
≤ 4s1N−2(s1−b−s0)||R||s1−b ≤ 4s1N−2(s1−b−s0)||A′||s1−b

(4.30),(4.8)
≤ C(s1)N

−2(s1−b−s0)Nκ(Ns1−b−s0 +N−bΥ) ≤ C(s1)N
2κ−s1 (4.35)
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for N ≥ N0(Υ) large enough. Therefore

‖R‖0‖(A−1)B‖0
(3.24)
≤ ||R||s0‖A−1‖0

(4.35),(H2)

≤ C(s1)N
2κ−s1(N ′)τ

(4.2)
= C(s1)N

2κ−s1+χτ
(4.5)
≤ 1/2 (4.36)

for N ≥ N(s1). Since (A
−1)B ∈ ME

B is a left inverse of A′ (see Lemma 4.2), Lemma 3.9 and (4.36) imply
that D = A′ −R has a left inverse W ∈ ME

B, and

‖W‖0
(3.30)
≤ 2‖(A−1)B‖0 ≤ 2‖A−1‖0

(H2)

≤ 2(N ′)τ . (4.37)

Step II. W0 ∈ ME
B defined by

(W0)
k′

k :=

{
W k′

k if (k, k′) ∈ ∪α(Ωα × Ω′
α)

0 if (k, k′) 6∈ ∪α(Ωα × Ω′
α)

(4.38)

is a left inverse of D and ||W0||s ≤ C(s)N (s+b)C1+χτ , ∀s ≥ s0.

Since WD = IB , we prove that W0 is a left inverse of D showing that

(W −W0)D = 0 . (4.39)

Let us prove (4.39). For k ∈ B = ∪αΩα, there is α such that k ∈ Ωα, and

∀k′ ∈ B , ((W −W0)D)k
′

k =
∑

q/∈Ω′

α

(W −W0)
q
kDk′

q (4.40)

since (W −W0)
q
k = 0 if q ∈ Ω′

α, see the Definition (4.38).

Case I: k′ ∈ Ωα. Then Dk′

q = 0 in (4.40) and so ((W −W0)D)k
′

k = 0.

Case II: k′ ∈ Ωβ for some β 6= α. Then, since Dk′

q = 0 if q /∈ Ω′
β , we obtain by (4.40) that

((W −W0)D)k
′

k =
∑

q∈Ω′

β

(W −W0)
q
kDk′

q

(4.38)
=

∑

q∈Ω′

β

W q
kDk′

q

(4.34)
=

∑

k∈E

W q
kDk′

q = (WD)k
′

k = (IB)
k′

k = 0 .

Since diam(Ω′
α) ≤ 2NC1 , definition (4.38) implies (W0)

k′

k = 0 for all |k − k′| ≥ 2NC1 . Hence, ∀s ≥ 0,

||W0||s
(3.22)
≤ C(s)N (s+b)C1‖W0‖0

(4.37)
≤ C(s)N (s+b)C1+χτ . (4.41)

Step III. A′ has a left inverse V satisfying (4.33).

Now A′ = D +R, W0 is a left inverse of D, and

||W0||s0 ||R||s0
(4.41),(4.35)

≤ C(s1)N
(s0+b)C1+χτ+2κ−s1

(4.5)
≤ 1/2

(we use also that χ > C1 by (4.4)) for N ≥ N(s1) large enough. Hence, by Lemma 3.9, A′ has a left
inverse V with

||V ||s0
(3.26)
≤ 2||W0||s0

(4.41)
≤ CN (s0+b)C1+χτ (4.42)

and, ∀s ≥ s0,

||V ||s
(3.28)
≤ C(s)(||W0||s + ||W0||2s0 ||R||s) ≤ C(s)(||W0||s + ||W0||2s0 ||A′||s)

(4.41),(4.30)
≤ C(s)N2χτ+κ+2(s0+b)C1(NC1s + ||T ||s+b)
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proving (4.33).

Proof of Proposition 4.1 completed. Lemmata 4.1, 4.2, 4.3 imply

Au = h =⇒
{
uG = Mh+NuB

uB = V Zh

whence
(A−1)B = V Z and (A−1)G = M+NV Z = M+N (A−1)B . (4.43)

Therefore, ∀s ≥ s0,

||(A−1)B||s
(4.43),(3.15)

≤ C(s)(||V ||s||Z||s0 + ||V ||s0 ||Z||s)
(4.33),(4.31),(4.8),(4.42)

≤ C(s)N2κ+2χτ+2(s0+b)C1(NC1s + ||T ||s+b)

≤ C(s)(N ′)
α1((N ′)

α2s + ||T ||s)

using ||T ||s+b ≤ C(s)(N ′)b||T ||s (by (3.22)) and defining

α1 := 2τ + b+ 2χ−1(κ+ C1(s0 + b)) , α2 := χ−1C1 .

We obtain the same bound for ||(A−1)G||s. Hence, for s ∈ [s0, S],

||A−1||s ≤ ||(A−1)B ||s + ||(A−1)G||s ≤ C(s)(N ′)
α1((N ′)

α2s + ||T ||s)
(4.4)
≤ 1

4
(N ′)

τ ′

((N ′)
δs

+ ||T ||s)

for N ≥ N(S) large enough, proving (4.7).

5 Separation properties of the bad sites

The aim of this section is to verify the separation properties of the bad sites required in the multiscale
Proposition 4.1.

Let A := A(ε, λ, θ) be the infinite dimensional matrix defined in (2.16). Given N ∈ N and i = (l0, j0),
recall that the submatrix AN,i is defined in (2.17).

Definition 5.1. (N-good/bad site) A site k := (i, a) ∈ Z
b × {0, 1} is:

• N -regular if AN,i is N -good (Definition 4.1). Otherwise we say that k is N -singular.

• N -good if

k is regular (Definition4.2) or all the sites k′ with d(k′, k) ≤ N are N − regular . (5.1)

Otherwise, we say that k is N -bad.

Remark 5.1. It is easy to see that a site k which is N -good according to Definition 5.1, is (AE
E , N)-good

according to Definition 4.3, for any set E = E0 × {0, 1} containing k where E0 ⊂ Z
b is a product of

intervals of length ≥ N . We introduce these different definitions for merely technical reasons: it is more
convenient to prove separation properties of N -bad sites for infinite dimensional matrices. On the other
hand, for a finite matrix AE

E, we need the notion of (AE
E , N)-good sites in order to perform the “resolvent

identity” also near the boundary ∂E, see Step I of Lemma 4.1.

We define
BN (j0; ε, λ) :=

{
θ ∈ R : AN,j0(ε, λ, θ) is N − bad

}
. (5.2)
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Definition 5.2. (N-good/bad parameters) A couple (ε, λ) ∈ R
2 is N -good for A if

∀ j0 ∈ Z
d , BN (j0; ε, λ) ⊂

⋃

q=1,...,N2d+ν+4

Iq (5.3)

where Iq are intervals with measure |Iq| ≤ N−τ . Otherwise, we say (ε, λ) is N -bad. We define

GN := GN (u) :=
{
(ε, λ) ∈ [0, ε0]× Λ : (ε, λ) is N − good for A

}
. (5.4)

The main result of this section is the following proposition. It will enable to verify the assumption
(H3) of Proposition 4.1 for the submatrices AN ′,j0(ε, λ, θ), see Lemmata 7.5 and 7.6.

Proposition 5.1. (Separation properties of N-bad sites) There exist C1 := C1(d, ν) ≥ 2 and
N1 := N1(ν, d, γ0, τ0,m,Θ) such that if N ≥ N1 and

• (i) (ε, λ) is N -good for A

• (ii) τ > χτ0 ( τ0 is the diophantine exponent of ω̄ in (1.5)),

then ∀θ ∈ R, the N -bad sites k := (l, j, a) ∈ Z
ν ×Z

d ×{0, 1} of A(ε, λ, θ) with |l| ≤ N ′ admit a partition
∪αΩα in disjoint clusters satisfying

diam(Ωα) ≤ NC1(d,ν) , d(Ωα,Ωβ) > N2 , ∀α 6= β . (5.5)

We underline that the estimates (5.5) are uniform in θ.

Remark 5.2. The N -bad sites appear necessarily in clusters with increasing size O(NC1), due to the
multiplicity of the eigenvalues of the Laplacian; this happens already for the singular sites of periodic
solutions, i.e. for ν = 1, see [3]. It is also natural that the separation between clusters of N -bad sites
increases with N , because, roughly speaking, the N -bad sites correspond small divisors of size O(N−α).

Remark 5.3. The geometric structure of the bad and singular sites, determines the regularity of the
solutions of Theorem 1.1. Actually, the solutions of Theorem 1.1 have the same Sobolev regularity in
time and space because the N -bad clusters are separated in the space-time Fourier indices, see (5.5).

We first estimate the time Fourier components of the N -singular sites. We use that, by (1.5), the
frequency vectors ω = λω̄, ∀λ ∈ [1/2, 3/2], are diophantine, namely

|ω · l| ≥ γ0
|l|τ0 , ∀l ∈ Z

ν \ {0} , (5.6)

and we use the “complexity” information (5.3) on the set BN (j0; ε, λ). This kind of argument was used
in [20] and [13].

Lemma 5.1. Assume (i)-(ii) of Proposition 5.1. Then, ∀j1 ∈ Z
d, the number of N -singular sites

(l1, j1, a1) ∈ Z
ν × Z

d × {0, 1} with |l1| ≤ N ′ does not exceed 2N2d+ν+4.

Proof. If (l1, j1, a1) is N -singular then AN,l1,j1(ε, λ, θ) is N -bad (see Definitions 5.1 and 4.1). By
(2.20), we get that AN,j1(ε, λ, θ + λω̄ · l1) is N -bad, namely θ + λω̄ · l1 ∈ BN (j1; ε, λ) (see (5.2)). By
assumption, (ε, λ) is N -good, and, therefore, (5.3) holds.

We claim that in each interval Iq there is at most one element θ+ω · l1 with ω = λω̄, |l1| ≤ N ′. Then,
since there are at most N2d+ν+4 intervals Iq (see (5.3)) and a ∈ {0, 1}, the lemma follows.

We prove the previous claim by contradiction. Suppose that there exist l1 6= l′1 with |l1|, |l′1| ≤ N ′,
such that ω · l1 + θ, ω · l′1 + θ ∈ Iq. Then

|ω · (l1 − l′1)| = |(ω · l1 + θ)− (ω · l′1 + θ)| ≤ |Iq| ≤ N−τ . (5.7)

By (5.6) we also have

|ω · (l1 − l′1)| ≥
γ0

|l1 − l′1|τ0
≥ γ0

(2N ′)τ0
= 2−τ0γ0N

−χτ0 . (5.8)
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By assumption (ii) of Proposition 5.1 the inequalities (5.7) and (5.8) are in contradiction, for N ≥
N0(γ0, τ0) large enough.

We now estimate also the spatial components of the sites

SN :=
{
k = (l, j, a) ∈ Z

ν+d × {0, 1} : |l| ≤ N ′, k is singular andN − singular forA(ε, λ, θ)
}
. (5.9)

In order to achieve a partition in clusters of SN we use the notion of “chain” of singular sites already
used for the search of periodic solutions of NLS and NLW in higher dimension in [7], [3].

Definition 5.3. (M-chain) A sequence k0, . . . , kL ∈ Z
d+ν ×{0, 1} of distinct integer vectors satisfying,

for some M ≥ 2, |kq+1 − kq| ≤M , ∀q = 0, . . . , L− 1, is called a M -chain of length L.

Proposition 5.1 will be a consequence of the following lemma. Here we exploit that the sites k = (i, a)
in SN are singular, see Definition 4.2.

Lemma 5.2. There is C(d, ν) > 0 such that, ∀θ ∈ R, ∀N , any M -chain of sites in SN has length

L ≤ (MN)C(d,ν) . (5.10)

Proof. Let kq = (lq, jq, aq), q = 0, . . . , L, be a M -chain of sites in SN . Then

max{|lq+1 − lq|, |jq+1 − jq|} ≤M , ∀q ∈ [0, L] , (5.11)

and, in particular, by Definition 4.2 and (2.21),

| − ω · lq + ‖jq‖2 +m− θ| < Θ (if aq = 1) or |ω · lq + ‖jq‖2 +m+ θ| < Θ (if aq = 0) .

We deduce one of the following θ-independent inequalities

| ± ω · (lq+1 − lq) + (‖jq+1‖2 ± ‖jq‖2)| ≤ 2(Θ +m) .

By (5.11) we get |‖jq+1‖2 ± ‖jq‖2| ≤ 2(Θ + m) + |ω|M ≤ K1M for some K1 := K1(Θ,m). Since
|‖jq+1‖2 − ‖jq‖2| ≤ ‖jq+1‖2 + ‖jq‖2, in any case |‖jq+1‖2 − ‖jq‖2| ≤ K1M . Therefore

∀q, q0 ∈ [0, L] , |‖jq‖2 − ‖jq0‖2| ≤ |q − q0|K1M (5.12)

and, using also (5.11),

|jq0 · (jq − jq0)| =
1

2

∣∣∣‖jq‖2 − ‖jq0‖2 − ‖jq − jq0‖2
∣∣∣ ≤ K2|q − q0|2M2 . (5.13)

Let us introduce the subspace of Rd

G = Span
R
{jq − jq′ : 0 ≤ q, q′ ≤ L } = Span

R
{jq − j0 : 0 ≤ q ≤ L }

and let us call g (1 ≤ g ≤ d) the dimension of G. Define δ := (2d+ 1)−2. The constants C below (may)
depend on Θ,m, d, ν.

Case I. ∀q0 ∈ [0, L], Span
R
{jq − jq0 : |q − q0| ≤ Lδ , q ∈ [0, L] } = G .

We select a basis of G from jq − jq0 (|q − q0| ≤ Lδ), say f1 , f2 , . . . , fg ∈ G. By (5.11) we have

|fi| ≤MLδ , ∀i = 1, . . . , g . (5.14)

Decomposing in this basis the orthogonal projection of jq0 on G,

PGjq0 =

g∑

i=1

xifi (5.15)
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and taking the scalar products with fp, p = 1, . . . , g, we get the linear system

Fx = b with F i
p := fi · fp , bp := PGjq0 · fp = jq0 · fp .

Since {fi}i=1,...,g is a basis of G the matrix F is invertible. Since the coefficients of F are integers,
|det(F )| ≥ 1. By Cramer rule, using that (5.14) implies |F i

p| ≤ C|fi||fp| ≤ (MLδ)2, we deduce that

|(F−1)i
′

i | ≤ C(MLδ)2(g−1) , ∀i, i′ = 1, . . . , g . (5.16)

By (5.13), we have |bi| ≤ K2(MLδ)2, ∀i = 1, . . . , g, and (5.16) implies

|xi′ | ≤ C(MLδ)2g , ∀i′ = 1, . . . , g . (5.17)

From (5.15), (5.14), (5.17), we deduce |PGjq0 | ≤ C(MLδ)2g+1, ∀q0 ∈ [0, L], and

|jq1 − jq2 | = |PGjq1 − PGjq2 | ≤ C(MLδ)2g+1 ≤ C(MLδ)2d+1, ∀(q1, q2) ∈ [0, L]2 .

Since all the jq are in Z
d, their number (counted without multiplicity) does not exceed C(MLδ)(2d+1)d.

Thus we have obtained the bound

♯{jq ; 0 ≤ q ≤ L} ≤ C(MLδ)(2d+1)d . (5.18)

Now by Lemma 5.1, for each q0 ∈ [0, L], the number of q ∈ [0, L] such that jq = jq0 is at most 2N2d+ν+4,
and so

L ≤ C(MLδ)(2d+1)d2N2d+ν+4 .

Since δ(2d+ 1)d < 1/2, we get
L ≤M2d(d+1)N2(2d+ν+4) (5.19)

for N large enough, proving (5.10).

Case II. There is q0 ∈ [0, L] such that

µ := dim Span{jq − jq0 : |q − q0| ≤ Lδ , q ∈ [0, L]} ≤ g − 1 ,

namely all the vectors jq stay in a affine subspace of dimension µ ≤ g − 1. Then we repeat on the
sub-chain jq, |q − q0| ≤ Lδ, the argument of case I, to obtain a bound for Lδ (and hence for L).

Applying at most d-times the above procedure, we obtain a bound for L of the form L ≤ (MN)C(d,ν),
proving the lemma.

We introduce the following equivalence relation in SN .

Definition 5.4. We say that x ≡ y if there is a M -chain {kq}q=0,...,L in SN connecting x to y, namely
k0 = x, kL = y.

Proof of Proposition 5.1 completed. Set M := 2N2. By the previous equivalence relation we get
a partition

SN =
⋃

α

Ω′
α

in disjoint equivalent classes, satisfying, by Lemma 5.2,

d(Ω′
α,Ω

′
β) > 2N2 , diam(Ω′

α)
(5.10)
≤ 2N2(2N3)C(d,ν) . (5.20)

All the sites outsides SN are regular or N -regular, see (5.9). As a consequence all the sites outside
⋃

α

Ω′′
α where Ω′′

α :=
{
k ∈ Z

b × {0, 1} : d(k,Ω′
α) ≤ N

}

are N -good, see (5.1). Hence the N -bad sites (see Definition 5.1) of A(ε, λ, θ) with |l| ≤ N ′ are included
in ⋃

α

Ωα where Ωα := Ω′′
α ∩ {(l, j, a) : |l| ≤ N ′} .

Then (5.5) follows by (5.20) with C1 := 3C(d, ν) + 3, for N ≥ N0(d, ν,m,Θ, γ0, τ0) large enough.
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6 Measure and “complexity” estimates

We define

B0
N (j0; ε, λ) :=

{
θ ∈ R : ‖A−1

N,j0
(ε, λ, θ)‖0 > N τ

}
(6.1)

=
{
θ ∈ R : ∃ an eigenvalue of AN,j0(ε, λ, θ) with modulus less than N−τ

}
(6.2)

where ‖ ‖0 is the operatorial L2-norm defined in (3.9). The equivalence between (6.1) and (6.2) is a
consequence of the self-adjointness of AN,j0(ε, λ, θ). We also define

G0
N := G0

N (u) :=
{
(ε, λ) ∈ [0, ε0]× Λ : ∀ j0 ∈ Z

d , B0
N (j0; ε, λ) ⊂

⋃

q=1,...,N2d+ν+4

Iq (6.3)

where Iq are disjoint intervals with measure |Iq| ≤ N−τ
}
.

Remark 6.1. The difference between the sets G0
N defined in (6.3) and GN defined in (5.4) relies in the

different definition of B0
N (j0; ε, λ) in (6.1) and BN (j0; ε, λ) in (5.2). For all θ /∈ BN (j0; ε, λ) the matrices

AN,j0(ε, λ, θ) are N -good, i.e. satisfy bounds on ||A−1
N,j0

(ε, λ, θ)||s ≤ N δs+τ ′

for s ∈ [s0, s1], while for all

θ /∈ B0
N (j0; ε, λ) we only have the L2- bound ‖A−1

N,j0
(ε, λ, θ)‖0 ≤ N τ . Using the multiscale Proposition 4.1

and the separation Proposition 5.1 (which holds for any θ) we shall prove inductively that the parameters
that stay in G0

Nk
(uk) along the Nash-Moser scheme are in fact also in GNk

(uk).

The aim of this section is to prove the following proposition.

Proposition 6.1. There is a constant C > 0 such that, for N ≥ N0(V, d, ν) large enough and

ε0β
−1
0 (‖T1‖0 + ‖∂λT1‖0) ≤ c (6.4)

small enough (β0 is defined in (1.3) and T1 in (2.3)), the set B0
N := (G0

N )c ∩ ([0, ε0]× Λ) has measure

|B0
N | ≤ C ε0N

−1 . (6.5)

Proposition 6.1 is derived from several lemmas based on basic properties of eigenvalues of self-adjoint
matrices, which are a consequence of their variational characterization.

Lemma 6.1. i) Let A(ξ) be a family of square matrices in ME
E, C

1 in the real parameter ξ ∈ R.

Assume that there is an invertible matrix U such that the matrices Ã(ξ) := A(ξ)U are self-adjoint and

∂ξÃ(ξ) ≥ βI, β > 0. Then, for any α > 0, the measure

∣∣∣
{
ξ ∈ R : ‖A−1(ξ)‖0 ≥ α−1

}∣∣∣ ≤ 2|E|αβ−1‖U‖0 (6.6)

where |E| denotes the cardinality of the set E.

ii) In particular, if A = Z + ξW with Z,W selfadjoint, W invertible and β1I ≤ Z ≤ β2I, β1 > 0, then

∣∣∣
{
ξ ∈ R : ‖A−1(ξ)‖0 ≥ α−1

}∣∣∣ ≤ 2|E|αβ2β−1
1 ‖W−1‖0 . (6.7)

Proof. i) The eigenvalues of the self-adjoint matrices Ã(ξ) can be listed as C1 functions µk(ξ), 1 ≤
k ≤ |E|. Now

{
ξ ∈ R : ‖A−1(ξ)‖0 ≥ α−1

}
⊂

{
ξ ∈ R : ‖Ã−1(ξ)‖0 ≥ (α‖U‖0)−1

}

=
{
ξ ∈ R : ∃k ∈ [1, |E|] , |µk(ξ)| ≤ α‖U‖0

}
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because Ã(ξ) is selfadjoint. Since ∂ξÃ(ξ) ≥ βI, we have ∂ξµk(ξ) ≥ β > 0 and the measure estimate (6.6)
follows readily.

ii) Applying i) with U =W−1Z and self-adjoint matrices Ã(ξ) = ZW−1Z + ξZ, we get

∣∣∣
{
ξ ∈ R : ‖A−1(ξ)‖0 ≥ α−1

}∣∣∣ ≤ 2|E|αβ−1
1 ‖W−1‖0‖Z‖0 ≤ 2|E|αβ2β−1

1 ‖W−1‖0,

which is (6.7).

From the variational characterization of the eigenvalues of selfadjoint matrices we can derive :

Lemma 6.2. Let A, A1 be self adjoint matrices. Then their eigenvalues (ranked in nondecreasing order)
satisfy the Lipschitz property

|µk(A) − µk(A1)| ≤ ‖A− A1‖0 . (6.8)

The continuity property (6.8) of the eigenvalues allows to derive a “complexity estimate” forB0
N (j0; ε, λ)

knowing its measure, more precisely the measure of

B0
2,N (j0; ε, λ) :=

{
θ ∈ R : ‖A−1

N,j0
(ε, λ, θ)‖0 > N τ/2

}
. (6.9)

Lemma 6.3. ∀j0 ∈ Z
d, ∀(ε, λ) ∈ [0, ε0]×Λ, we have B0

N (j0; ε, λ) ⊂ ∪q=1,...,2 MNτ Iq where Iq are intervals
with |Iq| ≤ N−τ and M := |B0

2,N (j0; ε, λ)|.

Proof. If θ ∈ B0
N (j0; ε, λ), by (6.8) and since ‖Y ‖0 = 1 (see (2.15)), we deduce that

[
θ −N−τ , θ +N−τ

]
⊂ B0

2,N (j0; ε, λ)

=
{
θ ∈ R : ∃ an eigenvalue of AN,j0(ε, λ, θ) with modulus less than 2N−τ

}
.

Hence B0
N (j0; ε, λ) is included in an union of intervals Jm of disjoint interiors,

B0
N (j0; ε, λ) ⊂

⋃

m

Jm ⊂ B0
2,N(j0; ε, λ), with length |Jm| ≥ 2N−τ (6.10)

(if some of the intervals [θ − N−τ , θ +N−τ ] overlap, then we glue them together). We decompose each
Jm as an union of (non overlapping) intervals Iq of length between N−τ/2 and N−τ . Then, by (6.10),
we get a new covering

B0
N (j0; ε, λ) ⊂

⋃

q=1,...,Q

Iq ⊂ B0
2,N(j0; ε, λ) with N−τ/2 ≤ |Iq| ≤ N−τ

and, since the intervals Iq do not overlap,

QN−τ/2 ≤
Q∑

q=1

|Iq| ≤ |B0
2,N (j0; ε, λ)| =: M .

As a consequence Q ≤ 2 MN τ , which proves the lemma.

We estimate the measure |B0
2,N (j0; ε, λ)| differently for |j0| ≥ 2N or |j0| < 2N . In the next lemmas

we assume
N ≥ N0(V, ν, d) > 0 large enough and ε‖T1‖0 ≤ 1 . (6.11)

Lemma 6.4. ∀|j0| ≥ 2N , ∀(ε, λ) ∈ [0, ε0]× Λ, we have |B0
2,N(j0; ε, λ)| ≤ CN−τ+d+ν.

Proof. Recalling (2.19) and (2.16), we have

AN,j0(ε, λ, θ) = AN,j0(ε, λ) + θYN,j0 = DN,j0(λ) + TN,j0(ε, λ) + θYN,j0 . (6.12)
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We claim that, if |j0| ≥ 2N and N ≥ N0(V, d, ν), see (6.11), then

4d|j0|2I ≥ AN,j0(ε, λ) ≥
|j0|2
8
I . (6.13)

Indeed by (6.12) and (6.8), the eigenvalues λl,j of AN,j0(ε, λ) satisfy

λl,j = δ±l,j +O(ε‖T1‖0 + ‖V ‖0) where δ±l,j := ‖j‖2 ± ω · l . (6.14)

Since |ω| = |λ||ω̄| ≤ 3/2 (see (1.4)), ‖j‖ ≥ |j| (see (2.18)), |j − j0| ≤ N , |l| ≤ N , we have

δ±l,j ≥ (|j0| − |j − j0|)2 − ν|ω||l| ≥ (|j0| −N)2 − 3

2
νN ≥ |j0|2

6
(6.15)

for |j0| ≥ 2N and N ≥ N0(ν) large enough. Moreover, since ‖j‖2 ≤ d|j|2,

δ±l,j ≤ d(|j0|+ |j − j0|)2 + ν|ω||l| ≤ d(|j0|+N)2 + 2νN ≤ 3d|j0|2 (6.16)

for N ≥ N0(ν) large enough. Hence (6.14), (6.15), (6.16), (6.11) imply (6.13). As a consequence, by
Lemma 6.1-ii) with W = YN,j0 , ‖W−1‖0 = 1, we deduce |B0

2,N (j0; ε, λ)| ≤ CN−τ+d+ν.

Lemmas 6.3 and 6.4 imply that:

Corollary 6.1. ∀|j0| ≥ 2N , ∀(ε, λ) ∈ [0, ε0]× Λ, we have

B0
N (j0; ε, λ) ⊂

⋃

q=1,...,Nd+ν+2

Iq

where Iq are intervals satisfying |Iq| ≤ N−τ .

We now consider the cases |j0| < 2N .

Lemma 6.5. ∀|j0| < 2N , ∀(ε, λ) ∈ [0, ε0]× Λ, we have

B0
2,N (j0; ε, λ) ⊂ IN := (−11dN2, 11dN2) .

Proof. The eigenvalues of θY are ±θ and (2.18) implies ‖j‖2 ≤ d(|j0|+ |j − j0|)2 ≤ 9dN2. Hence, by
(6.12), (6.14), |l| ≤ N , (1.4), (6.11),

‖AN,j0(ε, λ)‖0 ≤ ‖DN,j0(λ)‖0 + ‖TN,j0(ε, λ)‖0 ≤ 2νN + 9dN2 + C(1 + ‖V ‖0) ≤ 10dN2

for N ≥ N(V, d, ν) large enough. By Lemma 6.2, if θ /∈ IN all the eigenvalues of AN,j0(ε, λ, θ) =
AN,j0(ε, λ) + θYN,j0 are greater than 1 (actually dN2).

Lemma 6.6. ∀|j0| < 2N , the set

B0
2,N(j0) :=

{
(ε, λ, θ) ∈ [0, ε0]× Λ× R :

∥∥∥A−1
N,j0

(ε, λ, θ)
∥∥∥
0
> N τ/2

}
(6.17)

has measure
|B0

2,N (j0)| ≤ ε0N
−τ+d+ν+3 . (6.18)

Proof. By Lemma 6.5, B0
2,N(j0) ⊂ [0, ε0] × Λ × IN . In order to estimate the “bad” (ε, λ, θ) where at

least one eigenvalue of AN,j0(ε, λ, θ) is less than N
−τ , we introduce the variables

ξ :=
1

λ
, η :=

θ

λ
where (ξ, η) ∈ [2/3, 2]× 2IN (6.19)

and we consider the self adjoint matrix

1

λ
AN,j0(ε, λ, θ)

(6.12)
= diag|l|≤N,|j−j0|≤N

(
− ω̄ · l 0

0 ω̄ · l

)
+ ξPN,j0 − εξT1(ε, 1/ξ) + ηY (6.20)
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where

P :=

(
−∆+ V (x) 0

0 −∆+ V (x)

)
satisfies P

(1.3)

≥ β0I .

The derivative with respect to ξ of the matrix in (6.20) is

PN,j0 − εT1(ε, 1/ξ) +
ε

ξ
∂λT1(ε, 1/ξ)

(6.4)

≥ β0
2
I ,

i.e. positive definite (for ε0 small enough). By Lemma 6.1, for each fixed η, the set of ξ ∈ [2/3, 2] such
that at least one eigenvalue is ≤ N−τ has measure at most O(N−τ+d+ν). Then, integrating on η ∈ IN ,
whose length is |IN | = O(N2), on ε ∈ [0, ε0], and since the change of variables (6.19) has a Jacobian of
modulus ≥ 1/8, we deduce (6.18).

By the same arguments (see also the proof of Lemma 7.13) we also get the following measure estimate
that will be used in section 7, see (S4)n.

Lemma 6.7. The complementary of the set

GN := GN (u) :=
{
(ε, λ) ∈ [0, ε0]× Λ : ‖A−1

N (ε, λ)‖0 ≤ N τ
}

(6.21)

has measure
|GcN ∩ ([0, ε0]× Λ)| ≤ ε0N

−τ+d+ν+1 . (6.22)

Remark 6.2. For periodic solutions (i.e. ν = 1), a similar eigenvalue variation argument which exploits
−∆ ≥ 0 was used in the Appendix of [10] and in [5].

As a consequence of Lemma 6.6, for “most” (ε, λ) the measure of B0
2,N (j0; ε, λ) is “small”.

Lemma 6.8. ∀|j0| < 2N , the set

FN (j0) :=
{
(ε, λ) ∈ [0, ε0]× Λ : |B0

2,N(j0; ε, λ)| ≥
1

2
N−τ+2d+ν+4

}

has measure
|FN (j0)| ≤ 2ε0N

−d−1 . (6.23)

Proof. By Fubini theorem (see (6.17) and (6.9))

|B0
2,N (j0)| =

∫

[0,ε0]×Λ

|B0
2,N (j0; ε, λ)|dε dλ . (6.24)

Let µ := τ − 2d− ν − 4. By (6.24) and (6.18),

ε0N
−τ+d+ν+3 ≥

∫

[0,ε0]×Λ

|B0
2,N (j0; ε, λ)|dε dλ

≥ 1

2
N−µ

∣∣∣
{
(ε, λ) ∈ [0, ε0]× Λ : |B0

2,N(j0; ε, λ)| ≥
1

2
N−µ

}∣∣∣ :=
1

2
N−µ|FN (j0)|

whence (6.23).

By Lemma 6.8, for all (ε, λ) /∈ FN(j0) we have the measure estimate |B0
2,N (j0; ε, λ)| < N−τ+2d+ν+4/2.

Then, Lemma 6.3 implies

Corollary 6.2. ∀|j0| < 2N , ∀(ε, λ) /∈ FN (j0), we have B0
N (j0; ε, λ) ⊂

⋃

q=1,...,N2d+ν+4

Iq with Iq intervals

satisfying |Iq | ≤ N−τ .

Proposition 6.1 is a direct consequence of the following lemma.
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Lemma 6.9. B0
N ⊆

⋃

|j0|<2N

FN (j0).

Proof. Corollaries 6.1 and 6.2 imply that

(ε, λ) /∈
⋃

|j0|<2N

FN (j0) =⇒ (ε, λ) ∈ G0
N

(see the definition in (6.3)). The lemma follows.

Proof of Proposition 6.1 completed. By Lemma 6.9 and (6.23) we get

|B0
N | ≤

∑

|j0|<2N

|FN (j0)| < (2N + 1)d|FN (j0)| ≤ (2N + 1)d2ε0N
−d−1 ≤ Cε0N

−1 . (6.25)

7 Nash Moser iterative scheme

Consider the orthogonal splitting
Hs = Hn ⊕H⊥

n

where Hs is defined in (1.12) and

Hn :=
{
u := u = (u+, u−) ∈ Hs : u =

∑

|(l,j)|≤Nn

ul,j e
i(l·ϕ+j·x)

}
(7.1)

H⊥
n :=

{
u := u = (u+, u−) ∈ Hs : u =

∑

|(l,j)|>Nn

ul,j e
i(l·ϕ+j·x)

}
,

with ul,j := (u+l,j, u
−
l,j) ∈ C

2, and

Nn := N2n

0 , namely Nn+1 = N2
n , ∀n ≥ 0 . (7.2)

In the proof we shall take N0 ∈ N large enough depending on ε0 and V , d, ν, see (7.95). We denote by

Pn : Hs → Hn and P⊥
n : Hs → H⊥

n (7.3)

the orthogonal projectors onto Hn and H⊥
n . The following “smoothing” properties hold, ∀n ∈ N, s ≥ 0,

r ≥ 0,

‖Pnu‖s+r ≤ N r
n‖u‖s , ∀u ∈ Hs (7.4)

‖P⊥
n u‖s ≤ N−r

n ‖u‖s+r , ∀u ∈ Hs+r . (7.5)

More generally, for j0 ∈ Z
d, we denote PN,j0 the orthogonal projector from Hs onto the subspace

HN,j0 :=
{
u ∈ Hs : u =

∑

|(l,j−j0)|≤N

ul,j e
i(l·ϕ+j·x)

}
. (7.6)

With the above notation Hn = HNn,0, see (7.1), and Pn := PNn,0, see (7.3). Moreover we also denote
ΠN,j0 the orthogonal projector from Hs0(Td) (functions only of the x-variable) onto the space

EN,j0 :=
{
u(x) :=

∑

|j−j0|≤N

uje
ij·x , uj ∈ C

}
. (7.7)

The composition operator on Sobolev spaces

f : Hs → Hs , f(u)(t, x) :=

(
f(ϕ, x, u−u+)u+

f(ϕ, x, u−u+)u−

)
,

where f ∈ Cq(Tν × T
d × R;R) with

q ≥ S + 2 (7.8)

satisfies the following standard properties (see e.g. [31]): ∀s ∈ [s1, S], s1 > (d+ ν)/2,
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• (F1) (Regularity) f ∈ C2(Hs;Hs).

• (F2) (Tame estimates) ∀u, h ∈ Hs with ‖u‖s1 ≤ 1,

‖f(u)‖s ≤ C(s)‖u‖s , ‖(Df)(u)h‖s ≤ C(s)(‖h‖s + ‖u‖s‖h‖s1) . (7.9)

‖D2f(u)[h, v]‖s ≤ C(s)
(
‖u‖s‖h‖s1‖v‖s1 + ‖v‖s‖h‖s1 + ‖v‖s1‖h‖s

)
. (7.10)

As a consequence we get

• (F3) (Taylor Tame estimate) ∀u ∈ Hs with ‖u‖s1 ≤ 1, ∀h ∈ Hs with ‖h‖s1 ≤ 1,

‖f(u+ h)− f(u)− (Df)(u)h‖s ≤ C(s)(‖u‖s‖h‖2s1 + ‖h‖s1‖h‖s) . (7.11)

In particular, for s = s1,

‖f(u+ h)− f(u)− (Df)(u)h‖s1 ≤ C(s1)‖h‖2s1 . (7.12)

The values of the constants s1 and S are fixed in (7.16) below.

Remark 7.1. The differential (Df)(u) is the operator T1 defined in (2.3) with (p, q) as in (2.4).

By Lemma 3.1 and the first inequality in (7.9) applied to the composition operators in (2.4), the
Töplitz matrix T1 which represents Df(u) satisfies, ∀s ∈ [s1, S],

||T1||s = ||(Df)(u)||s ≤ C(s)(1 + ‖u‖s) . (7.13)

For simplicity of notation we denote (g, ḡ) simply by g. We shall use that g and the potential V satisfy

‖g‖Cq ≤ C , ‖V ‖Cq ≤ C , (7.14)

for some fixed constant C.
With the above more concise notations, the vector NLS-equation (1.11) becomes

Lωu = ε(f(u) + g) . (7.15)

For definiteness we fix the Sobolev indices s0 < s1 < S as

s0 := b = d+ ν , s1 := 10(τ + b)C2 , S := 12τ ′ + 8(s1 + 1) , (7.16)

where
C2 := 6(C1 + 2) , τ := max{d+ ν + 2, 2C2 τ0 + 1} , τ ′ := 3τ + 2b , τ0 := ν (7.17)

(the constant τ0 is introduced in (1.5)) and C1 := C1(d, ν) ≥ 2 is defined in Proposition 5.1. Note that
s0, s1, S defined in (7.16) depend only on d and ν.

We also fix the constant δ in Definition 4.1 as

δ := 1/4 . (7.18)

Remark 7.2. By (7.16)-(7.18) the hypotheses (4.3)-(4.5) of Proposition 4.1 are satisfied for any χ ∈
[C2, 2C2), as well as assumption (ii) of Proposition 5.1. We assume τ ≥ d+ ν+2 in view of (6.22). The
strongest condition for S appears in the proof of Lemma 7.10.

Setting
τ1 := d+ ν

and γ > 0, we shall implement the first steps of the Nash-Moser iteration restricting λ to the set

Ḡ :=
{
λ ∈ Λ :

∥∥∥
(
± λω̄ · l +Π0(−∆+ V (x))|E0

)−1∥∥∥
L2

x

≤ N τ1
0

γ
, ∀ |l| ≤ N0

}

=
{
λ ∈ Λ : | ± λω̄ · l+ µj | ≥ γN−τ1

0 , ∀ |j| ≤ N0, |l| ≤ N0

}
(7.19)
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where µj are the eigenvalues of Π0(−∆+ V (x))|E0
where Π0 := ΠN0,0, E0 := EN0,0 are defined in (7.7).

We shall prove in Lemma 7.13 the measure bound |Ḡ| = 1−O(γ) (since τ1 ≥ d+ ν). The constant γ will
be fixed in (7.95).

We also define
σ := τ ′ + δs1 + 2 . (7.20)

Given a set A we denote N (A, η) the open neighborhood of A of width η (which is empty if A is empty).

Theorem 7.1. (Nash-Moser) There exist c̄, γ̄ > 0 (depending on d, ν, V ,γ0, β0) such that, if

N0 ≥ 2γ−1 , γ ∈ (0, γ̄) , and ε0N
S
0 ≤ c̄ , (7.21)

then there is a sequence (un)n≥0 of C1 maps un : [0, ε0)× Λ → Hs1 ∩ U (see (1.13)) satisfying

(S1)n un(ε, λ) ∈ Hn ∩ U , un(0, λ) = 0, ‖un‖s1 ≤ 1, ‖∂(ε,λ)un‖s1 ≤ C(s1)N
τ1+s1+1
0 γ−1.

(S2)n (n ≥ 1) For all 1 ≤ k ≤ n, ‖uk − uk−1‖s1 ≤ N−σ−1
k , ‖∂(ε,λ)(uk − uk−1)‖s1 ≤ N

−1/2
k .

(S3)n (n ≥ 1)

‖u− un−1‖s1 ≤ N−σ
n =⇒

n⋂

k=1

G0
Nk

(uk−1) ⊆ GNn
(u) (7.22)

where G0
N (u) (resp. GN (u)) is defined in (6.3) (resp. in (5.4)) .

(S4)n Define the set

Cn :=

n⋂

k=1

GNk
(uk−1)

n⋂

k=1

G0
Nk

(uk−1)
⋂(

[0, ε0]× Ḡ
)
, (7.23)

where GNk
(uk−1) is defined in (6.21), Ḡ in (7.19), G0

Nk
(uk−1) in (6.3).

If (ε, λ) ∈ N (Cn, N−σ
n ) then un(ε, λ) solves the equation

(Pn) Pn

(
Lωu− ε(f(u) + g)

)
= 0 .

(S5)n Un := ‖un‖S, U ′
n := ‖∂(ε,λ)un‖S (where S is defined in (7.16)) satisfy

(i) Un ≤ N2(τ ′+δs1+1)
n , (ii) U ′

n ≤ N4τ ′+2s1+4
n .

The sequence (un)n≥0 converges in C1 norm to a map

u ∈ C1([0, ε0)× Λ,Hs1) with u(0, λ) = 0 (7.24)

and, if (ε, λ) belongs to the Cantor like set

C∞ :=
⋂

n≥0

Cn (7.25)

then u(ε, λ) is a solution of (1.11), i.e. (7.15), with ω = λω̄.

The sets of parameters Cn in (S4)n are decreasing, i.e.

. . . ⊆ Cn ⊆ Cn−1 ⊆ . . . ⊆ C0 ⊂ [0, ε0]× Ḡ ⊂ [0, ε0]× Λ ,

and it could happen that Cn0
= ∅ for some n0 ≥ 1. In such a case un = un0

, ∀n ≥ n0 (however the map
u in (7.24) is always defined), and C∞ = ∅. Later, in (7.95), we shall specify the values of γ, ε0, N0, in
order to verify that C∞ has asymptotically full measure, i.e. (1.10) holds.

The proof of Theorem 7.1 is based on an improvement of the Nash-Moser theorems in [2], [3], [4].
The main difference is that the “tame exponent” τ ′ + δs in (7.64) depends on the Sobolev index s. We
have chosen δ = 1/4 in (7.18) for definiteness. The Nash-Moser iteration would converge for any δ < 1,
see section 1.2.

Another difference with respect to the scheme in [2], [3], [4], is that we perform, at the same time, the
Nash-Moser iteration and the multiscale argument for proving the invertibility of the linearized operators,
see Lemma 7.7. This is more convenient for proving measure estimates.
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7.1 Initialization of the Nash-Moser scheme

We perform the first step of the Nash-Moser iteration restricting λ ∈ N (Ḡ, 2N−σ
0 ) (the set Ḡ is defined

in (7.19)).

Lemma 7.1. For all λ ∈ N (Ḡ, 2N−σ
0 ), the operator

L0 := P0(Lλω̄)|H0
(7.26)

(where Lω is defined in (2.2)) is invertible and

‖L−1
0 ‖s1 ≤ 2N τ1+s1

0 γ−1 . (7.27)

Proof. With the notations of (7.19), for all λ ∈ N (Ḡ, 2N−σ
0 ),

∀|(l, j)| ≤ N0 , | ± λω̄ · l + µj | ≥ γN−τ1
0 − 2|ω̄|N1−σ

0 ≥ γ

2
N−τ1

0 , (7.28)

provided N0 ≥ 4γ−1|ω̄| (recall (7.20), (7.17) and τ1 := d + ν). Then ‖L−1
0 ‖0 ≤ 2γ−1N τ1

0 and (7.27)
follows by the smoothing property (7.4).

A fixed point of
F0 : H0 → H0 , F0(u) := εL−1

0 P0(f(u) + g) , (7.29)

is a solution of equation (P0).

Lemma 7.2. For εγ−1N τ1+s1+σ
0 ≤ c(s1) small, ∀λ ∈ N (Ḡ, 2N−σ

0 ), the map F0 is a contraction in
B0(s1) := {u ∈ H0 : ‖u‖s1 ≤ ρ0 := N−σ

0 }.

Proof. The map F0 maps B0(s1) into itself, because, ∀‖u‖s1 ≤ ρ0,

‖F0(u)‖s1
(7.27)
≤ 2εγ−1N τ1+s1

0 (‖f(u)‖s1 + ‖g‖s1)
(F2),(7.14)

≤ εγ−1N τ1+s1
0 C(s1) ≤ ρ0

for εγ−1N τ1+s1+σ
0 is small enough. Moreover, ∀‖u‖s1 ≤ ρ0,

‖(DF0)(u)‖s1 = ε‖L−1
0 P0(Df)(u)|H0

‖s1
(7.27),(F2)

≤ εN τ1+s1
0 γ−1C(s1) ≤ 1/2 , (7.30)

implying that the map F0 is a contraction in B0(s1).

Let ũ0(ε, λ) denote the unique solution of (P0) in B0(s1) defined for all (ε, λ) ∈ [0, ε0]×N (Ḡ, 2N−σ
0 ).

For ε = 0 the map F0 in (7.29) has u = 0 as a fixed point. By uniqueness we deduce ũ0(0, λ) = 0. Since
the contracting map F0 leaves B0(s1) ∩ U invariant (see (1.13)), we deduce that ũ0(ε, λ) ∈ U . Moreover,
by (7.30), the operator

L0(ε) := P0

(
Lω − ε(Df)(ũ0)

)

|H0

= L0 − εP0(Df)(ũ0)|H0
= L0

(
I − (DF0)(ũ0)

)
(7.31)

is invertible and

‖L−1
0 (ε)‖s1 ≤ 2‖L−1

0 ‖s1
(7.27)
≤ 4N τ1+s1

0 γ−1 . (7.32)

The implicit function theorem implies that ũ0 ∈ C1([0, ε0]×N (Ḡ, 2N−σ
0 );H0) and

∂εũ0 = L−1
0 (ε)P0(f(ũ0) + g) , ∂λũ0 = −L−1

0 (ε)(∂λL0)ũ0 . (7.33)

Then, by (7.33), (7.32) and ∂λLω = diag(±iω̄ · ∂ϕ), we get

‖∂εũ0‖s1 ≤ N τ1+s1
0 γ−1C(s1) , ‖∂λũ0‖s1 ≤ 4|ω̄|N τ1+s1

0 γ−1‖ũ0‖s1+1 ≤ CN τ1+s1+1−σ
0 γ−1 (7.34)

using that ‖ũ0‖s1+1 ≤ N0‖ũ0‖s1 ≤ N0N
−σ
0 .

33



Finally we define the C1 map u0 := ψ0ũ0 : [0, ε0]× Λ → H0 with cut-off function ψ0 : Λ → [0, 1],

ψ0 :=

{
1 if λ ∈ N (Ḡ, N−σ

0 )

0 if λ /∈ N (Ḡ, 2N−σ
0 )

and |Dλψ0| ≤ Nσ
0 C . (7.35)

Then (7.35), ‖ũ0‖s1 ≤ N−σ
0 and (7.34) imply (we have ∂εψ0 ≡ 0)

‖u0‖s1 ≤ N−σ
0 , ‖∂(ε,λ)u0‖s1 ≤ C(s1)N

τ1+s1+1
0 γ−1 . (7.36)

The statement (S1)0 is proved. Note that (S2)0, (S3)0 are empty. Finally, also property (S4)0 is
proved because, by (7.35) the function u0(ε, λ) solves the equation (P0) for all (ε, λ) ∈ N (C0, N−σ

0 ), since
C0 = [0, ε0]× Ḡ.

For the next steps of the induction we need the following lemma which establishes a property which
replaces (S3)n for the first steps of the induction.

Lemma 7.3. There exists N0 := N0(S, V ) ∈ N and c(s1) > 0 such that, if

ε0N
τ ′+δs1
0 ≤ c(s1) , (7.37)

then ∀N1/C2

0 ≤ N ≤ N0, ∀‖u‖s1 ≤ 1, GN (u) = [0, ε0]× Λ.

In order to prove Lemma 7.3 we prefix the following Lemma.

Lemma 7.4. For N ≥ Ñ(S, V ) large enough, if

∥∥∥
(
ϑ I + ΠN,j0(−∆+ V (x))|EN,j0

)−1∥∥∥
L2

x

≤ N τ , ϑ ∈ R , (7.38)

(see the definition of EN,j0 in (7.7)) then, ∀s ∈ [s0, S],

∣∣∣
∣∣∣
(
ϑI + ΠN,j0(−∆+ V (x))|EN,j0

)−1∣∣∣
∣∣∣
s
≤ 1

2
N τ ′+δs . (7.39)

Proof. We apply a simplified version of Proposition 4.1 to ϑI + ΠN,j0(−∆ + V (x))|EN,j0
. We sketch

the main modifications only. The scale N ′ in Proposition 4.1 is here replaced by N . Assumption (H1)
follows from the regularity of the potential V (x) (see Lemma 3.1) and (H2) is (7.38). With respect to
Proposition 4.1, we use a stronger version of assumption (H3), calling “good sites” the regular sites only,
namely the j ∈ Z

d, |j − j0| ≤ N , such that

|dj | ≥ Θ where dj := ϑ+ ‖j‖2 +m

and m denotes the average of the potential V (x), see (2.5). This is enough because here the singular sites
satisfy separation properties. For Θ−1‖V ‖s1 small enough we have the analogue of Lemma 4.1 (the proof
is simpler because all the good sites satisfy |dj | ≥ Θ). The separation properties of the singular sites
j ∈ Z

d, |j − j0| ≤ N , such that |dj | < Θ, is proved as in section 5: a M -chain of singular sites has length

at most L ≤ MC3(d), see Lemma 5.2 and (5.18). Then, taking M := N δ/2(1+C3(d)) we get a partition of
the singular sites in clusters Ωα satisfying

d(Ωα,Ωβ) > N δ/2(1+C3(d)) and diam(Ωα) ≤ML ≤M1+C3(d) = N δ/2 .

Estimate (7.39) follows by the arguments of Lemmas 4.2, 4.3 in section 4.

Proof of Lemma 7.3. We claim that, ∀(ε, λ) ∈ [0, ε0]× Λ, ∀j0 ∈ Z
d,

BN (j0; ε, λ) ⊂
⋃

|(l,j−j0)|≤N

{
θ ∈ R : |δ±l,j(θ)| ≤ N−τ

}
(7.40)
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where
δ±l,j(θ) := ±(ω · l + θ) + µ̃j , ω = λω̄ , µ̃j := eigenvalues of ΠN,j0(−∆+ V (x))|EN,j0

(which depend on N) and the subspace EN,j0 is defined in (7.7). Actually (7.40) is equivalent to

|δ±l,j(θ)| > N−τ , ∀ |(l, j − j0)| ≤ N =⇒ AN,j0(ε, λ, θ) is N − good (7.41)

with A = L(u) = Lω + θY − ε(Df)(u). We first prove that the left hand side condition in (7.41) implies

QN,j0 := PN,j0(Lω + θY )|HN,j0
satisfies ||Q−1

N,j0
||s ≤

1

2
N τ ′+δs , ∀s ∈ [s0, S] , (7.42)

(the subspace HN,j0 is defined in (7.6)). Indeed, the operator Lω is diagonal in time Fourier basis. The
left hand side condition in (7.41) is equivalent to

∥∥∥
(
± (λω̄ · l + θ)I + ΠN,j0(−∆+ V (x))|EN,j0

)−1∥∥∥
L2

x

< N τ , ∀|l| ≤ N .

Lemma 7.4 implies, for N ≥ N
1/C2

0 ≥ Ñ(V, S), that

∣∣∣
∣∣∣
(
± (λω̄ · l + θ)I + ΠN,j0(−∆+ V (x))|EN,j0

)−1∣∣∣
∣∣∣
s
≤ 1

2
N τ ′+δs , ∀|l| ≤ N ,

and (7.42) follows because QN,j0 is diagonal in time Fourier basis.
We now prove (7.41) by a perturbative argument. By (7.13) and ‖u‖s1 ≤ 1 we have ||(Df)(u)||s1 ≤

C(s1). Hence

ε||QN,j0||s1 ||(Df)(u)||s1
(7.42)

≤ εN τ ′+δs1C(s1) ≤ ε0N
τ ′+δs1
0 C(s1)

(7.37)

≤ 1/2 . (7.43)

Then, by Lemma 3.9, the matrix AN,j0(ε, λ, θ) = PN,j0(Lω + θY − ε(Df)(u))|HN,j0
is invertible and

∀s ∈ [s0, s1] , ||A−1
N,j0

(ε, λ, θ)||s
(3.26)

≤ 2||Q−1
N,j0

||s
(7.42)

≤ N τ ′+δs , (7.44)

namely it is N -good.
Finally, by (7.40), BN (j0; ε, λ) is included in an union of 2(2N + 1)b intervals of measure ≤ 2N−τ ,

hence of 4(2N+1)b ≤ N2d+ν+4 intervals Iq of measure |Iq | ≤ N−τ . This proves that any (ε, λ) ∈ [0, ε0]×Λ
is N -good (see Definition 5.2) for A = L(u), namely that (ε, λ) is in GN (u), see (5.4).

Finally we prove (S5)0. With estimates similar to the proof of (S1)0 using the smallness condition on
ε0 in (7.21), we deduce (S5)0-(i). In order to estimate ∂(ε,λ)u0, we use that the inverse of the operator

L0(ε) = L0 − εP0Df(ũ0)|H0
defined in (7.31) (L0 is defined in (7.26)) satisfies, for λ ∈ N (G, 2N−σ

0 ),

||L−1
0 (ε)||s ≤ N τ ′+δs

0 , ∀s ∈ [s1, S] . (7.45)

Indeed, note that by (7.28), for N = N0 and θ = 0, the real numbers |δ±l,j(0)| defined after (7.40) are

bounded from below by γN−τ1
0 /2 ≥ N−τ

0 . Hence L0 = QN0,0 satisfies (7.42), and Lemma 3.9 implies,
∀s ∈ [s1, S],

||L−1
0 (ε)||s

(3.27),(7.42)

≤
(
1 + C(s)ε||Q−1

N0,0
||s0 ||(Df)(ũ0)||s0

)N τ ′+δs
0

2
+ C(s)ε(N τ ′+δs0

0 )2 ||(Df)(ũ0)||s
(7.42),(7.13),(S5)0

≤
(
1 + C(s)εN τ ′+δs0

0

)1
2
N τ ′+δs

0 + C(s)εN
2(τ ′+δs0)+2(τ ′+δs1+1)
0

(7.21),(7.16)

≤ N τ ′+δs
0
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since 4τ ′ +4δs1 +2 < S. The bound (S5)0-(ii) follows easily from (7.45). Let us give the details for ∂εu0
(which is not small with ε). We have

‖∂εũ0‖S
(7.33)
= ‖L−1

0 (ε)P0(f(ũ0) + g)‖S
(3.20)

≤ ||L−1
0 (ε)||s1‖f(ũ0) + g‖S + C(S)||L−1

0 (ε)||S‖f(ũ0) + g‖s1
(7.45),(F2),(7.14)

≤ C(S)N τ ′+δs1
0 (‖ũ0‖S + 1) + C′(S)N τ ′+δS

0

(S5)0−(i)

≤ C′(S)N
3(τ ′+δs1)+2
0 + C′(S)N τ ′+δS

0 ≤ N4τ ′+2s1+4
0

by (7.16) and δ = 1/4. Then (S5)0-(ii) is proved.

7.2 Iteration of the Nash-Moser scheme

Suppose, by induction, that we have already defined un ∈ C1([0, ε0] × Λ;Hn ∩ U) and that properties
(S1)k-(S5)k hold for all k ≤ n. We are going to define un+1 and prove the statements (S1)n+1-(S5)n+1.
Consider the operators L(u) (introduced in (2.1)),

L(u) := L(ω, ε, u) := Lω − ε(Df)(u) . (7.46)

In order to carry out a modified Nash-Moser scheme, we shall study the invertibility of

Ln+1(un) := Pn+1L(un)|Hn+1
(7.47)

and the tame estimates of its inverse, applying Proposition 4.1. We distinguish two cases.
If 2n+1 > C2 (the constant C2 is fixed in (7.17)), then there exists a unique p ∈ [0, n] such that

Nn+1 = Nχ
p , χ = 2n+1−p ∈ [C2, 2C2) . (7.48)

If 2n+1 ≤ C2 then there exists χ ∈ [C2, 2C2] such that

Nn+1 = N̄χ , N̄ := [N
1/C2

n+1 ] ∈ (N
1/χ
0 , N0) . (7.49)

If (7.48) holds we consider in Proposition 4.1 the two scales N ′ = Nn+1, N = Np, see (4.2). If (7.49)
holds, we set N ′ = Nn+1, N = N̄ .

A key point of the whole induction process is that the separation properties of the bad sites of
L(un) + θY hold uniformly for all θ ∈ R and j0 ∈ Z

d.

Lemma 7.5. For all

(ε, λ) ∈
n+1⋂

k=1

G0
Nk

(uk−1) , θ ∈ R , j0 ∈ Z
d ,

the hypothesis (H3) of Proposition 4.1 apply to ANn+1,j0(ε, λ, θ) where A(ε, λ, θ) := L(un) + θY .

Proof. We give the proof when (7.48) holds. By remark 5.1, a site

k ∈ E :=
(
(0, j0) + [−Nn+1, Nn+1]

b
)
× {0, 1} , (7.50)

which is Np-good for A(ε, λ, θ) := L(un) + θY (see Definition 5.1 with A = A(ε, λ, θ)) is also

(ANn+1,j0(ε, λ, θ), Np)− good

(see Definition 4.3 with A = ANn+1,j0(ε, λ, θ)). As a consequence the

{
(ANn+1,j0(ε, λ, θ), Np)−bad sites

}
⊂

{
Np−bad sites of A(ε, λ, θ) with |l| ≤ Nn+1

}
. (7.51)
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and (H3) is proved if the latter Np-bad sites (in the right hand side of (7.51)) are contained in a disjoint
union ∪αΩα of clusters satisfying (4.6) (with N = Np). This is a consequence of Proposition 5.1 applied
to the infinite dimensional matrix A(ε, λ, θ). We claim that

n+1⋂

k=1

G0
Nk

(uk−1) ⊂ GNp
(un) , i.e. any (ε, λ) ∈

n+1⋂

k=1

G0
Nk

(uk−1) is Np − good for A(ε, λ, θ) , (7.52)

and then assumption (i) of Proposition 5.1 holds. Indeed, if p = 0 then (7.52) is trivially true because
GN0

(un) = [0, ε0]× Λ, by Lemma 7.3 and (S1)n. If p ≥ 1, we have

‖un − up−1‖s1 ≤
n∑

k=p

‖uk − uk−1‖s1
(S2)k
≤

n∑

k=p

N−σ−1
k ≤ N−σ

p

∑

k≥p

N−1
k ≤ N−σ

p (7.53)

and so (S3)p implies
p⋂

k=1

G0
Nk

(uk−1) ⊂ GNp
(un) . (7.54)

Assumption (ii) of Proposition 5.1 holds by (7.17), since χ ∈ [C2, 2C2).
When (7.49) holds the proof is analogous using Lemma 7.3 with N = N̄ and (S1)n.

Lemma 7.6. Property (S3)n+1 holds.

Proof. We want to prove that

‖u− un‖s1 ≤ N−σ
n+1 and (ε, λ) ∈

n+1⋂

k=1

G0
Nk

(uk−1) =⇒ (ε, λ) ∈ GNn+1
(u) .

Since (ε, λ) ∈ G0
Nn+1

(un), by (6.3) and Definition 5.2 it is sufficient to prove that ∀j0 ∈ Z
d,

BNn+1
(j0; ε, λ)(u) ⊂ B0

Nn+1
(j0; ε, λ)(un) ,

(we highlight the dependence of these sets on u, un) or, equivalently, by (6.1), (5.2), that

‖A−1
Nn+1,j0

(ε, λ, θ)(un)‖0 ≤ N τ
n+1 =⇒ ANn+1,j0(ε, λ, θ)(u) is Nn+1 − good , (7.55)

where A(ε, λ, θ)(u) = L(u) + θY = Lω + θY − ε(Df)(u).
We prove (7.55) applying Proposition 4.1 to A := ANn+1,j0(ε, λ, θ)(u) with E defined in (7.50), N ′ =

Nn+1, N = Np (resp. N = N̄) if (7.48) (resp. (7.49)) is satisfied. Assumption (H1) holds with

Υ
(2.8),(7.13)

= C(1 + ‖un‖s1 + ||V ||s1)
(S1)n,(7.14)

≤ C′(V ) . (7.56)

By Lemma 7.5, for all θ ∈ R, j0 ∈ Z
d, the hypothesis (H3) of Proposition 4.1 holds forANn+1,j0(ε, λ, θ)(un).

Hence, by Proposition 4.1, for s ∈ [s0, s1], if

‖A−1
Nn+1,j0

(ε, λ, θ)(un)‖0 ≤ N τ
n+1

(which is assumption (H2)) then

||A−1
Nn+1,j0

(ε, λ, θ)(un)||s ≤
1

4
N τ ′

n+1

(
N δs

n+1 + ||V ||s + ε||(Df)(un)||s
)
. (7.57)

Finally, since ‖u− un‖s1 ≤ N−σ
n+1 we have

||ANn+1,j0(ε, λ, θ)(un)−ANn+1,j0(ε, λ, θ)(u)||s1 ≤ Cε‖u− un‖s1 ≤ N−σ
n+1
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and (7.55) follows by (7.57) and a standard perturbative argument (see for instance (3.26) in Lemma 3.9
with any s ∈ [s0, s1] instead of s0).

In order to define un+1, we write, for h ∈ Hn+1,

Pn+1

(
Lω(un + h)− ε(f(un + h) + g)

)
= Pn+1

(
Lωun − ε(f(un) + g)

)

+ Pn+1

(
Lωh− ε(Df)(un)h

)
+Rn(h)

= rn + Ln+1(un)h+Rn(h) (7.58)

where Ln+1(un) is defined in (7.47) and

rn := Pn+1

(
Lωun − ε(f(un) + g)

)
, Rn(h) := −εPn+1

(
f(un + h)− f(un)− (Df)(un)h

)
. (7.59)

By (S4)n, if (ε, λ) ∈ N (Cn, N−σ
n ) then un solves the equation (Pn) and so

rn = Pn+1P
⊥
n

(
Lωun − ε(f(un) + g)

)
= Pn+1P

⊥
n

(
V0 un − ε(f(un) + g)

)
, (7.60)

using also that Pn+1P
⊥
n (Dωun) = 0, see (2.7). Note that, by (7.2) and σ ≥ 2 (see (7.20)), for N0 ≥ 2, we

have the inclusion
N (Cn+1, 2N

−σ
n+1) ⊂ N (Cn, N−σ

n ) . (7.61)

Lemma 7.7. (Invertibility of Ln+1) For all (ε, λ) ∈ N (Cn+1, 2N
−σ
n+1) the operator Ln+1(un) is invert-

ible and, for s = s1, S,

||L−1
n+1(un)||s ≤ N τ ′+δs

n+1 . (7.62)

As a consequence, by (3.20), ∀h ∈ Hn+1,

‖L−1
n+1(un)h‖s1 ≤ C(s1)N

τ ′+δs1
n+1 ‖h‖s1 , (7.63)

‖L−1
n+1(un)h‖S ≤ N τ ′+δs1

n+1 ‖h‖S + C(S)N τ ′+δS
n+1 ‖h‖s1 . (7.64)

Proof. We give the proof when (7.48) holds. The other case is analogous. First assume (ε, λ) ∈ Cn+1,
see (7.23). Then since (ε, λ) ∈ GNn+1

(un) (see (6.21) with AN (ε, λ) = Ln+1(un)), the operator Ln+1(un)
is invertible and

‖L−1
n+1(un)‖0 ≤ N τ

n+1 . (7.65)

We now apply the multiscale Proposition 4.1 to A := Ln+1(un) with

E := [−Nn+1, Nn+1]
b × {0, 1} , N ′ = Nn+1 , N = Np, see (7.48) .

By remark 7.2 and since χ ∈ [C2, 2C2) (see (7.48)) the assumptions (4.3)-(4.5) hold. Assumption (H1)
holds with (7.56). Assumption (H2) holds by (7.65). Moreover, by the definition of Cn+1, as a particular
case of Lemma 7.5 -for θ = 0, j0 = 0-, the hypothesis (H3) of Proposition 4.1 holds for Ln+1(un). Then
Proposition 4.1 applies and we get that, ∀(ε, λ) ∈ Cn+1, ∀s ∈ {s1, S},

||L−1
n+1(un)||s

(4.7)
≤ 1

4
N τ ′

n+1

(
N δs

n+1 + ||V ||s + ε||(Df)(un)||s
)
,

whence, for s = s1,

||L−1
n+1(un)||s1

(7.13),(S1)n,(7.14)

≤ 1

4
N τ ′

n+1

(
N δs1

n+1 + ||V ||s1 + εC(s1)
)
≤ 1

2
N τ ′+δs1

n+1 (7.66)

and, for s = S, recalling that Un := ‖un‖S,

||L−1
n+1(un)||S

(7.13),(7.14)
≤ 1

4
N τ ′

n+1

(
N δS

n+1 + ||V ||S + εC(S)(1 + Un)
)

(S5)n
≤ 1

4
N τ ′

n+1

(
N δS

n+1 + C′(S)N2(τ ′+δs1+1)
n

)
≤ 1

2
N τ ′+δS

n+1 (7.67)
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by (7.16) and δ = 1/4. Assume next (ε′, λ′) ∈ N (Cn+1, 2N
−σ
n+1) and let (ε, λ) ∈ Cn+1 be such that

|(ε′, λ′)− (ε, λ)| < 2N−σ
n+1. We write

Ln+1(un(ε
′, λ′)) = Ln+1(un(ε, λ)) + Rn+1

where Ln+1(un(ε, λ)) satisfies (7.66)-(7.67) and

Rn+1 := Ln+1(un(ε
′, λ′))− Ln+1(un(ε, λ)) .

By (7.47), (7.13), (F2), (1.9), (7.21), (S1)n, (S5)n,

||Rn+1||s1 ≤ C(s1)N
−σ+1
n+1 , ||Rn+1||S ≤ C(S)N4τ ′+2s1+4

n N−σ
n+1 . (7.68)

We apply Lemma 3.9 with

M = Ln+1(un(ε, λ)) , N = L−1
n+1(un(ε, λ)) , P = Rn+1 .

By (7.66), (7.68) and (7.20) the perturbative assumption (3.25) holds with index s1 instead of s0. Then
(3.26), (3.27) (with indices s1, S instead of s0, s) imply (7.62) for all (ε′, λ′) ∈ N (Cn+1, 2N

−σ
n+1), by (7.66),

(7.67), (7.68), (7.20).

By (7.58), setting

Fn+1 : Hn+1 → Hn+1 , Fn+1(h) := −L−1
n+1(un)(rn +Rn(h)) , (7.69)

the equation (Pn+1) is equivalent to the fixed point problem h = Fn+1(h).

Lemma 7.8. (Contraction in ‖ ‖s1-norm) ∀(ε, λ) ∈ N (Cn+1, 2N
−σ
n+1), Fn+1 is a contraction in

Bn+1(s1) :=
{
h ∈ Hn+1 : ‖h‖s1 ≤ ρn+1 := N−σ−1

n+1

}
. (7.70)

The unique fixed point h̃n+1(ε, λ) of Fn+1 in Bn+1(s1) belongs to U (see (1.13)) and satisfies

‖h̃n+1‖s1 ≤ K(S)N τ ′+δs1
n+1 N−(S−s1)

n Un . (7.71)

Proof. For all (ε, λ) ∈ N (Cn+1, 2N
−σ
n+1), by (7.69) and (7.63), we have

‖Fn+1(h)‖s1 ≤ C(s1)N
τ
′

+δs1
n+1 (‖rn‖s1 + ‖Rn(h)‖s1) (7.72)

and rn has the form (7.60) because of (7.61). Moreover (recall that Un := ‖un‖S)

‖rn‖s1 + ‖Rn(h)‖s1
(7.60),(7.5),(7.59),(7.12)

≤ N−(S−s1)
n (‖V0 un‖S + ε‖f(un)‖S + ε‖g‖S) + εC(s1)‖h‖2s1

(7.9),(7.14)
≤ C(S)N−(S−s1)

n (Un + 1) + εC(s1)‖h‖2s1 (7.73)

(S5)n
≤ C(S)N−(S−s1)

n N2(τ ′+δs1+1)
n + εC(s1)‖h‖2s1 . (7.74)

(7.72) and (7.74) imply (using also (7.2)), for some K(S),K(s1) > 0,

‖h‖s1 ≤ ρn+1 =⇒ ‖Fn+1(h)‖s1 ≤ K(S)N
2(τ ′+δs1)+1
n+1 N−(S−s1)

n + εK(s1)N
τ ′+δs1
n+1 ρ2n+1

≤ ρn+1 := N−σ−1
n+1 ,

because the choice of S in (7.16) and of σ in (7.20) imply (for N ≥ N0(S))

K(S)N
2(τ ′+δs1)+1
n+1 N−(S−s1)

n ≤ ρn+1

2
, εK(s1)N

τ ′+δs1
n+1 ρn+1 ≤ 1

2
. (7.75)
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Next, differentiating (7.69) with respect to h and using (7.59) we get

DhFn+1(h)[v] = L−1
n+1(un)εPn+1

(
(Df)(un + h)[v]− (Df)(un)[v]

)

and, for all ‖h‖s1 ≤ ρn+1, using (7.10) with s = s1,

‖DhFn+1(h)[v]‖s1
(7.63)
≤ εK(s1)N

τ ′+δs1
n+1 ρn+1‖v‖s1

(7.75)
≤ 1

2
‖v‖s1 .

Hence Fn+1 is a contraction in Bn+1(s1). Since un ∈ U , it is easy to check that Fn+1 leaves Bn+1(s1)∩U
invariant, hence h̃n+1 ∈ U . Finally, (7.69), (7.72), (7.73) and (7.75) imply (7.71).

Since h̃n+1(ε, λ) solves, for all (ε, λ) ∈ N (Cn+1, 2N
−σ
n+1), the equation

Qn+1(ε, λ, h) := Pn+1

(
Lω(un + h)− ε(f(un + h) + g)

)
= 0 , h ∈ Hn+1 , (7.76)

and un(0, λ)
(S1)n
= 0, we deduce, by the uniqueness of the fixed point, that

h̃n+1(0, λ) = 0 , ∀(0, λ) ∈ N (Cn+1, 2N
−σ
n+1) .

Lemma 7.9. (Estimate in high norm) ∀(ε, λ) ∈ N (Cn+1, 2N
−σ
n+1) we have

‖h̃n+1‖S ≤ K(S)N τ ′+δs1
n+1 Un . (7.77)

Proof. We have

‖h̃n+1‖S
(7.69)
=

∥∥∥L−1
n+1(un)(rn +Rn(h̃n+1))

∥∥∥
S

(7.78)

(7.64)
≤ N τ ′+δs1

n+1

(
‖rn‖S + ‖Rn(h̃n+1)‖S

)
+ C(S)N τ ′+δS

n+1

(
‖rn‖s1 + ‖Rn(h̃n+1)‖s1

)
.

Now, by (7.60), (S1)n, (F2), (F3), (7.14), (7.8), (7.59), and setting Un := ‖un‖S (we can suppose Un ≥ 1)
we get

‖rn‖S + ‖Rn(h̃n+1)‖S ≤ C(S)(Un + ερn+1‖h̃n+1‖S) (7.79)

and, using also (7.73), (7.71) and the second inequality in (7.75),

‖rn‖s1 + ‖Rn(h̃n+1)‖s1 ≤ C(S)N−(S−s1)
n Un . (7.80)

Then (7.78), (7.79), (7.80) imply that

‖h̃n+1‖S ≤ C(S)
(
N τ ′+δs1

n+1 +N τ ′+δS
n+1 N−(S−s1)

n

)
Un + C(S)εN τ ′+δs1

n+1 ρn+1‖h̃n+1‖S (7.81)

(7.16),(7.70)

≤ C′(S)N τ ′+δs1
n+1 Un + εC(S)N τ ′+δs1−σ−1

n+1 ‖h̃n+1‖S
(7.20)

≤ C′(S)N τ ′+δs1
n+1 Un +

1

2
‖h̃n+1‖S

for ε0 ≤ ε0(S) small. As a consequence we get ‖h̃n+1‖S ≤ 2C′(S)N τ ′+δs1
n+1 Un and (7.77) follows.

Lemma 7.10. (Estimate of the derivatives) The map h̃n+1 ∈ C1(N (Cn+1, 2N
−σ
n+1), Hn+1) and

‖∂(ε,λ)h̃n+1‖s1 ≤ N−1
n+1 , ‖∂(ε,λ)h̃n+1‖S ≤ N τ ′+δs1+1

n+1

(
N τ ′+δs1+1

n+1 Un + U ′
n

)
. (7.82)
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Proof. For all (ε, λ) ∈ N (Cn+1, 2N
−σ
n+1), h̃n+1(ε, λ) is a solution of Qn+1(ε, λ, h̃n+1(ε, λ)) = 0, see

(7.76). We have, see (7.47),

DhQn+1(ε, λ, h̃n+1) = Ln+1(un + h̃n+1) = Ln+1(un)− εPn+1

(
(Df)(un + h̃n+1)− (Df)(un)

)
(7.83)

which is invertible by Lemma 3.9 applied with

M → Ln+1(un) , P → −εPn+1((Df)(un + h̃n+1)− (Df)(un)) , s0 → s1 .

Indeed the hypothesis (3.25) follows from (7.62) with s = s1, (F1), (S1)n, Lemma 3.1, ‖h̃n+1‖s1 ≤ ρn+1

and (7.75). Therefore Lemma 3.9 with s = s1 implies

∣∣∣
∣∣∣L−1

n+1(un + h̃n+1)
∣∣∣
∣∣∣
s1

(3.26)

≤ 2||L−1
n+1(un)||s1

(7.62)

≤ 2N τ ′+δs1
n+1 (7.84)

and, by (3.28), (7.62) with s = S, (7.77), (S5)n, (7.10), δ = 1/4, (7.16),

∣∣∣
∣∣∣L−1

n+1(un + h̃n+1)
∣∣∣
∣∣∣
S
≤ C(S)N τ ′+δS

n+1 . (7.85)

Hence, the Implicit function theorem implies h̃n+1 ∈ C1(N (Cn+1, 2N
−σ
n+1), Hn+1) and

∂(ε,λ)h̃n+1
(7.83)
= −L−1

n+1(un + h̃n+1)
(
∂(ε,λ)Qn+1

)
(ε, λ, h̃n+1) . (7.86)

By (S4)n, un(ε, λ) solves (Pn) for (ε, λ) ∈ N (Cn+1, 2N
−σ
n+1)

(7.61)
⊂ N (Cn, N−σ

n ). Then

(∂εQn+1)(ε, λ, h̃n+1) = Pn+1P
⊥
n (V0 ∂εun) + Pn(f(un) + g)− Pn+1(f(un + h̃n+1) + g)

+ εPn(Df)(un)∂εun − εPn+1(Df)(un + h̃n+1)∂εun (7.87)

(we use also that Pn+1P
⊥
n (Dωun) = 0 since un ∈ Hn, see (2.7)) and

(∂λQn+1)(ε, λ, h̃n+1) = Pn+1P
⊥
n (V0 ∂λun) + (∂λLω)h̃n+1 (7.88)

+ εPn(Df)(un)∂λun − εPn+1(Df)(un + h̃n+1)∂λun .

We deduce from (7.84)-(7.88) the estimates (7.82) using also (3.20), (F1), (F2), (F3), (S1)n, (7.5), (S5)n,
(7.14), (7.16), (7.71), (7.77). We omit the details.

We now define a C1-extension of (h̃n+1)|Cn+1
onto the whole [0, ε0]× Λ.

Lemma 7.11. (Extension) There is hn+1 ∈ C1([0, ε0)× Λ, Hn+1 ∩ U) satisfying hn+1(0, λ) = 0,

‖hn+1‖s1 ≤ N−σ−1
n+1 , ‖∂(ε,λ)hn+1‖s1 ≤ N

−1/2
n+1 (7.89)

and hn+1 is equal to h̃n+1 on N (Cn+1, N
−σ
n+1).

Proof. Let

hn+1(ε, λ) :=

{
ψn+1(ε, λ)h̃n+1(ε, λ) if (ε, λ) ∈ N (Cn+1, 2N

−σ
n+1)

0 if (ε, λ) /∈ N (Cn+1, 2N
−σ
n+1)

(7.90)

where ψn+1 is a C∞ cut-off function satisfying

0 ≤ ψn+1 ≤ 1 , ψn+1 ≡
{
1 if (ε, λ) ∈ N (Cn+1, N

−σ
n+1)

0 if (ε, λ) /∈ N (Cn+1, 2N
−σ
n+1)

and |∂(ε,λ)ψn+1| ≤ Nσ
n+1C .
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Then ‖hn+1‖s1 ≤ ‖h̃n+1‖s1 ≤ N−σ−1
n+1 by Lemma 7.8, and,

‖∂(ε,λ)hn+1‖s1 ≤ |∂(ε,λ)ψn+1| ‖h̃n+1‖s1 + ‖∂(ε,λ)h̃n+1‖s1 ≤ N
−1/2
n+1

thanks to the first estimate in (7.82), and for N0 large.

Finally we define un+1 ∈ C1([0, ε0)× Λ, Hn+1 ∩ U) as

un+1 := un + hn+1 . (7.91)

By Lemma 7.11, on N (Cn+1, N
−σ
n+1) we have hn+1 = h̃n+1 that solves equation (7.76) and so un+1 solves

equation (Pn+1). Hence (S4)n+1 holds. By Lemma 7.11, property (S2)n+1 holds. Property (S1)n+1

follows as well because

‖un+1‖s1 ≤ ‖u0‖s1 +
n+1∑

k=1

‖hk‖s1
(7.36),(S2)n+1

≤ 1

2
+

n+1∑

k=1

N−σ−1
k ≤ 1

2
+N−1

1 ≤ 1

and the estimate ‖∂(ε,λ)un+1‖s1 ≤ C(s1)N
τ1+s1+1
0 γ−1 follows in the same way.

Lemma 7.12. Property (S5)n+1 holds.

Proof. By the definition of Un, and since ‖hn+1‖S ≤ ‖h̃n+1‖S , we get

Un+1 ≤ Un + ‖h̃n+1‖S
(7.77)
≤ K ′(S)N τ ′+δs1

n+1 Un

(S5)n
≤ K ′(S)N τ ′+δs1

n+1 N2(τ ′+δs1+1)
n

(7.2)
≤ N

2(τ ′+δs1+1)
n+1 .

The estimate for U ′
n+1 follows similarly by (7.77), (7.82), (S5)n.

7.3 Proof of Theorem 1.1

By Theorem 7.1 it remains to prove that the measure estimate (1.10) holds.

Lemma 7.13. The set G defined in (7.19) satisfies

|Ḡ| = 1−O(γ) . (7.92)

Proof. The λ such that (7.19) is violated are

Ḡc ∩ [1/2, 3/2] ⊆
⋃

|l|≤N0,|j|≤N0

Rl,j where R±
l,j :=

{
λ ∈ [1/2, 3/2] : | ± λω̄ · l + µj | <

γ

N τ1
0

}
. (7.93)

Dividing by λ, we have to estimate the ξ := 1/λ ∈ [2/3, 2] such that

| ± ω̄ · l + ξµj | < C
γ

N τ1
0

.

The derivative of the functions g±lj (ξ) := ±ω̄ · l + ξµj satisfies |∂ξg±lj (ξ)| = |µj | ≥ β0 > 0, because
Π0(−∆+ V (x))|E0

≥ β0I by (1.3). As a consequence, we estimate

|R±
l,j | ≤

C

β0

γ

N τ1
0

. (7.94)

Then (7.93), (7.94), imply

|Ḡc ∩ [1/2, 3/2]| ≤
∑

|l|≤N0,|j|≤N0,±

|R±
l,j | ≤ C

γ

β0

Nd+ν
0

N τ1
0

= O(γ)
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since τ1 ≥ d+ ν.

Finally we choose
γ := εα0 with α := 1/(S + 1) , N0 := 4γ−1 , (7.95)

so that (7.21) is fulfilled for ε0 small enough. The complementary set of C∞ in [0, ε0]× Λ has measure

|Cc
∞| (7.25),(7.23)

=
∣∣∣
⋃

k≥1

GcNk
(uk−1)

⋃

k≥1

(G0
Nk

(uk−1))
c
⋃(

[0, ε0]× Ḡc
)∣∣∣

≤
∑

k≥1

|GcNk
(uk−1)|+

∑

k≥1

|(G0
Nk

(uk−1))
c|+ ε0|Ḡc|

(6.22),(6.5),(7.17),(7.92)
≤ Cε0

∑

k≥1

N−1
k + Cε0γ ≤ Cε0(N

−1
0 + γ)

(7.95)
≤ Cε1+α

0

implying (1.10).
Theorem (1.1) is proved with s(d, ν) := s1 defined in (7.16) and q(d, ν) := S + 3, see (7.8).

Regularity

Finally, we prove that, if V, f, g, are C∞ then the solution u(ε, λ) is in C∞(Td × T
ν). The argument is

the one of Theorem 3 in [4]. The main point is the proof of the following lemma which gives an a-priori
bound for the divergence of the Sobolev high norms of the approximate solutions un, extending property
(S5)n. Its proof requires only small modifications in Lemmata 7.7, 7.9, 7.12.

Lemma 7.14. ∀S′ ≥ S,
‖un‖S′ ≤ C(S′)N2(τ ′+δs1+1)

n . (7.96)

Proof. First of all, by the arguments of Lemma 7.7, we get, the estimate

||L−1
n+1(un)||S′ ≤ C(S′)

(
N τ ′+δS′

n+1 +N τ ′

n+1‖un‖S′

)
. (7.97)

Note that the multiscale Proposition 4.1 is valid for any S′ > s1, see (4.5). It requires also the condition
N ≥ N0(Υ, S

′) which is verified for N = Nn with n ≥ n0(S
′) large enough.

Then, following the proof of Lemma 7.9 we obtain

‖h̃n+1‖S′ ≤ N τ ′+δs1
n+1

(
‖rn‖S′ + ‖Rn(h̃n+1)‖S′

)

+ C(S′)
(
N τ ′+δS′

n+1 +N τ ′

n+1‖un‖S′

)(
‖rn‖s1 + ‖Rn(h̃n+1)‖s1

)
. (7.98)

We also have the analogue of (7.79)-(7.80), namely

‖rn‖S′ + ‖Rn(h̃n+1)‖S′ ≤ C(S′)(‖un‖S′ + ερn+1‖h̃n+1‖S′) ,

‖rn‖s1 + ‖Rn(h̃n+1)‖s1 ≤ C(S′)N−(S′−s1)
n ‖un‖S′ ,

and, by (7.98), we deduce the analogue of (7.81), namely

‖h̃n+1‖S′ ≤ C(S′)N τ ′+δs1
n+1 ‖un‖S′ + C(S′)N τ ′

n+1N
−(S′−s1)
n ‖un‖2S′ + εC(S′)N τ ′+δs1

n+1 ρn+1‖h̃n+1‖S′ . (7.99)

For n ≥ n0(S
′) large enough,

εC(S′)N τ ′+δs1
n+1 ρn+1

(7.70)
= εC(S′)N τ ′+δs1−σ−1

n+1

(7.20)

≤ 1

2

and (7.99), (7.16) imply the analogue of (7.77), namely

‖h̃n+1‖S′ ≤ K(S′)N τ ′+δs1
n+1 ‖un‖S′ +K(S′)N τ ′

n+1N
−(S′−s1)
n ‖un‖2S′ . (7.100)
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Of course, hn+1 defined in (7.90) satisfies (7.100) as well. Therefore, as in Lemma 7.12,

‖un+1‖S′ ≤ ‖un‖S′ + ‖hn+1‖S′ ≤ 2K(S′)N τ ′+δs1
n+1 ‖un‖S′ +K(S′)N τ ′

n+1N
−(S′−s1)
n ‖un‖2S′

and we deduce that the sequence ‖un+1‖S′N
−2(τ ′+δs1+1)
n+1 is bounded, i.e. (7.96).

By (7.96) we deduce
‖hn‖S′ ≤ K(S′)N2(τ1+δs1+1)

n . (7.101)

Now, consider any s > s1 and write s := (1− t)s1 + tS′ where S′ > s, t ∈ (0, 1). By interpolation

‖hn‖s ≤ K(s1, S
′)‖hn‖1−t

s1 ‖hn‖tS′

(7.70),(7.101)

≤ K(S′)N−(σ+1)(1−t)
n Nαt

n = K(S′)N−1
n (7.102)

having set α := 2(τ1 + δs1 + 1), and choosing S′ (large) such that

t =
s− s1
S′ − s1

=
σ + 2

σ + 1 + α
.

In conclusion, (7.102) implies that
∑

n

‖hn‖s < +∞ and so u(ε, λ) ∈ Hs, for any s.
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