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CYCLIC CONTRACTIONS AND BEST PROXIMITY PAIR

THEOREMS

G. SANKARA RAJU KOSURU AND P. VEERAMANI

Abstract. In this paper we introduce a notion called cyclically complete pair for a pair

(A,B) of subsets of a metric space. A necessary condition is given for a cyclic contraction

T on A ∪ B to have a unique point x in A satisfying d(x, Tx) = dist(A,B), known as

best proximity point. We also prove that for any x0 ∈ A, the Picard’s iterates {T 2nx0}

converges to the unique best proximity point x in A and the Picard’s iterates {T 2n+1x0}

converges to Tx.

1. Introduction and Preliminaries

Let (A,B) be a pair of subsets of a metric space X. We consider a mapping T : A∪B →

X satisfying TA ⊂ B and TB ⊂ A (or TA ⊂ A and TB ⊂ B). If T is a contraction, that

is there is an α ∈ (0, 1) such that

d(Tx, Ty) ≤ αd(x, y), for x ∈ A and y ∈ B

then A∩B 6= ∅ and for any x0 ∈ A∩B the iterates {T nx0} converges to the unique fixed

point of T ([5]).

We extend the Banach contraction theorem to a class of mappings, called cyclic con-

traction mappings (see Definition 1.1). Let T be a self map on A ∪ B with TA ⊂ B and

TB ⊂ A. In [2], Eldred and Veeramani gave a sufficient condition (Theorem 3.10, [2]) for

the existence and uniqueness of a best proximity point for a cyclic contraction map T on a

uniformly convex Banach space. In [1], Sadiq Basha introduced a class of mappings called

proximal contraction mappings (see Definition 1.2) T : A → B, and there by obtained

a sequence (Theorem 3.1, [1]) in A, which converges to the unique best proximity point
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under suitable assumptions. It is easy to observe that, results in [1] are not applicable, if

dist(A,B) ≥ 1
2
δ(A0). We prove an extension of the Banach contraction theorem for cyclic

contraction mappings in a metric space setting. We give a necessary condition for the

existence of a unique best proximity point x in A for such a cyclic contraction mapping T .

Also we prove that the Picard’s iterates {T 2nx0}, for any x0 ∈ A, converges to the unique

best proximity point x in A for such a mapping T . This recovers the main result of [2].

Further the main theorem of this work (Theorem 3.8) proves that, for any x0 ∈ A the

sequences {T 2nx0}, {T 2n+1x0} converge to x, Tx respectively and x, Tx are the unique

fixed points of T 2 in A, B respectively. We also prove that the sequences {T nx0} and

{T ny0}, for any (x0, y0) ∈ A× B, converge to the unique fixed points x and y of a cyclic

contraction T : A ∪ B → A ∪ B satisfying TA ⊂ A, TB ⊂ B in A and B respectively

with d(x, y) = dist(A,B).

In this direction we introduce a notion called cyclically complete pair for a pair (A,B)

of subsets of a metric space (which coincides with the classical notion of completeness, if

A = B). We also investigate some of the basic properties of (A,B) in this situation.

Let (X, d) be a metric space and A,B be nonempty subsets of X. We shall say that

(A,B) satisfies a property p if each of the sets A and B has the same property p. Also

(A,B) is said to be a semi sharp proximinal pair if for each x ∈ A there exists at

most one x′ ∈ B such that d(x, x′) = dist(A,B) := inf{d(u, v) : u ∈ A, v ∈ B}. Using

a result (Lemma 2.5, [6]) proved in [6] we infer that any closed convex pair (A,B) in a

strictly convex Banach space is a semi sharp proximinal pair. Also such examples are

given, in section 2, in nonstrictly convex Banach spaces. Let T be a self map on A ∪ B

with TA ⊂ B and TB ⊂ A. We say that a point x ∈ A ∪ B is a best proximity point

for T , if d(x, Tx) = dist(A,B). In this case we say that the pair (x, Tx) is best proximity

pair for T . If dist(A,B) = 0 then a best proximity point of T turns out to be a fixed

point of T . In this work we adopt the following notations and definitions:

A0 = {x ∈ A : d(x, y) = dist(A,B), for some y in B};

B0 = {y ∈ A : d(x, y) = dist(A,B), for some x in A};

δ(A,B) = sup{d(x, y) : x ∈ A, y ∈ B} and δ(A) = δ(A,A).
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Definition 1.1. [2] A mapping T : A ∪ B → A ∪ B is said to be a cyclic contraction,

if it satisfies:

(1) TA ⊂ B and TB ⊂ A.

(2) For some α ∈ (0, 1) we have d(Tx, Ty) ≤ αd(x, y) + (1 − α) dist(A,B), for all

x ∈ A, y ∈ B.

It is easy to see that, if T is a cyclic contraction on A ∪ B, then d(Tx, Ty) ≤ d(x, y),

for any x ∈ A and y ∈ B. Further if dist(A,B) < d(x, y) then d(Tx, Ty) < d(x, y).

Definition 1.2. [1] A mapping T : A → B is said to be a proximal contraction, if

there exists a nonnegative real number α < 1 such that

d(u, Tx) = d(Tx, Ty) + d(v, Ty) ≤ αd(x, y)

whenever x and y are distinct elements in A satisfying the conditions

d(u, Tx) = dist(A,B) and d(v, Ty) = dist(A,B)

for some u, v ∈ A.

If A0 = {x} then x is the best proximity point of T . Further if x 6= y ∈ A0, then

there exists u, v ∈ A such that d(Tx, u) = dist(A,B) and d(Ty, v) = dist(A,B). In this

case, 2 dist(A,B) ≤ d(Tx, u) + d(Tx, Ty) + d(Ty, v) ≤ αd(x, y) ≤ αδ(A0). Hence under

the conditions stated in the above definition (Definition 1.2) and with the assumption

TA0 ⊂ B0, we have dist(A,B) < 1
2
δ(A0). In this sense the results obtained in [1] are very

restrictive.

2. Cyclically completeness

Let (A,B) be a pair of nonempty subsets of a metric space X. In this section we

give some properties of cyclically Cauchy sequences. The notion of cyclically Cauchy

sequences (see Definition 2.1) was introduced in [4]. Also the author proposed a version of

completeness on (A,B). In this paper an extension of the Banach contraction principle for

cyclic contraction mappings is given. To achieve this we introduce a notion of cyclically

complete pair and investigate some basic properties for such pairs.
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Definition 2.1. [4] Let X be a metric space, A and B nonempty of subsets of X. A

sequence {xn}
∞

n=0 in A ∪ B with x2n ∈ A and x2n+1 ∈ B for all n ∈ N is said to be

cyclically Cauchy sequence if, for every ǫ > 0 there exist an N ∈ N such that

d(xn, xm) < dist(A,B) + ǫ, when n is even, m is odd and n,m ≥ N.

Remark 2.2. If dist(A,B) = 0, then a sequence {xn} in A ∪ B is cyclically Cauchy if

and only if the sequence {xn} is a Cauchy sequence.

Before stating some properties of cyclically Cauchy sequences we look at some example.

Example 2.3. Let X = (lp, ‖ · ‖p), 1 ≤ p ≤ ∞ and A = {0}, B = {x ∈ X : ‖x‖ ≥ 1}.

Then the sequence {xn} defined as

xn :=

{

(1 + 1
n
)en if n is odd,

0 if n is even

is a cyclically Cauchy sequence.

Example 2.4. Let A = {(x, y) : x ≤ 0, y ∈ R} and B = {(x, y) : x ≥ 1, y ∈ R} in

(R2, ‖ · ‖2). Then the sequence {xn} is not cyclically Cauchy even though d(xn, xn+1) →

dist(A,B), as n → ∞, if x2n = (− 1
n
, n) and x2n+1 = (1, n+ 1

n
) for all n ∈ N.

The following Lemma ensures the boundedness of a cyclically Cauchy sequence.

Lemma 2.5. Any cyclically Cauchy sequence in a pair (A,B) of subsets of metric space

is bounded.

Proof. Let {xn} be a cyclically Cauchy sequence in A∪B. There exists N ∈ N, such that

d(x2n, x2N+1) < dist(A,B) + 1 for all n ≥ N . Therefore for all n ∈ N, x2n ∈ B(x2N+1, r),

where r = max{d(x2, x2N+1), d(x4, x2N+1), . . . , d(x2N , x2N+1), dist(A,B) + 1}. So that

{x2n} is bounded. similarly one can prove that the sequences {x2n+1} is a bounded

sequence and hence {xn} is bounded.

�

In general the converse of the above statement need not be true.
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Example 2.6. Let A = {λ(0, 0)+(1−λ)(0, 1) : λ ∈ [0, 1]} and A = {λ(1, 0)+(1−λ)(1, 1) :

λ ∈ [0, 1]} in (R2, ‖ · ‖2). The sequences {xn} is a bounded sequence but not a cyclically

Cauchy sequence, where

xn :=

{

(0, 1− 1
n
) if n is even,

(1, 1
n
) if n is even.

It is to be noted that a cyclically Cauchy sequence need not have convergent subsequence

even if A and B are closed subsets of a complete metric space.

Example 2.7. Let X = (lp, ‖ · ‖p), for 1 ≤ p ≤ ∞ and A = {e2n : n ∈ N}, B =

{e2n+1 : n ∈ N}. Then The cyclic Cauchy sequence {xn} does not have any convergent

subsequence, where xn = en, for all n ∈ N.

Now we define the notion of cyclically complete pair for a pair of sets in a metric space..

Definition 2.8. A pair (A,B) of subsets of a metric space is said to be cyclically com-

plete if every cyclically Cauchy sequence {xn} in A ∪ B has one of the following:

(1) Both sequences {x2n} and {x2n+1} have convergent subsequences in A and B re-

spectively.

(2) There exists N ∈ N such that d(x2n, x2m+1) = dist(A,B), ∀ n,m ≥ N .

Before proving main properties of cyclically complete pair, we look at some examples.

Examples 2.9.

(1) If A and B are closed subset of a complete metric spaceX with dist(A,B) = 0, then

(A,B) is a cyclically complete pair (in particular (A,A) is a cyclically complete

pair, if A is a closed subset of X).

(2) Any boundedly compact pair in a metric space is cyclically complete.

(3) The pair in Example 2.7 is a cyclically complete because d(x, y) = dist(A,B) for

all x ∈ A and y ∈ B.

(4) Let (R2, ‖ · ‖2) and A := {(x, 0) : x ∈ R}, B := {(x, y) : y ≥ 1
x
and x ≥ 0}. One

can notice that even though dist(A,B) = 0, there is no cyclically Cauchy sequence

in A ∪ B and hence (A,B) is cyclically complete.
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(5) Let (R2, ‖ · ‖2) and A := {(x, y) : y ≥ 1
−x

and x < 0}, B := {(x, 1 + y) : y ≥
1
x
and x ≥ 0}. One can notice that even though dist(A,B) = 1, there is no

cyclically Cauchy sequence in A ∪ B and hence (A,B) is cyclically complete.

(6) The pair (A,B) in Example 2.3 is not a cyclically complete pair, because neither

the sequence {x2n+1} has a convergent subsequence nor d(x2n, x2m+1) = 0 for any

n,m ∈ N.

The following Theorem gives a necessary and sufficient condition forA0 to be a nonempty.

Theorem 2.10. Let (A,B) be a cyclically complete pair of subsets of a metric space X.

Then there exists a cyclically Cauchy sequence if and only if A0 is a non empty subset of

X.

Proof. Let {xn} be a cyclically Cauchy sequence in A∪B. Suppose there exists convergent

subsequences {x2nk
} and {x2mk+1} of {x2n} and {x2n+1}, that converges to x ∈ A and

y ∈ B respectively. Then dist(A,B) ≤ d(x, y) ≤ lim
k→∞

d(x2nk
, x2mk+1) = dist(A,B). That

is d(x, y) = dist(A,B). Also if there exists N ∈ N such that d(x2n, x2m+1) = dist(A,B).

Hence A0 6= ∅ and so is B0. For sufficiency, let x ∈ A and y ∈ B be such that d(x, y) =

dist(A,B). If for n ∈ N, define x2n = x and x2n+1 = y, then {xn} is a cyclically Cauchy

sequence. �

If A and B are closed subsets in a complete metric space, the pair (A,B) need not be

a cyclically complete pair. The following example illustrates the same.

Example 2.11. Let (lp, ‖ · ‖p) for 1 ≤ p < ∞ and A := {0}, B := {(1 + 1
n
)en : n ∈ N}.

It is easy to see that (A,B) is closed pair of lp. It is easy see that (A,B) is not cyclically

complete, because for the cyclically Cauchy sequence {xn} ∈ A ∪ B, neither the sequence

{x2n+1} has any convergent subsequence nor d(x2n, x2m+1) = dist(A,B), where

xn :=

{

(1 + 1
n
)en if n is odd,

0 if n is even .

The following Theorem ensure the closedness of A0 and B0, for a cyclically complete

pair.
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Theorem 2.12. Let A and B be a subsets of a metric space. If (A,B) is cyclically

complete, then A0 and B0 are closed subsets of X.

Proof. Let {xn} be a sequence in A0 such that xn → x in X . For n ∈ N get x′

n ∈ B0 such

that d(xn, x
′

n) = dist(A,B). For n ∈ N define

yn :=

{

xm if n = 2m for some m ∈ N,

x′

m if n = 2m+ 1 for some m ∈ N.

Now d(y2n, y2m+1) = d(xn, x
′

m) ≤ d(xn, x)+d(x, xm)+d(xm, x
′

m) and hence {yn} is a cycli-

cally Cauchy sequence. Suppose {xn} and {x′

n} has convergent subsequences, converges

to x and y respectively, then d(x, y) = dist(A,B). If not, there exists N ∈ N such that

d(xn, x
′

N) = dist(A,B) for all n ≥ N , then d(x, x′

N ) = lim
n→∞

d(xn, x
′

N) = dist(A,B). That

is x ∈ A0. In a similar fashion one can prove B0 is also a closed set. �

Example 2.3 show that the converse of Theorem 2.12 need not be true. For a cyclically

complete pair (A,B) in a metric space X , there may exist a cyclically Cauchy sequence

{xn} in A ∪ B such that either {x2n} have two different convergent subsequences which

converges to different points. Following Examples illustrates the same.

Examples 2.13.

(1) Let X = (R3, ‖·‖2). A := {(x, y, z) ∈ X : x ≤ 0, y2+z2 = 1}, B := {(0, 0, 0)}. It is

easy to see that dist(A,B) = 1. Then {x2n} has two different different convergent

subsequences {(−1
n
, 1, 0)} and {( 1

n
,−1, 0)} which converge to (0, 1, 0) and (0,−1, 0)

respectively, for the cyclically Cauchy sequence {xn}, where

x2n :=

{

(−1
n
, 1, 0) if n is odd,

( 1
n
,−1, 0) if n is even,

x2n+1 = (0, 0, 0) for all n ∈ N

.

(2) Let A := {e2n : n ∈ N}, B := {e2n+1 : n ∈ N} be subsets in (l∞, ‖ · ‖∞). The

sequence {xn} is a cyclically Cauchy, where xn = en, ∀ n. Also one can observe

that neither {x2n} nor {x2n+1} have a convergent subsequence. Also the sequence
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{yn} is cyclically Cauchy, where

yn :=

{

en if n is even

e2 if n is odd

Then one can observe that {y2n} does not have convergent subsequence even though

{y2n+1} is a convergent sequence in B.

Now we prove that every closed convex pair is cyclically complete in the setting of a

uniformly convex Banach space.

Proposition 2.14. Any nonempty closed convex pair (A,B) in a uniformly convex Ba-

nach spaces is cyclically complete. Further, for any of cyclic Cauchy sequence {xn}, the

sequences {x2n} and {x2n+1} converge to x ∈ A and y ∈ B respectively.

Proof. Let {xn} be a cyclically Cauchy sequence in A∪B. Suppose {x2n} is not a Cauchy

sequence. Then there exists ǫ0 > 0 and subsequences {x2nk
} and {x2mk

} of {x2n} such

that

d(x2nk
, x2mk

) ≥ ǫ0, for all k ∈ N.

Also one can observe that d(x2nk
, x2k+1) → dist(A,B) and d(x2mk

, x2k+1) → dist(A,B),

as k → ∞. By Lemma 3.7, in [2], there exists N1 ∈ N such that d(x2nk
, x2mk

) < ǫ0

for all k ≥ N1, a contradiction. That is {x2n} is a Cauchy sequence, and hence {x2n}

converges in A. Therefore x2n → x for some x ∈ A. In a similar fashion one can prove

that x2n+1 → y in A. �

Theorem 2.15. Let (A,B) be a cyclically complete semi sharp proximinal pair in a

metric space X. If {xn} is a cyclically Cauchy sequence then x2n → x, for some x ∈ A

and x2n+1 → y, for some y ∈ B. Further d(x, y) = dist(A,B).

Proof. Let {xn} be a cyclically Cauchy sequence in A ∪ B. If there exist an N ∈ N such

that d(x2n, x2m+1) = dist(A,B), for all n,m ≥ N . Then by semi sharp proximinality

of (A,B), x2n = x2N and x2n+1 = x2N+1 for all n ≥ N . Therefore x2n → x2N and

x2n+1 → x2N+1, as n → ∞. Hence it is enough to prove in the case when {x2n} and

{x2n+1} have convergent subsequences. Fix a convergent subsequence {x2nk+1} of {x2n+1},
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that converge to y ∈ B. Let {x2mk
} and {x2lk} be convergent subsequence of {x2n}, that

converges to x1 and x2 ∈ B respectively. Now d(x1, y) = lim
k→∞

d(x2mk
, y) = dist(A,B) =

lim
k→∞

d(x2lk , y) = d(x2, y). By the semi sharp proximinality of (A,B), x1 = x2. That is

any two convergent subsequences of {x2n} converges to a point say to x, with d(x, y) =

dist(A,B). Suppose {x2n} is not Cauchy, then there exists ǫ0 > 0 and two subsequences

{x2np
}, {x2mp

} of {x2n} such that

d(x2np
, x2mp

) ≥ ǫ0, for all p ∈ N.

Now consider the sequence {yp}, where

yp :=

{

x2np
if p is even

xp if p is odd

Then it is easy to see that the sequence {yp} is a cyclically Cauchy sequence and hence

{x2np
} has a convergent subsequence. Similarly {x2mp

} has a convergent subsequence.

Since (A,B) is a cyclically complete pair, {x2np
} and {x2mp

} have convergent subse-

quences, that converges to x. Hence there exists P ∈ N such that d(x2nP
, x) < ǫ0

2
and

d(x2mP
, x) < ǫ0

2
. Now d(x2nP

, x2mP
) ≤ d(x2nP

, x) + d(x2mP
, x) < ǫ0

2
+ ǫ0

2
= ǫ0, a contrac-

tion. That is {x2n} Cauchy. Also {x2n} has a convergent subsequence and hence x2n → x

in A. In a similar fashion one can show x2n+1 → y in B. �

As a particular case we get the following Corollary.

Corollary 2.16. Let (A,B) be a nonempty convex cyclically complete pair in a strictly

convex Banach space X. If {xn} is cyclically Cauchy then xn → x, for some x ∈ A and

x2n+1 → y, for some y ∈ B, with d(x, y) = dist(A,B).

We conclude this section by giving an example to illustrate Theorem 2.15

Examples 2.17.

(1) Let X be R
3 with the l1 norm. If A is the line segment joining points (0, 0, 0)

and (0, 1, 0) and B is the line segment joining points (0, 0, 1) and (1, 1, 0), then

it is shown in [3] that for each x ∈ A( or ∈ B) there exists a unique x′ ∈

B( respectively ∈ B) such that d(x, x′) = dist(A,B). Hence (A,B) is a semi
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sharp proximinal pair. The sequence {xn} is a cyclically Cauchy sequence and

x2n → (0, 1, 0) and x2n+1 → (1, 1, 0), where

xn :=

{

(0, 1− 1
n
, 0) if n is even

(1− 1
n
, 1− 1

n
, 0) if n is odd

Hence (A,B) is a cyclically complete pair in (R3, l1) and for any cyclically Cauchy

sequence {xn}, the subsequence {x2n} and {x2n+1} converges in A and B respec-

tively.

(2) Consider the space X of all complex valued continuous functions on [0, 1] with sup

norm, i.e., X = (C[0, 1], ‖.‖∞).

A := {fα : α ∈ [0, 1]} and B := {gα : α ∈ [0, 1]}, where

fα(t) :=







2iαt, if t ∈ [0, 1
2
]

2iα(1− t), if t ∈ [1
2
, 1]

gα(t) :=







1 + α(t− 1
2
) + 2iαt, if t ∈ [0, 1

2
]

1− α(t− 1
2
) + 2iα(1− t), if t ∈ [1

2
, 1]

It is shown in [6] that for each x ∈ A( or ∈ B) there exists a unique x′ ∈

B( respectively ∈ B) such that d(x, x′) = dist(A,B) and the pair (A,B) is a

compact convex. Hence (A,B) is a cyclically complete pair in C[0, 1] and for any

cyclically Cauchy sequence {xn}, the subsequence {x2n} and {x2n+1} converges in

A and B respectively.

3. Existence of Best proximity points

Let (A,B) be a pair of subsets of a metric space X . Suppose T : A ∪ B → A ∪ B is a

map satisfying TA ⊂ B and TB ⊂ A. We prove the existence of a best proximity point

for such a cyclic contraction T .

Theorem 3.1. Let (A,B) be a pair of subsets of a metric space X and let T : A∪B → A∪

B be a cyclic contraction satisfying TA ⊂ B and TB ⊂ A. If (A,B) is cyclically complete

then there exists (x, y) ∈ A×B such that d(x, Tx) = dist(A,B) and d(y, Ty) = dist(A.B)

with d(x, y) = dist(A,B).
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Proof. Let x0 ∈ A, define xn = Txn−1 for all n ∈ N. It is clear that {x2n} ⊂ A and

{x2n+1} ⊂ B.

claim: Any convergent subsequences of {x2n} and {x2n+1} converges to best proximity

points say x ∈ A and y ∈ B respectively with d(x, y) = dist(A,B).

Let {x2nk
} be a convergent subsequence of {x2n}, which converges to x ∈ A. Now

dist(A,B) ≤ d(x2nk−1, x) ≤ d(x2nk−1, x2nk
) + d(x2nk

, x), that is d(x2nk−1, x) → dist(A,B)

as k → ∞. Now dist(A,B) ≤ d(x, Tx) = lim
k→∞

d(x2nk
, Tx) ≤ lim

k→∞

d(x2nk−1, x) = dist(A,B).

In a similar fashion one can prove, if {x2mk+1} is a convergent subsequence of {x2n+1},

which converges to y ∈ A then d(y, Ty) = dist(A,B). Also d(x, y) = lim
k→∞

d(x2nk
, x2mk+1) =

dist(A,B). Now we prove that the sequence {x2n} is bounded. Suppose not, for M =
2α2d(x1, x2)

1− α2
+ dist(A,B), there exists n ∈ N, such that

d(x3, x2n−2) ≤ M and d(x3, x2n) > M.

Now

M < d(x3, x2n) ≤ α2d(x1, x2n−2) + (1− α2) dist(A,B)

≤ α2(d(x1, x2) + d(x2, x2n−2)) + (1− α2) dist(A,B)

≤ α2(d(x1, x2) + d(x2, x3) +M) + (1− α2) dist(A,B)

≤ α2(d(x1, x2) + d(x1, x2) +M) + (1− α2) dist(A,B)

≤ α2(2d(x0, x1) +M) + (1− α2) dist(A,B)

≤ α2M + (1− α2)M = M

a contradiction. A similar way one can prove {x2n+1} is bounded and hence the se-

quence {xn} is bounded. For any n ≥ m in N, d(x2n, x2m+1) ≤ αmd(x0, x2(n−m)+1) + (1−

αm) dist(A,B). Therefore the sequence {xn} is a cyclically Cauchy sequence in A ∪ B

as 0 < α < 1 . Since (A,B) is cyclically complete, either both the sequences {x2n} and

{x2n+1} have convergent subsequences or there exists N ∈ N such that d(x2n, x2m+1) =

dist(A,B), ∀ n,m ≥ N . For the second case, the pair (x2N , x2N+1) satisfies the con-

clusions. Suppose both the sequences {x2n} and {x2n+1} have convergent subsequences,

converges to x and y respectively, then by claim, d(x, Tx) = dist(A,B) = d(y, Ty) and

d(x, y) = dist(A,B). �
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The following examples illustrates Theorem 3.1.

Example 3.2. Let X = (l∞, ‖ · ‖∞) and let A = {e2n : n ∈ N} and B = {e2n+1 :∈ N}.

Since d(x, y) = dist(A,B, for all x ∈ A and y ∈ Bany map T : A∪B → A∪B satisfying

TA ⊂ B, TB ⊂ A is a cyclic contraction. One can notice that each point of A is a best

proximity point for T ..

Now we look at a generalization of the Banach contraction theorem in this situation.

For x ∈ A, define [x] = {y ∈ B : d(x, y) = dist(A,B)} and a similar way for we have

[y] = {u ∈ A : d(u, y) = dist(A,B)}, for y ∈ B. It is easy to see that, if xi ∈ [x] for

i = 1, 2 for some x ∈ A ∪ B, Then x ∈
⋂

i=1,2

[xi]. Suppose T : A ∪ B → A ∪ B is a cyclic

contraction satisfying TA ⊂ B and TB ⊂ A. The following Proposition gives a necessary

condition for the existence of a unique best proximity point of T .

Proposition 3.3. Let (A,B) be a pair of subsets of a metric space X. If there exists

x ∈ A such that [x] contains two different points say x1 and x2 with
⋂

i=1,2

[xi] contains a

point other then x. Then there exists a map T : A ∪ B → A ∪ B such that TA ⊂ B and

TB ⊂ A satisfying:

(1) T is a cyclic contraction mapping.

(2) T has two distinct best proximity points in A.

(3) For any x0 ∈ A, neither of the sequences {T 2nx0} and {T 2n+1x0} converges.

Proof. Let x ∈ A such that x1 6= x2 in [x] and ∩i=1,2[xi] contains an element say y 6= x.

Define T : A ∪ B → A ∪ B as

T (u) :=



















x1 if u ∈ A and u = x

x2 if u ∈ A and u 6= x

y if u ∈ B and u = x1

x if u ∈ B and u 6= x1.

Notice that TA ⊂ B and TB ⊂ A. Also for any u ∈ A and v ∈ B, d(Tu, Tv) =

dist(A,B) = α dist(A,B) + (1 − α) dist(A,B) ≤ αd(u, v) + (1 − α) dist(A,B), for all

α ∈ [0, 1]. Hence T is a cyclic contraction. It is easy see that x and y are different best

proximity points of T in A. For any fixed u ∈ A, either Tu = x1 or Tu = x2. If Tu = x1,
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then T 2u = Tx1 = y, T 3u = Ty = x2, T 4u = Tx2 = x, · · · . Therefore the sequence

{T 2nu}∞n=1 is (u, y, x, y, x, · · · ) and hence {T 2nu} diverges. In a similar fashion, one can

prove {T 2nu}∞n=1 is (u, x, y, x, y, · · · ) and {T 2nu} diverges, if Tu = x2. Hence {T 2nu} is

a divergent sequence for all u ∈ A. In a similar fashion one can show that {T 2n+1u} is a

divergent sequence for all u ∈ A. �

In the same way one can see that if there exists y ∈ B such that y1 6= y2 ∈ [y] and

y 6= z in
⋂

i−1,2

[yi] then for any v ∈ B the sequence {T 2nv} does not converge.

The following Examples illustrates Proposition 3.3.

Examples 3.4.

(1) Let A be the line segment joining the points (0, 0), (0, 1) and B be the line segment

joining the points (1, 0), (1, 1) in (R2, ‖·‖∞). One can observe that dist(A,B) = 1

and for any x ∈ A, [x] = B and
⋂

x′∈[x]

[x′] = A. It is easy to see that every

map T on A ∪ B satisfying TA ⊂ B and TB ⊂ A is a cyclic contraction. Also

d(x, y) = dist(A,B) for all x ∈ A, y ∈ B and hence each point in A is a best

proximity point for T .

(2) Let A be the line segment joining the points (0, 1, 0), (1
2
, 1
2
, 0) and B be the line

segment joining the points (0, 0, 0), (1
2
, 1, 1

2
) in (R3, ‖ · ‖1). Then it is easy to see

that dist(A,B) = 1. For (0, 0, 0) ∈ B, d
(

(0, 0, 0), (0, 1, 0)
)

= 1 = dist(A,B) =

d
(

(0, 0, 0), (1
2
, 1
2
, 0)

)

. Also d
(

(1
2
, 1, 1

2
), (0, 1, 0)

)

= 1 = dist(A,B) = d
(

(1
2
, 1, 1

2
), (1

2
, 1
2
, 0)

)

.

That is (0, 1, 0), (1
2
, 1
2
, 0) ∈ [(0, 0, 0)] and (1

2
, 1, 1

2
) ∈ [(0, 1, 0)]

⋂

[(1
2
, 1
2
, 0)]. Hence

one one constrict a cyclic contraction T on A ∪ B with TA ⊂ B and TB ⊂ A,

which satisfies the conclusion of Theorem 3.3.

Theorem 3.5. Let (A,B) be a cyclically complete semi sharp proximinal pair in a metric

space X. Suppose T : A ∪ B → A ∪ B is a cyclic contraction such that TA ⊂ B and

TB ⊂ A, then following holds:

(1) There exists a unique x ∈ A such that d(x, Tx) = dist(A,B).

(2) For any x0 ∈ A, the sequence T 2nx0 and T 2n+1x0 converge to x and Tx respectively.

(3) x and Tx are the unique fixed points of T 2 in A and B respectively.
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Proof. By Theorem 3.1, there exists x ∈ A such that d(x, Tx) = dist(A,B). No-

tice that dist(A,B) ≤ d(Tx, T 2x) ≤ d(x, Tx) = dist(A,B). Since (A,B) is a semi

sharp proximinal, T 2x = x. For uniqueness, if there exists x 6= x′ ∈ A satisfying

d(x′, Tx′) = dist(A,B) then T 2x′ = x′. Since x 6= x′, and by semi sharp proximinal-

ity of (A,B), d(x′, Tx) > dist(A,B). Hence d(T 2x, Tx′) < d(Tx, x′). Now d(x, Tx′) =

d(T 2x, Tx′) < d(Tx, x′) = d(Tx, T 2x) ≤ d(x, Tx′), a contradiction. Hence there a unique

x ∈ A such that d(x, Tx) = dist(A,B). Fix x0 ∈ A. Define xn = Txn−1 for all n ∈ N.

It has been proved in Theorem 3.1 that {xn} is a cyclically Cauchy sequence and hence

by Theorem 2.15 {x2n} and {x2n+1} are convergent sequences. Also by the claim in the

proof of Theorem 3.1 {x2n} converge to the best proximity point x in A and {x2n+1}

converges to the best proximity point y in B, with d(x, y) = dist(A,B). By semi sharp

proximinality of (A,B), y = Tx. Now we prove that x is a unique fixed point of T 2 in A.

We have T 2x = x. If y ∈ A satisfying T 2y = y then T 2ny = y for all n ∈ N. We have

T 2ny → x and hence y = x. In a similar fashion one can show that Tx is a unique fixed

point of T 2 in B. �

It is to be noticed that, if dist(A,B) = 0 then the pair (A,B) is a semi sharp proxim-

inal pair. The above theorem 3.5 generalizes the Banach contraction theorem for cyclic

contraction mappings satisfying TA ⊂ B and TB ⊂ A. As a particular case we get the

following:

Corollary 3.6. [2] Let A and B be nonempty closed and convex subsets of a uniformly

convex Banach space. Suppose T : A∪B → A∪B is a cyclic contraction map, then there

exists a unique best proximity point x in A (that is with ‖x−Tx‖ = dist(A,B)). Further,

if x0 ∈ A and xn+1 = Txn, then {x2n} converges to the best proximity point.

Let T : A ∪ B → A ∪ B satisfying TA ⊂ A and TB ⊂ B. The following Proposition

3.7 gives a necessary condition for the existence of a fixed point such a mapping T .

Proposition 3.7. Let (A,B) be a pair of subsets of a metric space X. If there exists

x ∈ A∪B such that [x] contains two different points say x1 and x2 with
⋂

i=1,2

[xi] contains
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a point other then x then there exists a map T : A ∪ B → A ∪ B such that TA ⊂ A and

TB ⊂ B satisfying:

(1) T is a cyclic contraction mapping.

(2) There is no fixed point for T .

(3) For any x0 ∈ A, the sequences {T nx0} diverges.

Proof. Let x ∈ A such that x1 6= x2 in [x] and ∩i=1,2[xi] contains more than one element

say x 6= y (It is easy to see that x ∈ ∩i=1,2[xi]). Define T : A ∪B → A ∪B as

T (u) :=



















y if u ∈ A and u = x

x if u ∈ A and u 6= x

x2 if u ∈ B and u = x1

x1 if u ∈ B and u 6= x1.

Notice that TA ⊂ A and TB ⊂ B. Also for any u ∈ A and v ∈ B, d(Tu, Tv) =

dist(A,B) ≤ αd(u, v)+(1−α) dist(A,B), for all α ∈ [0, 1]. Hence T is cyclic contraction.

Also it is easy to see that there is no fixed point for T in A∪B. For any fixed u ∈ A, either

Tu = x or Tu = y. If Tu = x, then T 2u = Tx = y, T 3u = Ty = x, T 4u = Tx = y, · · · .

Therefore the sequence {T nu}∞n=1 is (x, y, x, y, x, · · · ). In a similar fashion one can show

that, If Tu = y, {T nu}∞n=1 is (y, x, y, x, y, · · · ). Hence {T nu} diverges. �

In the same way one can see that, with the same assumptions of Proposition 3.7, for

any v ∈ B the sequence {T nv} diverges.

Theorem 3.8. Let (A,B) be a cyclically complete semi sharp proximinal pair in a metric

space X. Suppose T : A ∪ B → A ∪ B is a cyclic contraction such that TA ⊂ A and

TB ⊂ B, then the following holds:

(1) There exists a unique pair (x, y) ∈ A×B such that x and y are fixed points of T .

(2) d(x, y) = dist(A,B).

(3) For any (x0, y0) ∈ A×B, T nx0 → x and T ny0 → y.

Proof. Let (x0, y0) ∈ A× B. Define x2n := T nx0 and x2n+1 := T ny0, for all n ∈ N. First

we prove that the sequence {T nx0} is bounded. Suppose not, for M =
αd(y0, T y0)

1− α
+
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dist(A,B), there exists n ∈ N, such that

d(Ty0, T
nx0) ≤ M and d(Ty0, T

n+1x0) > M.

Now

M < d(Ty0, T
n+1x0) ≤ αd(y0, T

nx0) + (1− α) dist(A,B)

≤ α(d(y0, T y0) + d(Ty0, T
nx0)) + (1− α) dist(A,B)

≤ α(d(y0, T y0) +M) + (1− α) dist(A,B)

= αM + α(d(y0, T y0)) + (1− α) dist(A,B))

= αM + (1− α)M = M

a contradiction. A similar way one can prove {T ny0} is bounded and hence the sequence

{xn} is bounded. For any n ≥ m in N, d(x2n, x2m+1) ≤ αmd(x0, x2(n−m)+1) + (1 −

αm) dist(A,B). Hence {xn} is a cyclically Cauchy sequence in A∪B, as α ∈ (0, 1). Since

(A,B) is cyclically complete, either both the sequences {x2n} and {x2n+1} have convergent

subsequences or there exists N ∈ N such that d(x2n, x2m+1) = dist(A,B), ∀ n,m ≥ N . For

the second case x2n = x2N and x2n+1 = x2N+1 for all n ≥ N and so {x2N}, {x2N+1} satisfies

the conclusions. Therefore it is enough to prove in the case that the both sequences {T nx0}

and {T ny0} have convergent subsequences. By Theorem 3.1, one can show that the both

sequences {T nx0} and {T ny0} convergent sequences, say converges to x ∈ A and y ∈ B

respectively. Also d(x, y) = lim
n→∞

d(T nx0, T
ny0) = dist(A,B). Now

dist(A,B) ≤ d(x, Ty) ≤ lim
n→∞

d(T nx0, T y)

≤ lim
n→∞

d(T n−1x0, y) = d(x, y) = dist(A,B).

That is d(x, Ty) = dist(A,B), and by sharp proximinality of (A,B) y = Ty. In a similar

fashion one can prove x = Tx. �

The above Theorem 3.8 generalizes the Banach contraction theorem for cyclic con-

traction mappings satisfying TA ⊂ A and TB ⊂ B. As a particular case we get the

following:
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Corollary 3.9. Let A and B be nonempty closed and convex subsets of a uniformly convex

Banach space. Suppose T : A∪B → A∪B is a cyclic contraction map satisfying TA ⊂ A

and TB ⊂ B, then the following holds:

(1) There exists a unique fixed point x in A and a unique fixed point y ∈ B for T ;

(2) ‖x− y‖ = dist(A,B);

(3) For any (x0, y0) ∈ A×B, T nx0 → x and T ny0 → y.

Now we prove the existence and uniqueness of a best proximity point for a map T , if

T n is a cyclic contraction.

Theorem 3.10. Let (A,B) be a cyclically complete semi sharp proximinal pair in a metric

space X. Suppose T : A∪B → A∪B is a map satisfying TA ⊂ B and TB ⊂ A. If there

exists n ∈ N such that T n is cyclic contraction then there exists a unique x ∈ A such that

d(x, Tx) = dist(A,B).

Proof. If n = 2m+ 1 for some m ∈ N, then by Theorem 3.5 there exists a unique x ∈ A

such that d(x, T 2m+1x) = dist(A,B). By semi sharp proximinality of (A,B) one can get

T 2(2m+1)x = x. Suppose if d(x, Tx) > dist(A,B) then d(T 2m+1x, T 2m+2x) < d(x, Tx).

Now

d(x, Tx) = d(T 2(2m+1)x, T 2(2m+1)+1x)

≤ d(T 2m+1x, T 2m+2x)

< d(x, Tx)

a contradiction. That is d(x, Tx) = dist(A,B). If n = 2m for some m ∈ N, then by

Theorem 3.8 there exists a unique x ∈ A such that x = T 2mx. Suppose if d(x, Tx) >

dist(A,B) then d(T 2mx, T 2m+1x) < d(x, Tx). Now

d(x, Tx) = d(T 2mx, T 2m+1x)

< d(x, Tx)

a contradiction. That is d(x, Tx) = dist(A,B). For uniqueness, if there exists x 6= x′ ∈ A

such that d(x′, Tx′) = dist(A,B), then T 2nx′ = x′. Also T 2nx = x. By semi sharp
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proximinality of (A,B), d(x′, Tx) > dist(A,B) so that d(T nx′, T n+1x) < d(x′, Tx). Now

d(x′, Tx) = d(T 2nx′, T 2n+1x) ≤ d(T nx′, T n+1x) < d(x′, Tx), a contradiction. �

Now we prove the existence and uniqueness of a fixed point in A for a map T on A∪B

satisfying TA ⊂ A and TB ⊂ B if T n is a cyclic contraction. .

Theorem 3.11. Let (A,B) be a cyclically complete semi sharp proximinal pair in a

metric space X. Suppose T : A ∪B → A ∪ B is a map satisfying TA ⊂ A and TB ⊂ B.

If there exists n ∈ N such that T n is cyclic contraction then there exists a unique pair

(x, y) ∈ A× B such that x and y are fixed points for T and d(x, y) = dist(A,B).

Proof. By Theorem 3.8 there exists a unique pair (x, y) ∈ A×B such that T nx = x, T ny =

y and d(x, y) = dist(A,B). If x 6= Tx, by semi sharp proximinality d(Tx, y) > dist(A,B)

and hence d(T n+1x, Ty) > d(Tx, y). Now d(Tx, y) = d(T n+1x, T nyx) < d(Tx, y), a

contradiction. In a similar fashion one can prove that y = Ty. �
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