On subsemigroups of \mathbb{N}^{e}

Abdallah Assi*

Abstract

${ }^{11}$

Let $\underline{v}=\left(v_{1}, \cdots, v_{e+s}\right)$ be a set of vectors of \mathbb{N}^{e}, and assume that v_{e+k} is not in the group generated by v_{1}, \ldots, v_{e+k-1} for all $k=1, \cdots, s$. The aim of this paper is to give a formula for the Frobenius number and the conductor of the subsemigroup generated par \underline{v} in \mathbb{N}^{e}.

1 Introduction and Basic Notations

Let $\underline{v}=\left(v_{1}, \ldots, v_{e}, v_{e+1}, \ldots, v_{e+s}\right)$ be a set of nonzero elements of \mathbb{N}^{e} and let

$$
\Gamma(\underline{v})=\left\{\sum_{k=1}^{e+s} a_{i} v_{i} \mid a_{i} \in \mathbb{N}\right\}
$$

be the subsemigroup of \mathbb{N}^{e} generated by \underline{v}. Let $G(\underline{v})=\left\{\sum_{k=1}^{e+s} a_{i} v_{i} \mid a_{i} \in \mathbb{Z}\right\}$ be the subgroup of \mathbb{Z}^{e} generated by \underline{v} and let $\operatorname{cone}\left(v_{1}, \ldots, v_{e}\right)$ be the convex cone generated by v_{1}, \ldots, v_{e},

$$
\operatorname{cone}\left(v_{1}, \cdots, v_{e}\right)=\left\{\sum_{k=1}^{e} a_{i} v_{i} \mid a_{i} \in \mathbb{R}_{+}\right\}
$$

Assume that the dimension of $\operatorname{cone}\left(v_{1}, \ldots, v_{e}\right)$ is e-i.e. $\left(v_{1}, \ldots, v_{e}\right)$ generates \mathbb{R}^{e} - and that $v_{e+1}, \ldots, v_{e+s} \in \operatorname{cone}\left(v_{1}, \ldots, v_{e}\right)$. The paper deals with the following question:

What is the "smallest" element $w \in \operatorname{cone}\left(v_{1}, \ldots, v_{e}\right)$ such that for all $v \in w+\operatorname{cone}\left(v_{1}, \ldots, v_{e}\right)$, if $v \in G(\underline{v})$, then $v \in \Gamma(\underline{v})$?

[^0]Let D_{1} be the determinant of the matrix $\left[v_{1}^{T}, \ldots, v_{e}^{T}\right]$-where T denotes the transpose of a matrix-, and for all $k=2, \ldots, s+1$, let D_{k} be the gcd of the (e, e) minors of the matrix $\left[v_{1}^{T}, \ldots, v_{e}^{T}, v_{e+1}^{T}, \ldots, v_{e+k-1}^{T}\right]$. Set $e_{k}=\frac{D_{k}}{D_{k+1}}$ for all $k=1, \ldots, s$. We shall assume that the two following conditions are satisfied:
$\left.{ }^{*}\right) D_{1}>D_{2}>\cdots>D_{s+1}$ (in particular for all $k=2, \cdots, s+1, v_{e+k-1}$ is not in the group generated by $\left.\left(v_{1}, \cdots, v_{e}, v_{e+1}, \cdots, v_{e+k-2}\right)\right)$.

$$
\left(^{* *}\right) e_{k} v_{e+k} \in \Gamma\left(v_{1}, \ldots, v_{e}, v_{e+1}, \ldots, v_{e+k-1}\right) \text { for all } k=1, \ldots, s
$$

Our main result is the following:
Theorem 1. (See Fig. 1) Let the notations be as above, and let C_{e} be the unique cell of dimension e of cone $\left(v_{1}, \ldots, v_{e}\right)$ (more precisely C_{e} is the interior of cone $\left(v_{1}, \ldots, v_{e}\right)$). If

$$
g(\underline{v})=\sum_{k=1}^{s}\left(e_{k}-1\right) v_{e+k}-\sum_{i=1}^{e} v_{i}
$$

then the following hold:
i) $g(\underline{v}) \notin \Gamma(\underline{v})$.
ii) For all $v \in g+\left(C_{e}-\{(0, \cdots, 0)\}\right)$, if $v \in G(\underline{v})$, then $v \in \Gamma(\underline{v})$.

We call $g(\underline{v})$ the Frobenius vector of $\Gamma(\underline{v})$.

Fig. 1

When $e=s=1$ and v_{1}, v_{2} are relatively prime elements of \mathbb{N}, Sylvester proved in [9] that the Frobenius number of $\Gamma\left(v_{1}, v_{2}\right)$ is $\left(v_{1}-1\right) .\left(v_{2}-1\right)-1$ (note that in this case, $\left.e_{1}=v_{1}\right)$. In [6], M.J. Knight generalized the formula for Sylvester to a system of elements $\left(v_{1}, \cdots, v_{e}, v_{e+1}\right) \in \mathbb{N}^{e}$, assuming that $v_{e+1} \in \operatorname{cone}\left(v_{1}, \cdots, v_{e}\right)$, and that $v_{1}, \cdots, v_{e}, v_{e+1}$ generate \mathbb{Z}^{e}. Hence, Theorem 1. can be viewed as a generalisation of Knight's result.

Let $e=1$ and assume that $v_{1}<\cdots<v_{s+1}$. Assume, without loos of generality, that $D_{s+1}=1$, i.e. v_{1}, \cdots, v_{s+1} are relatively prime. The above theorem says that for all $v \geq g+1=$ $\sum_{k=1}^{s}\left(e_{k}-1\right) v_{1+k}-v_{1}+1, v \in \Gamma(\underline{v})$. The positive integer $g+1$ is called the conductor of $\Gamma(\underline{v})$ in \mathbb{N}. In fact, the ideal $\left(t^{c}\right)$ is the conductor ideal of the algebra $\mathbf{K}\left[t^{v_{1}}, \cdots, t^{v_{s+1}}\right]$ over a field \mathbf{K} into its integral closure $\mathbf{K}[t]$.

2 Lattices in \mathbb{Z}^{e}

Let the notations be as in Section 1. The group $\left.G_{k}=G\left(v_{1}, \cdots, v_{e}, v_{e+1}, \cdots, v_{e+k}\right)\right)$ being a subgroup of the free group \mathbb{Z}^{e} for all $k=0, \cdots, s$, it follows that G_{k} is a free group of rank $\leq e$, and the hypothesis on v_{1}, \ldots, v_{e} implies that the rank of G_{k} is e. Let w_{1}, \ldots, w_{e} be a basis of G_{k}, in particular D_{k+1} is the determinant of the (e, e) matrix $\left[w_{1}^{T}, \ldots, w_{e}^{T}\right]$. Furthermore we have the following:

Proposition 2.1 Let v be a nonzero element of \mathbb{Z}^{e} and denote by D the gcd of the (e, e) minors of the matrix $\left[v_{1}^{T}, \ldots, v_{e+k}^{T}, v^{T}\right]$. Then D is also the gcd of the (e, e) minors of the matrix $\left[w_{1}^{T}, \ldots, w_{e}^{T}, v^{T}\right]$. We also have the following:
i) D divides D_{k+1} and $v \in G_{k}$ if and only if $D_{k+1}=D$.
ii) $\frac{D_{k+1}}{D} \cdot v \in G_{k}$ and if $D_{k+1}>D$ then for all $1 \leq i<\frac{D_{k+1}}{D}, i . v \notin G_{k}$.

Proof. i) For all $i=1, \ldots, e$, let d_{i} be the determinant of the matrix $\left[w_{1}^{T}, \ldots, w_{i-1}^{T}, v^{T}, w_{i+1}^{T}, \ldots, w_{e}^{T}\right]$ and note that D divides d_{i}. If $D=D_{k+1}$ then D_{k+1} divides d_{i} for all $1 \leq i \leq e$. In particular the system $\lambda_{1} w_{1}+\ldots+\lambda_{e} w_{e}=v$ has the unique solution $\lambda_{i}=\frac{d_{i}}{D_{k+1}} \in \mathbb{Z}$. Conversely, if $v \in G_{k}$, then there exist unique integers $\lambda_{1}, \ldots, \lambda_{e}$ such that $v=\lambda_{1} w_{1}+\ldots+\lambda_{e} w_{e}$, but $\left(\lambda_{1}, \ldots, \lambda_{e}\right)$ is the unique solution to the $e \times e$ system $a_{1} w_{1}+\ldots+a_{e} w_{e}=v$, in particular $\lambda_{i}=\frac{d_{i}}{D_{k+1}}$, and D_{k+1} divides d_{i} for all $i=1, \ldots, e$. Since $D=\operatorname{gcd}\left(d_{1}, \cdots, d_{e}, D_{k+1}\right)$, then $D=D_{k+1}$.
ii) Let the notations be as in i) and $1 \leq i<\frac{D_{k+1}}{D}$. Let \tilde{D} be the gcd of the (e, e) minors of the matrix $\left[w_{1}^{T}, \cdots, w_{e}^{T},(i . v)^{T}\right]$. If $i . v \in G_{k}$, then $\tilde{D}=D_{k+1}$. But $\tilde{D}=\operatorname{gcd}\left(i d_{1}, \cdots, i d_{e}, D_{k+1}\right)$, in particular D_{k+1} divides $\operatorname{gcd}\left(i d_{1}, \cdots, i d_{e}, i D_{k+1}\right)=i . D$ which is a contradiction because $i . D<D_{k+1}$.

Since $D_{1}>\cdots>D_{s+1}$, it follows that $G_{0} \subset G_{1} \subset \cdots \subset G_{s}$. We also have the following:

Proposition 2.2 i) For all $1 \leq k \leq s, e_{k}$ is the index of G_{k-1} in G_{k}.
ii) For all $k=1, \cdots, s, e_{k} v_{e+k} \in G_{k-1}$ and $\left(e_{k}-i\right) v_{e+k} \notin G_{k-1}$ for all $1 \leq i<e_{k}$.
iii) Given $0 \leq k \leq s$ and $v \in G_{k}$, there exist unique integers $\lambda_{1}, \ldots, \lambda_{e}, \lambda_{e+1}, \ldots, \lambda_{e+k}$ such that $v=\sum_{i=1}^{e+k} \lambda_{i} v_{i}$ and $0 \leq \lambda_{i}<e_{i}$ for all $i=e+1, \ldots, e+k$ (we call this representation the standard representation with respect to $\left.v_{1}, \cdots, v_{e+k}\right)$.

Proof. i) is obvious and ii) results from Proposition 2.1. ii). To prove iii), we first prove the existence: let $v=\sum_{i=1}^{e+k} c_{i} v_{i}$ where $c_{i} \in \mathbb{Z}$ for all $1 \leq i \leq e+k$. If $k=0$, then the assertion is
clear. Assume that $k \geq 1$, and that $c_{e+k}<0$. Let $p \in \mathbb{N}^{*}$ be such that $0 \leq p e_{k}+c_{e+k}<e_{k}$. We have:

$$
v=\sum_{i=1}^{e+k-1} c_{i} v_{i}+\left(c_{e+k}+p e_{k}-p e_{k}\right) v_{e+k}
$$

since $e_{k} v_{e+k} \in G_{k-1}$, then so is for $-p e_{k} v_{e+k}$. In particular we can rewrite v as:

$$
v=\sum_{i=1}^{e+k-1} \tilde{c}_{i} v_{i}+\left(\tilde{c}_{e+k}\right) v_{e+k}
$$

and $0 \leq \tilde{c}_{e+k}=p e_{k}+c_{e+k}<e_{k}$. Since $\sum_{i=1}^{e+k-1} \tilde{c}_{i} v_{i} \in G_{k-1}$, then we get the result by induction on k.

To prove the uniqueness, let $v=\sum_{i=1}^{e+k} a_{i} v_{i}=\sum_{i=1}^{e+k} b_{i} v_{i}$ where for all $i=e+1, \ldots, e+k, 0 \leq$ $a_{i}, b_{i}<e_{i}$ and let j be the greatest integer such that $a_{j}-b_{j} \neq 0$. Suppose that $j \geq e+1$ and also that $a_{j}-b_{j}>0$, then

$$
\left(a_{j}-b_{j}\right) v_{j}=\sum_{i=1}^{e}\left(b_{i}-a_{i}\right)+\left(b_{e+1}-a_{e+1}\right) v_{1}+\ldots+\left(b_{j-1}-a_{j-1}\right) v_{j-1} \in G_{j-1}
$$

and $0<a_{j}-b_{j}<e_{j}$. This contradicts ii).
Note that the results of Propositions 2.1. and 2.2. hold assuming only that the condition (*) of page 2 is satisfied. This will not be the case in the following Corollary.

Corollary 2.3 Let $0 \leq k \leq s$ and let $v \in G_{k}$. Let

$$
v=\sum_{i=1}^{e+k} \lambda_{i} v_{i}
$$

be the standard representation with respect to v_{1}, \cdots, v_{e+k}. The vector $v \in \Gamma\left(v_{1}, \cdots, v_{e+k}\right)$ if and only if $\lambda_{i} \geq 0$ for all $i=1, \cdots, e$.

Proof. If $\lambda_{i} \geq 0$ for all $i=1, \cdots, e$, then clearly $v \in \Gamma\left(v_{1}, \cdots, v_{e+k}\right)$. Conversely, suppose that $v \in \Gamma\left(v_{1}, \cdots, v_{e+k}\right)$, then $v=\sum_{i=1}^{e+k} \mu_{i} v_{i}$ where $\mu_{i} \geq 0$ for all $i=1, \cdots, e+k$. We shall construct the standard representation of v as in the Proposition above: if $0 \leq \mu_{i}<e_{i}$ for all $i=e+1, \ldots, e+k$, then it is over. Assume that $\mu_{i} \geq e_{i}$ for some $i \geq e+1$ and let $e+j$ be the greatest element with this property. Write $\mu_{j}=p e_{j}+\tilde{\mu_{j}}$, where $0 \leq \tilde{\mu}_{j}<e_{j}$. But $e_{j} v_{j} \in \Gamma\left(v_{1}, \ldots, v_{e}, v_{e+1}, \ldots, v_{j-1}\right)$, in particular $e_{j} v_{j}=\sum_{i=1}^{j-1} \tilde{\lambda}_{i} v_{i}$. We finally rewrite v in the following form:

$$
v=\sum_{i=1}^{e+k} \tilde{\lambda}_{i} v_{i}
$$

where $\tilde{\lambda}_{i} \geq 0$ and $0 \leq \tilde{\lambda}_{i}<e_{i}$ for all $i=j, \ldots e+k$. Finally, we get the result by an easy induction.

3 Proof of Theorem 1. and applications

Proof of Theorem 1. Let the notations be as in Section 1. and let $g(\underline{v})=\sum_{k=1}^{s}\left(e_{k}-1\right) v_{e+k}-$ $\sum_{i=1}^{e} v_{i}$. Clearly $g(\underline{v}) \in G(\underline{v})$, and by corollary 2.3., $g(\underline{v}) \notin \Gamma(\underline{v})$. Let $u \in C_{e}-\{(0, \cdots, 0)\}$ and let $v=g(\underline{v})+u$. Assume that $v \in G(\underline{v})$ and let

$$
v=\sum_{k=1}^{e+s} \theta_{k} v_{k}
$$

be the standard representation of v and recall that $0 \leq \theta_{e+k}<e_{k}$ for all $k=1, \cdots, s$. We have:

$$
\sum_{k=1}^{s}\left(e_{k}-1-\theta_{e+k}\right) v_{e+k}+u=\left(\theta_{1}+1\right) v_{1}+\cdots+\left(\theta_{e}+1\right) v_{e}
$$

But $\sum_{k=1}^{s}\left(e_{k}-1-\theta_{e+k}\right) v_{e+k}+u \in C_{e}$, which implies that $\theta_{k}+1>0$ for all $k=1, \cdots, e$, in particular $\theta_{k} \geq 0$ for all $k=1, \cdots, e$, consequently $g(\underline{v})+u \in \Gamma(\underline{v})$.

Definition 3.1 Suppose that $D_{s+1}=1$, i.e. $G(\underline{v})=\mathbb{Z}^{e}$, and let $\mathrm{N}\left(C_{e}\right)$ be the set of the compact faces of the convex hull of $\bigcup_{w \in C_{e}} w+C_{e}$. Let $w_{1}, \cdots, w_{r} \in \mathbb{N}^{e}$ be the set of integral vectors of $\mathrm{N}\left(C_{e}\right)$. For all $v \in C_{e}$, there is $1 \leq k \leq r$ such that $v \in w_{k}+C_{e}$. In particular, for all $v \in g(\underline{v})+C_{e}$, if $v \in C_{e}$, then there exists $1 \leq k \leq r$ such that $v \in\left(g+w_{k}\right)+C_{e}$. The set $\left\{g(\underline{v})+w_{1}, \cdots, g(\underline{v})+w_{r}\right\}$ is called the conductor of $\Gamma(\underline{v})$.

Corollary 3.2 Let $\underline{v}=\left(v_{1}, \cdots, v_{e+s}\right)$ be as in Section 1. and let $A=\left[v_{1}^{T}, \cdots, v_{e+s}^{T}\right]$. Consider the Diophantine equation $A \cdot X=B$ where $B \in \mathbb{N}^{e}$. By Theorem 1., if $B \in g(\underline{v})+C_{e}$, then $B \in \Gamma(\underline{v})$, in particular the Diophantine equation $A \cdot X=B$ has a solution in \mathbb{N}^{e+s}

3.1 The semigroup of a curve singularity

Let \mathbf{K} be an algebraically closed field of characteristic zero and let $f=y^{n}+a_{1}(x) y^{n-1}+$ $\cdots+a_{n}(x)$ be a nonzero element of $\mathbf{K}[[x]][y]$. Suppose that f is irreducible. By Newton theorem, there exists $y(t)=\sum_{p} c_{p} t^{p} \in \mathbf{K}[[t]]$ such that $f\left(t^{n}, y(t)\right)=0$. Furthermore, $f\left(t^{n}, y\right)=$ $\prod_{w \in U_{n}}(y-y(w t))$, where U_{n} denotes the group of roots of unity in \mathbf{K}. Given a nonzero
polynomial $g \in \mathbf{K}[[x]][y]$, we set $\operatorname{int}(f, g)=O_{t} g\left(t^{n}, y(t)\right)$, where O_{t} denotes the t-order. The set of $\operatorname{int}(f, g), 0 \neq g \in \mathbf{K}[[x]][y]$ is a numerical semigroup, denoted $\Gamma(f)$. Let $m_{0}=n=d_{1}$ and for all $k \geq 1$, let $m_{k}=\inf \left\{p \mid c_{p} \neq 0\right.$ and m_{k-1} does not divide $\left.p\right\}$. There exists $h \geq 1$ such that $d_{h+1}=1$. The set $\left\{m_{1}, \ldots, m_{h}\right\}$ is called the set of Newton-Puiseux exponents of f. With these notations, $\Gamma(f)$ is generated by $r_{0}, r_{1}, \cdots, r_{h}$, where $r_{0}=n, r_{1}=m_{1}$ and for all $2 \leq k \leq h$:

$$
r_{k}=r_{k-1} \frac{d_{k-1}}{d_{k}}+m_{k}-m_{k-1}
$$

and it is well known that $r_{k} e_{k} \in \Gamma\left(r_{0}, \ldots, r_{k-1}\right)$ for all $1 \leq k \leq h$. Conversely, let $r_{0}<$ $r_{1}, \cdots<r_{h}$ be a given sequence of relatively prime nonnegative integers. Let $d_{1}=r_{0}$ and for all $1 \leq k \leq h$ let $d_{k+1}=\operatorname{gcd}\left(r_{k}, d_{k}\right)$. If $r_{k}>r_{k-1} \frac{d_{k-1}}{d_{k}}$ for all $1 \leq k \leq h$, then r_{0}, \cdots, r_{h} generate the semigroup of an irreducible element of $\mathbf{K}[[x]][y]$ (see [11]).

Let f be as above, and let r_{0}, \cdots, r_{h} be the set of generators of $\Gamma(f)$. Let $e_{k}=\frac{d_{k}}{d_{k+1}}, k=$ $1, \cdots, h$, and let:

$$
c=\sum_{k=1}^{h}\left(e_{k}-1\right) r_{k}-r_{0}+1
$$

then c is the conductor of $\Gamma(f)$, i.e. $g=c-1 \notin \Gamma(f)$ and $c+\mathbb{N} \subseteq \Gamma(f)$. The ideal $\left(t^{c}\right)$ is the conductor ideal of $\mathbf{K}[[x]][y] /(f)$ into its intergal closure $\mathbf{K}[[t]]$, and c is also the Milnor number of f, i.e. $c=\operatorname{rank}_{\mathbf{K}} \mathbf{K}[[x, y]] /\left(f_{x}, f_{y}\right)$, where f_{x} (resp. f_{y}) denotes the x-derivative (resp. the y-derivative) of f. Furthermore, the cardinality of $\mathbb{N}-\Gamma(f)$ (the set of gaps of $\Gamma(f)$) is $\frac{c}{2}$.

3.2 The semigroup of a quasi-ordinary polynomial

Let \mathbf{K} be an algebraically closed field of characteristic zero and let $f=y^{n}+a_{1}(\underline{x}) y^{n-1}+$ $\cdots+a_{n}(\underline{x})$ be an irreducible element of $\mathbf{K}[[\underline{x}]][y]=\mathbf{K}\left[\left[x_{1}, \cdots, x_{e}\right]\right][y]$ and assume that the discriminant $D_{y}(f)$ of f, defined to be the y-resultant of f and its y-derivative f_{y}, is of the form $x_{1}^{N_{1}} \cdots x_{e}^{N_{e}}(a+u(\underline{x}))$, where $N_{1}, \cdots, N_{e} \in \mathbb{N}, a \in \mathbf{K}^{*}$, and $u(\underline{0})=0$ (such a polynomial is called a quasi-ordinary polynomial). By [1], there exists $y(\underline{t})=y\left(t_{1}, \cdots, t_{e}\right)=$ $\sum_{p \in \mathbb{N}^{e}} c_{p} \underline{t^{p}} \in \mathbf{K}\left[\left[t_{1}, \cdots, t_{e}\right]\right]$ such that $f\left(t_{1}^{n}, \cdots, t_{e}^{n}, y(\underline{t})\right)=0$. Furthermore, there exist n distinct elements $\left(\underline{w}^{1}, \cdots, \underline{w}^{n}\right) \in U_{n}^{e}$, where U_{n} denotes the group of roots of unity in \mathbf{K}, such that $f\left(t_{1}^{n}, \cdots, t_{e}^{n}, y\right)=\prod_{k=1}^{n}\left(y-y\left(w_{1}^{k} t_{1}, \cdots, w_{e}^{k} t_{e}\right)\right)$.
Given a nonzero element $g \in \mathbf{K}[[\underline{x}]][y]$, we define $O(f, g)$ to be the maximal element with respect to the lexicographical order of the initial form of $g\left(t_{1}^{n}, \cdots, t_{e}^{n}, y(\underline{t})\right)$. The set of $O(f, g), 0 \neq g \in$ $\mathbf{K}\left[[\underline{x}][y]\right.$, is a semigroup of \mathbb{N}^{e}, denotes $\Gamma(f)$. Let $\operatorname{Supp}(y(\underline{t}))=\left\{p \mid c_{p} \neq 0\right\}$. In [7], J. Lipman proved the existence of $m_{1}, \cdots, m_{h} \in \operatorname{Supp}(y(\underline{t}))$ such that the following hold:
i) $m_{1}<m_{2}<\cdots<m_{h}$, where $<$ means $<$ coordinate-wise.
ii) Let $M_{0}=(n \mathbb{Z})^{e}$ and for all $k=1, \cdots, h$, let $M_{k}=M_{0}+\sum_{i=1}^{k} m_{i} \mathbb{Z}$. We have $M_{0} \subset$ $M_{1} \subset \cdots \subset M_{h}$. Furthermore, for all $p \in \operatorname{Supp}(y(\underline{t})), p \in \sum_{p \in m_{k}+\mathbb{N}^{e}} m_{k} \mathbb{Z}$.
Let $D_{1}=n^{e}$ and for all $k=1, \cdots, h$, let D_{k+1} be the gcd of $e \times e$ minors of the matrix $\left[n I_{e}, m_{1}^{T}, \cdots, m_{k}^{T}\right]$, where I_{e} denotes the ($\left.e, e\right)$ unit matrix. By conditions i), ii), we have $D_{1}>\cdots>D_{h+1}$, furthermore $D_{h+1}=n^{e-1}$ (see [3]). Let $r_{0}^{1}, \cdots, r_{0}^{e}$ be the canonical basis of $(n \mathbb{Z})^{e}$, and define the sequence r_{1}, \ldots, r_{h} by $r_{1}=m_{1}$ and for all $k=2, \cdots, h$:

$$
r_{k}=r_{k-1} \frac{D_{k-1}}{D_{k}}+\left(m_{k}-m_{k-1}\right)
$$

then $r_{0}^{1}, \cdots, r_{0}^{e}, r_{1}, \cdots, r_{h}$ generate $\Gamma(f)$ and $r_{k} \frac{D_{k}}{D_{k+1}} \in \Gamma\left(r_{0}^{1}, \ldots, r_{0}^{e}, r_{1}, \ldots, r_{k-1}\right)$ for all $1 \leq k \leq$ h. Furthermore, for all $k=1, \cdots, h$, if \tilde{D}_{k+1} denotes the gcd of the (e, e) minors of the matrix $\left[n I_{e}, r_{1}^{T}, \cdots, r_{k}^{T}\right]$, then $\tilde{D}_{k+1}=D_{k+1}$.

Note that in this situation, the convex cone generated by $r_{0}^{1}, \cdots, r_{0}^{e}$ is nothing but \mathbb{R}_{+}^{e}, and $C_{e}=\left(\mathbb{R}_{+}^{*}\right)^{e}$.

Set $e_{k}=\frac{D_{k}}{D_{k+1}}$ for all $k=1, \cdots, h$. The Frobenius vector of $\Gamma(f)$ is:

$$
g=\sum_{k=1}^{h}\left(e_{k}-1\right) r_{k}-\sum_{k=1}^{e} r_{0}^{k}
$$

in particular, for all $u \in\left(\mathbb{R}_{+}^{*}\right)^{e}$, if $g+u \in G\left(r_{0}^{1}, \cdots, r_{0}^{e}, r_{1}, \cdots, r_{h}\right)$, then $g+u \in \Gamma(f)$.

3.3 Numerical examples

Example 3.3 (See Fig. 2) Let $\underline{v}=\left(v_{1}, v_{2}, v_{3}\right)=(4,6,7)$. With the notations of Section 1. we have $D_{1}=4, D_{2}=2, D_{3}=1, e_{1}=\frac{D_{1}}{D_{2}}=2, e_{2}=\frac{D_{2}}{D_{3}}=2$. The Frobenius vector of $\Gamma(\underline{v})$ is:

$$
g(\underline{v})=\left(e_{1}-1\right) v_{2}+\left(e_{2}-1\right) v_{3}-v_{1}=9
$$

and the conductor of $\Gamma(\underline{v})$ is $c=g(\underline{v})+1=10$. Note that $\mathbb{N}-\Gamma(\underline{v})=\{1,2,3,5,9\}$, whose cardinality is $\frac{c}{2}=5$.

Example 3.4 (See Fig. 3) Let $\underline{v}=\left(v_{1}, v_{2}, v_{3}, v_{4}\right)=((8,0),(0,8),(2,2),(12,8))$. With the notations of Section 1. we have $D_{1}=64, D_{2}$-the gcd of the $(2,2)$ minors of the matrix [$\left.8 I_{2},(2,2)^{T}\right]$ - is 16 , and D_{3}-the gcd of the $(2,2)$ minors of the matrix $\left[8 I_{2},(2,2)^{T},(12,8)^{T}\right]$ - is 8 . Finally, $e_{1}=\frac{D_{1}}{D_{2}}=4, e_{2}=\frac{D_{2}}{D_{3}}=2$. The Frobenius vector of $\Gamma(\underline{v})$ is:

$$
g(\underline{v})=\left(e_{1}-1\right) v_{3}+\left(e_{2}-1\right) v_{4}-v_{1}-v_{2}=3 v_{3}+v_{4}-v_{1}-v_{2}=(10,6)
$$

Let $u=v_{2}=(2,2)$, then $g+u=g+v_{2}=\left(e_{1}-1\right) v_{3}+\left(e_{2}-1\right) v_{4}-v_{1}=(10,14) \notin \Gamma(\underline{v})$. In fact, u belongs to a cell of cone $\left(v_{1}, v_{2}\right)$ of dimension 1 .

Example 3.5 (See Fig. 4) Let $\underline{v}=\left(v_{1}, v_{2}, v_{3}, v_{4}\right)=((4,6),(6,3),(8,10),(3,4))$. With the notations of Section 1. we have $D_{1}=24, D_{2}$-the gcd of the $(2,2)$ minors of the matrix $\left[(4,6)^{T},(6,3)^{T},(8,10)^{T}\right]$ - is 4 , and D_{3}-the gcd of the $(2,2)$ minors of the matrix $\left[(4,6)^{T},(6,3)^{T},(8,10)^{T},(3,4)^{T}\right.$ is 1. Finally, $e_{1}=\frac{D_{1}}{D_{2}}=6, e_{2}=\frac{D_{2}}{D_{3}}=4$. The Frobenius vector of $\Gamma(\underline{v})$ is:

$$
g(\underline{v})=\left(e_{1}-1\right) v_{3}+\left(e_{2}-1\right) v_{4}-v_{1}-v_{2}=(49,52)-(10,9)=(39,53)
$$

In this example, since $D_{3}=1$, then $G(\underline{v})=\mathbb{Z}^{2}$. In particular, for all $v \in g(\underline{v})+C_{e}, v \in \Gamma(\underline{v})$. Furthermore, for all $v \in C_{e}, v \in(1,1)+C_{e}$, hence the conductor of $\Gamma(\underline{v})$ is $g(\underline{v})+(1,1)=$ $(40,54)$.

Example 3.6 (See Fig. 5) Let $\underline{v}=\left(v_{1}, v_{2}, v_{3}\right)=((1,3),(3,2),(1,1))$. With the notations of Section 1. we have $D_{1}=7, D_{2}$-the gcd of the $(2,2)$ minors of the matrix $\left[(1,3)^{T},(3,2)^{T},(1,1)^{T}\right]$ is 1. Finally, $e_{1}=\frac{D_{1}}{D_{2}}=7$. The Frobenius number of $\Gamma(\underline{v})$ is:

$$
g(\underline{v})=\left(e_{1}-1\right) v_{3}-v_{1}-v_{2}=(6,6)-(4,5)=(2,1)
$$

In this example, since $D_{2}=1$, then $G(\underline{v})=\mathbb{Z}^{2}$. In particular, for all $v \in g(\underline{v})+C_{e}, v \in \Gamma(\underline{v})$. Furthermore, for all $v \in C_{e}, v \in\left[(1,1)+C_{e}\right] \cup\left[(1,2)+C_{e}\right]$, hence the conductor of $\Gamma(\underline{v})$ is $\{g(\underline{v})+(1,1), g(\underline{v})+(1,2)]\}=\{(3,2),(3,3)\}$.

Fig. 2

Fig. 4

Fig. 5

Remark 3.7 i) Let $\underline{v}=\left(v_{1}, \cdots, v_{e+s}\right)$ et let the notations be as in Section 1. and suppose that $D_{1} \geq D_{2} \geq \cdots \geq D_{s+1}$. Let $\left(v_{e+i_{1}}, \cdots, v_{e+i_{t}}\right)$ be the maximal set of $\left\{v_{e+1}, \cdots, v_{e+s}\right\}$ such that for all $1 \leq k \leq t, v_{e+i_{k}} \notin G\left(v_{1}, \cdots, v_{e}, \cdots, v_{e+i_{k}-1}\right)$ and let $g=\sum_{k=1}^{t}\left(e_{i_{k}}-1\right) v_{e+i_{k}}-\sum_{k=1}^{e} v_{k}$. For all $v \in g+C_{e}$, if $v \in G(\underline{v})=G\left(v_{1}, \cdots, v_{e}, v_{i_{1}}, \cdots, v_{i_{t}}\right)$, then $v \in \Gamma\left(v_{1}, \cdots, v_{e}, v_{i_{1}}, \cdots, v_{i_{t}}\right) \subseteq$ $\Gamma(\underline{v})$. In general, the vector g need not to be the "smallest" one with this property. Let for example $\underline{v}=(4,6,7,9)$: for all $v \geq 9, v \in \Gamma(\underline{v})$, but the Frobenius number of $\Gamma(\underline{v})$ is 5 . General subsemigroups of \mathbb{N} and their Frobenius numbers have been studied by many authors (see [8] and references).
ii) If $\underline{v}=(8,10,11)$, then $g(\underline{v})=\left(e_{1}-1\right) v_{2}+\left(e_{-} 1\right) v_{3}-v_{1}=30+11-8=33=3.11 \in$ $\Gamma(8,10,11)$. In this example, condition $\left({ }^{* *}\right)$ of page 2 is not satisfied, since $e_{2} v_{3}=22 \notin \Gamma(8,10)$.

References

[1] S.S. Abhyankar.- On the semigroup of a meromorphic curve, Part 1, in Proceedings of. International Symposium on Algebraic Geometry, Kyoto (1977) 240-414.
[2] S.S. Abhyankar.- On the ramification of algebraic functions, Amer. J. Math. 77 (1955), 575-592.
[3] A. Assi.- Irreducibility criterion for quasi-ordinary polynomials, Preprint.
[4] A. Assi.- The embedding conjecture for quasi-ordinary hypersurfaces, Journal of pure and applied algebra, Vol 214, Issue 9 (2010), 1623-1632.
[5] K. Kiyek and M. Micus.- Semigroup of a quasiordinary singularity, Banach Center Publications, Topics in Algebra, Vol. 26 (1990), 149-156.
[6] M.J. Knight.- A generalisation of a result of Sylvester's, Journal of number theory, vol 12 (1980), 364-366.
[7] J. Lipman.- Topological invariants of quasi-ordinary singularities, Mem. Amer. Math. Soc., 388 (1988).
[8] J.C. Rosales and P.A. Garcia Sanchez.- Numerical semigroups, Developments in Mathematics, vol. 20, Springer New-York Dordrecht Heidelberg London, 2009.
[9] J.J. Sylvester.- Mathematical questions with their solutions, Educational times, vol 41, 1884
[10] B. Sturmfels.-Gröbner bases and convex polytopes, American Mathematical Society, Providence, RI, 1996.
[11] O. Zariski.- Le problème de modules pour une branche plane, course at the Ecole Polytechnique, 1973.

[^0]: *Université d'Angers, Département de Mathématiques, 2 bd Lavoisier, 49045 Angers Cedex 01, France, e-mail:assi@univ-angers.fr
 ${ }^{1} 2000$ Mathematical Subject Classification:52C07, 32S05
 Keywords: semigroups, Frobenius number, Singularities

