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On subsemigroups of Ne

Abdallah Assi∗

Abstract1

Let v = (v1, · · · , ve+s) be a set of vectors of Ne, and assume that ve+k is not in the group generated

by v1, . . . , ve+k−1 for all k = 1, · · · , s. The aim of this paper is to give a formula for the Frobenius

number and the conductor of the subsemigroup generated par v in N
e.

1 Introduction and Basic Notations

Let v = (v1, . . . , ve, ve+1, . . . , ve+s) be a set of nonzero elements of Ne and let

Γ(v) = {
e+s∑

k=1

aivi|ai ∈ N}

be the subsemigroup of Ne generated by v. Let G(v) = {
∑e+s

k=1
aivi|ai ∈ Z} be the subgroup of

Z
e generated by v and let cone(v1, . . . , ve) be the convex cone generated by v1, . . . , ve,

cone(v1, · · · , ve) = {
e∑

k=1

aivi|ai ∈ R+}.

Assume that the dimension of cone(v1, . . . , ve) is e -i.e. (v1, . . . , ve) generates R
e- and that

ve+1, . . . , ve+s ∈ cone(v1, . . . , ve). The paper deals with the following question:

What is the “smallest” element w ∈ cone(v1, . . . , ve) such that for all v ∈ w + cone(v1, . . . , ve),
if v ∈ G(v), then v ∈ Γ(v)?
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Let D1 be the determinant of the matrix [vT1 , . . . , v
T
e ] -where T denotes the transpose of a

matrix-, and for all k = 2, . . . , s + 1, let Dk be the gcd of the (e, e) minors of the matrix

[vT1 , . . . , v
T
e , v

T
e+1, . . . , v

T
e+k−1

]. Set ek =
Dk

Dk+1

for all k = 1, . . . , s. We shall assume that the two

following conditions are satisfied:

(*) D1 > D2 > · · · > Ds+1 (in particular for all k = 2, · · · , s+ 1, ve+k−1 is not in the group
generated by (v1, · · · , ve, ve+1, · · · , ve+k−2)).

(**) ekve+k ∈ Γ(v1, . . . , ve, ve+1, . . . , ve+k−1) for all k = 1, . . . , s.

Our main result is the following:

Theorem 1. (See Fig. 1) Let the notations be as above, and let Ce be the unique cell of
dimension e of cone(v1, . . . , ve) (more precisely Ce is the interior of cone(v1, . . . , ve)). If

g(v) =

s∑

k=1

(ek − 1)ve+k −

e∑

i=1

vi

then the following hold:

i) g(v) /∈ Γ(v).

ii) For all v ∈ g + (Ce − {(0, · · · , 0)}), if v ∈ G(v), then v ∈ Γ(v).

We call g(v) the Frobenius vector of Γ(v).

v1

v2
v3

vs+e

g(v)

g(v) + Ce

Fig. 1

When e = s = 1 and v1, v2 are relatively prime elements of N, Sylvester proved in [9] that the
Frobenius number of Γ(v1, v2) is (v1−1).(v2−1)−1 (note that in this case, e1 = v1). In [6], M.J.
Knight generalized the formula for Sylvester to a system of elements (v1, · · · , ve, ve+1) ∈ N

e,
assuming that ve+1 ∈ cone(v1, · · · , ve), and that v1, · · · , ve, ve+1 generate Z

e. Hence, Theorem
1. can be viewed as a generalisation of Knight’s result.

Let e = 1 and assume that v1 < · · · < vs+1. Assume, without loos of generality, that Ds+1 = 1,
i.e. v1, · · · , vs+1 are relatively prime. The above theorem says that for all v ≥ g + 1 =∑s

k=1
(ek − 1)v1+k − v1 + 1, v ∈ Γ(v). The positive integer g + 1 is called the conductor of Γ(v)

in N. In fact, the ideal (tc) is the conductor ideal of the algebra K[tv1 , · · · , tvs+1 ] over a field K

into its integral closure K[t].
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2 Lattices in Z
e

Let the notations be as in Section 1. The group Gk = G(v1, · · · , ve, ve+1, · · · , ve+k)) being a
subgroup of the free group Z

e for all k = 0, · · · , s, it follows that Gk is a free group of rank
≤ e, and the hypothesis on v1, . . . , ve implies that the rank of Gk is e. Let w1, . . . , we be a basis
of Gk, in particular Dk+1 is the determinant of the (e, e) matrix [wT

1 , . . . , w
T
e ]. Furthermore we

have the following:

Proposition 2.1 Let v be a nonzero element of Ze and denote by D the gcd of the (e, e)
minors of the matrix [vT1 , . . . , v

T
e+k, v

T ]. Then D is also the gcd of the (e, e) minors of the
matrix [wT

1 , . . . , w
T
e , v

T ]. We also have the following:

i) D divides Dk+1 and v ∈ Gk if and only if Dk+1 = D.

ii)
Dk+1

D
.v ∈ Gk and if Dk+1 > D then for all 1 ≤ i <

Dk+1

D
, i.v /∈ Gk.

Proof. i) For all i = 1, . . . , e, let di be the determinant of the matrix [wT
1 , . . . , w

T
i−1, v

T , wT
i+1, . . . , w

T
e ]

and note that D divides di. If D = Dk+1 then Dk+1 divides di for all 1 ≤ i ≤ e. In particular

the system λ1w1+ . . .+λewe = v has the unique solution λi =
di

Dk+1

∈ Z. Conversely, if v ∈ Gk,

then there exist unique integers λ1, . . . , λe such that v = λ1w1 + . . .+ λewe, but (λ1, . . . , λe) is

the unique solution to the e × e system a1w1 + . . . + aewe = v, in particular λi =
di

Dk+1

, and

Dk+1 divides di for all i = 1, . . . , e. Since D = gcd(d1, · · · , de, Dk+1), then D = Dk+1.

ii) Let the notations be as in i) and 1 ≤ i <
Dk+1

D
. Let D̃ be the gcd of the (e, e) minors of

the matrix [wT
1 , · · · , w

T
e , (i.v)

T ]. If i.v ∈ Gk, then D̃ = Dk+1. But D̃ = gcd(id1, · · · , ide, Dk+1),
in particular Dk+1 divides gcd(id1, · · · , ide, iDk+1) = i.D which is a contradiction because
i.D < Dk+1.�

Since D1 > · · · > Ds+1, it follows that G0 ⊂ G1 ⊂ · · · ⊂ Gs. We also have the following:

Proposition 2.2 i) For all 1 ≤ k ≤ s, ek is the index of Gk−1 in Gk.

ii) For all k = 1, · · · , s, ekve+k ∈ Gk−1 and (ek − i)ve+k /∈ Gk−1 for all 1 ≤ i < ek.

iii) Given 0 ≤ k ≤ s and v ∈ Gk, there exist unique integers λ1, . . . , λe, λe+1, . . . , λe+k such
that v =

∑e+k

i=1
λivi and 0 ≤ λi < ei for all i = e + 1, . . . , e + k (we call this representation the

standard representation with respect to v1, · · · , ve+k).

Proof. i) is obvious and ii) results from Proposition 2.1. ii). To prove iii), we first prove the
existence: let v =

∑e+k

i=1
civi where ci ∈ Z for all 1 ≤ i ≤ e + k. If k = 0, then the assertion is
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clear. Assume that k ≥ 1, and that ce+k < 0. Let p ∈ N
∗ be such that 0 ≤ pek + ce+k < ek. We

have:

v =
e+k−1∑

i=1

civi + (ce+k + pek − pek)ve+k

since ekve+k ∈ Gk−1, then so is for −pekve+k. In particular we can rewrite v as:

v =
e+k−1∑

i=1

c̃ivi + (c̃e+k)ve+k

and 0 ≤ c̃e+k = pek + ce+k < ek. Since
∑e+k−1

i=1
c̃ivi ∈ Gk−1, then we get the result by induction

on k.

To prove the uniqueness, let v =
∑e+k

i=1
aivi =

∑e+k

i=1
bivi where for all i = e + 1, . . . , e + k, 0 ≤

ai, bi < ei and let j be the greatest integer such that aj − bj 6= 0. Suppose that j ≥ e + 1 and
also that aj − bj > 0, then

(aj − bj)vj =

e∑

i=1

(bi − ai) + (be+1 − ae+1)v1 + . . .+ (bj−1 − aj−1)vj−1 ∈ Gj−1

and 0 < aj − bj < ej . This contradicts ii). �

Note that the results of Propositions 2.1. and 2.2. hold assuming only that the condition (*)
of page 2 is satisfied. This will not be the case in the following Corollary.

Corollary 2.3 Let 0 ≤ k ≤ s and let v ∈ Gk. Let

v =
e+k∑

i=1

λivi

be the standard representation with respect to v1, · · · , ve+k. The vector v ∈ Γ(v1, · · · , ve+k) if
and only if λi ≥ 0 for all i = 1, · · · , e.

Proof. If λi ≥ 0 for all i = 1, · · · , e, then clearly v ∈ Γ(v1, · · · , ve+k). Conversely, suppose
that v ∈ Γ(v1, · · · , ve+k), then v =

∑e+k

i=1
µivi where µi ≥ 0 for all i = 1, · · · , e + k. We shall

construct the standard representation of v as in the Proposition above: if 0 ≤ µi < ei for all
i = e + 1, . . . , e + k, then it is over. Assume that µi ≥ ei for some i ≥ e + 1 and let e + j
be the greatest element with this property. Write µj = pej + µ̃j , where 0 ≤ µ̃j < ej. But
ejvj ∈ Γ(v1, . . . , ve, ve+1, . . . , vj−1), in particular ejvj =

∑j−1

i=1
λ̃ivi. We finally rewrite v in the

following form:
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v =

e+k∑

i=1

λ̃ivi

where λ̃i ≥ 0 and 0 ≤ λ̃i < ei for all i = j, . . . e + k. Finally, we get the result by an easy
induction.�

3 Proof of Theorem 1. and applications

Proof of Theorem 1. Let the notations be as in Section 1. and let g(v) =
∑s

k=1
(ek−1)ve+k−∑e

i=1
vi. Clearly g(v) ∈ G(v), and by corollary 2.3., g(v) /∈ Γ(v). Let u ∈ Ce−{(0, · · · , 0)} and

let v = g(v) + u. Assume that v ∈ G(v) and let

v =

e+s∑

k=1

θkvk

be the standard representation of v and recall that 0 ≤ θe+k < ek for all k = 1, · · · , s. We have:

s∑

k=1

(ek − 1− θe+k)ve+k + u = (θ1 + 1)v1 + · · ·+ (θe + 1)ve

But
∑s

k=1
(ek − 1 − θe+k)ve+k + u ∈ Ce, which implies that θk + 1 > 0 for all k = 1, · · · , e, in

particular θk ≥ 0 for all k = 1, · · · , e, consequently g(v) + u ∈ Γ(v).�

Definition 3.1 Suppose that Ds+1 = 1, i.e. G(v) = Z
e, and let N(Ce) be the set of the

compact faces of the convex hull of
⋃

w∈Ce
w + Ce. Let w1, · · · , wr ∈ N

e be the set of integral
vectors of N(Ce). For all v ∈ Ce, there is 1 ≤ k ≤ r such that v ∈ wk + Ce. In particular, for
all v ∈ g(v) + Ce, if v ∈ Ce, then there exists 1 ≤ k ≤ r such that v ∈ (g + wk) + Ce. The set
{g(v) + w1, · · · , g(v) + wr} is called the conductor of Γ(v).

Corollary 3.2 Let v = (v1, · · · , ve+s) be as in Section 1. and let A = [vT1 , · · · , v
T
e+s]. Consider

the Diophantine equation A.X = B where B ∈ N
e. By Theorem 1., if B ∈ g(v) + Ce, then

B ∈ Γ(v), in particular the Diophantine equation A.X = B has a solution in N
e+s

3.1 The semigroup of a curve singularity

Let K be an algebraically closed field of characteristic zero and let f = yn + a1(x)y
n−1 +

· · · + an(x) be a nonzero element of K[[x]][y]. Suppose that f is irreducible. By Newton
theorem, there exists y(t) =

∑
p cpt

p ∈ K[[t]] such that f(tn, y(t)) = 0. Furthermore, f(tn, y) =∏
w∈Un

(y − y(wt)), where Un denotes the group of roots of unity in K. Given a nonzero
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polynomial g ∈ K[[x]][y], we set int(f, g) = Otg(t
n, y(t)), where Ot denotes the t-order. The

set of int(f, g), 0 6= g ∈ K[[x]][y] is a numerical semigroup, denoted Γ(f). Let m0 = n = d1
and for all k ≥ 1, let mk = inf{p|cp 6= 0 and mk−1 does not divide p}. There exists h ≥ 1
such that dh+1 = 1. The set {m1, . . . , mh} is called the set of Newton-Puiseux exponents of
f . With these notations, Γ(f) is generated by r0, r1, · · · , rh, where r0 = n, r1 = m1 and for all
2 ≤ k ≤ h:

rk = rk−1

dk−1

dk
+mk −mk−1

and it is well known that rkek ∈ Γ(r0, . . . , rk−1) for all 1 ≤ k ≤ h. Conversely, let r0 <
r1, · · · < rh be a given sequence of relatively prime nonnegative integers. Let d1 = r0 and for all

1 ≤ k ≤ h let dk+1 = gcd(rk, dk). If rk > rk−1

dk−1

dk
for all 1 ≤ k ≤ h, then r0, · · · , rh generate

the semigroup of an irreducible element of K[[x]][y] (see [11]).

Let f be as above, and let r0, · · · , rh be the set of generators of Γ(f). Let ek =
dk
dk+1

, k =

1, · · · , h, and let:

c =
h∑

k=1

(ek − 1)rk − r0 + 1

then c is the conductor of Γ(f), i.e. g = c− 1 /∈ Γ(f) and c + N ⊆ Γ(f). The ideal (tc) is the
conductor ideal of K[[x]][y]/(f) into its intergal closure K[[t]], and c is also the Milnor number
of f , i.e. c = rankKK[[x, y]]/(fx, fy), where fx (resp. fy) denotes the x-derivative (resp. the

y-derivative) of f . Furthermore, the cardinality of N− Γ(f) (the set of gaps of Γ(f)) is
c

2
.

3.2 The semigroup of a quasi-ordinary polynomial

Let K be an algebraically closed field of characteristic zero and let f = yn + a1(x)y
n−1 +

· · · + an(x) be an irreducible element of K[[x]][y] = K[[x1, · · · , xe]][y] and assume that the
discriminant Dy(f) of f , defined to be the y-resultant of f and its y-derivative fy, is of
the form xN1

1 · · ·xNe

e (a + u(x)), where N1, · · · , Ne ∈ N, a ∈ K∗, and u(0) = 0 (such a poly-
nomial is called a quasi-ordinary polynomial). By [1], there exists y(t) = y(t1, · · · , te) =∑

p∈Ne cpt
p ∈ K[[t1, · · · , te]] such that f(tn1 , · · · , t

n
e , y(t)) = 0. Furthermore, there exist n dis-

tinct elements (w1, · · · , wn) ∈ Ue
n, where Un denotes the group of roots of unity in K, such that

f(tn1 , · · · , t
n
e , y) =

∏n

k=1
(y − y(wk

1t1, · · · , w
k
e te)).

Given a nonzero element g ∈ K[[x]][y], we define O(f, g) to be the maximal element with respect
to the lexicographical order of the initial form of g(tn1 , · · · , t

n
e , y(t)). The set of O(f, g), 0 6= g ∈

K[[x]][y], is a semigroup of Ne, denotes Γ(f). Let Supp(y(t)) = {p|cp 6= 0}. In [7], J. Lipman
proved the existence of m1, · · · , mh ∈ Supp(y(t)) such that the following hold:
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i) m1 < m2 < · · · < mh, where < means < coordinate-wise.

ii) Let M0 = (nZ)e and for all k = 1, · · · , h, let Mk = M0 +
∑k

i=1
miZ. We have M0 ⊂

M1 ⊂ · · · ⊂ Mh. Furthermore, for all p ∈ Supp(y(t)), p ∈
∑

p∈mk+Ne mkZ.

Let D1 = ne and for all k = 1, · · · , h, let Dk+1 be the gcd of e × e minors of the matrix
[nIe, m

T
1 , · · · , m

T
k ], where Ie denotes the (e, e) unit matrix. By conditions i), ii), we have

D1 > · · · > Dh+1, furthermore Dh+1 = ne−1 (see [3]). Let r10, · · · , r
e
0 be the canonical basis of

(nZ)e, and define the sequence r1, . . . , rh by r1 = m1 and for all k = 2, · · · , h:

rk = rk−1

Dk−1

Dk

+ (mk −mk−1)

then r10, · · · , r
e
0, r1, · · · , rh generate Γ(f) and rk

Dk

Dk+1

∈ Γ(r10, . . . , r
e
0, r1, . . . , rk−1) for all 1 ≤ k ≤

h. Furthermore, for all k = 1, · · · , h, if D̃k+1 denotes the gcd of the (e, e) minors of the matrix
[nIe, r

T
1 , · · · , r

T
k ], then D̃k+1 = Dk+1.

Note that in this situation, the convex cone generated by r10, · · · , r
e
0 is nothing but R

e
+, and

Ce = (R∗

+)
e.

Set ek =
Dk

Dk+1

for all k = 1, · · · , h. The Frobenius vector of Γ(f) is:

g =

h∑

k=1

(ek − 1)rk −

e∑

k=1

rk0

in particular, for all u ∈ (R∗

+)
e, if g + u ∈ G(r10, · · · , r

e
0, r1, · · · , rh), then g + u ∈ Γ(f).

3.3 Numerical examples

Example 3.3 (See Fig. 2) Let v = (v1, v2, v3) = (4, 6, 7). With the notations of Section 1. we

have D1 = 4, D2 = 2, D3 = 1, e1 =
D1

D2

= 2, e2 =
D2

D3

= 2. The Frobenius vector of Γ(v) is:

g(v) = (e1 − 1)v2 + (e2 − 1)v3 − v1 = 9

and the conductor of Γ(v) is c = g(v) + 1 = 10. Note that N − Γ(v) = {1, 2, 3, 5, 9}, whose

cardinality is
c

2
= 5.

Example 3.4 (See Fig. 3) Let v = (v1, v2, v3, v4) = ((8, 0), (0, 8), (2, 2), (12, 8)). With the
notations of Section 1. we have D1 = 64, D2-the gcd of the (2, 2) minors of the matrix
[8I2, (2, 2)

T ]- is 16, and D3-the gcd of the (2, 2) minors of the matrix [8I2, (2, 2)
T , (12, 8)T ]- is 8.

Finally, e1 =
D1

D2

= 4, e2 =
D2

D3

= 2. The Frobenius vector of Γ(v) is:

7



g(v) = (e1 − 1)v3 + (e2 − 1)v4 − v1 − v2 = 3v3 + v4 − v1 − v2 = (10, 6)

Let u = v2 = (2, 2), then g + u = g + v2 = (e1 − 1)v3 + (e2 − 1)v4 − v1 = (10, 14) /∈ Γ(v). In
fact, u belongs to a cell of cone(v1, v2) of dimension 1.

Example 3.5 (See Fig. 4) Let v = (v1, v2, v3, v4) = ((4, 6), (6, 3), (8, 10), (3, 4)). With the
notations of Section 1. we have D1 = 24, D2-the gcd of the (2, 2) minors of the matrix
[(4, 6)T , (6, 3)T , (8, 10)T ]- is 4, andD3-the gcd of the (2, 2) minors of the matrix [(4, 6)T , (6, 3)T , (8, 10)T , (3, 4)T

is 1. Finally, e1 =
D1

D2

= 6, e2 =
D2

D3

= 4. The Frobenius vector of Γ(v) is:

g(v) = (e1 − 1)v3 + (e2 − 1)v4 − v1 − v2 = (49, 52)− (10, 9) = (39, 53)

In this example, since D3 = 1, then G(v) = Z
2. In particular, for all v ∈ g(v) + Ce, v ∈ Γ(v).

Furthermore, for all v ∈ Ce, v ∈ (1, 1) + Ce, hence the conductor of Γ(v) is g(v) + (1, 1) =
(40, 54).

Example 3.6 (See Fig. 5) Let v = (v1, v2, v3) = ((1, 3), (3, 2), (1, 1)). With the notations of
Section 1. we have D1 = 7, D2-the gcd of the (2, 2) minors of the matrix [(1, 3)T , (3, 2)T , (1, 1)T ]-

is 1. Finally, e1 =
D1

D2

= 7. The Frobenius number of Γ(v) is:

g(v) = (e1 − 1)v3 − v1 − v2 = (6, 6)− (4, 5) = (2, 1)

In this example, since D2 = 1, then G(v) = Z
2. In particular, for all v ∈ g(v) + Ce, v ∈ Γ(v).

Furthermore, for all v ∈ Ce, v ∈ [(1, 1) + Ce] ∪ [(1, 2) + Ce], hence the conductor of Γ(v) is
{g(v) + (1, 1), g(v) + (1, 2)]} = {(3, 2), (3, 3)}.

0 4 6 7 8 g 10
Fig. 2

v1

v2

g

v3

v4

Fig. 3
v1

v3

v4
v2

g

Fig. 4
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v1

v2

v3

Fig. 5

g

Remark 3.7 i) Let v = (v1, · · · , ve+s) et let the notations be as in Section 1. and suppose that
D1 ≥ D2 ≥ · · · ≥ Ds+1. Let (ve+i1 , · · · , ve+it) be the maximal set of {ve+1, · · · , ve+s} such that
for all 1 ≤ k ≤ t, ve+ik /∈ G(v1, · · · , ve, · · · , ve+ik−1) and let g =

∑t

k=1
(eik − 1)ve+ik −

∑e

k=1
vk.

For all v ∈ g+Ce, if v ∈ G(v) = G(v1, · · · , ve, vi1 , · · · , vit), then v ∈ Γ(v1, · · · , ve, vi1 , · · · , vit) ⊆
Γ(v). In general, the vector g need not to be the ”smallest” one with this property. Let for
example v = (4, 6, 7, 9): for all v ≥ 9, v ∈ Γ(v), but the Frobenius number of Γ(v) is 5. General
subsemigroups of N and their Frobenius numbers have been studied by many authors (see [8]
and references).

ii) If v = (8, 10, 11), then g(v) = (e1 − 1)v2 + (e−1)v3 − v1 = 30 + 11 − 8 = 33 = 3.11 ∈
Γ(8, 10, 11). In this example, condition (**) of page 2 is not satisfied, since e2v3 = 22 /∈ Γ(8, 10).
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