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On subsemigroups of N°

Abdallah Assi*
Abstraciﬂ
Let v = (v1,- -+ ,vets) be a set of vectors of N¢, and assume that veyj is not in the group generated
by v1,...,Veqp—1 for all k = 1,--- ,s. The aim of this paper is to give a formula for the Frobenius

number and the conductor of the subsemigroup generated par v in N°€.

1 Introduction and Basic Notations

Let v = (v1, ..., Ve, Vet1,---,Vers) be a set of nonzero elements of N¢ and let

e+s

I(v) = {Z a;v;la; € N}

be the subsemigroup of N¢ generated by v. Let G(v) = {311 a;v;la; € Z} be the subgroup of
Z° generated by v and let cone(vy, ..., v.) be the convex cone generated by vy, ..., v,

e
cone(vy, -+ ,0) = {Z a;vi|la; € Ry}
k=1

Assume that the dimension of cone(vy,...,v) is e -i.e. (vy,...,v.) generates R and that
Vet - -+, Vers € cone(vy, ..., v.). The paper deals with the following question:
What is the “smallest” element w € cone(vy, ..., v.) such that for all v € w + cone(vy, ..., v.),

if v € G(v), then v € I'(v)?
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Let D; be the determinant of the matrix [vl,... vT] -where T' denotes the transpose of a

) Ve

matrix-, and for all &k = 2,...,s + 1, let Dy be the ged of the (e,e) minors of the matrix

D
W 0T Wl 0T, ] Set e = —— forall k = 1,...,s. We shall assume that the two
k+1
following conditions are satisfied:
(*) Dy > Dy > -+ > Dgyq (in particular for all k =2,--+ s+ 1,v.,_1 is not in the group
generated by (v1,- Ve, Ves1,* "  Verh—2))-
(**) exverr € T(V1, ..., Ve, Ves1y .-, Verp—1) forall k =1,... s.

Our main result is the following:

Theorem 1. (See Fig. 1) Let the notations be as above, and let C. be the unique cell of

dimension e of cone(vy, ..., v.) (more precisely C. is the interior of cone(vy, ..., v.)). If
9(v) =Y (ex = Dvess — Y v;
k=1 i=1

then the following hold:

i) g(v) & I'(w).

ii) For allv € g+ (C. — {(0,--- ,0)}), if v € G(v), then v € T'(v).
We call g(v) the Frobenius vector of I'(v).
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When e = s = 1 and vy, vy are relatively prime elements of N, Sylvester proved in [9] that the
Frobenius number of I'(vy, v9) is (v1 —1).(v2 —1) —1 (note that in this case, e; = vy). In [6], M.J.
Knight generalized the formula for Sylvester to a system of elements (vy,- -+, v, ver1) € N€,
assuming that v.y; € cone(vy, -+ ,v,.), and that vy, -+, ve, ver1 generate Z¢. Hence, Theorem
1. can be viewed as a generalisation of Knight’s result.

Let e = 1 and assume that v; < - -+ < ve, 1. Assume, without loos of generality, that Dy, = 1,
ie. wvy,---,vsy; are relatively prime. The above theorem says that for all v > g+ 1 =
i (e — Dvipy — v + 1,0 € I(v). The positive integer g + 1 is called the conductor of I'(v)
in N. In fact, the ideal (¢°) is the conductor ideal of the algebra K[t*', .- tUs+1] over a field K
into its integral closure K[t].



2 Lattices in Z°

Let the notations be as in Section 1. The group Gy = G(v1, -+, Ve, Vey1, "+ ,Vesr)) being a
subgroup of the free group Z€ for all k = 0,--- ,s, it follows that Gy is a free group of rank
< e, and the hypothesis on vy, ..., v, implies that the rank of G}, is e. Let wy, ..., w, be a basis
of Gy, in particular Dy, is the determinant of the (e, ¢) matrix [wl, ... w?]. Furthermore we

have the following:

Proposition 2.1 Let v be a nonzero element of Z¢ and denote by D the ged of the (e,e)
minors of the matrix [v{,...,v%,,v"]. Then D is also the ged of the (e,e) minors of the

matrix [w],...,w!, vT]. We also have the following:

i) D divides Dy,1 and v € Gy, if and only if Dy, = D.

D D
ii) g+1 2w € Gy and if Dy > D then for all 1 <i < grl v ¢ G
Proof. i)Foralli=1,... e, letd; bethe determinant of the matrix [w{, ..., wl,, 07, wl,, ..., w]]

and note that D divides d;. If D = Dy, then Dy, divides d; for all 1 < i < e. In particular

i

the system A\jw;+. ..+ A.w. = v has the unique solution \; = € Z. Conversely, if v € Gy,
k+1
then there exist unique integers A, ..., A, such that v = A\jw; + ... + Aewe, but (A, ..., \¢) is
—i, and
k+1

Dy 1 divides d; for all i = 1,...,e. Since D = ged(dy, -+ ,de, Dgy1), then D = Dy .

the unique solution to the e x e system a;w; + ... + a.,w. = v, in particular \; =

Diq

ii) Let the notations be as in i) and 1 <i < . Let D be the ged of the (e, e) minors of

the matrix [w?,--- ,w”, (i.0)7]. If i.v € Gy, then D = Dyyq. But D = ged(idy, - - - ,id., Dysr),
in particular Dyyq divides ged(idy, - -+ ,ide,iDgy1) = i.D which is a contradiction because
i.D < Dy, M

Since Dy > --- > D,.4, it follows that Gy C Gy C --- C G5. We also have the following:

Proposition 2.2 i) For all 1 < k < s, ¢y, is the index of Gj_1 in G.
ii) Forall k =1, s, exverr € Gr—1 and (e — 1)veyr & Gr_1 for all 1 < i < ¢y.

iii) Given 0 < k < s and v € Gy, there exist unique integers Ai, ..., Ae; Aet1, - -+, Aesk Such
that v = Zf:f Av;and 0 < \; < e; foralli=e+1,...,e+ k (we call this representation the
standard representation with respect to vy, -« , Vi)

Proof. 1) is obvious and ii) results from Proposition 2.1. ii). To prove iii), we first prove the
existence: let v = Zf:f c;v; where ¢; € Z for all 1 < i < e+ k. If £ =0, then the assertion is



clear. Assume that k£ > 1, and that c..x < 0. Let p € N* be such that 0 < pep + cor < er. We
have:

et+k—1
v = g ¢V + (Cexk + per — P ) Vet
i=1

since e,vqir € Gg_1, then so is for —pegv.y. In particular we can rewrite v as:

et+k—1
v = 5 GV + (Cotk)Vetk
i=1

and 0 < Cer = peg + Cerr < €k. Since Zf:f_l ¢;v; € Gi_1, then we get the result by induction
on k.

To prove the uniqueness, let v = Zf:f a;v; = Zf:f bjv; where for alli =e+1,...,e+k,0 <

a;,b; < e; and let j be the greatest integer such that a; — b; # 0. Suppose that 7 > e + 1 and
also that a; — b; > 0, then

e

(CLj — bj)’Uj = Z(bl — ai) -+ (b6+1 - a6+1)’01 + ...+ (bj_l - aj_l)vj_l c Gj_l

i=1
and 0 < a; — b; < e;. This contradicts ii). H

Note that the results of Propositions 2.1. and 2.2. hold assuming only that the condition (*)
of page 2 is satisfied. This will not be the case in the following Corollary.

Corollary 2.3 Let 0 < k < s and let v € Gy. Let

e+k
v = Z )\ivi
i=1
be the standard representation with respect to vy, -« , veyg. The vector v € ['(vy, -+, Veyy) if
and only if \; >0 foralli=1,--- e.
Proof. If \; > 0 for all i = 1,--- e, then clearly v € I'(vy, - ,ve1x). Conversely, suppose

that v € T'(vy, -+, Vesr), then v = Zf:f w;v; where pu; > 0 for alli = 1,--- ;e + k. We shall
construct the standard representation of v as in the Proposition above: if 0 < p; < e; for all
1 =ec+1,...,e+ k, then it is over. Assume that u; > ¢; for some i > e+ 1 and let e + j
be the greatest element with this property. Write u; = pe; + fi;, where 0 < ji; < e;. But
e;v; € I'(v1,. .., Ve, Ve, - .., vj_1), in particular e;u; = g:_l M\ivi. We finally rewrite v in the
following form:



where \; > 0 and 0 < \; < ¢; for all i = J,...e+ k. Finally, we get the result by an easy
induction.ll

3 Proof of Theorem 1. and applications

Proof of Theorem 1. Let the notations be as in Section 1. and let g(v) = > 7 _;(ex —1)vVetr —
> ¢ v Clearly g(v) € G(v), and by corollary 2.3., g(v) ¢ I'(v). Let u € C. —{(0,---,0)} and
let v = g(v) + u. Assume that v € G(v) and let

e+s
vV = Z Qk'l}k
k=1
be the standard representation of v and recall that 0 < 8., < e forallk=1,---,s. We have:

s

> (er = 1= Oci)vesi +u= (61 + vy + -+ + (0 + 1o,
k=1

But > 7 (ex — 1 — i)Vt + u € Ce, which implies that 6, +1 > 0 for all k = 1,--- e, in
particular 6, > 0 for all k = 1,--- e, consequently g(v) +u € I'(v).H

Definition 3.1 Suppose that Dgiy = 1, i.e. G(v) = Z¢, and let N(C.) be the set of the
compact faces of the convex hull of UwEC'e w~+ C,. Let wy,--- ,w, € N° be the set of integral
vectors of N(C,). For all v € C,, there is 1 < k < r such that v € wy + C,. In particular, for
all v € g(v) + C, if v € C,, then there exists 1 < k < r such that v € (g + wy) + C.. The set
{g(v) + w1, -, g(v) +w,} is called the conductor of T'(v).

Corollary 3.2 Let v = (v1,- -+, veys) be as in Section 1. and let A = [v],- -+, 0oL ]. Consider

the Diophantine equation A.X = B where B € N°. By Theorem 1., if B € g(v) + C., then
B € T'(v), in particular the Diophantine equation A.X = B has a solution in N¢*¢

3.1 The semigroup of a curve singularity

Let K be an algebraically closed field of characteristic zero and let f = y" + ai(z)y™ ' +
-+« 4 ap(x) be a nonzero element of K[[z]][y]. Suppose that f is irreducible. By Newton
theorem, there exists y(t) = > ¢t € K[[t] such that f(¢",y(t)) = 0. Furthermore, f(t",y) =
[loeo, (y — y(wt)), where U, denotes the group of roots of unity in K. Given a nonzero

5



polynomial g € K[[z]][y], we set int(f,g) = O:g(t",y(t)), where O, denotes the t-order. The
set of int(f,g),0 # ¢g € K][[z]][y] is a numerical semigroup, denoted I'(f). Let my = n = d,
and for all £ > 1, let my, = inf{p|c, # 0 and my_; does not divide p}. There exists h > 1

such that dj,; = 1. The set {my,...,my} is called the set of Newton-Puiseux exponents of
f. With these notations, I'(f) is generated by rg, 71, - , 7, where o = n,r; = my and for all
2<k<h:
dy,—
Tk = Tk—1 — + My — M1
dy,
and it is well known that ryex € T'(rg,...,7c—1) for all 1 < k& < h. Conversely, let rg <
ry,--- < 1 be a given sequence of relatively prime nonnegative integers. Let d; = ry and for all
d._
1 <k <hlet diyy = ged(rg, di). If i > 14 2 Lforall 1 <k < h, then rq,--- , 7, generate
k
the semigroup of an irreducible element of K[[z]|[y] (see [11]).
d
Let f be as above, and let rg,---,7, be the set of generators of I'(f). Let e, = d—k,k =
k+1

1,---,h, and let:

M:

k—l k—’f’(]—Fl
k=1

then ¢ is the conductor of I'(f), i.e. g=c—1¢ I'(f) and ¢+ N C I'(f). The ideal (¢°) is the
conductor ideal of K[[z]][y]/(f) into its intergal closure K[[t]], and ¢ is also the Milnor number
of f,ie. ¢ = rankgK][[z,y]]/(fs, fy), where f, (resp. f,) denotes the z-derivative (resp. the

y-derivative) of f. Furthermore, the cardinality of N — I'(f) (the set of gaps of I'(f)) is %

3.2 The semigroup of a quasi-ordinary polynomial

Let K be an algebraically closed field of characteristic zero and let f = y™ + ai(z)y™ ! +
-+ an(z) be an irreducible element of K[[z]|[y] = K][[z1, - ,z]|[y] and assume that the
dlscrlmlnant D,(f) of f, defined to be the y-resultant of f and its y-derivative f,, is of
the form 22 --- 2N (a + u(z)), where Ny,--- N, € N,a € K*, and u(0) = 0 (such a poly-
nomial is called a quasi-ordinary polynomial). By [1], there exists y(t) = y(t1, - ,t.) =
> pene Gt € K[[t1, -+, tc]] such that f(¢7,--- 7, y(t)) = 0. Furthermore, there exist n dis-
tinct elements (w!,- -+, w") € U¢, where U, denotes the group of roots of unity in K, such that
f(t?v"' 7tevy> HZ:I(y_y(wlftlv"' 7w§te>>‘
Given a nonzero element g € K[[z]][y], we define O(f, g) to be the maximal element with respect
to the lexicographical order of the initial form of g(t7,--- , ", y(¢)). The set of O(f,g),0# g €
K{[z]][y], is a semigroup of N¢, denotes I'(f). Let Supp( ( )) = {p|c, # 0}. In [7], J. Lipman
proved the existence of my,---,my € Supp(y(t)) such that the following hold:



i) my < mg < --- < my, where < means < coordinate-wise.
ii) Let My = (nZ)¢ and for all k = 1,--- [ h, let M, = My + Zf ,m;Z. We have M, C

M, C --- C M,,. Furthermore, for all p € Supp( ()P € D pemy e KL

Let D; = n® and for all & = 1,--- A, let Diiy be the ged of e X e minors of the matrix
nl,,m¥, - ml], where I, denotes the (e,e) unit matrix. By conditions i), ii), we have
Dy > -+ > Dy, furthermore Dy = n°! (see [3]). Let ry, -+, r§ be the canonical basis of

(nZ)¢, and define the sequence rq,...,r, by 11 =m; and for all k =2,---  h:

Dy
T = Tk—1 l;kl 4‘(Tnk —-Tnk_l)
then rg, -+ 75, r1,- -+, r, generate I'(f) and TkD eT(ry, ..., 76,71, rpq) forall 1 <k <
B k41
h. Furthermore, for all k = 1,--- , h, if Dy, denotes the ged of the (e, e) minors of the matrix
[njéurfy"' 7TgL thenl)k—l—l ::1)k+1-
Note that in this situation, the convex cone generated by r{,- -+, r§ is nothing but R%, and
C. = (R})".
Set e, = for all k =1,---  h. The Frobenius vector of I'(f) is
k41

e

h
Zek—lrk—ng

k=1 k=1

in particular, for all u € (R%), if g+ u € G(rg, -+ , 78,71, -+ ,7h), then g +u € T(f).

3.3 Numerical examples

Example 3.3 (See Fig. 2) Let v = (v1,v9,v3) = (4,6, 7). With the notations of Section 1. we

D D
have D1 =4,Dy =2,D3=1,¢e; = Fl =2,y = 32 = 2. The Frobenius vector of I'(v) is:
2 3

g(v) = (e — vy + (eg — Vg —v; =9

and the conductor of I'(v) is ¢ = g(v) + 1 = 10. Note that N — I'(v) = {1,2,3,5,9}, whose
cardinality is g = 5.

Example 3.4 (See Fig. 3) Let v = (v, v9,v3,v4) = ((8,0),(0,8),(2,2),(12,8)). With the
notations of Section 1. we have D; = 64, Dy-the ged of the (2,2) minors of the matrix
815, (2,2)T]- is 16, and Ds-the ged of the (2,2) minors of the matrix [8[2, (2,2)7,(12,8)7]- is 8.

D,
Finally, e; = 31 =4,ey = D= = 2. The Frobenius vector of I'(v) is
2 3



g(v) = (e1 — Dvg + (3 — vy — v — v = vz + v4 — v1 — vy = (10, 6)

Let u = v = (2,2), then g+u =g+ vy = (1 — 1)vs + (e2 — 1)vg — vy = (10,14) ¢ I'(v). In
fact, u belongs to a cell of cone(vy, vy) of dimension 1.

Example 3.5 (See Fig. 4) Let v = (v, v9,v3,v4) = ((4,6),(6,3),(8,10),(3,4)). With the
notations of Section 1. we have D; = 24, Ds-the ged of the (2,2) minors of the matrix
[(4,6)T,(6,3)7, (8,10)T]- is 4, and D3-the ged of the (2, 2) minors of the matrix [(4,6)7T, (6,3)7, (8, 10)
D D
is 1. Finally, e = — = 6,65 = — = 4. The Frobenius vector of I'(v) is
D,y Dy
g(v) = (e1 — Dug + (e2 — 1)vg — v1 — ve = (49,52) — (10,9) = (39, 53)

In this example, since D3 = 1, then G(v) = Z2. In particular, for all v € g(v) + C,v € T'(v
Furthermore, for all v € C,, v € (1,1) + C,, hence the conductor of I'(v) is g(v) + (1,1) =
(40, 54).

Example 3.6 (See Fig. 5) Let v = (vy,v9,v3) = ((1,3),(3,2),(1,1)). With the notations of
Section 1. we have Dy = 7, Dy-the ged of the (2,2) minors of the matrix [(1,3)7, (3,2)7, (1,1)]-

D
is 1. Finally, e; = D_l = 7. The Frobenius number of I'(v) is
2

g(v) =(e1 — vz —v1 — vy = (6,6) — (4,5) = (2,1)

In this example, since Dy = 1, then G(v) = Z*. In particular, for all v € g(v) + C.,v € T'(v).
Furthermore, for all v € C,, v € [(1,1) + C.] U [(1,2) + C], hence the conductor of I'(v) is

{g(v) + (1,1),9(v) + (1,2)]} = {(, )> (3,3)}

0 4 6 78 g 10 Fig. 2
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Remark 3.7 i) Let v = (v1,- -+, ve1s) et let the notations be as in Section 1. and suppose that
Dy >Dy>---> Dgyq. Let (Vegiy,*+ ,Veri,) be the maximal set of {veyq1, -+, vers} such that
for al]- 1 S k S t’ Ue—l—ik ¢ G(U17 e 7U67 e 7U6+ik—1) and let g = 22:1(67/]6 - 1)Ue+lk - ZZ:I Uk
For all v € g‘l’Ce, ifv e G(y) = G(Ula Ty Ve, Uiyt ot 7U’it)7 then v € F('Ula' vy, Ve, Uiyt e >'Uit) g

['(v). In general, the vector g need not to be the ”smallest” one with this property. Let for
example v = (4,6,7,9): for all v > 9,v € I'(v), but the Frobenius number of I'(v) is 5. General
subsemigroups of N and their Frobenius numbers have been studied by many authors (see [§]
and references).

ii) If v = (8,10, 11), then g(v) = (e; — 1)vg + (e—1)vg —v; =30+ 11 -8 =33 =3.11 €
(8,10, 11). In this example, condition (**) of page 2 is not satisfied, since eqvs = 22 ¢ I'(8, 10).
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