On the Convex Hull of the Points on Modular Hyperbolas

Sergei V. Konyagin
Steklov Mathematical Institute
8, Gubkin Street, Moscow, 119991, Russia
konyagin@mi.ras.ru
Igor E. Shparlinski
Department of Computing, Macquarie University
Sydney, NSW 2109, Australia
igor.shparlinski@mq.edu.au

December 14, 2010

Abstract

Given integers a and $m \geq 2$, let $\mathcal{H}_{a}(m)$ be the following set of integral points $$
\mathcal{H}_{a}(m)=\{(x, y): x y \equiv a \quad(\bmod m), 1 \leq x, y \leq m-1\}
$$

We improve several previously known upper bounds on $v_{a}(m)$, the number of vertices of the convex closure of $\mathcal{H}_{a}(m)$, and show that uniformly over all a with $\operatorname{gcd}(a, m)=1$ we have $v_{a}(m) \leq m^{1 / 2+o(1)}$ and furthermore, we have $v_{a}(m) \leq m^{5 / 12+o(1)}$ for m which are almost squarefree.

2010 Mathematics Subject Classification: 11A07, 11C08, 11D79

Keywords: congruence, modular hyperbola, integral polygon, convex hull

1 Introduction

For integers a and $m \geq 2$, we define the modular hyperbola, $\mathcal{H}_{a}(m)$, to be the set of integral points

$$
\mathcal{H}_{a}(m)=\{(x, y): x y \equiv a \quad(\bmod m), 1 \leq x, y \leq m-1\} .
$$

A systematic study of geometric properties of the set $\mathcal{H}_{a}(m)$ has been initiated in [7] and continued in a number of works, see [4, 5, 6, 11, 14, 16, 17] and references therein, where also several surprising links to various number theoretic questions have been discovered.

In particular, following [6, 11], we consider the convex closure $\mathcal{C}_{s}(a, m)$ of the set $\mathcal{H}_{a}(m)$ and let $v_{a}(n)$ denote the number of vertices of $\mathcal{C}_{s}(a, m)$.

For $a=1$, it is shown in [11] that

$$
\begin{equation*}
v_{1}(m) \leq m^{3 / 4+o(1)}, \tag{1}
\end{equation*}
$$

which has been improved in [6] as

$$
\begin{equation*}
v_{1}(m) \leq m^{7 / 12+o(1)} \tag{2}
\end{equation*}
$$

by using the bound $O\left(S^{1 / 3}\right)$ of G. Andrews [2] on the number of vertices of a convex polygon of area S vertices on the integral lattice \mathbb{Z}^{2}. In [11] a number of other lower and upper bounds on $v_{1}(m)$ have been established, which however apply only to special classes of integers m. For example, it shown in [11, Theorem 3.2] that for all $m>1$,

$$
v_{1}(m) \geq 2(\tau(m-1)-1)
$$

where $\tau(k)$ is the number of positive integer divisors of k, and this estimate is tight as

$$
\#\left\{m \leq x: v_{1}(m)=2(\tau(m-1)-1)\right\} \gg \frac{x}{\log x}
$$

where, as usual, the notations $U \ll V$ and $V \gg U$ are equivalent to $U=$ $O(V)$ (throughout the paper, except Lemma 4, the implied constants are absolute). Besides, one can find in [11] an extensive numerical study of $v_{1}(m)$ which shows a somewhat mysterious behaviour which exhibits both some chaotic and regular aspects.

It has also been noticed in [6] that [16, Theorem 1] implies that

$$
\begin{equation*}
v_{a}(m) \leq m^{1 / 2+o(1)}, \tag{3}
\end{equation*}
$$

for all but $o(\varphi(m))$ integers a with $1 \leq a \leq m-1$ and $\operatorname{gcd}(a, m)=1$, where, as usual, $\varphi(m)$ denotes the Euler function.

Here we use rather elementary arguments to improve and generalise the bounds (11), (2) and (3) and show that in fact (3) holds for all a with $\operatorname{gcd}(a, m)=1$ and also prove a stronger bound for integers m which are almost squarefree. More precisely, we obtain the following results.

Theorem 1. For an arbitrary integer $m \geq 2$, uniformly over integers a with $\operatorname{gcd}(a, m)=1$, we have

$$
v_{a}(m) \leq m^{1 / 2+o(1)}
$$

as $m \rightarrow \infty$.
For an integer m we denote by m^{*} its kernel, that is, the product of all prime divisors of m.

Theorem 2. For an arbitrary integer $m \geq 2$, uniformly over integers a with $\operatorname{gcd}(a, m)=1$, we have

$$
v_{a}(m) \leq t m^{5 / 12+o(1)}
$$

where $t=m / m^{*}$.
In particular, for a squarefree m we have $m^{*}=m$, thus we have:
Corollary 1. For an arbitrary squarefree integer $m \geq 2$, uniformly over integers a with $\operatorname{gcd}(a, m)=1$, we have

$$
v_{a}(m) \leq m^{5 / 12+o(1)} .
$$

Finally, a simple counting argument shows that $m^{*}=m^{1+o(1)}$ for almost all m and thus leads to the following estimate:

Corollary 2. For $M \rightarrow \infty$ and all but $o(M)$ positive integers $m \leq M$, uniformly over integers a with $\operatorname{gcd}(a, m)=1$, we have

$$
v_{a}(m) \leq m^{5 / 12+o(1)}
$$

2 Distribution of Points on Curves

We denote

$$
N(a, m ; U, V)=\{(x, y): x y \equiv a \quad(\bmod m), 1 \leq x \leq U, 1 \leq y \leq V\}
$$

We need the following asymptotic formula on $N(a, m ; U, V)$ that is immediate from the Weil bound of Kloosterman sums; see, for example, [8] (we note that in [8] it is given only for $a=1$ but the proof extends to arbitrary a with $\operatorname{gcd}(a, m)=1$ at the cost of only obvious typographical adjustments).

Lemma 3. Uniformly over integers a, U, V,

$$
N(a, m ; U, V)=U V \frac{\varphi(m)}{m^{2}}+O\left(m^{1 / 2+o(1)}\right)
$$

We prove the following statement in a much more general form that we need for our purpose as we believe this can be of independent interest.

Lemma 4. Let $\mu_{i}(X, Y)=X^{h_{i}} Y^{k_{i}}, i=1, \ldots, s$, be s arbitrary distinct monomials. Assume that for a set of $K \geq s$ distinct points $\left(x_{\nu}, y_{\nu}\right) \in \mathbb{Z}^{2}$ with $\max \left\{\left|x_{\nu}\right|,\left|y_{\nu}\right|\right\} \leq H, \nu=1, \ldots, K$, over an arbitrary field \mathbb{F} we have

$$
\operatorname{det}\left(\mu_{i}\left(x_{\nu_{j}}, y_{\nu_{j}}\right)\right)_{i, j=1}^{s}=0
$$

for any $1 \leq \nu_{1}<\ldots<\nu_{s} \leq K$. Then there is a polynomial F of the form

$$
F(X, Y)=\sum_{i=1}^{s} A_{i} \mu_{i}(X, Y)
$$

with integer coefficients satisfying $\left|A_{i}\right| \leq H^{O(1)}, i=1, \ldots, s$, where the implied constant depends only on s, and such that $F\left(x_{\nu}, y_{\nu}\right)=0, \nu=1, \ldots, K$.
Proof. Let r be the largest rank of all matrices $\left(\mu_{i}\left(x_{\nu_{j}}, y_{\nu_{j}}\right)_{i, j=1}^{s}\right.$ with $1 \leq$ $\nu_{1}<\ldots<\nu_{s} \leq K$. We have $1 \leq r \leq s-1$. Without loss of generality we can assume that the matrix

$$
M=\operatorname{det}\left(\mu_{i}\left(x_{j}, y_{j}\right)\right)_{i, j=1}^{r+1, r}
$$

is of rank r. Thus, there is a unique nontrivial vanishing linear combination of columns with relatively prime coefficients a_{1}, \ldots, a_{r+1} such that the first nonzero coefficient is 1 . Furthermore, it is obvious (from the explicit expression
for solutions of system of linear equations via determinants and trivial upper bounds on these determinants), that $\left|a_{i}\right| \leq H^{O(1)}, i=1, \ldots, r+1$

Thus for any $\nu=1, \ldots, K$ the matrix obtained from M by adding the bottom row $\left(\mu_{1}\left(x_{\nu}, y_{\nu}\right), \ldots, \mu_{r}\left(x_{\nu}, y_{\nu}\right)\right)$ is also of rank k, so

$$
a_{1} \mu_{1}\left(x_{\nu}, y_{\nu}\right)+\ldots+a_{r+1} \mu_{r+1}\left(x_{\nu}, y_{\nu}\right)=0
$$

which concludes the proof.
Lemma 5. Let

$$
G(X, Y)=A X^{2}+B X Y+C Y^{2}+D X+E Y+F \in \mathbb{Z}[X, Y]
$$

be an irreducible quadratic polynomial with coefficients of size at most H. Assume that $G(X, Y)$ is not affine equivalent to a parabola $Y=X^{2}$ and has a nonzero determinant

$$
\Delta=B^{2}-4 A C \neq 0
$$

Then the equation $G(x, y)=0$ has at most $H^{o(1)}$ integral solutions $(x, y) \in$ $[0, H] \times[0, H]$.

Proof. The proof is based on the reduction of the equation $G(x, y)=0$ to a Pell equation $X^{2}-U Y^{2}=V$ with some integers U and V of size $H^{O(1)}$ together with the estimate of R. C. Vaughan and T. D. Wooley [18, Lemma 3.5] on the number of solutions of this equation of a given size.

In the case when the discriminant Δ is not a perfect square the above reduction is given by J. Cilleruelo and M. Z. Garaev [5, Proposition 1]. If Δ is a perfect square it is obtained by V. Shelestunova [13, Theorem 1].

3 Integral Polygons

We say that a polygon $\mathcal{P} \subseteq \mathbb{R}^{2}$ is integral if all its vertices belong to the integral lattice \mathbb{Z}^{2}.

Also, following V. I. Arnold [1] we say two polygons $\mathcal{P}, \mathcal{Q} \subseteq \mathbb{R}^{2}$ are equivalent is there is an affine transformation

$$
T: \mathbf{x} \mapsto A \mathbf{x}+\mathbf{b}, \quad \mathbf{x} \in \mathbb{R}^{2}
$$

for $A=\mathrm{GL}_{2}(\mathbb{Z})$ and $\mathbf{b} \in \mathbb{Z}^{2}$ preserving the integral lattice \mathbb{Z}^{2} (that is, $\operatorname{det} A= \pm 1$) that maps \mathcal{P} to \mathcal{Q}.

We need the following result of I. Bárány and J. Pach [3, Lemma 3]:

Lemma 6. An integral polygon of area S is equivalent to a polygon contained in some box $[0, u] \times[0, v]$ of area $u v \leq 4 S$.

We note that it can also be derived (with a slightly weaker constant) from a result of V. I. Arnold [1, Lemma 1 of Section 2] that asserts that any integral convex polygon of area S can be covered by an integral parallelogram of area at most $6 S$.

We also recall the following general result of F. V. Petrov [12, Lemma 2.2] which we use only in \mathbb{R}^{2}. We use $\operatorname{vol} \mathfrak{A}$ to denote the volume of a compact set $\mathfrak{A} \subseteq \mathbb{R}^{d}$

Lemma 7. Let $\mathfrak{U} \subseteq \mathbb{R}^{d}$ be a convex compact. We consider a finite sequence of compacts $\mathfrak{V}_{i} \subseteq K, i=1, \ldots, n$, such that none of them meets the convex hull of others. Then

$$
\sum_{i=1}^{n}\left(\operatorname{vol} \mathfrak{V}_{i}\right)^{(d-1) /(d+1)} \ll(\operatorname{vol} \mathfrak{U})^{(d-1) /(d+1)}
$$

where the implied constant depends only on d.

4 Proof of Theorem 1

We estimate the number of vertices (x, y) of $\mathcal{C}_{s}(a, m)$ that are inside of the square $[0, m / 2] \times[0, m / 2]$. The other three squares

$$
\begin{equation*}
[0, m / 2] \times[m / 2, m], \quad[m / 2, m] \times[0, m / 2], \quad[m / 2, m] \times[m / 2, m] \tag{4}
\end{equation*}
$$

can be dealt with fully analogously.
We fix some $\varepsilon>0$ and also recall the well-known estimates on the divisors and Euler functions

$$
\begin{equation*}
\tau(s)=s^{o(1)} \quad \text { and } \quad \varphi(s)=s^{1+o(1)} \tag{5}
\end{equation*}
$$

as $s \rightarrow \infty$, see [10, Theorems 317 and 328], we obtain our main technical result.

We claim that, for a sufficiently large m we have

$$
\begin{equation*}
x y \leq m^{3 / 2+\varepsilon} . \tag{6}
\end{equation*}
$$

for each such vertex. Indeed, assume that condition (6) fails.

Then applying Lemma 3 to $\mathcal{H}_{a}(m)$ with $U=x m^{-\varepsilon / 4}$ and $V=y m^{-\varepsilon / 4,}$, we see that there are points $\mathbf{w}_{j}, j=1,2,3,4$, in each of the translates of the box $[0, U] \times[0, V]$ to the corners of the $[0, m] \times[0, m]$ square.

Therefore the point (x, y) is inside of the convex hull of the points \mathbf{w}_{j}, $j=1,2,3,4$, but is different from all of them, and thus cannot be a point on $\mathcal{C}_{s}(a, m)$.

We now see that there is some integer A with $1 \leq A<m$ such that for $(x, y) \in \mathcal{C}_{s}(a, m)$ we have

$$
x y=A+m \ell
$$

with some nonnegative integer $\ell \leq m^{3 / 2-1+\varepsilon}$. When such an integer k is fixed, by (5) there are $m^{o(1)}$ possibilities for the point (x, y) and the result now follows.

5 Proof of Theorem 2

Fix some $\varepsilon>0$.
As in the proof of Theorem 1 we see from Lemma 3 that all vertices (u, v) on $\mathcal{C}_{s}(a, m)$ that are also inside of the square $[0, m / 2] \times[0, m / 2]$ satisfy

$$
u v \leq m^{3 / 2+o(1)}
$$

We estimate the number of such points.
The number of vertices of $\mathcal{C}_{s}(a, m)$ inside of the squares (4) can be estimated fully analogously.

Hence, it is enough to estimate the number of vertices of $\mathcal{C}_{s}(a, m)$ inside of each of the boxes $[1, U] \times[1, V]$ with $U=2^{j}, V=m^{3 / 2+\varepsilon} 2^{-j}, j=1,2, \ldots$. Since only $O(\log m)$ such boxes are of our interest.

Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{r} \in \mathcal{C}_{s}(a, m)$ be located in $[1, U] \times[1, V]$. Assume that $r \geq$ $t m^{\varepsilon}$ as otherwise there is nothing to prove. Select

$$
k=\left\lfloor t m^{\varepsilon}\right\rfloor .
$$

By Lemma 7, there are k consecutive vertices $\mathbf{v}_{j+1}, \ldots, \mathbf{v}_{j+k}$ such that the area of the polygon formed by these vertices is bounded by

$$
\begin{equation*}
Q=O\left(U V(r / k)^{-3}\right)=O\left(m^{3 / 2+4 \varepsilon} t^{3} r^{-3}\right) \tag{7}
\end{equation*}
$$

In particular, we have $k \geq 5$ for a sufficiently large m.

By Lemma 6, we have an affine transformation of \mathbb{R}^{2} preserving \mathbb{Z}^{2} such that the images of all points $\mathbf{v}_{j+\nu}$ are points $\left(X_{\nu}, Y_{\nu}\right) \in[0, u] \times[0, v], \nu=$ $1, \ldots, k$ for some real positive u and v with $u v \ll Q$.

Note that all these points satisfy the congruence

$$
\begin{equation*}
f\left(X_{\nu}, Y_{\nu}\right) \equiv 0 \quad(\bmod m), \quad \nu=1, \ldots, k \tag{8}
\end{equation*}
$$

where f is a nonzero modulo m quadratic polynomial (which is the image of $X Y-a$ under the above transformation).

Without loss of generality, we can assume that $X_{k}=Y_{k}=0$. So, the constant term of f is 0 . Take arbitrary $\nu_{1}<\ldots<\nu_{5}$. The matrix

$$
W=\left(X_{\nu_{i}}^{2}, X_{\nu_{i}} Y_{\nu_{i}}, Y_{\nu_{i}}^{2}, X_{\nu_{i}}, Y_{\nu_{i}}\right)_{i=1, \ldots, 5}
$$

is singular modulo m since $f\left(X_{\nu_{i}}, Y_{\nu_{i}}\right) \equiv 0(\bmod m), i=1, \ldots, 5$. This implies that the determinant det W is divisible by m. Examining the structure of the terms of $\operatorname{det} W$ one also sees that $\operatorname{det} W=O\left(Q^{4}\right)$.

Therefore, if $Q \leq \mathrm{cm}^{1 / 4}$ with an appropriate constant c then $\operatorname{det} W=0$ (over \mathbb{Z}). We now see from Lemma 4 that there is a nonzero quadratic polynomial $F(X, Y)$ such that

$$
\begin{equation*}
F\left(X_{\nu}, Y_{\nu}\right)=0, \quad \nu=1, \ldots, k \tag{9}
\end{equation*}
$$

with the integer coefficients of size $m^{O(1)}$. Moreover, we may assume that the coefficients of F are relatively prime.

Let $\mathbf{v}_{j+\nu}=\left(x_{\nu}, y_{\nu}\right), \nu=1, \ldots, k$. The equation (9) is equivalent to the equation

$$
\begin{equation*}
G\left(x_{\nu}, y_{\nu}\right)=0, \quad \nu=1, \ldots, k \tag{10}
\end{equation*}
$$

for some quadratic polynomial $G(X, Y) \in \mathbb{Z}[X, Y]$ with relatively prime coefficients. Next, we consider the polynomial $H(X)=X^{2} G(X, a / X)$ over the ring of residues modulo m. For any $\nu=1, \ldots, k$ we have $H\left(x_{\nu}\right) \equiv 0$ $(\bmod m)$.

We take an arbitrary prime divisor $p>5$ of m^{*}. Assume that all coefficients of H are divisible by p. Then any solution of the congruence $x y \equiv a \bmod p$ also satisfies the congruence $G(x, y) \equiv 0 \bmod p$. Therefore, there are at least $p-1>4$ common zeros of polynomials $x y-a$ and G modulo p. By the Bézout Theorem, see, for example, [9, Section 5.3], the polynomial G is a multiple of $x y-a$ modulo p. Then G is irreducible and is not affine equivalent to a parabola modulo p. Consequently, G is irreducible
and is not affine equivalent to a parabola over \mathbb{Z} and also has a nonzero determinant. Thus, we can apply Lemma 5 and conclude that the equation $G(x, y)=0$ has at most $m^{o(1)}$ integral solutions $(x, y) \in[0, m] \times[0, m]$. Now assume that for any prime divisor $p>5$ of m^{*} there is a coefficient of H not divisible by p. Using the Chinese Remainder Theorem, we see that the congruence $H(x) \equiv 0(\bmod m), 1 \leq x \leq m$, has at most $t 4^{\omega\left(m^{*}\right)}=t \tau\left(m^{*}\right)^{2}$ solutions, where $\omega(s)$ is the number of prime divisors of an integer s. Recalling (5) we see that in both cases $k=t m^{o(1)}$ which contradicts to our choice of $k=\left\lfloor t m^{\varepsilon}\right\rfloor$. Therefore $Q>\mathrm{cm}^{1 / 4}$ which together with (7) implies $r=O\left(t m^{5 / 12+4 \varepsilon / 3}\right)$. Since $\varepsilon>0$ is arbitrary, the result now follows.

6 Comments

It is shown in [16] that for almost all residue classes a modulo m, the asymptotic formula of Lemma 3 can be improved. Perhaps this can be used to improve the bound of Theorems 1 and 2 on average over a.

Convex hull of the points on multidimensional hyperbolas can be studied as well. In fact in the multidimensional case a different technique can be used to obtain versions of Lemma 3 which have no analogues in the two dimensional case, see [15]. Furthermore, the method of proof of Theorem 1$]$ easily extends to the multidimensional case as well. However extending the method of proof of Theorem 2 seems to be more difficult and we pose this as an open question.

Acknowledgement

The authors would like to thank Imre Bárány for the information about the existence of a proof of Lemma 6 in [3] and Oleg German for an alternative proof of this result. The authors are also grateful to Pär Kurlberg for supplying then with an alternative proof of Lemma 5 and to David McKinnon and Alfred Menezes for useful discussion and for the information about the thesis of V. Shelestunova [13].

The research of S. K. was supported in part Russian Fund of Basic Researches Grant N. 11-01-00329 from the Russian Fund of Basic Researches and that of I. S. by ARC grant DP1092835.

References

[1] V. I. Arnold, 'Statistics of integral polygons', Funct. Anal Appl., 14(2) (1980), 1-3 (in Russian).
[2] G. Andrews, 'A lower bound for the volume of strictly convex bodies with many boundary lattice points', Trans. Amer. Math. Soc., 106 (1963), 270-279.
[3] I. Bárány and J. Pach, 'On the number of convex lattice polygons', Combinatorics, Probability, and Computing, 1 (1992), 193-302.
[4] T. H. Chan and I. E. Shparlinski, 'On the concentration of points on modular hyperbolas and exponential curves', Acta Arith., 142 (2010), 59-66
[5] J. Cilleruelo and M. Z. Garaev, 'Concentration of points on two and three dimensional modular hyperbolas and applications', Preprint, 2010 (available from http://arxiv.org/abs/1007.1526).
[6] K. Ford, M. R. Khan and , I. E. Shparlinski, 'Geometric properties of points on modular hyperbolas', Proc. Amer. Math. Soc., 133 (2010), 4177-4185.
[7] K. Ford, M. R. Khan, I. E. Shparlinski and C. L. Yankov, 'On the maximal difference between an element and its inverse in residue rings', Proc. Amer. Math. Soc., 133 (2005), 3463-3468.
[8] A. Fujii and Y. Kitaoka, 'On plain lattice points whose coordinates are reciprocals modulo a prime', Nagoya Math. J., 147 (1997), 137-146.
[9] M. Fulton, Algebraic curves: An Introduction to algebraic geometry, 3rd edition, Addison Wesley, 2008.
[10] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, Oxford Univ. Press, Oxford, 1979.
[11] M. R. Khan, I. E. Shparlinski and C. L. Yankov, 'On the convex closure of the graph of modular inversions', Experimental Math., 17 (2008), 91-104.
[12] F. V. Petrov, 'An estimate for the number of rational points on convex curves and surfaces', Zapiski Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 344 (2007), 174-189 (in Russian).
[13] V. Shelestunova, 'Upper bounds for the number of integral points on quadratic curves and surfaces', $P h D$ Thesis, University of Waterloo, Ontario, Canada, 2010.
[14] I. E. Shparlinski, 'Primitive points on a modular hyperbola', Bull. Polish Acad. Sci. Math., 54 (2006), 193-200.
[15] I. E. Shparlinski, 'On the distribution of points on multidimensional modular hyperbolas', Proc. Japan Acad. Sci., Ser.A, 83 (2007), 5-9.
[16] I. E. Shparlinski, 'Distribution of inverses and multiples of small integers and the Sato-Tate conjecture on average;, Michigan Math. J., 56 (2008), 99-111.
[17] I. E. Shparlinski and A. Winterhof, 'On the number of distances between the coordinates of points points on modular hyperbolas', J. Number Theory, 128 (2008), 1224-1230.
[18] R. C. Vaughan and T. D. Wooley, 'Further improvements in Waring's problem', Acta Math., 174 (1995), 147-240.

