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Wave Speed in the Macroscopic Extended
Model for Ultrarelativistic Gases

F. Borghero! F. Demontis’and S. Pennisi *

Abstract

An exact macroscopic extended model for ultrarelativistic gases,
with an arbitrary number of moments, is present in the literature.
Here we exploit equations determining wave speeds for that model.
We find interesting results; for example, the whole system for their
determination can be divided into independent subsystems and some,
but not all, wave speeds are expressed by rational numbers. Moreover,
the extraordinary property that these wave speeds for the macroscopic
model are the same of those in the kinetic model, is proved.

1 Introduction

The macroscopic extended model, with an arbitrary number of moments, for
ultrarelativistic gases has been introduced in [I] which is the generalization
of [2]. It proposes the field equations

aaAaal---ocn — ]Oq"'an, f()r n = 07 1’ ey ]V7 (11)

where A% and [ are symmetric and trace-less tensors. In [I] it is
proved that the entropy principle for this system amounts to assuming the
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existence of the symmetric and trace-less Lagrange multipliers Ay, qy..a,, and
of an arbitrary function F(zg,z1,---,x,), such that

Aaal"'am — /Fm()\’ )\Mpu’ cee )\MluNp/*’/l .. .p/”’N)papOcl .. .pOC'nLdP’ (1‘2)

OF dptdp?dp?
where F,, = X dP = ————
fying the relation p*p, = 0 (because the particle mass is zero in an ultrarel-
ativistic gas). Moreover, A,,..q, can be taken as independent variables. A
further condition has been studied in [3], while a reader not acquainted with
the general context of Extended Thermodynamics might profit by reading
[41, 151, [6].

In this article we study the wave speeds for the system (I.T]). To this end
we observe that this system, taking into account (L2), can be written as

and p* is the four momentum satis-

N
ZAaal”'amﬁlnﬂnaoc)‘ﬁl“ﬂn = [alman’ (13)

n=0
with
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——— . Now reca a erbolict or the system
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in the time-like direction &, (with £,£* = —1), in the sense of Friedrichs
[7, 8, @], means that

where F), ,, =

1. The system &, A ambPr=bng)y 5 =0, in the unknown d\g,..5,, has
only the solution dAg,..3, = 0;

2. The system
o At amBrbng ), 5 =0, (1.5)

where , = 1, — A, has real eigenvalues A\ and a basis of eigenvectors
0Ag,...,, for every unit vector n, such that n,n* =1, 7,£* = 0.



The eigenvalues A are the wave speeds to obtain. A sufficient condition for
hyperbolicity in every time-like direction can be found in [I0]. The hyper-
bolicity for our system (L3 has already been proved in [I] as a consequence
of the so-called “convexity requirement”; so it remains to find the values of
the eigenvalues. We first introduce the time-like direction u, = v~ !\, with

7 = +/—Au A" and the projector
hap = gap + tatig (1.6)

into the 3-dimensional subspace orthogonal to u,. After that we note that
h*Ppg # 0, otherwise ¢, = —¢,utu, and the condition 2. becomes 1. with
£a = Uq, from which d)g,..5, = 0 because of the fact that d)g,.., is an
eigenvector. Because h®’pg # 0, we can now define ¢ = /W, 0, and
ve = 9 1hBps, so that v, is a unit vector orthogonal to u,. Finally, we
introduce K, = hag — vovg which is the projector onto the 2-dimensional
subspace orthogonal to u, and v,.

In [11] we have found some properties satisfied by these projectors and
the definition of K ;12 T -K;f, a tensor such that for every tensor T/

the tensor T<2 71> = K;f . -K;;’>T51”'ﬁp is equal to the sum of the
expression Kgi - ~Kg§T61'“BP and a linear combination of its 2-dimensional

traces (i.e., Kgp, - Kp,, 15, Kot - ~KgZT61“'BP) and, moreover, the 2-
dimensional trace of 1T°<2 7%~ ig equal to zero. In other words, T<2 7%=
is the 2-dimensional trace-less part of Kgi e KgZT Pr-Bp In Section 2l we will
report some of these results. We recall that, in [I1], only the case N = 3 has
been treated, while in the present paper we study the general case. However,
some details of [I1] are also general, so we report these results here, for the
sake of completeness. Obviously, the objective of all these considerations is
to rewrite the system ([LH) in terms of tensors belonging to our 2-dimensional
subspace. This result will be given in Section 2

The system ([5) will not assume a very elegant form, a consequence
of its generality. For this reason in section [3] we will consider the cases
p=N,p=N-—-1and p =N — 2. In this way the case N = 2 will be
exhausted. The resulting wave speed, in the reference frame moving along
with the fluid, are A =0, A = %, A==+, A= :I:%. These are expressed by
rational numbers, except for the last one.

Finally, in Section Ml we will prove the extraordinary property that the
wave speeds do not depend on the function F', so that we can take F' =
e~ XiloXi/K where K is the Boltzmann constant; in other words, the wave



speeds for the macroscopic model are the same as those in the kinetic model
[12].

2 On the 2-dimensional trace-less part of a
tensor and other properties of the projec-
tors

Let us begin by exploiting some technical tensorial properties which will be
useful to write the system (L3) in terms of 2-dimensional traceless tensors.
First, let us define the tensor

5]
<27 > (72s g s—172s
K612 1_,_KB§ _ZQSK(ﬁlﬁz"'KﬁgsflﬁgsK 2+1...KB:)K’71“/2...K“/2 1’72)7
s=0

B2s+1
(2.1)
where a, = (—i)s p—LZS)! e _Z!_I)! and from now on the square brackets denote
the integer parts o% the number.

What does this tensor mean? When we contract it with a generic symmet-
ric tensor TP"P» we obtain that 7<2 7w> & K;f . -KngﬁlmBP equals

the sum of TP1F» K- Kg;’ (because ag = 1) and of a linear combination of
the 2-dimensional traces of 77" . Moreover, the following theorem holds:

Theorem 2.1 The 2-dimensional trace of T<2 "% is zero, or, equivalently
p>
K32 Ky Koy, =0 (2.2)

This theorem has been proved in [I1] as are the other theorems of this sec-
tion. By means of Theorem [2.1] it is now natural to call T<2 7%~ the
2-dimensional trace-less part of 77 %. Then (2.1) gives the 2-dimensional
trace-less part of K gl . ~Kg§); it will be useful for the sequel to have a sort
of inversion of this relation. It is provided by

Theorem 2.2 The following identity holds:

[5]
T J— B S T s— s
thfl T Kgr) - Z br,s K(a1a2 e 'K(a2sf1a2sK(<220Jrr22+1K£T>Kﬁlﬁ2 co J(Pema ) )
s=0

(2.3)



with

b= 7! 1 (2r —4s)!!

S (r— )l 2s)1(2r — 2s)I (2.4)

Also the proof of this theorem is reported in [I1]. We conclude this list of
theorems with

Theorem 2.3 The following identity holds:

<o i, > po(oaae | po@2s 1025170241 |, L [/ Q2 e [TO2s4ct1 | . . [ TO2s4ct+d)
K320 KPP K K v yoztep [osse

_ (2s)l! (25 +c+d—p)! <2 .. JowS FCOM0pt [ea0pin | | Fopazm
Ap

(2s —=2p)! 2s+c+d)! ™

Q2p+102p+2 Qa2s—102s |/ Q2s+1 Q254 TO25+c+1 Q25+ c+d
K K v V2t U

, (2.5)

where the indices underlined denote a symmetrization over those indices. See
[L11] for the proof of this theorem.
In [I1] we have also proved that the equation

Vi < > B
X(}i,k) P _ Kﬁlz moL. KBZ UBerl - UBP+hVBp+h+1 . Vﬁerthd)\Bl B ’ (2.6)

represents an invertible transformation from the variables dAg,...5, (with zero
4-dimensional trace) to X ?ﬁk;’p (belonging to the subspace orthogonal to U.,
and V,, and with zero 2-dimensional trace) and the condition that dAg,..s,
has zero 4-dimensional trace is “translated” into the fact that X E’ﬁk;” has 2-
dimensional zero trace. We note that the index h denotes how many contrac-
tions with U... are involved, while the index k denotes how many contractions
with V.. are present.

Therefore, we can now consider X/, 7" as unknowns, instead of d\g,...4, .
Obviously, the invertibility above mentioned holds for any symmetric ten-
sor dAq,...a,, With zero 4-dimensional trace; consequently, it holds also with
goaAo‘Bl"'Bm“l"‘O‘"d)\al...an instead of d\,,....,,. In other words, we have that if

N
Uﬁl e UBaVBa+1 .. 'Vﬁa+bK<2 Yat+b+1 | Kg::> Z (pOCAOCBL..BmO!l“'O!nd)\alman =0

Batbi1
n=0

(2.7)

for all a, b such that a+b < m, then also (L5]) will be satisfied. The converse
is trivial. Consequently, (2.7)) is the new system to be used to obtain the

>



unknowns X ;""" But it is better to rewrite (2.7) as

N
Z (_QDMUMUOC + SDVa) K5<12 e Kgﬁ >Uﬁp+1 T Uﬁp+avﬁp+a+1 T Vﬁp+a+b
n=0

. Aaﬁl"'Bmar--and)\al___an =0, (2.8)

withp=0,....,m;a+b=m —p.
It is interesting to see that, from [I1], it is not necessary to substitute the
relation linking d\,,...q, to X ?ﬁk;’p in this equation, since it will be a natural

consequence of the kinetic expression (IL4]). The effective steps can be found
n [11], so we limit ourselves to report the result here, i.e.,

m+n a 27‘ b

e S S () e ()

n=p+b— 2[%] [2p+b+1 s=p T=

+o0 2r—2s)! (m+n—a—b—p)! (25!
) F m+n+2 (
[ Fuh i 2 B

§—p
( T )( 1) X(ﬂg ;p2r+b+2s 2T, 2r—b— 25+2T)+

[ern a+1] [27 b— 1

N s
m+n+1—a mantl—a [T
oYY Y zw( ) o (7)
n=p+b+1-2[2H] p=[22%2] s=p  T=0

o0 2r—2s)!  (m4+n—a—>b—p)! (2!
. Fpn(\, py)p™ 24 (
A (A py)p Plar—2s—b—1)! (mtntl—a)l (25— 2p

S_p 1 P
’ ( T )( 1" X’Yn g2r+b+2s 2T+1,2r—b—2s+2T—1) =0. (2.9)

To state the system (2.9) we have to choose a value of p such that 0 <
p < N; after that we have to write (2.9]) for every m such that

p<m<N (2.10)

and for every couple (a,b) such that a +b = m — p. In this way a set of
equations is obtained which are linear combinations of tensors X(V};",;)V”, all
of the same order p; moreover, the coefficients of these linear combinations
are scalar functions. In other words, the wave speeds are obtained by simply

6



imposing that the matrix of these scalar coefficients is singular. Doing this
for every value of p, we obtain all the wave speeds. As a result we have
proved that the whole system, for the determination of the wave speeds, can
be divided into some independent subsystems for each given value of p. We
note also that for every fixed value of p, from (LH) only those with m > p
have to be considered in the system (2.9]); moreover, in this system we have
n > p so that, from the initial unknowns d\gs,...3, only those with n > p are
present in the system (2.9]).

3 The wave speeds for some values of p

3.1 The wave speeds for p =N

In this case, from (2.I0), we have m = N. In other words, only the last
equation of system (ILH]) contributes to the system (2.9). Moreover, a + b =
m — p implies @ = b = 0. As a consequence, we see that (2.9) becomes

4 N!
-, Ut —- Gy N QNI XN =0,
PR ON T 1 N’N(QN)!( X0
N
because, in the coefficient of ¢ the summation Z appears, so that this co-
n=N-+1

efficient is zero. Moreover, we have defined G, ,, = fooo Fon(\, py)p™ T+ 2dp.
Consequently, we have ¢, U = 0 as unique eigenvalue. It corresponds to the
waves moving along with the fluid, because in the case {, = U, we have
0= ¢, U" = (=AU, +n,)U" = X In other words, the wave speed is zero.

We also note that, ¢,U* = 0 does not depend on F,, ,, so it is the same
as for the kinetic model [12].

3.2 The wave speeds for p=N — 1

From (2I0) we obtain m = N — 1 or m = N. In other words, only the last

two equations of the system (L)) contribute to the system (2.9]).
Ifm=N-1froma+b=m—pitfollowsa=0,b=0. If m= N, from

the same equation we obtaina+b=1,ie.,a=1,b=00ora=0,b=1. In



this way we obtain three equations,

4 1---YN-1
- @uUum(N - 1)'(2N - 2)” GN_l,N_l X(’B’O)’YN + GN_LN (31)
Ut 2T NN — X o ST NN -] = g
N - S0 eN+l oy 1T
" 4 Y- YN-1

— QDMU m(]\f - 1)'(2N - 2)” GN,N—l X(O,O) + GN,N (32)

ol 2NN — 2)IXT N o ST NN — )X = 0
PN 0 eN+ “on o 1T
8t(N — 1)IN
ﬁ(QN — 2)” GN,N—l ngol"d;wfl + GN,N (33)

87TN(N)! AN 1 8 LN 1

respectively. Now we note that (3I) and (B:2) can be considered as two
equations in the two unknowns

47“- ces —
- wU“m(N — DI@N = 2)! X", and
U”LN'@N —2NX T LNN'(QN — )N XN
N G eNt P X0
where
GN—l N-1 GN_1 N
\ ’ 3.4

is the coefficient matrix. But, in the particular case ¢ = 0, we would obtain
only the zero solution for the equations ([BI))-(B3.2]) and this for condition 1.
of hyperbolicity; therefore the matrix (3.4)) is nonsingular and Gy y # 0, so
that the two unknowns are zero, that is

puU" Xo 5™ =0, (3.5a)
N
VLo IYN-1 V1seeey IN—-1 __
el X0+ 2 g o =0 (3.5b)



Also (B.3)) has to be imposed. Now, if ¢, U* = 0, these three equations
become

Xony™ =0, (3.6a)
G]\f7 N_lX(’]y’lé-“’PYNil - GN7NX(P};L17’(')')'7’YN71 - O, (36b)

so that there is a free unknown. Consequently, ¢, U* = 0 is an eigenvalue.
If ¢, U* # 0, B.3) and (B.3) can be written as

Xailémv'\/Nfl — O,
(50 5) (SH7) - ()
v enU") \ X1y 0

so that the eigenvalues have to be determined from the equation

4,02

(SOMUN)Z - m =0 (3.7)

Thus (B.7) does not depend on Gy y and hence it is the same as in the
kinetic case. Instead, the eigenvectors defined by (B.6) depend on Gy, n, so
that they are not the same as in the kinetic case. In particular, if §, = U,
from which ¢, U* = X and ¢ = 1, the wave speeds are A\ = :t2N1+1 which are
rational numbers satisfying |A| < 1, which means that the wave velocity does
not exceed the speed of light, as expected. Moreover, our results is consistent

with [13].

3.3 The wave speeds for p = N — 2

This part is important because, if N = 2, it completes the set of wave speeds
for the 14 moments model. From (2.10) we now have m = N—2orm = N—1
or m = N; more precisely, we have to write the (2Z9) with

em=N—-2  a=0, b=0,

em=N-1, a=1, b=0,

']’)”L:]\f7 CLIQ, bIO,

m=N-—-1, a=0, b=1,



e m=N, a=1, b=1,

e m=0N, a=0, b=2.
In this way we obtain the system
GN—2,N—2 Xiﬂ...’nyz + GN—2,N—1 X;L--’YNfz + GN—2,N X;lmwviz =0 s (38&)
GN_LN_Q Xin---’YNfz + GN—I,N—I X;lmwvfz + GN—I,N Xgl---’yz\rfz =0 s (38b)
GN, N—2 X’1”/1~~~’YN72 ‘l‘ GN7 N—1 X;/l---“/N—Q + GN’NX;’YLn“/N—Q — 0’ (380)
Gnoa N2 Y] N2 4 Gy N Y NP+ Gy v Y72 =0, (3.8d)
GN, N—2 }/’{YI---'YNfZ 4 GN, N_1 Y;h---’mfz + GN,N }/E))’Yl---'YNfz =0 7 (386)
GN, N—2 Zin~~~“{N—2 + GN,N—l Z;/1~~~“{N—2 + GN,N Z?:/1~~~“{N—2 — 0’ (38f)
where
AN dm AN
X?l TN-2 _ —@uU“m(N — 2)'(2N — 4)”X(’YO17O)FYN 2 y (39&)
AN 4 AN
X;l TN -2 = @“U“m(]v - 1)'(2N - 4)!!X(’yll70)FYN 2
41
o _ _ | _ 1] Y1 YN—-2
0 gy 2V~ DIV = DIEN - )X, (3.9b)
X’Yl---’YN—z _ U,u 471' }N|(2N _ 4>”X’Yl---’YN—2
3 T aN o) S0

Y1 YN-2

_4)

1 Y1 YN-2

V1. YN—2
1 X02)

_2)

@ ﬁ@]\f —1)(N — 1)2ﬁ(2]\7 — Xt (39¢)
Y ﬁz N(N = DI2N — )1 X152 (3.94)
yprn-e _%Uuﬁw —1)2(N — )I2N — 4 X
— ¢ G2 — DOV = DN — X (3.9)

10



4 N! (
2N +1(2N —1)!

YN =, UM 2N — 1)(N — 1)2(2N — 4)l1 X7V -2

(1,1)
47

- - _ | _ 1YL IN=2
oy (N — DNI@N - 91X
47 AN
T LNN!(QN — oI XN L]\/’Nl(zj\/’ — )l XN
eN+Dr e CN+1 “ 02
(3.91)
47
ZUWN=2 — _p R _9(N — 1)/(2N — 4\ X N2 3.9
1 QDM (2N _ 1)| ( ) ( ) (0,0) ) ( g)
47
JIIN=2 — _p UF———— (N — 1)(N — 1)I(2N — 41! X - IN=2
4
+ (2N774T-1)'12(N — 1NI@N — X2, (3.9h)
47
M-IYN-2 _ | AN Y1 YN=-2
L = gpMU”i(QN_ 1)!(N 1)N!(2N 4)..X(270)
47 AN
47 .
-, U* 7(2]\[ n 1)!NN!(2N — 2)!!X?21’0;’N 2
47 YN
+ QDMUM WNN'(2N — 2)”XE{0172)’YN 2
47 AN— .
_memN(N—1)N!(2N—4)!!X€’1171;N 2. (3.91)

Now, ([B:8a)-(B.8d) give X2 =0, XJ"" "™ =0 and X;""""* = 0.
If p,U* = 0, (39a) becomes an identity so that we have five equations in
the six unknowns X“"';N’z, X“'")VN’Z, X&l"i)‘)w’z, X(E'(')')VN’Z, X&l"l'w’z, and

(0,0 (0,1 1)
X?ol 2;{ M=2: consequently ¢, U" = 0 gives a wave speed.

If o, U" # 0, from ([B.9al) we have )((7017"0')7N’2 = 0. From (B.9d), (3:9g),
and ([B.90) we obtain Y;"" 7" = 0, and Z]"""V* = 0; after that (3.8d)
and ([3.8d) give Y, 7" = 0 and Y,V = 0. Consequently, we have the
equations

X’z”/l---’YN72 — O, X;l---“/N—2 — 0’ Y;/l---“/NfQ — 0’ Y’3’Yl---“{N72 — 0’

11



together with ([B.81), to determine X /7= /V=2 X 1-0N=2 0 X ANz X ON =2

(0,1) (1,0) 0,2) (2,0)
X(Vllii')sz- Now X,"" 7" = 0 and Y, 7" = 0 is a subsystem of two
equations in the unknowns X/} 5%, X" 2 If (9,U")° — gy=¢” = 0,

one of these equations is a consequence of the other, so that we have four
equations to determine five unknowns. Therefore, we have obtained another
wave speed. Also in this case it is smaller than the speed of light, but it is
not a rational number.

If (0, U")* — 55— ¢* # 0, then the equations

X;/l---“/N—Q — 0’ Y'z“/l---“/NfQ — 0’

give X)o7 = 0 and X(')""7* = 0. From ([B.9]) it follows that Z;" """ =
0, so that (B.81f) becomes Z;' """~ = 0. Now we are left with the equations

X;/l---“/N—Q — 0’ }/E)’“/l---“/N72 — O, Z;/l---’YN72 — O

to determine the unknowns X1 0V=2 X 1 ON=2 - X IN=2 GQh the last wave

(0,2) (2,0) (1,1)
speeds are obtained when the coefficent matrix is singular, i.e., when
0 —2N(2N +1)p, U" —(2N —1)p
© (2N +2)p (2N — 1), U*| =0,
—p,U" —(2N +2),U* -3

where we have dropped some factors. The solutions are ¢,U* = 0 and

(uU")? = 59% = 0.
To conclude this subsection we report the wave speeds found, i.e.,

1 3
puUM =0, (%U”)ZZQN_lsoQ, (gouU”)QZQN_lsOQ,
where ﬁ <1, W?’_l < 1 (the last one inequality holds only for N > 2. On

the the other hand, if N < 2, the case p = N — 2 has not to be considered).
In the particular case N = 2, which corresponds to the 14 momements
model, we have found all the wave speeds, namely

1 1
go“U“ =0, (‘PuUu)2 = 2_58027 (‘PMUH)2 = 59027 (‘PuUu)2 = 9027

where the last equation gives the speed of light.
We note that, in any case, we have found something like

(0 U")? = k¢?, with 0 <k < 1. (3.10)

12



On the other hand, the wave speed \ is defined by

[(_)‘gu + %)U”)f = khuv(_)‘gu + m)(—Aﬁv + 771)) ) (3'11)

as in the definition of hyperbolicity reported above. Obviously, if §, = U,,
then (BI1) becomes A = k; in other words, +v/k is the wave speed in the
reference frame moving along with the fluid. So, the following question arises
immediately: If 0 < k < 1, will A satisfy also the condition |[A\| < 17 The
answer is affirmative and this will be proved in the next subsection.

3.4 The wave speed in every time-like direction ¢,

The aim of this subsection is to prove that, for 0 < k£ < 1, the solutions A\ of
(B.I0)) will be such that —1 < X < 1 for every &,, 7, satisfying the conditions

gugu = -1, §u77” =0, mﬁ” = L

Let us consider the reference frame where ¢, = (1, 0, 0, 0) and 1, = (0, 1, 0, 0).
In this frame (3.I1) can be written as

(=AU + U2 = k(1 = N2) 4+ k(=AU + U2,
i.e., the wave speeds A are the solutions of f(A) =0, with
FO) =XN[(U?(1 = k) + k] —2XU°U (1 — k) + (U)*(1 — k) — k,

where we note that the coefficient of A\? is positive because 0 < k < 1. The
first question is: Are the roots of f(\) real? The answer is affirmative because

— =kl =k U = (U] + K =k + k(1= k) [(U*)?+ (U*)?] >0,

3

where we have used the property —(U°)? + Z:(Ui)2 = —1. Moreover, we
i=1

easily see that

f(E) =1 -k)UFU"Y? >0,
%f’(il) _ %(UO)2(1 )+ %(UO)2(1 B —UUN (1 — k) + k.

13



Subsituting (U%)? = 1+ 327, (U%)? in the second term with (U°)?, it follows
that

1, 1 1 1

of (FD) =5 (L= k)(U° 5 U & S [(U2) + (U] (1 = k) & S (1 + k),
so that f’(1) > 0 and f’(—1) < 0. From f(1) > 0 and f'(1) > 0 we obtain
A < 1, while from f(—1) > 0, and f'(—1) < 0 we obtain A > —1, as expected.

4 Independence of the wave speeds on F), ,

Let us now prove that the wave speeds do not depend on G,, , and, hence,
on F,, ,,. This fact implies that they are the same as for the kinetic model,
where

> 1
k2

1

Fn = —e 8O  ang Gmm:/ ek OF0) prEnt2g (4 1)
0

k2

To obtain this result, let us rewrite (2.9) with a = m — p — b. We note that
now the index m is present only in G,, ,,. Therefore, (2.9]) can be written as

N
> GrnYy =0, (4.2)

n=p

forb=0,--- ,N—p, m=p+b,---,N. Here, by the definition of the tensor
Y, some special cases have to be distinguished. In particular,

e case 1: bis even and n = p. Y}?;%’ is defined by

47 + 2
Y = g, Ut (P2 ) pipl o X (4,
b.p onl (2p+b+1)!( p ) PPN X 0 (4.3)
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e case 2: biseven and n =p+1,..., N. We obtain the following

(p+b+n) b

Ir—3 s
Y —p U+ Z ZQZP p+ b"— n (_1)p+n r
b g 2r +1 s

l27 s=p T=0
. <2T _28)' (n' (2‘9)” §—p ( 1) X
(2’/“ — 95 — b) (p + b + n) (28 _ 2p)|[ T (n—p—2r+b+2s—2T, 2r—b—2s+2T)
[(p+b+n+1>} ba2

DYDY Sigrﬂ <p+b2+r”+1) (~1ypn (Z)

rp-‘,—l-‘,— s=p T=

(2r — 2s)! n! (2s)!
(2r—=2s—=b—1)!(p+b+n+1)! (25 —2p)!l

S§—p T
( T )(_1) X?rt—;ﬁ2r+b+2s—2T+l,2r—b—2s+2T—1)‘ (4.4)

e case 3: bis odd and n = p. We have

471' _|_b+_1
Y = o (P ) (b )l p) X (45
=y () O e 49

e case 4: bisodd and n =p+1,..., N. In this case we get

[(p+b+n)] b+1

Y —p L Z i SZ% +b—|—n (_1)p+n+1 r
b,n K — 2r +1 s

= +b+1 s=p
- (2r—2s)! n! (2s)!! s—p
(2r—2s=b)!(p+b+n)(2s—=2p \ T
[(p+b+n+1)} b41

T T2 s—p
4
( 1) XEZ ;;/p2r+b+2s 2T, 2r—b— 2s+2T)+(p Z Z 2 +1

r— p+b+1 s=p T=0

p+b+n+1 pin [T (2r — 2s)! n! (2s)!!
' ( 2r ) (=1) (S) (2r—2s—=b—1)!(p+b+n+1)!(2s—2p)!

S—p P
( T )( 1) X'Z ;2r+b+2s 2T+1,2r—b—2s+2T—1) (46)

15



Let us begin by considering the system (4.2) for b = 0, so that it has an
equal number of equations and unknowns. Moreover, the matrix Gy, , is non
singular (because in the case ¢ = 0 and by the condition 1. of hyperbolicity,
the system must have only the zero solution); as a result it yields

Y, " =0, forn=p,...,N. (4.7)

Now we have as an equation ([A2)) with b=1,..., N — p as well as (417). In
particular, (£.17) with n = p, for (@3] gives

e U" X5 =0. (4.8)

From this result we see that ¢, U" = 0 is one of the eigenvalues, because in
this case one of the equations is an identity, so that we have less equations
than unknowns to determine the eignvectors. If we look for other eigenvalues,
that is ¢, U* # 0, then (48] gives X 7? = 0. Using this equation, together

(0,0)
with (43]) and (4.H), we get
YZ;’""W =0. (4.9)
so that the term with n = p in the system (42]) can be omitted.
Summarizing the results obtained until now, we have found the eigenvalue

¢, U" = 0 (which does not depend on Gy, ,) and, for the other eigenvalues,
the system

M _
X (017 0 =0,
Yo" =0, forn=p,...,N,
S i1 G Yy =0, forb=1,...N—pand m=p+b,....N.
(4.10)
Let us now repeat the above steps, but with b = 1. In this case the third
equation of (4I0) has again an equal number of equations and unknowns
(because we have dropped ¥, ") and gives the solution

Y =0, forn=p+1,...,N, (4.11)

and these equations replace the third equation of (AI0) for b = 1. Now we

note that by using (&4) and (&6, the second equations of ([EI0) and (ZIT)
for n = p + 1 become

souU“(gﬁT”n(er DIpX LG + o+ 1)+ DI2pN2 X 7" =0,
—pga P+ D2(p + DN X5 — 0 Ut g (v + D2(p + DI2p)N X G = 0.

16



Y1--Yp

This is a homogeneous system of two equations and two unknowns X (1,0)

and X (701"1')7”, so that we have the following possibilities:

o [f the coefficient matrix is singular, we obtain the eigenvalues from the
following;:

1
N2 2 _

which allows us to verify that its eigenvalues do not depend on G, ,,

e Its solution is X&'J” =0 and Xgol,"l';” = 0.

From this second possibility it follows that
Y, =0, (4.12)

b, p+1

as seen from (@4) and (&6) (Note that Y, """ is a linear combination of
Xpn? with b+ k = n — p; in our case h +k = 1; in other words, Y,/
is a linear combination of X(Vol"l')%’ and X (711'(')')7" which are zero in the present

case). From (LI2) it follows that in the third equation of (LI0) we can
omit the term with n = p + 1. Summarizing the results of this new step,
we have found the set S? of eigenvalues (the solutions of ¢,U* = 0 and of

(0, U")? — ﬁgﬁ =0) and, to determine the other eigenvalues, the system

X?ﬁ’k;ﬁ’ =0,forh+k<1
V=0, forn=p+1,...,N,
SN G YN =0, forb=2,...N—pandm=p+b,...,N.

n=p+2
(4.13)

We also note that the set S? does not depend on Gy, n- Let us now iterate
this procedure n times and find

o A set S” of eigenvalues not depending on G, ,,

e The following system, for the determination of other eventual eigenval-
ues

Xl =0forh+k<n-1

Y, " =0, forq=0,....n—1landn=p+gq,...,N,

ZnszJme,nY};’z'% =0, forb=mn,...N—pandm=p+b,...,N.
(4.14)
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It remains to prove that, starting from this hypothesis, it follows that it holds
also with 7+ 1 instead of 7. The system given by the third equation of (4.14])
with b = 7 has the solutions

Yi,w=0, forn=p+mn,...,N, (4.15)

and these equations replace the third equation of (4.I4]) for b = n. We also
note that by using (4.4) and (4.6]), the second equation of (4.14) and (4.15)
for n = p+n constitute a system of homogeneous equations in the unknowns
X?ﬁk;’p with h + k = 1. Thus we have an equal number (7 4 1) of equations
and of unknowns and this system does not depend on Gy, ,,. By imposing that
its coefficient matrix is singular, we obtain some eigenvalues which, together
with S7, constitute the new set S""1. If we look for other eigenvalues, then

this system has only ngﬁk;’p = (0 with h + k = 7 as a solution. On the other

hand, this solution implies ¥;","7* = 0, as seen from (@) and ([@G). As a
result, we can now omit the term with n = p 4+ 7 in the third equation of
(4£I4). In other words, we have found the set S""! and the system (ZI4])
with 1 4 1 instead of . This completes the proof of this property.
We note that our system (£.2)) has been gradually replaced by (471) with
n = p at the first step, by the second equation of (£I0) and (LI1) with
n = p+ 1 at the second step, and so on. In other words, our system (4.2))
can be replaced by
Yy =0, forg=0,...,n, (4.16)

q,p+n

and on this system we have to impose first the subsystem with n = 0 to
determine X (701"(')';”, then the subsystem with 7 = 1 to determine X ?}:k;” where
h+k =1, and so on for increasing values of n. In particular, ([£I6]), for fixed
n, will be a subsystem to determine X ?ﬁk;” where h + k = n.

Thus we have proved that the wave speeds do not depend on G, ,,. This
fact allows us to use (dIal), without loss of generality. A natural question
is the following: Will this choice satisfy the above condition on the non
singularity of the matrix G,, , for m, n = p+m,... N7 We prove that this

is indeed the case. First, we see that (4.Ia)) with the change of integration

variable p = sx, becomes
]{7 m+n+3 0o
(_) / e—mxm+n+2 dr.
v 0

(4.17)

>
>

1 T ; m-+n-+2 I
Gm,n:ﬁe /0 e Fp dp:ﬁe
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Integrating by parts the expression fooo e aP dx |, we get

/ e “aldx = }—e‘xa:p}go —I—p/ e TaPdy = p/ e “aP 1 du.
0 0 0

[terating the integration other p — 1 times we arrive at

o (o]
/ e xPdr = p!/ e “dx = pl.
0 0

As a result, (£I7) becomes

1 \ L m—+n+3
Gm,n = ﬁe_z (_) (m+n+2)‘

It follows that

Gp+n,p+n Gp+n,p+n+1 e Gp+n,N
Gp+?7+1,p+?7 Gp+?7+1,p+?7+1 e Gp+n+1,N
GN,p+n Gnptne1 0 Gan
2p+2n+3 N+3
@pt2n+2)! (K PTT? _a (prntNt2) (B )PTTEYTS A
el o Mk En /LA e & S LILVARY G4 e &
k2 ¥ k2 y
2p+2n+4 N+4
@pr2g+3) (5 \PTETE _a (ptntN+3)! (kNPT
Al Nl L B /L A e & S LILVARY g4 e &
—_ k2 ¥ k2 y
N+3 2N+3
N+ ()P A @en+2)! ()T _a
il e & = e k
k2 ~ 12 5
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N+1-p—n

A\ N-p-ntl > (@ptn+i)
Nk

(2p+2+2)!  (2p+29+3)E (bt + N+ 23
N—p—n
2p+2n+3)!  (2p+2+4)E (ptn+N+3) <5>
N—p—n
(p+n+N+2)! (p+2n+N+3)E ... @N+m%%
N+1=p—n Npzn
I =D DI T ED R S
_[eF E i=3 j=1
k2 o]
(Zp+2p+20 @Qp+22+3)L o (p+n+N+2)
| o !
(%+€7+$. @p+%fwb- ”.(p+ﬁfﬁ*3) (4.18a)

Let us now consider the determinant

al (a+1)! o (a+d)! -+ (a+4d)

(a+1)!  (@a+2)! - (a+b+1)! -+ (a+d+1)!
D%”:(a+@!(a+c+1ﬂ o (a+b+e) - (at+d+e)
(a+d)! (a+d+1)! -+ (a+b+d)! -+ (a+2d)!

and let us sum to the line beginning with (a+ ¢)! the previous one multiplied
by —(a + ¢). We obtain

al (a+1)! --- (a+10)! . (a+d)!

0 (a+1)! --- b(a+)! d(a+d)!
Da,a = 0 (a+c¢)! -+ bla+b+ec—=1)! -+ dla+d+ec—1)!

0 (a+d)! -+ bla+b+d—-1)! -+ d(a+2d—1)!
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where we have taken into account that (a+b+c¢)! —(a+c¢)(a+b+c—1)! =
(a+b+c—1)la+b+c—a—c)=bla+b+c—1). It follows that

(a+ 1) --- (a+10)! (a+d)!
Dya=dd|(a+c)! -+ (a+b+c—1! -+ (a+d+c—1)!
(a+d)! - (a+b+d-1)! -+ (a+2d—1)!

=ald' Day1,4-1.
By iterating the procedure r times, we obtain
Dyag=al(a+ 1) (a=1+r)!d(d=1) - (d+1—=7) Doty g
As a result, for r = d this last expression becomes

Dya=al(a+1)--(a=1+ad)dl (d—1)!--2! |(a+d)!|
=a(a+ ) (a+d)d(d—-1)!--2

By applying this result with a = 2p+2n+2, d = N — p — 7, we see that the
determinant in (4.I8§)) is equal to

(2p+2n+2)! (2p+2n+3)! - - - (p+n+N+2)! (N—p—)! (N—p—n—1)!--- 2! > 0.

It also follows that the matrix Gy, ,, for m, n =0,..., N is positive definite.
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