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A FIXED POINT THEOREM FOR L1 SPACES

U. BADER, T. GELANDER AND N. MONOD

1. Introduction

Andrés Navas asked us if there is a fixed point theorem for all isometries of L1 that preserve
a given bounded set. Unlike many known cases where a geometric argument applies, there is a
fundamental obstruction in L1: any infinite group G admits a fixed-point-free isometric action on
a bounded convex subset of L1. (This can be seen by examining the G-action on the affine subspace
of summable functions of sum one on G.)

Thus, we have to search for fixed points possibly outside the convex set, indeed outside the
affine subspace it spans. We shall do this more generally for any L-embedded Banach space V ,
that is, a space whose bidual can be decomposed as V ∗∗ = V ⊕1 V0 for some V0 ⊆ V (and ⊕1

indicates that the norm is the sum of the norms on V and V0). Recall that L
1 is L-embedded by

the Yosida–Hewitt decomposition and that this holds more generally for the predual of any von
Neumann algebra [7, III.2.14] (in particular, for the dual of any C*-algebra).

Theorem A. Let A be a non-empty bounded subset of an L-embedded Banach space V .

Then there is a point in V fixed by every isometry of V preserving A. Moreover, one can choose

a fixed point which minimises supa∈A ‖v − a‖ over all v ∈ V .

We recall that an isometric action of a group G on a Banach space V is given by a linear part and
a cocycle b : G → V . The cocycle is the orbital map of 0 ∈ V and a fixed point v corresponds to
a trivialisation b(g) = v − g.v, where g.v is the linear action. The above norm statement implies
that one can arrange ‖v‖ ≤ supg ‖b(g)‖ by considering A = b(G) ∋ 0.

As a special case, we recover the main theorem of [4], but with an improved (indeed optimal)
norm estimate:

Corollary B. Let G be a group acting by homeomorphisms on a locally compact space X. Then

any bounded cocycle b : G → M(X) to the space of measures on X is trivial. More precisely, there
is a measure µ with ‖µ‖ ≤ supg∈G ‖b(g)‖ such that b(g) = µ− g.µ for all g ∈ G. �

Indeed, M(X) is the dual of the C*-algebra C0(X) and hence the predual of a von Neumann
algebra.

Numerous consequences of Corollary B are listed in [4]; let us only recall that it settles the
so-called derivation problem whose history began in the 1960’s: If G is a locally compact group,
then any derivation from the convolution algebra L1(G) to M(G) is inner. This is often phrased
in terms of derivations “of L1(G)” since any derivation L1(G) → M(G) must range in L1(G) by
Paul Cohen’s factorisation theorem. It also follows that any derivation of M(G) is inner. Our
estimate is optimal by Remark 7.2(a) in [4].

As observed by Uffe Haagerup, Theorem A also yields a new proof that all C*-algebras are
weakly amenable, which was proved in [2] using the Grothendieck–Haagerup–Pisier inequality.
In fact, our theorem immediately implies that a bounded derivation from any abstract algebra
A to a predual M∗ of a von Neumann algebra is inner as soon as A is spanned by the elements
represented as invertible isometries of M∗ (see the proof of the corollary below). In the particular
case of C*-algebras, we obtain the following general statement.

Corollary C. Let A be a unital C*-algebra. Let M∗ be the predual of a von Neumann algebra.
Assume M∗ is a Banach bimodule over A. Then any arbitrary derivation D : A → M∗ is inner.

Moreover, we can choose v ∈ M∗ with D(a) = v.a− a.v such that ‖v‖ ≤ ‖D‖.
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The weak amenability of A is given by the special case M∗ = A∗. Our definition of Banach
bimodule demands ‖a.v.b‖ ≤ ‖a‖ · ‖v‖ · ‖b‖ (a, b ∈ A, v ∈ M∗).

Proof of Corollary C. By Theorem 2 in [6], D is continuous; thus it is bounded (by ‖D‖ < ∞)
on the group G of unitaries of A. The map G → M∗ given by g 7→ D(g).g−1 is a cocycle for
the Banach G-module structure defined by the rule v 7→ g.v.g−1. Theorem A thus yields v, with
norm bounded by ‖D‖, such that D(g) = v.g− g.v for all g ∈ G. The statement follows since any
element of A is a combination of four unitaries (in fact, three [3]). �

Finally, returning to the case V = L1 of Theorem A, we recall that any isometric action of a
Kazhdan group on an L1 space has bounded orbits because of a Fock space argument (see e.g. [1,
1.3(2)]). Therefore, we deduce:

Corollary D. Let Ω by any measure space. Then any isometric action of a Kazhdan group on
L1(Ω) has a fixed point. �

By the Kakutani representation theorem, this corollary applies unchanged to abstract L1 spaces,
for instance to M(X) for any locally compact space X . Moreover, it follows that the fixed point
property on L1 characterises Kazhdan’s property (T) for countable groups, see [1, 1.3].

2. Proof

We first recall the concept of Chebyshev centre. Let A by a non-empty bounded subset of a
metric space V . The circumradius of A in V is

̺V (A) = inf
{

r ≥ 0 : ∃x ∈ V with A ⊆ B(x, r)
}

,

where B(x, r) denotes the closed r-ball around x. The Chebyshev centre of A in V is the (possibly
empty) set

CV (A) =
{

c ∈ V : A ⊆ B(c, ̺V (A))
}

.

Notice that CV (A) can be written as an intersection of closed balls as follows:

CV (A) =
⋂

r>̺V (A)

Cr
V (A) where Cr

V (A) =
⋂

a∈A

B(a, r).

Thus, when V is a Banach space, CV (A) is a bounded closed convex set. More importantly, when
V is a dual Banach space, we deduce from Alaoğlu’s theorem that CV (A) is weak-* compact and
that it is non-empty because the non-empty sets Cr

V (A) are monotone in r.

Proposition. Let A be a non-empty bounded subset of an L-embedded Banach space V . Then the
convex set CV (A) is weakly compact and non-empty.

Proof. Consider A as a subset of V ∗∗ under the canonical embedding V ⊆ V ∗∗. In view of the
above discussion, CV ∗∗(A) is a non-empty weak-* compact convex set. We claim that it lies in
V and coincides with CV (A); the proposition then follows. Let thus c ∈ CV ∗∗(A) and write
c = cV + cV0

according to the decomposition V ∗∗ = V ⊕1 V0. Then, for any a ∈ A, we have

‖a− c‖ = ‖a− cV ‖+ ‖cV0
‖

since A ⊆ V . Therefore,

̺V ∗∗(A) = sup
a∈A

‖a− c‖ = sup
a∈A

‖a− cV ‖+ ‖cV0
‖ ≥ ̺V (A) + ‖cV0

‖.

Since ̺V ∗∗(A) ≤ ̺V (A) anyway, we deduce cV0
= 0 and ̺V ∗∗(A) = ̺V (A), whence the claim �

We now complete the proof of Theorem A. Since the definition of CV (A) is metric, it is
preserved by any isometry preserving A. By the proposition, we can apply the Ryll-Nardzewski
theorem and deduce that there is a point of CV (A) fixed by all isometries preserving A. The norm
condition follows from the definition of centres. �

We remind the reader that in the present context the Ryll-Nardzewski theorem has a particularly
short geometric proof relying on the dentability of weakly compact sets [5].
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Remark. The above proof works with slightly weaker assumptions on the decomposition of the
bidual V ∗∗, e.g. a p-summand decomposition, p < ∞. However, a canonical norm one projection
V ∗∗ → V is not enough. Indeed, any dual space is canonically complemented in its own bidual,
but the fixed point property in all duals characterises amenability. Specifically, any non-amenable
group G has a fixed-point-free action with bounded orbits in (ℓ∞(G)/R)∗.
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