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CIRCLE ACTION AND SOME VANISHING RESULTS ON MANIFOLDS

PING LI AND KEFENG LIU

Abstract. Kawakubo and Uchida showed that, if a closed oriented 4k-dimensional manifold

M admits a semi-free circle action such that the dimension of the fixed point set is less than 2k,

then the signature of M vanishes. In this note, by using G-signature theorem and the rigidity

of the signature operator, we generalize this result to more general circle actions. Combining

the same idea with the remarkable Witten-Taubes-Bott rigidity theorem, we explore more

vanishing results on spin manifolds admitting such circle actions. Our results are closely

related to some earlier results of Conner-Floyd, Landweber-Stong and Hirzebruch-Slodowy.

1. Introduction and results

Unless otherwise stated, all the manifolds discussed in this paper are closed smooth man-

ifolds and all involutions and circle actions on the manifolds are smooth. We denote by

superscripts the corresponding dimensions of the manifolds.

The following is a classical result of Conner and Floyd ([5], §27.2).

Theorem 1.1 (Conner-Floyd). Suppose g : M2n → M2n is an involution on a manifold and

Mg is the fixed point set of g. If dim(Mg) < n, then the Euler characteristic of M is even.

Here by dim(Mg) we mean the dimension of highest dimensional connected component of

Mg.

Using their famous G-signature theorem, Atiyah and Singer reproved ([3], p.582-p.583)

Theorem 1.1 when n is even, M is oriented and g is orientation preserving.

We recall that a circle action (S1-action) is called semi-free if it is free on the complement of

the fixed point set or equivalently, the isotropy subgroup of any non fixed point on the manifold

is trivial. Using bordism techniques developed by Conner and Floyd in [5], Kawakubo and

Uchida showed the following result ([11], Theorem 1.2), which could be taken as a counterpart

in the circle case to Theorem 1.1 in some sense.

Theorem 1.2 (Kawakubo-Uchida). Suppose M4k admits a semi-free S1-action and MS1

is

the fixed point set of this action. If dim(MS1

) < 2k, then the signature of M , sign(M4k), is

zero.

Our first purpose in this note is, by closer looking at the G-signature theorem in the circle

case, to generalize Theorem 1.2 to more general cases. Before stating our first main result,

we will introduce some notations, which will be used throughout this paper without further

explanation.
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Suppose M2n is a oriented manifold admitting a S1-action. Let F 2m be a connected com-

ponent of this action. With respect to this S1-action, the tangent bundle of M2n restricted

to F 2m, TM2n
∣

∣

F 2m , has the following equivariant decomposition:

TM2n
∣

∣

F 2m = L1 ⊕ · · · ⊕ Ln−m ⊕ TF 2m,

where each Li is a real 2-plane bundle of F 2m. We can identify Li with a complex line bundle

relative to which the representation of S1 on each fiber of Li is given by e
√
−1θ → e

√
−1kiθ

with ki ∈ Z− {0}. These k1, · · · , kn−m are called weights of this S1-action on the connected

component F 2m and uniquely determined up to signs.

Definition 1.3. Let the notations be as above. We call a S1-action prime if there exists a

number ξ ∈ S1 such that, for any k ∈
⋃

F 2m{k1, · · · , kn−m}, we have ξk = −1.

Remark 1.4. Note that the weights of a semi-free circle action are ±1. Hence semi-free circle

actions are prime.

Now we can state our first result, which generalizes Theorem 1.2.

Theorem 1.5. Suppose M4k admits a prime S1-action and MS1

is the fixed point set of this

action. If dim(MS1

) < 2k, then sign(M4k) = 0.

We will prove this result in Section 2. The signature of a oriented manifold can be realized

as an index of some elliptic operator ([3], §6), now called signature operator. Besides the

G-signature theorem, the key ingredient of the proof of Theorem 1.5 is the rigidity of the

signature operator (see Section 2 for more details). The rigidity of signature operator is

only the beginning of a remarkable rigidity theorem: Witten-Taubes-Bott rigidity theorem.

Our second purpose in this note is, by using this rigidity theorem, to replace the conclusion of

sign(M) = 0 in Theorem 1.5 by those of vanishing indices of some twisted signature operators.

In order to state our second result, let us begin with the rigidity of elliptic operators.

Let D : Γ(E) → Γ(F ) be an elliptic operator acting on sections of complex vector bundles

E and F over a manifold M . Ellipticity guarantees that both ker(D) and coker(D) are

finite-dimensional. Then the index of D is defined as

ind(D) = dimCker(D)− dimCcoker(D).

If M admits an S1-action preserving D, i.e., acting on E and F and commuting with D,

then both ker(D) and coker(D) admit an S1-action and hence are S1-modules. Therefore the

virtual complex vector space ker(D)− coker(D) has a Fourier decomposition into a finite sum

of complex one-dimensional irreducible representations of S1:

ker(D)− coker(D) =
∑

ai · L
i,

where ai ∈ Z is the representation of S1 on C given by λ 7→ λi. The equivariant index of D

at g ∈ S1, ind(g,D), is defined to be

ind(g,D) =
∑

ai · g
i.

The elliptic operator D is called rigid with respect to this S1-action if ai = 0 for all i 6= 0, i.e.,

ker(D) − coker(D) consists of the trivial representation with multiplicity a0. Consequently,

ind(g,D) ≡ ind(D) for any g ∈ S1. An elliptic operator is called universally rigid if it is rigid

with respect to any S1-action. The fundamental examples of universally rigid operators are
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signature operator and Dirac operator (on spin manifolds). The reason for the former is that

both of its kernel and cokernel can be identified with subspaces of the deRham cohomology

group ([3], §6) on which S1 always induces a trivial action. The latter is a classical result of

Atiyah and Hirzebruch [2].

Let Ω+
C

and Ω−
C

be the even and odd complex differential forms on a oriented Riemann

manifold M2n under the Hodge ∗-operator. Then the signature operator

ds : Ω+
C
→ Ω−

C

is elliptic and the index of ds equals to sign(M) ([3], §6).

Let W be a complex vector bundle over M . By means of a connection on W , the signature

operator can be extended to a twisted operator ([15], IV, §9)

ds ⊗W : Ω+
C
(W ) → Ω−

C
(W ).

This operator is also elliptic and the index of ds ⊗W is denoted by sign(M,W ).

Let TC be the complexified tangent bundle of M . For an indeterminate t, set

ΛtTC =

∞
∑

k=0

tkΛkTC, StTC =

∞
∑

k=0

tkSkTC,

where ΛkTC and SkTC are the k-th exterior power and symmetry power of TC respectively

([1], §3.1).

Let Ri be the sequence of bundles defined by the formal series

+∞
∑

i=0

qiRi =
+∞
⊗

i=1

ΛqiTC ⊗
+∞
⊗

j=1

SqjTC.

The first few terms of this sequence are

R0 = 1, R1 = 2TC, R2 = 2(TC ⊗ TC + TC), · · ·

With all this understood we have the following rigidity theorem.

Theorem 1.6 (Witten-Taubes-Bott). For a spin manifold M2n, each of the elliptic operators

ds ⊗Ri is universally rigid.

This rigidity theorem was conjectured and given a string-theoretic interpretation by Witten

[18]. It was first proved by Taubes [16]. A simper proof was then presented by Bott and Taubes

[4]. Using modular invariance of Jacobi functions, the second author gave a more simpler and

unified new proof in [13] and further generalized them in [14].

Using this remarkable rigidity theorem, Hirzebruch and Slodowy showed that ([10], p.317),

among other things, if g is an involution contained in a circle acting on a spin manifold M4k

and dim(Mg) < 2k, then sign(M,Ri) = 0 for all i.

We are now ready to state our second main result, which could be taken as the counterpart

to Hirzebruch-Slodowy’s above mentioned result in the circle case.

Theorem 1.7. Suppose M2n is a spin manifold admitting a prime S1-action. If dim(MS1

) <

n, then sign(M2n, Ri) = 0 for all i.

Corollary 1.8. SupposeM2n is a spin manifold admitting a semi-free S1-action. If dim(MS1

) <

n, then sign(M2n, Ri) = 0 for all i.
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Remark 1.9. In [12], Landweber and Stong proved two results concerning the signature and

the indices of three twisted Dirac operators, which also have the same feature as our results

in some sense. More precisely, they showed that ([12], Theorem 1), if a closed spin manifold

M2n admits a circle action of odd type, then sign(M) = 0. Moreover, if this action is semi-free,

then ([12], Theorem 2) Â(M,TC) = Â(M,Λ2TC) = Â(M,Λ3TC + T 2
C
) = 0, where Â(M,E) is

the index of the Dirac operator on M twisted by a complex vector bundle E.

2. Proof of results

LetM2n be a oriented manifold admitting an S1-action. Let F 2m be a connected component

of the fixed point set M s1 . As pointed out in Introduction, TM2n
∣

∣

F 2m can be decomposed

into

TM2n
∣

∣

F 2m = L1 ⊕ · · · ⊕ Ln−m ⊕ TF 2m.

Here Li could be taken as a complex line bundle over F 2m with weight ki, 1 ≤ i ≤ n−m.

F 2m can be oriented so that all orientations of L1, · · · , Ln−m and F 2m taken together yield

the orientation of M2n. Let c1(Li) ∈ H2(F 2m;Z) be the first Chern class of Li. Suppose the

total Pontrjagin class of F 2m has the following formal decomposition

p(F 2m) = 1 + p1(F
2m) + · · · =

m
∏

i=1

(1 + x2i ),

i.e., pi(F
2m) is the i-th elementary symmetry polynomial of x21, · · · , x

2
m.

With these notations set up, we have the following important lemma, which should be well-

known for experts (cf. [9], §5.8), although, according to the authors acknowledge, nobody

state it explicitly as follows.

Lemma 2.1. Let g be an indeterminate. Then the rational function of g

∑

F 2m

{[(

m
∏

i=1

xi
1 + e−xi

1− e−xi

)(

n−m
∏

j=1

1 + gkje−c1(Lj)

1− gkje−c1(Lj)

)]

· [F 2m]
}

identically equals to sign(M). Here [F 2m] is the fundamental class of F 2m determined by the

orientation and the sum is over all the connected components of MS1

.

Proof. Let g ∈ S1 be a topological generator. Then the fixed point set of the action of g on

M are exactly M s1 . So the G-signature theorem ([3], p.582) tells us that

(2.1) sign(g,M2n) =
∑

F 2m

{[(

m
∏

i=1

xi
1 + e−xi

1− e−xi

)(

n−m
∏

j=1

1 + gkje−c1(Lj)

1− gkje−c1(Lj)

)]

· [F 2m]
}

Here sign(g,M2n) is the equivariant index of the signature operator at g ∈ S1. According

to the rigidity of the signature operator, we have sign(g,M2n) ≡ sign(M2n). Therefore (2.1)

holds for a dense subset of S1 (the topological generators are dense in S1), which means (2.1)

is in fact an identity for an indeterminate g. �

Remark 2.2. (1) Lemma 2.1 was used in ([9], §5.8), by putting g = 0, to obtain the

famous formula

sign(M2n) =
∑

F 2m

sign(F 2m),
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of which several proofs are given by Atiyah-Hirzebruch ([2], §3), Hattori-Taniguchi

([8], §4), and Witten ([17], §3) respectively.

(2) When MS1

consists of isolated points, Lemma 2.1 was used by Ding ([7], p.3947) to

obtain some interesting results concerning the representations on the isolated fixed

points.

Proof of Theorem 1.5.

Proof. Now suppose M4k has a prime S1-action. Let ξ ∈ S1 be the desired element as in

Definition 1.3. Then we have

[

2k−m
∏

j=1

1 + gkje−c1(Lj)

1− gkje−c1(Lj)

]∣

∣

g=ξ
=

2k−m
∏

j=1

1− e−c1(Lj)

1 + e−c1(Lj)

=

2k−m
∏

j=1

c1(Lj)−
1
2c

2
1(Lj) + · · ·

2− c1(Lj) + · · ·

=
(

2k−m
∏

j=1

c1(Lj)
)

·

2k−m
∏

j=1

1− 1
2c1(Lj) + · · ·

2− c1(Lj) + · · ·

= e(νF 2m) ·
2k−m
∏

j=1

1− 1
2c1(Lj) + · · ·

2− c1(Lj) + · · ·
,

(2.2)

where e(νF 2m) ∈ H4k−2m(F 2m;Z) is the Euler class of the normal bundle of F 2m in M4k.

If dim(MS1

) < 2k, then 4k − 2m > 2m, which means e(νF 2m) = 0 and so by Lemma 2.1

sign(M4k) = 0. This completes the proof. �

Proof of Theorem 1.7.

Proof. Let Ri be the complex vector bundles defined in Introduction. Then for each topolog-

ical generator g ∈ S1, the equivariant index of the elliptic operator ds ⊗Ri, sign(g,M
2n, Ri),

like G-signature theorem, could be computed in terms of the local invariants of the fixed point

set MS1

. This is given by a general Lefschetz fixed point formula of Atiyah-Bott-Segal-Singer

([3], p.254-p.258). Instead of writing down the general form of this formula, we only indicate

that, for sign(g,M2n, Ri), this formula is of the following form.

+∞
∑

i=0

qi · sign(g,M2n, Ri) =
∑

F 2m

{

m
∏

i=1

[

(xi
1 + e−xi

1− e−xi

)

· ui
]

n−m
∏

j=1

[(1 + gkje−c1(Lj)

1− gkje−c1(Lj)

)

· vj
]}

· [F 2m],

where

ui =

+∞
∏

r=1

(1 + qre−xi)(1 + qrexi)

(1− qre−xi)(1− qrexi)
,

and

vj =
+∞
∏

r=1

(1 + qrgkje−c1(Lj))(1 + qrg−kjec1(Lj))

(1− qrgkje−c1(Lj))(1− qrg−kjec1(Lj))
.

We recommend the readers the references
(

([13], §1 and §5) or ([6], §2.4)
)

for a detailed

description of sign(g,M2n, Ri) in terms of the local data of MS1

.
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Rigidity theorem 1.6 says that, for an indeterminate g, the following identity holds

+∞
∑

i=0

qi · sign(M2n, Ri) ≡
∑

F 2m

{

m
∏

i=1

[

(xi
1 + e−xi

1− e−xi

)

· ui
]

n−m
∏

j=1

[(1 + gkje−c1(Lj)

1− gkje−c1(Lj)

)

· vj
]}

· [F 2m],

By using the same idea as in the proof of Theorem 1.5, we can get the conclusion of Theorem

1.7. �

3. Conclusion remarks

As we have seen, the key idea in the proofs is to extract a cohomology class e(νF 2m) from

the right-hand side of (2.1), by giving a special value on g. In fact, for a general compact

Lie group G acting on M2n and g ∈ G, the G-signature theorem is of the following form ([3],

p.582)

(3.1) sign(g,M) =
∑

F∈Mg

[e
(

Ng(−1)
)

· u] · [F ],

where F is a connected component of the fixed point set of g, Mg (rather than the fixed point

set of the whole G), e
(

Ng(−1)
)

is the Euler class of a subbundle of the normal bundle on Mg,

corresponding to the eigenvalue −1 of the representation of g on the normal bundle of F , and

u ∈ H∗(F ).

Consequently, the right-hand side of (3.1) vanishes if, for every F , the fiber dimension of

Ng(−1) is greater than the dimension of F . This is the corollary 6.13 in [3] on page 582. It

is this corollary that makes Atiyah and Singer to reprove Theorem 1.1 in some cases, because

for an involution, −1 is the only eigenvalue on the normal bundle of the fixed point set. While

in the circle case, for a topological generator g = e2π
√
−1θ ∈ S1, −1 in not the eigenvalue (g

is a topological generator if and only of θ is irrational, then gk 6= −1 for all weights k). So

we have to construct a cohomology class
(

e(νF 2m) in (2.2)
)

similar to e
(

Ng(−1)
)

in (3.1)

artificially. This is the origin of our Definition 1.3.
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