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Abstract. In this paper we compute the number of rational curves with one node passing
through a given number of points, lines and tangent to a given number of planes in P3.

1. introduction

Computing charateristic numbers of curves in projective space is a classical problem in
algebraic geometry: how many curves in projective space that pass through a general set
of linear subspaces, and are tangent to a general set of hyperplanes? In this paper we will
compute the characteristic numbers of rational curves with one node in P3.

This project is the first step by the author in an attempt to complete the program of
computing all characteristic numbers of elliptic curves and of elliptic curves with fixed j-
invanriant in projective spaces. An appropriate generalization of the result in this paper
will give the characteristic numbers of rational nodal curves with condition on the node.
Using a degeneration argument as in [P2], we can show that any characteristic number of
elliptic curves with fixed j-invariant is a linear combinations of charateristic numbers of
rational nodal curves, with or without condition on the node, thus completing the program
for elliptic curves with fixed j-invariant. Then we can use equation (6), section 5.7 in [V1]
to complete the program for elliptic curves.

In section 2, we describe various definitions and conventions that are used throughout the
paper. In section 3 and section 5, we study the enumerative geometry of boundary divisors
of the space of rational nodal curves. In section 4, we study the enumerative geometry of
rational smooth curves with a special tangent condition. In section 6, we derive a recursive
formula for the characteristic number of rational nodal curves. Examples will be given
throughout the paper, and at the end of section 6, numerical results of degree up to 5 will
be given. We will also discuss possible generalizations at the end of this paper.

The author would like to thank R.Vakil for numerous helpful conversations and insights,
and also for introducing him to the beatiful subject of enumerative geometry. A C++
program implementing the algorithms described here are available on the author’s webpage.
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2. Definitions and Notations

2.1. The moduli space of rational curves in P3. As usual, M0,n(3, d) will denote the
Kontsevich compactification of the moduli space of genus zero curves with n marked points
of degree d in P3. Let S be the set of markings, so |S| = n. We will also use the nota-
tion M0,S(r, d) when we want to specify the markings. The followings are Weil divisors on
M0,S(3, d):

• The divisor (U || V ) of M0,S(3, d) is the closure in M0,S(r, d) of the locus of curves
with two components such that U ∪ V = S is a partition of the marked points over
the two components.
• The divisor (d1, d2) is the closure in M0,S(3, d) of the locus of curves with two com-

ponents, sucht that d1 + d2 = d is the degree partition over the two components.
• The divisor (U, d1 || V, d2) is the closure in M0,S(3, d) of the locus of curves with two

components, where U ∪ V = S and d1 + d2 = d are the partition of markings and of
degree over the two components respectively.

2.2. The constraints and the ordering of constraints. We will be interested in the
number of curves satisfying a constraint, and each constraint is denoted by a 4−tuple ∆ as
follows :

• ∆(0) is the number of planes that the curves need to be tangent to.
• For 0 < i ≤ 4, ∆(i) is the number of subspaces of codimension i that the curves need

to pass through.

Note that because in general a curve of degree d will always intersect a plane at d points,
introducing an incident condition with a plane has the same effect as that of multiplying the
enumerative number by d. For example, if we ask how many genus zero curves of degree 4
pass through the constraint ∆ = (1, 2, 3, 4), that means we ask how many genus zero curves
of degree d pass through three lines, four points, are tangent to one plane, and then multiply
that answer by 42. Let |∆| = ∆[1] + ∆[2] + ∆[3]. We will also refer to ∆ as a set of linear
spaces, hence we can say for example, pick a space A in ∆.

We consider the following ordering on the set of constraints, in order to prove that our
algorithm will terminate later on. Let r(∆) =

∑
i>1 ∆[i] · i2, and this will be our rank

function. We compare two constraints ∆,∆′ use the following criteria, whose priority are in
the following order :

• If ∆ has fewer non-plane elements than ∆′ does, then ∆ < ∆′ ,
• s(∆) > s(∆′) then ∆ < ∆′.

We write ∆ = ∆1∆2 if ∆ = ∆1 ∪∆2 as a parition of a set of linear spaces.
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2.3. The stacks R,N ,NR and RR. We define N (d) to be the closure in M0,{A,B}(3, d)
of the locus of maps of smooth rational curves γ such that γ(A) = γ(B). Informally, N
parametrize degree d rational nodal curves in P3.

Fig 1. A general map in N (d)

For d1, d2 > 0 we define NR(d1, d2) to be the closure in M0,{A,B,C}(3, d1)×P3 M0,{C}(3, d)
(the projections are evaluation maps evC) of the locus of maps γ such that γ(A) = γ(B).

Fig 2. A general map in NR(d1, d2)

For d1, d2 > 0 we define RR(d1, d2) to be the closure in M0,{A,C}(3, d1)×P3 M0,{B,C}(3, d2)
(the projections are evaluation maps eC) of the locus of maps γ such that γ(A) = γ(B).

Fig 3. A general map in RR(d1, d2)

3



2.4. Special Tangent Condition. It turns out that it is necessary to understand the enu-
merative geometry of rational curves, now with extra conditions of the form: there is a fixed
marked point A on the curve, and the projective tangent line at A passes through a given
line L. We would also need to consider the case where there is a condition on A, which
means it could be specified to lie on a certain linear subspace.

Fig 4. A curve with a special tangent condition

2.5. Stacks of stable maps with constraints. Let F be a stack of stable maps of curves
in P3. For a constraint ∆, we define (F ,∆) be the closure in F of the locus of maps that
satisfy the constraint ∆. If the stack of maps F has two marked points A and B, we define
(F , T mHnPkLuALvB) to be the closure in F of the locus of maps γ such that:

• γ is tangent to m general planes.
• γ passes through n general lines and k general points.
• γ(A) lies on u general planes, and γ(B) lies on v general planes.

If F has one marked point A then we define (F , T mHnPkLuAWA) to be the closure of
maps γ such that:

• γ is tangent to m general planes.
• γ passes through n general lines and k general points.
• γ(A) lies on u general planes,
• The tangent line to the image of γ at γ(A) passes through a general line.

If a stack of F consists of a finite number of reduced points then we denote #F to be the
cardinality of F . Our objective in this paper is to compute

1

2
#(N (d),∆)
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which is the number of rational nodal curves of degree d satisfying the constraint ∆. The
factor 1/2 is due to the fact that every rational nodal curve in P3 corresponds to 2 maps in
N (d) since we can interchange the two marked points A and B.

Note that if u, v > 0, then for the constraint ∆ that consists of m tangency planes, n
incident lines, k incident points, and another one subspace of codimension u, and another
one subspace of codimension v, we have the following equation:

#(F , T mHnPkLuALvB) = #(F ,∆)

if one of them is finite.

If F is a closed substack of NR(d1, d2) then we denote (F ,Γ1,Γ2, k) to be the closure
in F of the locus of maps γ such that the restriction of γ on the i−th component satisfies
constraint Γi and that γ(C) lies on k general planes. Here Γi can be a constraint either
in the 4-tuple form or in the form of products of enumerative classes. Similary, we use the
notation (F ,∆, k) if we don’t want to distinguish the conditions on each component.

If F is a closed substack ofRR(d1, d2) then we denote (F ,Γ1,Γ2, k, l) to be the closure in F
of the locus of maps γ such that the restriction of γ on the i−th component satisfies constraint
Γi and that γ(C) lies on k general planes, and that γ(A) = γ(B) lies on l general planes.
Similary, we use the notation (F ,∆, k, l) if we don’t want to distinguish the conditions on
each component.

2.6. Some Examples.

Example 2.1. Let ∆ = (1, 0, 3, 2). Then

#(M0,{A,B}(3, 2), T HP2L2
AL2

B) = #(M0,0(3, 2),∆)

as both are the number of conics in P3 that are tangent to one plane, that pass through 3
lines and 2 points.

�

Example 2.2. Let Γ1 = (0, 0, 4, 3) and Γ2 = (0, 0, 3, 0). Then

1

2
#(NR(3, 1),Γ1,Γ2, 1)

is the number of pairs of nodal cubic-line (γ, l) in P3 intersecting at one point such that:

• The point in common lies on a fixed plane.
• The cubic γ passes through 4 lines and 3 points.
• The line l passes through 3 other lines.

�
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Example 2.3.
#(M0,{A}(3, 2), T 3P2LAWA)

is the number of conics in P3 that have a marked point A, that are tangent to 3 planes, that
pass thourgh 2 points, and that the tangent line to the conic at A passes through a general
line, and that A lies on a fixed plane.

�

Example 2.4.
#(RR(1, 2),HP , T 3P2)

is the number of pairs of line-conic (L,C) in P3 such that they intersect at two distinguished
points, and that L passes through 1 line and 1 point, and that C is tangent to 3 lines and
passes through 2 points.

�
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3. Counting maps in NR(d1, d2).

In this section we discuss how to count maps in NR(d1, d2). This is simple if we know the
enumerative geometry ofN (d1). Recall thatNR(d1, d2) is a substack of M0,{A,B,C}(3, d1)×P3

M0,{C}(3, d2) of maps that map A and B to a same point. Let N (d1){C} be the locus of

maps in M0,{A,B,C}(3, d1) that map A and B to a same point.

Proposition 3.1. We have

#(NR(d1, d2),Γ1,Γ2, k) = #(N (d1),∆′1) ·#(M0,0(3, d),∆′2)

where ∆′i are determined as follows. Let e1 be the dimension of the pushforward under evC of
(N {C},Γ1) into P3. Let e2 be the dimension of the pushforward under evC of (M0,{C}(3, d2),Γ2)
into P3. Then ∆′i is obtained from Γi by adding a subspace of codimension ei.

Proof. Let αi be the class of evC∗(N {C},Γ1) in P3. Let α2 be the class of evC∗(M0,{C}(3, d2),Γ2).
Let β be the class of a linear subspace of codimension k. Then the answer to the enumerative
problem in the proposition is the intersection product :

α1 · α2 · β = deg(α1) deg(α2).

To compute deg(α1), we intersect it with a linear subspace of codimension e1. Thus deg(α1) =
#(N (d1),∆′1). Similarly, deg(α2) = #(M0,0(3, d),∆′2). We have proved the proposition. �

Example 3.2. Let Γ1 = (0, 0, 4, 3) and Γ2 = (0, 0, 3, 0). Then we have

1

2
#(NR(3, 1),Γ1,Γ2, 1) = 24.

The dimension of the family of cubics in P3 with a marked point C is 12. Thus the
condition Γ1 cuts out a 2 dimensional family in N {C}(3). Hence e1 = 2, and ∆′1 = (0, 0, 5, 3).
The dimension of the family of lines in P3 with a marked point C is 5. Thus the condition
Γ2 cuts out a 2 dimensional family in M0,{C}(3, 1). Hence e2 = 2, and ∆′2 = (0, 0, 4, 0).

#(N (3),∆′1) is the number of nodal cubics in P3 passing through 5 lines and 3 points .
This is 12 because the 3 points determine the plane of the nodal cubics, so this number is
the same as the number of nodal cubics in P2 passing through 8 points. #(M0,0(3, 1),∆′2) is
the number of lines passing through 4 general lines in P3, which is 2. Thus the total number
is 12 · 2 = 24. �

The following lemma is useful because it allow us to express the tangency condition on
maps of reducible curves in terms of tangency conditions on maps on each component plus
an incident condition on the node.

Lemma 3.3. Let M1,M2 be stacks of stable maps of degree d1, d2 into P3. Assume each
map in each family carries at least one marked point C. Let M = M1 ×P3 M2 where the
fibre product is taken over the evaluation maps evC . Let T be the tangency divisor on M,
and Ti be the pull-back of the tangency divisor on the i−th component. Then on M we have
this divisorial equation: T = T1 + T2 + 2LC .

7



Proof. Let C be a general curve in M. C has the following description. There is a family of
nodal curves over π : S → C such that S is the union of two family of nodal curves M1,M2

along a section s : C → S. The section s represents the marked point C of the family. There
is also a map µ : S → P3 such that the restriction of µ on each fiber is an element (a map)
of M1 ×P3 M2. Now choose a general plane H in P3. Then the restriction of the tangency
divisor T on C is the branched divisor of the map π : µ−1(H) = D → C. This map is a
d1 + d2 sheet covering of C. The ramification points of this map come from three sources :

• The ramification points on µ−1(H)|M1 .
• The ramification points on µ−1(H)|M2 .
• The intersections µ−1(H) ∩ s.

The first two sources contribute to the pull backs T1 · C and T2 · C respectively. The inter-
sections points µ−1(H)∩ s correspond precisely to the maps γ with γ(C) ∈ H. These points
are the nodes of the curve, because through each of them, there are two branches : one from
µ−1(H)|M1 , one from µ−1(H)|M2 . If P ∈ D is one of such points, then the branched divisor
of π contains π(P ) with multiplicity 2. Thus we have T · C = T1 · C + T2 · C + 2LC · C.

Fig 5. The picture in a neighborhood of a point p ∈ µ−1(H) ∩ s

�

Using Lemma 3.3, we can ”expand” the tangency conditions on NR(d1, d2) until we have
tangency conditions only on each individual component.
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Proposition 3.4. Let ∆ be a constraint and let ∆i be the constraint obtained from ∆ by
removing i tangency conditions. Then we have the following equality :

#(NR(d1, d2),∆) =
∑

Γ1Γ2=∆

#(NR(d1, d2),Γ1,Γ2)

+ 2n
∑

Γ1Γ2=∆1

#(NR(d1, d2),Γ1,Γ2, 1)

+ 4
n(n− 1)

2

∑
Γ1Γ2=∆2

#(NR(d1, d2),Γ1,Γ2, 2)

+ 8
n(n− 1)(n− 2)

6

∑
Γ1Γ2=∆3

#(NR(d1, d2),Γ1,Γ2, 3).

�
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4. Counting Curves With A Special Tangent Condition

In this section, we will attempt to count curves with one special tangent classes in P3

Formally, the problem is as follows : how many rational curves in the family X of degree d
with a marked point A in P3 passing through the constraint ∆ and also satisfy the condition
that A lies on a given subspace of codimension k and the projective tangent line at A passes
through a general line. Here are some examples whose answer we know immediately :

Example 4.1. How many lines in P3 that pass through 2 general lines, having one marked
point A, the tangent line at which passes through a general line, and A also has to lie on a
given line?

This number is easily seen to be the same as the number of lines passing through 4 general
lines, which is 2. �

Example 4.2. How many conics in P3 that pass through 3 points, that have a marked point
A which must lie on a fixed line M , and that the tangent line at A to the curve passes through
a fixed line L?

Because the three points that the conic passes through determine its plane H, this prob-
lem reduces to an enumerative problem in P2 : how many conics in P2 that pass through 3
points and is tangent to a line at a fixed point? The answer is therefore 1. �

The following example is helpful in showing how we could get a hold of the special tangent
class.

Example 4.3. Consider the problem of counting curves in the family X in P3, that have a
marked point A, that satisfy the constraint ∆, such that the tangent line at A to the curves
passes through a line L. Let X ′ be the image of X via the forgetful morphism that forgets
the marked point A. Then we have

#(X ,∆WA) = 2(d− 1)#(X ′,∆)

Proof. The constraint ∆ cuts out an one-dimensional family F of curves on X . There is no
condition on the marked point A, which means that the one dimensional family consists of
a finite number of curves in P3 with a choice of a marked point A on each of them. The
number #(F ,WA) can then be computed as follows. For each curve γ ∈ F , we find the
number p of points A ∈ γ such that the projective tangent line to γ at A passes through a
fixed line L. Then we multiply p with the number of curves γ ∈ F , which is #(X ′,∆).

The number p is the ramification number of the projection map πL : γ → K, where K is
a line in P3 and πL is the projection from L to K. By Riemann-Hurwitz formula

p = degR = (2gγ − 2)− d(2gK − 2) = 2d− 2.
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Thus we have shown

#(X ,∆WA) = (2d− 2)#(X ′,∆).

�

Following the notation in [P1], let Kj,A be the boundary divisor ofM0,1(3, d) whose points
represent reducible curves in which the component containing A is mapped with degree j.
Using a similar idea as in the above example, we can prove:

Lemma 4.4. The following equation holds in the group Pic(M0,{A}(3, d))⊗Q, for r > 2 :

WA = 2LA + ψA

where ψA is the psi-class, and LA is the pull back of O(1) on P3 via the evaluation map evA.
In particular, we have

WA =

(
2− 2

d

)
LA +

1

d2
H +

j<d∑
j=1

(d− j)2

d2
Kj,A

Proof. We use the method as described in [P1], intersecting the two sides of the equations

with a general curve C inM0,1(3, d). Let γ denote the image of C under the evaluation map
evA. Let L be the line in P3 corresponding to the special tangent condition WA. Beccause
C is a general curve, we can assume γ is smooth. Let M be a general line in P3, and let
πL : P3−L→M be the projection onto M from L. Let φA be the line bundle on γ described
as follows. For each point p ∈ γ, ev−1

A (p) is a map γ ∈ C. The fibre of φA over p is then the
tangent vector to the image of α at = α(A). Let R be the zero scheme of the bundle map
φA → πL

∗(TM). Geometrically, R represents the locus pf points p ∈ γ, such that the map
ev−1

A (p) satisfies special tangent condition with respect to the line L. Thus

degR = R ∩ [γ] = C ∩WA.

Fig 6. The curve γ with line bundle φA
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We have
degR = −c1(φA) + deg(πL|γ)c1(TM).

Now c1(TM) = 2[class of a point], and deg(πL|γ) = deg γ = LA ∩C. The pullback of φA by
evA is isomorphic to the line bundle on C obtained by attaching to each map the tangent
vector at A to the source curve. Hence −c1(φA) ∩ γ = −c1(ev∗A(φA)) ∩ C = ψA ∩ C is the
usual psi class. In short, we have

WA = 2LA + ψA.

The second equality follows from the fact that ψA = −π∗(s2
A) on M0,{A}(3, d) and Lemma

2.2.2 in [P1]. �

The rest of this section will be examples.

Example 4.5. Verifying Example 3.1.

Proof. We need to compute #(M0,{A}(3, 1),H2L2
AWA). There is no boundary divisor on

M0,{A}(3, 1), hence
WA = H

Thus

#(M0,{A}(3, 1),H2L2
AWA) = #(M0,{A}(3, 1),H3L2

A) = #(M0,0(3, 1),H4) = 2

�

Example 4.6. Verifying Example 3.2.

Proof. We need to compute #(M0,{A}(3, 2),P3L2
AWA). On M0,{A}(3, 2), there is one bound-

ary divisor, K = (∅, 1 || {A}, 1), which parametrize pair of lines intersecting at one point,
and the marked point A is on one of them. Using lemma 3.4 we have

WA = LA +
H
4

+
K
4

Thus

#(M0,{A}(3, 2),P3L2
AWA) = #(M0,{A}(3, 2),P3L3

A) +
1

4
#(M0,{A}(3, 2),HP3L2

A)

+
1

4
#(K,P3L2

A)

= 0 +
1

4
+

1

4
3 = 1

The first ”#” term of the right hand side is the number of conics in P3 passing through 4
points. The second ”#” term is the number of conics in P3 passing through 3 points and 2
lines. The last ”#” term is the number of pair of lines in P3 with one common point, that
pass through 3 points, and that the component with the marked point A intersect a line at
A. �
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Example 4.7. There are 16 conics in P3 that have a marked point A, that are tangent to 3
planes, that pass thourgh 2 points, and that the tangent line to the conic at A passes through
a general line, and that A lies on a fixed plane.

Proof. We need to show that #(M0,{A}(3, 2), T 3P2LAWA) = 16.

#(M0,{A}(3, 2), T 3P2
ALAWA) = #(M0,{A}(3, 2), T 3P2L2

A) +
1

4
#(M0,{A}(3, 2),HT 3P2LA)

+
1

4
#(K, T 3P2LA)

= 8 +
1

4
16 +

1

4
16 = 16.

#(M0,{A}(3, 2), T 3P2L2
A) is 8 because there are 8 conics that pass through 2 points, 1 line,

that are tangent to 3 planes. #(M0,{A}(3, 2),HT 3P2LA) is the same enumerative problem,
but now there is two choices of the marked point A, thus is 16. To compute the term
#(K, T 3P2LA) = 16, we note that in order to satisfy the constraint T 3P2LA, a pair of lines
in K must have there intersection lying on all three tangency planes (multiplicity 8), and
each of the line must pass through one of the point conditions (2 ways to assign the point
conditions to each line). Thus the total number is 16.

Example 4.8. How many degree twisted cubics in P3 that pass through 3 points, 5 lines,
that have a marked point A that lies on a fixed plane, and that the tangent line at A
passing through a general line L? In formula, the problem is the intersection number
#(M0,{A}(3, 3), H5P3LAWA).

Put X = M0,{A}(3, 3) and X ′ = M0,0(3, 3). Let K1,A and K2,A be boundary divisors of X .
Let K be the unique boundary divisor of X ′. Applying the second formula in Lemma 3.4 :

WA =
4

3
LA +

1

9
H +

4

9
K1,A +

1

9
K2,A

Thus we have

#(X ,H5P3WALA) =
4

3
#(X ,H5P3L2

A) +
1

9
#(X ,H6P3LA)

+
4

9
#(K1,A,H5P3LA) +

1

9
#(K2,A,H5P3LA)

=
4

3
#(X ′, H6P3) + 3

1

9
(X ′, H6P3)

+
4

9
#(K,H5P3) + 2

1

9
#(K, H5P3)

=
4

3
190 +

1

3
190 +

4

9
344 +

2

9
344

= 546.

�
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5. Counting maps in RR(d1, d2)

Recall that RR(d1, d2) is a substack of M0,{A,C}(3, d1)×P3 M0,{B,C}(3, d2) of maps γ such
that γ(A) = γ(B). We rephrase the problem of counting maps in RR(d1, d2) as follows :

Given two families F1 and F2 of maps of rational curves with two marked points A,C.
How many times a map γ1 from F1 and a map γ2 from F2 intersect in such a way that :

• γ1(A) = γ2(A) and γ1(C) = γ2(C).
• γi(A) lies on a fixed linear space of codimension p.
• γi(C) lies on a fixed linear space of codimension q.

We consider the evaluation map

evAC : Fi −→ BlD(P3 × P3)

Let Ti be the pushforward of Fi under the evaluation map. Let h, k be the hyperplane
classes of the first and second factor in BlD(P3 × P3). Then the answer to our enumerative
problem above is the intersection number

T1T2h
pkq

where the product is evaluated in the Chow ring of BlD(P3 × P3).

The next natural thing to do is then to investigate the Chow ring of BlD(P3 × P3). Com-
pared to P3 × P3, this space has an additional piece which is the projective normal cone of
the diagonal D in P3 × P3, which is isomorphic to the projective tangent bundle P (TP3).

Proposition 5.1. The Chow ring of P (TP3) is generated by H, the pull back of the hyperplane
class of P3, and E = c1(OTP3 (1)) with the following relations :

H4 = 0, E3 = 4HE2 − 6H2E + 4H3

Proof. The Chow ring of P (TP3) is generated by two classes : the pull back of hyperplane
class in P3 which we denote H and the class E = c1(OTP3 (1)). By theorem 3.3 in [Fu] there
exist ai : 0 < i ≤ 3 such that

E3 = a1HE
2 + a2H

2E + a3H
3

Let p : TP3 → P3 be the projection. The coefficients can be found inductively as follows.
We have

p∗(E
3+j) =

∑
i

aiH
ip∗(E

3−i+j)

for 0 ≤ j ≤ 2. But if 3− i+j < 2 or equivalently j < i−1 then p∗(E
3−i+j) = 0 for dimension

reason (if the image is of lower dimension then the pushforward is zero). Let si and ci be
14



the i-th Segre classes and Chern classes of TP3 . Then we have the following equalities :

s1 = p∗(E
3) = a1Hp∗(E

2) = a1Hs0

s2 = p∗(E
4) = a1Hp∗(E

3) + a2H
2p∗(E

2) = a1Hs1 + a2H
2s0

s3 = p∗(E
5) = a1Hp∗(E

4) + a2H
2p∗(E

3) + a3H
3p∗(E

2)

= a1Hs2 + a2H
2s1 + a3H

3s0

¿From those and the equality (s0 + s1 + s2 + s3)(c0 + c1 + c2 + c3) = 1 we can easily find
that aiH

i = −ci. From the Euler exact sequence

0 −→ OP3 −→ OP3(1)⊕4 −→ TP3 −→ 0

we deduce that c(TP3) = (1 + H)4 hence ci = (4
i )H

i. In particular, a1 = 4, a2 = −6,
a3 = 4. �

Now we can calculate the Chow ring of BlD(P3 × P3).

Proposition 5.2. The Chow ring of BlD(P3×P3) is generated by h, k, the hyperplane class
of the first and the second factor, and the exceptional divisor e with the following relations :

h4 = k4 = 0,

he = ke,

e3 = 4he2 − 6h2e+ h3 + h2k + hk2 + k3

The ring A∗(BlD(P3×P3)) is generated by 3 elements : h, k, the hyperplane classes of the
first and second factor respectively, and e, the exceptional divisor. As a scheme, e ∼= P (TP3).
The followings are obvious relations :

he = ke, h4 = k4 = 0

Restricting to e = P (TP3), we have :

h = k = H,−e = E

Thus we have this equality from Proposition 4.1:

e ·
(
(−e)3

)
= −e ·

(
i≤3∑
i>0

(4
i )h

i(−e)3−i

)
⇔

⇔ e4 = e ·

(
i≤3∑
i>0

(−1)i−1(4
i )h

ie3−i

)
(∗)

Since the Betti numbers of BlD(P3 × P3) have to be symmetrical, it follows that 3 must
be the least number r so that er is expressible as linear combinations of monomials in which
the power of e is less than r. So let

e3 =

i≤3∑
i>0

τih
ie3−i +

i≤3∑
i≥0

Aih
ik3−i (∗∗)
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Multiplying the equation (∗∗) by e and compare to the equation (∗) above we get τi =
(−1)i−1(4

i ) and
∑

iAi = (−1)34. If we pushforward the equation (∗∗) onto the P3 × P3 :

p∗(e
3) = p∗

(
e · (−1)2(−e)2

)
= p∗(E

2) = D
i≤3∑
i>0

p∗(h
ie3−i) = 0 ( dimension reason )

p∗

(
i≤3∑
i≥0

Aih
ik3−i

)
=

(
i≤3∑
i≥0

Aih
ik3−i

)
hence we deduce that

D =

(
i≤3∑
i≥0

Aih
ik3−i

)
as classes in the Chow ring of P3 × P3. But in A∗(P3 × P3)

D =

i≤3∑
i≥0

hik3−i

hence all the A′is must be 1. �

To count maps in RR(d1, d2) satisfying the constraint (∆, p, q), we first consider all the
partitions ∆ = Γ1∆Γ2, and for each such partition , and assigning constraint Γi to the i-th
component. Then the constraint Γ1 cuts out a family F1 on M0,{A,C}(3, d1). Similarly, γ2

cuts out a family F2 on M0,{A,C}(3, d2). Let Ti be the pushforward of Fi under the evaluation
map evAC . We then calculate the product

T1T2h
pkq

in the Chow ring A∗(BlD(P3 × P3)). Then take the sum over all partitions ∆ = Γ1Γ2 to
get the number of maps #(RR(d1, d2),∆, p, q). We need a result to calculate the classes of
(evAC)∗ (Fi) in A∗(BlD(P3 × P3)). The following lemma is useful:

Lemma 5.3. Let F be a family of stable maps in M0,{A,C}(3, d). Let T be the pushforward
of F under the evaluation map evAC : F → BlD(P3 × P3). Let G be the family of stable
maps in M0,{A}(3, d) that is the image of F under the forgetful morphism M0,{A,C}(3, d) →
M0,{A}(3, d) that forgets the marked point C. Assume dimT ≤ 2r. Then we have

• For m,n such that m+ n = dimT :

Thmkn = #(F ,LmALnC).

• For m such that m+ 1 = dimT :

Thme = #(G,LmA ).

• For m,n such that m+ 2 = dimT , we have

Thme(h+ k − e) = #(G,LmAWA)
16



Proof. The first equality is trivial. The number Thmkn is the number of maps γ ∈ F such
that γ(A) belongs to h planes, and that γ(C) belongs to k planes. That is precisely the
number #(F ,LmALnC). The second equality follows from the fact that multiplying with e is
the same as replacing the family F by the family G.

Now we prove the third equality. Let

[x0 : x1 : · · · : xn]× [y0 : y1 : · · · : yn]

be a homogeneous coordinate system of P3 × P3. Let H be the hypersurface

x0yn = xny0

in P3 × P3. H contains D with multiplicity one and T = h + k in A∗(P3 × P3), hence the

proper transformation T̃ of T in BlD(P3 × P3) satisfies

T̃ = h+ k − e.

Let us examine what it means to intersect T̃ with e and H̃. Let π : BlD(P3×P3)→ P3×P3

be the blow up. We have a map f : T → T ∩ D defined as folows. For each point x ∈ T ,
let Px be the subspace {p} × P3 ⊂ P3 × P3, where {p} ∈ P3 is chosen so that x ∈ Px. The
intersection T ∩Px is a genus zero curve fx in Px, and f maps the entire curve fx onto x. The
intersection H ∩ Px is a plane in Px which is the span of x and the codimension 2 subspace

xo = y0 = 0. Then for a point y ∈ T̃ with π(y) = x, we have y ∈ T̃ ∩ e ∩ H̃ iff fx, as a curve

in the projective space Px is tangent to Hx at x. Thus intersecting with T̃ (after intersecting
with e) has the effect of imposing one special tangent condition on the family G.

Fig 7.

�
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Now we have enough to be able compute the class of T = evAC∗(F) in A∗(BlD(P3 × P3)).
The formal statement of that fact is the following proposition, whose proof is trivial.

Proposition 5.4. Let T ∈ A∗(BlD(P3 × P3)) be a class of codimension d, 0 ≤ d ≤ 6 . Then
the following intersection products determine T :

• Thmkd−m with 0 ≤ m ≤ d.
• Thd−2e(h+ k − e) with m+ 2 = d.
• Thd−1e.

�

Example 5.5. How many pair of lines (L1, L2) in P3 such that they intersect twice, and
that each of them passes through 3 lines? The answer is 0.

Proof. The answer is obvious because two distinct lines can never intersect twice. But our
algorithm does not know that. We need to compute

1

2
#(RR(1, 1),H3,H3).

The factor 1/2 accounts for the fact the statement of the problem does not distinguish the two
intersection points. Let Fi be the family of lines Li with a choice of two marked points A,Con
them. Let Ti be the pushforward of Fi under the evaluation maps evAC : Fi → BlD(P3×P3).
T1 is three dimensional, so we can assume

T1 = α(h3 + k3) + β(h2k + hk2) + γeh2 + µe2h.

The coefficients of h3 and k3 must be the same due to symmetry. Similarly the coefficients
of h2k and hk2 must be the same.

α = αh3k3 = T1k
3 = #(M0,{A,C}(3, 1),H3L3

A) = 0

β = βh3k3 = T1kh
2 = #(M0,{A,C}(3, 1),H3L2

ALC) = 2

µ = µh3e3 = T1h
2e = #(M0,{A}(3, 1),H3L2

A) = 2

Computation of γ is a little bit lengthier. First we have

γ = γh3k3 = T1he
2 − µe4h2 =

(
2T1h

2e− T1he(k + k − e)
)
− 4µ

= −2µ− T1he(h+ k − e).
Now T1he(h+k−e) = #(M0,{A}(3, 1),H3LAWA) is the number of lines with a marked point
A in P3 that pass through 3 lines, such that A lies on a fixed plane, and such that the tangent
line atA passes through a general line. This number is the same as the number of lines passing
through 4 general lines in P3, which is 2. Thus γ = −2µ− T1hk(h+ k − e) = −4− 2 = −6.
Therefore

T1 = 2(h2k + hk2)− 6h2e+ 2he2

Obviously T1 = T2, so after a bit of algebra we have

T1T2 =
(
2(h2k + hk2)− 6h2e+ 2he2

)2
= 0.

�
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Example 5.6. How many pair of line-conic (L,C) in P3 such that they intersect twice, and
that L passes through 1 line and 1 point, and that C is tangent to 3 lines and passes through
2 points. The answer is 4.

Proof. We need to compute
1

2
#(RR(1, 2),HP , T 3P2)

The pair (L,C) is planar, thus the three points that they pass through determine their
plane. Thus this reduces to an enumerative problem on P2: L passes through 2 points,
and C is tangent to 3 lines and passes through 2 points, and they intersect twice (which is
redundant). Thus it is easy to see that the answer is 4. Let T1 and T2 be as above, using a
similar procedure, we determine that, in BlD(P3 × P3)

T1 = h2k + hk2 − 3h2e+ he2.

Now we will compute T2. T2 is 3 dimensional, so we can write T2 = α(h3 + k3) +β(h2k6 +
hk2) + γeh2 + µe2h.

α = αh3k3 = T2k
3 = #(M0,{A,C}(3, 2), T 3P2L3

A) = 0.

β = βh3k3 = T2kh
2 = #(M0,{A,C}(3, 2), T 3P2L2

ALC) = 16.

µ = µh3e3 = T2h
2e = #(M0,{A}(3, 2), T 3P2L2

A) = 8.

γ = −2µ− T2he(h+ k − e) = −16−#(M0,{A}(3, 2), T 3P2LAWA) = −32.

The last equality follows from Example 3.7. Thus

T2 = 16(h2k + hk2)− 32h2e+ 16he2.

Using simple algebra we conclude that the answer to our enumerative problem is

1

2
T1T2 =

1

2
(h2k + hk2 − 3h2e+ he2)(16(h2k + hk2)− 32h2e+ 16he2) = 4

�

Example 5.7. How many pair of conics (C1, C2) in P3 such that they intersect at two
distinguished points N1, N2 and that :

• N1 lies on a fixed plane.
• N2 lies on a fixed line.
• C1 is tangent to 5 planes.
• C2 passes through 6 lines.

The answer is 988.

Proof. Using the procedure above we have

T1 = 8(h+ k)− 2e

T2 = 36(h2 + k2) + 92hk − 112he+ 18e2
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Thus the answer is
T1T2hk

2 = 988.

�

We end this section with a proposition similar to Proposition 3.3.

Proposition 5.8. Let ∆ be a constraint and let ∆i be a constraint obtained from ∆ by
removing i tangency conditions. Then we have the following equality :

#(NR(∆1, d2),∆, 0, k) =
∑

Γ1Γ2=∆

#(RR(d1, d2),Γ1,Γ2, 0, k)

+ 2n
∑

Γ1Γ2=∆1

#(RR(d1, d2),Γ1,Γ2, 1, k)

+ 4
n(n− 1)

2

∑
Γ1Γ2=∆2

#(RR(d1, d2),Γ1,Γ2, 2, k)

+ 8
n(n− 1)(n− 2)

6

∑
Γ1Γ2=∆3

#(RR(d1, d2),Γ1,Γ2, 3, k).
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6. Characteristic numbers of rational nodal curves in P3

Recall that N (d) is the closure in M0,{A,B}(3, d) of the locus of maps γ such that γ(A) =
γ(B).

Theorem 6.1. Let ∆ be a constraint such that ∆(0) = 0. Choose a subspace u in ∆ which
is not a plane, such that the dimension of u is largest possible. Then choose any two other
subspaces s, t in ∆. The following constraints are derived from ∆ :

0) ∆̃ by removing u, s, t from ∆.
1) ∆0 by replacing u with two subspaces : a plane p and a subspace q such that p ∩ q = u.
2) ∆1 is derived from d0, by replacing p and s with h ∩ s.
3) ∆2 is derived from d0, by replacing q and t with q ∩ t.
4) ∆3 is derived from d0, by replacing s and t with s ∩ t.

If Γ is a set of linear spaces, and a and b are two linear spaces, denote Γ(a,b) the set
obtained from Γ by adding a and b.

Then the following formula holds :

#(N (d) ·∆) = −
Γ1Γ2=∆̃∑
d1+d2=d

#(NR(d1, d2),Γ
(s,t)
1 ,Γ

(p,q)
2 )

−
Γ1Γ2=∆̃∑
d1+d2=0

#(NR(d1, d2),Γ
(p,q)
1 ,Γ

(s,t)
2 )

− 2

Γ1Γ2=∆̃∑
d1+d2=d

#(RR(d1, d2),Γ
(p,q)
1 ,Γ

(s,t)
2 )

+

Γ1Γ2=∆̃∑
d1+d2=d

#(NR(d1, d2),Γ
(q,t)
1 ,Γ

(p,s)
2 )

+

Γ1Γ2=∆̃∑
d1+d2=d

#(NR(d1, d2),Γ
(p,s)
1 ,Γ

(q,t)
2 )

+ 2

Γ1Γ2=∆̃∑
d1+d2=d

#(RR(d1, d2),Γ
(p,s)
1 ,Γ

(q,t)
2 )

− #(N (d),∆3) + #(N (d),∆1) + #(N (d),∆2).

Furthermore, each ∆i, i ≥ 1 is of rank lower than that of ∆.

Proof. Let S be a set of markings that is in one-to-one correspondence µ : ∆0 → S with
the linear spaces in ∆0. Let X be the moduli space M0,{A,B}∪S(3, d), and let N (S)(d) be the

closure of the locus in X of maps γ such that γ(A) = γ(B). Let Y be the closure in N (S) of
the locus of maps γ such that γ(µ(m)) ∈ m for all m ∈ ∆0. Because #(N (d),∆) is finite, Y
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is one-dimensional. We consider two equivalent divisors on X :

(µ(p), µ(q) || µ(s), µ(t)) = (µ(p), µ(s) || µ(q), µ(t)).

Let K1 = (µ(p), µ(q) || µ(s), µ(t)), and let K2 = (µ(p), µ(s) || µ(q), µ(t)). Then we have

# (Y ∩ K1) = # (Y ∩ K2) .

Let us analyze the left-hand side of the equation. Let γ be a general point of Y ∩K1. Then
γ is a stable map whose source curve has two components C1, C2 joined at a node, such that
µ(p), µ(q) ∈ C1 and µ(s), µ(t) ∈ C2. There are several cases to consider:

• deg γ|C1 = 0. If A,B ∈ C1 then the image of γ has a cusp at A. A quick dimension
count shows that this case has no enumerative contribution due to dimension reason.
If one of A,B is ∈ C1, or if any other marked point is ∈ C1, simple dimension count
also shows that none of those cases has enumerative contribution. Thus we only need
to consider A,B ∈ C2, and γ|C2 is a rational nodal curve and satisfies the constraint
∆ (but these conditions are marked). The contribution to #(Y ∩ K1) in this case is
#(N (d),∆).
• deg γ|C2 = 0. Arguing similarly, we have that the contribution to #(Y ∩ K1) is

#(N (d),∆3).
• γ has positive degree di component Ci. There are three subcases :

– A,B ∈ C1 : In this case, γ|C1 is a rational nodal curve and γ|C2 is a rational
curve. The contribution in this case is

Γ1Γ2=∆̃∑
d1+d2=0

#(NR(d1, d2),Γ
(p,q)
1 ,Γ

(s,t)
2 ).

– A,B ∈ C2 : The contribution is

Γ1Γ2=∆̃∑
d1+d2=d

#(NR(d1, d2),Γ
(s,t)
1 ,Γ

(p,q)
2 ).

– A ∈ C1, B ∈ C2 or vice versa. In this case the image of γ is a curve having
two components that intersect twice at distinguished points. The contribution
is therefore

2

Γ1Γ2=∆̃∑
d1+d2=d

#(RR(d1, d2),Γ
(p,q)
1 ,Γ

(s,t)
2 ).
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Fig 8. Four types of source curves of a general map in Y ∩ K1.

We can analyze Y ∩ K2 in the same way and after rearranging the terms, we derive the
equation in the statement of the theorem. The last statement is just simple algebra. �

Using a program implementing the above formula, we derive the following numbers of
rational nodal curves in P3 passing through a lines and b points, with increasing a (which
are also the number of elliptic curves with fixed j−invariant passing through the same
constraints).

• Cubics: 0, 0, 12, 144, 1392, 12960.
• Quartics: 24, 192, 1800, 17808, 18223, 1935936, 21422448, 247191840.
• Quintics: 1344, 13440, 144324, 1625184, 19092384, 233875584, 2987074368,

39753459648, 550666856448, 7928395296768.

It is now possible to use the results so far to compute the full characteristic number of
rational nodal curves.

Theorem 6.2. Let ∆ be a constraint such that ∆(0) > 0. Let ∆′′ be the constraint obtained
from ∆ by removing a tangency plane. Let ∆′ be the constraint obtained from ∆′′ by adding
an incident line. Then we have the following equality, provided that the left hand side is
finite.
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#(N (d),∆) =
d− 1

d
#(N (d),∆′)

+
∑

d1+d2=d

(
#(NR(d1, d2),∆′′) + #(RR(d1, d2),∆′′)

)
.

Proof. We have the following equality of divisors on M0,{A.B}(3, d)

T =
d− 1

d
H +

j≤d/2∑
d>0

j(d− j)
d

(j, d− j).

Thus

#(N (d),∆) = # ((N (d),∆′′), T )

=
d− 1

d
# ((N (d),∆′′),H) +

j≤d/2∑
j>0

# (N (d) ∩ (j, d− j),∆′′) .

Now we will analyze #(N (d) ∩ (j, d − j),∆′′). A general map γ ∈ N (d) ∩ (j, d − j) has
two-component source curve. There are two cases:

• A,B belong to a same component. The contribution is #(NR(j, d − j),∆′′) +
#(NR(d − j, j),∆′′) if j < d − j depending on whether A,B are in the component
of lower or higher degree. If j = d− j, the contribution is just #(NR(j, d− j),∆′′).
• A,B belong to different components. The contribution is 2#(RR(j, d − j),∆′′) if
j < d− j and is #(RR(j, d− j),∆′′) if j = d− j.

Sum up all possibilities, we derive the formula in Theorem 6.4. �

To compute #(RR(d1, d2),∆) we use Proposition 5.8, Proposition 5.4 and Lemma 5.3. To
compute #(NR(d1, d2),∆) we use Propostion 3.4 and Proposition 3.1. Using a computer
program implementing the above algorithm, we can calculate the following numbers of ra-
tional nodal curves of degree 3, 4, 5 that pass through a lines and are tangent to b planes,
with increasing b :

• Cubics: 12960, 29520, 61120, 109632, 167616, 214400, 230240, 211200, 170192, 124176, 85440,
56960.
• Quartics: 247191840, 519424512, 1034619648, 1932171072, 3353134848, 5361957120,

7841572992, 10431095808, 2599060192, 13851211968, 13948252800, 12986719872,
11309818368, 9330496512, 7394421888, 5703866880.
• Quintics : 7928395296768, 16913986557696, 34645178529792, 67838371113984,

126457160317440, 223497303825408, 373019416582656, 585746158152192, 862662145899264,
1188950459771520, 1532051249787648, 1846789046255616, 2086982230651392,
2218873455750144, 2230284906086400, 2131793502847488, 1950604658328576,
1720926352507392, 1475336408154624, 1239040055854080.
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6.3. Possible generalizations. All of the results in sections 3, 6 generalize without
change to curves in Pr. Results in section 5 will also carry over to to Pr if generalizations
of results in section 4 are achieved. The main difficulty in doing so is the fact that when
we count curves with multiple special tangent conditions, excess intersection will arise. The
intersection of all special tangent conditions will contain all the loci of maps γ such that
γ(A) is a node of the image.

Another possible generalization is to family of rational nodal curves with possible condition
on the node. Theorem 6.1 will generalize without change. However, Theorem 6.2 will need
adjustment. That is because when counting rational nodal curves with tangency conditions
and condition on the node, such curves of degree 2 must be correctly interpreted and counted
with correct multiplicities. These generalizations will be discussed in [N].
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