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PROLONGATION ON REGULAR INFINITESIMAL FLAG

MANIFOLDS

KATHARINA NEUSSER

Abstract. Regular infinitesimal flag structures are geometric structures, which
occur as underlying structures of parabolic geometries. Among these structures
we have for instance conformal structures, contact structures, certain types of
generic distributions and partially integrable almost CR-structures of hyper-
surface type. The aim of this article is to develop for a large class of (semi-)
linear overdetermined systems of partial differential equations on regular in-
finitesimal flag manifolds M a conceptual method to rewrite these systems as
systems of the form ∇̃(Σ)+C(Σ) = 0, where ∇̃ is a linear connection on some
vector bundle V over M and C : V → T ∗M ⊗ V is a (vector) bundle map.
In particular, if the overdetermined system is linear, ∇̃ + C will be a linear
connection on V and hence the dimension of its solution space is bounded by
the rank of V . We will see that the rank of V can be easily computed using
representation theory.

1. Introduction

Given some overdetermined system of linear partial differential equations on a
manifold M , one can ask the question whether this system can be rewritten as a
first order system in closed form, meaning that all first order partial derivatives of
the dependent variables are expressed in the dependent variables themselves. To
prolong an overdetermined system in this way actually demands to introduce new
variables for certain unknown higher partial derivatives until all first order partial
derivatives of all the variables can be obtained as differential consequences of the
original system of equations. This can be rephrased as the need to construct a
vector bundle V over M and a linear connection on V such that its parallel sec-
tions correspond bijectively to solutions of the original system of equations, see [3].
Having rewritten a system of linear differential equations in this way gives consid-
erable information about the system. Namely, it implies that the dimension of the
solution space is bounded by the rank of V and by looking at the curvature of the
linear connection and its covariant derivatives one may derive obstructions to the
existence of solutions. In [22] Spencer studies a class of systems of linear differen-
tial equations, namely systems of so called finite type. For a system of differential
equations of finite type it can be shown that a solution is already determined by a
finite jet in a single point. Hence this is a class of systems of differential equations,
for which one can expect such a rewriting procedure to exist. However, even for
simple differential equations, where one maybe is also able to check easily that they
are of finite type, to rewrite them as a first order closed systems can become quite
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involved, see [3] and [12]. Also there is in general no conceptual method telling one
how to proceed.
In [3] Branson, Čap, Eastwood and Gover developed such a method for a huge class
of overdetermined systems of finite type on manifolds endowed with an almost her-
mitian symmetric structure. Our aim is to generalise this prolongation procedure
to a broader class of geometric structures.
Suppose that M is a manifold endowed with a geometric structure of a filtered man-
ifold, meaning that its tangent bundle TM is filtered by vector subbundles TM =

T−kM ⊃ ... ⊃ T−1M such that the tangential filtration is compatible with the Lie
bracket of vector fields. Then the Lie bracket of vector fields induces a tensorial
bracket on the associated graded vector bundle gr(TM) =

⊕k
i=1 T

−iM/T−i+1M ,
making each fiber gr(TxM) over a point x ∈M into a nilpotent graded Lie algebra,
which should be seen as the first order approximation to the filtered manifold at
x ∈M , replacing the role of the tangent space for ordinary manifolds.
One of the best studied examples is the case of M being a contact manifold
T−1M ⊂ TM , i.e. gr(TxM) is a Heisenberg Lie algebra. Studying analytic proper-
ties of differential operators on a contact manifold M , it was already observed in the
70’s and 80’s of the last century that the notion of order of differential operators on
M should be better changed and adapted to the contact structure by considering a
derivative in direction of a vector field transversal to the contact subbundle T−1M

as a differential operator of order two rather than one. Adjusting the notion of or-
der in this way leads then to a notion of weighted symbol for differential operators
on M , which naturally fits together with the contact structure and can be viewed,
in contrast to the usual principal symbol, as the principal part of a differential
operator on M , see [1] and [23].
Independently of these developments in contact geometry, Morimoto started in the
90’s to study differential equations on general filtered manifold and developed a
formal theory, see [16], [17] and [18]. By adjusting the notion of order of differen-
tiation to the filtration of a filtered manifold, he introduced a concept of weighted
jet bundles and suggested it as a convenient framework to investigate differential
operators between sections of vector bundles over a filtered manifold.
Studying the problem of prolongation of differential equations on a filtered manifold
M , it turns out that there exists a lot of examples of linear differential equations,
for which a solution is already determined by finitely many partial derivatives in a
single point, but which are not of finite type in the classical sense of Spencer. This
indicates that prolongation of differential equations on filtered manifolds should be
studied within the framework of weighted jet bundles and the notion of finite type
should be adjusted to the weighted setting, see also [20] and [21].
For a semisimple Lie group G and a parabolic subgroup P a regular infinitesimal
flag manifold of type (G,P ) is a certain type of filtered manifold M together with
some reduction of the structure group of the frame bundle of gr(TM) to the Levi
subgroup G0 of P . These geometric structures occur as underlying structures of
parabolic geometries, which have been intensively studied in the last decades, see
[9]. In this article we shall study a broad class of semi-linear overdetermined systems
on regular infinitesimal flag manifolds by working within the setting of weighted
jet bundles and we will establish an explicit prolongation procedure for them. If
the tangential filtration of the regular infinitesimal flag structure is trivial, it is an
almost hermitian symmetric structure and our method will recover the one in [3].
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Having introduced the concept of weighted jet bundles and the necessary back-
ground on regular infinitesimal flag structures, we will first consider semi-linear
systems on regular infinitesimal flag manifolds M , where G0 has one dimensional
center. We will show how for a huge class of such systems, which will turn out
to be of weighted finite type, one can construct a linear connection ∇̃ on some
vector bundle V and a bundle map C : V → T ∗M ⊗ V such that solutions of
∇̃(Σ) + C(Σ) = 0 correspond to solutions of the studied system. If the system
is linear, C will be a vector bundle map and we will obtain a correspondence of
solutions of the system in question and parallel sections of the linear connection
∇̃ + C. Further, we will apply our results to the case of contact manifolds, which
will lead to an alternative prolongation method as the one developed by Eastwood
and Gover in [13]. Finally, we will discuss in the last part of this article the case
of general regular infinitesimal flag manifolds and the changes with respect to the
results in the case of G0 having one dimensional center.

Acknowledgments I would like to thank Andreas Čap for several helpful discus-
sions and suggestions. Also I am grateful to Michael Eastwood and Tohru Morimoto
for valuable conversations.

2. Filtered manifolds and weighted jet bundles

In this section we introduce the notion of a filtered manifold and discuss the
concept of weighted jet bundles over filtered manifolds as it was introduced by
Morimoto, see especially [18].

2.1. Filtered Manifolds. We start by collecting some basic facts about filtered
manifolds.

Definition 2.1. A filtered manifold is a smooth manifold M together with a fil-
tration of its tangent bundle TM by vector subbundles {T iM}i∈Z such that:

• T iM ⊇ T i+1M

• T 0M = 0 and there exists ℓ ∈ N with T−ℓM = TM

• for sections ξ ∈ Γ(T iM) and η ∈ Γ(T jM) the Lie bracket [ξ, η] is a section
of T i+jM

By the first two properties, the tangential filtration can be written as

TM = T−kM ) T−k+1M ) ... ) T−1M

for some k ∈ N with T iM = TM for i ≤ −k and T iM = 0 for i ≥ 0. The number
k ∈ N is called the depth of the filtered manifold. In the sequel we will always
suppose that a filtered manifold is given in this form.
Given a filtered manifold M of depth k, one can form the associated graded vector

bundle gr(TM) to the filtered vector bundle TM , which is defined as

gr(TM) =
⊕

i∈Z

gri(TM) =

−1⊕

i=−k

gri(TM),

where gri(TM) = T iM/T i+1M .
Now consider the operator Γ(T iM)× Γ(T jM) → Γ(gri+j(TM)) given by (ξ, η) 7→

qi+j([ξ, η]), where qi+j : T i+jM → gri+j(TM) is the natural projection. One
verifies directly that this operator is bilinear over smooth functions and therefore
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it is induced by a bilinear bundle map T iM × T jM → gri+j(TM). Moreover, it
obviously factorises to a bundle map gri(TM)× grj(TM) → gri+j(TM), since for
ξ ∈ Γ(T i+1M) or η ∈ Γ(T j+1M) we have [ξ, η] ∈ Γ(T i+j+1M). Hence we obtain a
bilinear vector bundle map on the associated graded bundle

L : gr(TM)× gr(TM) → gr(TM),

which makes the fiber gr(TxM) over x ∈M into a nilpotent graded Lie algebra:

Lx(gri(TxM), grj(TxM)) ⊂ gri+j(TxM).

Definition 2.2. Let M be a filtered manifold.

(1) The tensorial bracket L : gr(TM)× gr(TM) → gr(TM) induced from the
Lie bracket of vector fields on gr(TM) is called the Levi bracket.

(2) The nilpotent graded Lie algebra (gr(TxM),Lx) is called the symbol algebra

of the filtered manifold M at the point x ∈M .

Suppose M and N are filtered manifold and let f : M → N be a local isomor-

phism of filtered manifolds, i.e. a local diffeomorphism f , whose tangent map Tf

satisfies Tf(T iM) = T iN for all i ∈ Z.. Then for each point x ∈ M the tangent
map Txf at x induces an isomorphism of graded vector spaces between gr(TxM)

and gr(Tf(x)N) and the compatibility of the pullback of vector fields with the Lie
bracket easily implies that this actually is an isomorphism of graded Lie algebras.
Therefore the symbol algebras are basic invariants one can associate to a filtered
manifold. In fact, the symbol algebra at x should be seen as the first order linear
approximation to the filtered manifold at the point x replacing the role of the tan-
gent space for ordinary manifolds.
The symbol algebra of a filtered manifold may change from point to point and so
gr(TM) needs not to be locally trivial as a vector bundle of Lie algebras. Note that,
if n = n−k ⊕ ... ⊕ n−1 is a nilpotent graded Lie algebra and M a filtered manifold
such that the symbol algebra in each point is isomorphic to n, one has a natural
notion of a frame bundle of the associated graded bundle P(gr(TM)). Denoting by
Px(gr(TM)) the space of all graded Lie algebra isomorphisms φ : n → gr(TxM),
the frame bundle is defined by the disjoint union

P(gr(TM)) := ⊔x∈MPx(gr(TM)). (1)

The bundle P(gr(TM)) is a principal bundle with structure group Autgr(n), the
group of all Lie algebra automorphisms of n, which in addition preserve the grading.

Remark 2.1. Any ordinary smooth manifold can be seen as a trivial filtered mani-
fold TM = T−1M . The symbol algebra gr(TxM) at x ∈M is then just the tangent
space TxM viewed as an abelian Lie algebra.

One of the best studied examples of a non-trivial filtered manifold is a contact
manifold:

Example 2.1 (Contact Manifolds). A contact manifold is a manifold M of di-
mension 2n + 1 together with a vector subbundle H ⊂ TM of rank 2n such
that in each point x ∈ M the Levi bracket Lx : Hx × Hx → TxM/Hx is non-
degenerate. Hence a contact manifold (M,H) of dimension 2n + 1 is a filtered
manifold H =: T−1M ⊂ T−2M = TM , whose symbol algebra in each point is
isomorphic to the Heisenberg Lie algebra of dimension 2n+ 1.

In section 3.2 we will see several other interesting examples of filtered manifolds.
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2.2. The weighted order of a differential operator. As indicated in the in-
troduction we now adapt the notion of order of differential operators on filtered
manifolds with respect to the filtration of the tangent bundle as follows:

Definition 2.3. Let M be a filtered manifold.

(1) A local vector field ξ of M is of weighted order ≤ r, if ξ is a local section
of T−rM . The smallest number r ∈ N0 such that this holds is called the
weighted order ord(ξ) of ξ.

(2) A linear differential operator D : C∞(M,C) → C∞(M,C) on M is of
weighted order ≤ r, if for each point x ∈ M there exists a local frame
{X1, ..., Xn} of TM defined on an open neighbourhood U ⊂ M of x such
that

D|U =
∑

α∈Nn
0

aαX
α1
1 ...Xαn

n with aα ∈ C∞(U,C)

where for all non zero terms in this sum
∑n

i=1 αiord(Xi) ≤ r. The smallest
number r ∈ N0 such this holds is called the weighted order of D.

Suppose M is a filtered manifold of depth k. Choosing an open subset in M ,
over which all subbundles T−ℓM of the tangent bundle trivialise, one can always
construct an adapted local frame of TM , i.e. a local frame

{X1,1, ..., X1,i(1), ..., Xk,1, ..., Xk,i(k)} (2)

such that {X1,1, ..., X1,i(1), ..., Xℓ,1, ..., Xℓ,i(ℓ)} is a local frame of T−ℓM for all ℓ ≤ k.
Using that the filtration of the tangent bundle is compatible with the Lie bracket
of vector fields and that vector fields act as derivations on the algebra of smooth
functions, one shows directly that a differential operator D on M is of weighted
order r if and only if for each point x ∈ M there exists an adapted local frame of
TM defined on some open neighbourhood Ux of x such that

D|Ux
=

∑

|α|≤r

aαX
α1,1

1,1 ...X
αk,i(k)

k,i(k) with aα ∈ C∞(U,C), (3)

where α = (α1,1, ..., αk,i(k)) ∈ Nn0 is a multi-index with |α| :=
∑k
j=1

∑i(j)
ℓ=1 jαj,ℓ

and if there exists at least one point x0 ∈M such that the local description (3) of
D|Ux0

satisfies that aα(x0) 6= 0 for some α with |α| = r. If D is a linear differential
operator of weighted order r, then D is for any choice of local adapted frames of
TM of this form. For details see [21].

2.3. The universal enveloping algebra of a nilpotent graded Lie algebra.

Suppose that n = n−k ⊕ ... ⊕ n−1 is a graded nilpotent Lie algebra and denote by
[ , ] its Lie bracket . Recall that the universal enveloping algebra U(n) of the Lie
algebra n is defined as the following quotient

U(n) := T (n))/I,

where T (n) is the tensor algebra of n and I the two-sided ideal generated by ele-
ments of the form X ⊗ Y − Y ⊗X − [X,Y ] for X,Y ∈ n. The grading on n induces
an algebra grading on the tensor algebra given by

T (n) =

∞⊕

i=0

T−i(n)
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T−i(n) = {
∑

j

Xj1 ⊗ ...⊗Xjs(j) : Xjℓ ∈ njℓ and
s(j)∑

ℓ=1

jℓ = −i ∀j}.

Since n is a graded Lie algebra, the ideal I is homogeneous and hence the grading
passes to an algebra grading on the universal enveloping algebra

U(n) =
∞⊕

i=0

U−i(n), (4)

Denote by S(n) the symmetric algebra of n and by Sp the permutation group of
p elements. Consider the linear map Ψ : S(n) → U(n) given by

Ψ(X1...Xp) =
1

p!

∑

θ∈Sp

Xθ(1)...Xθ(p) X1, ..., Xp ∈ n, (5)

where the product on the left side is taken in S(n) and on the right side in U(n).
From the Poincaré-Birkhoff-Witt theorem one deduces that this is a linear isomor-
phism, called the symmetrisation, see e.g. [11]. Denoting by Ψ−j the restriction of
Ψ to the symmetric algebra S(n−j), one shows easily that also the map

S(n−1)⊗ ...⊗ S(n−k) → U(n) (6)

x−1 ⊗ ...⊗ x−k 7→ Ψ−1(x−1)...Ψ−k(x−k)

is a linear isomorphism. Note that this map restricts to a linear isomorphism

S−i(n) :=
⊕

1i1+...+kik=i

Si1n−1 ⊗ ...⊗ Sikn−k ∼= U−i(n), (7)

where Sijn−j denotes the symmetric tensors of degree ij of n−j .
In particular, for a filtered manifold M the vector space given by the −i-th grading
component U−i(gr(TxM)) of the universal enveloping algebra of the symbol algebra
(gr(TxM),Lx) at x ∈ M is by (7) always isomorphic to S−i(gr(TxM)) and we
therefore conclude that

U−i(gr(TM)) :=
⊔

x∈M

U−i(gr(TxM))

can be natural endowed with the structure of a vector bundle over M .

2.4. Weighted jet bundles. Suppose π : E → M is a complex or real vector
bundle over M and let Γx(E) be the space of germs of smooth sections of E at the
point x ∈M . For r ∈ N0 two sections s, s′ ∈ Γx(E) are called r-equivalent ∼r, if

D(〈λ, s− s′〉)(x) = 0

for all linear differential operators D on M of weighted order ≤ r and all sections λ
of the dual bundle E∗, where 〈 , 〉 : Γ(E∗)× Γ(E) → C∞(M,C) is the evaluation.

Definition 2.4. The quotient of Γx(E) by the equivalence relation ∼r

J r
x (E) := Γx(E)/ ∼r

is called the space of jets of weighted order r with source x ∈M . For s ∈ Γx(E) we
denote by jrxs the class of s in J r

x (E).
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Since for s < r the relation ∼s is coarser than the relation ∼r we have linear
projections πrs : J r

x (E) → J s
x (E) for s < r.

Proposition 2.1. For x ∈ M and r ∈ N we have an exact sequence of vector

spaces

0 −−−−→ U−r(gr(TxM))∗ ⊗ Ex
ι

−−−−→ J r
x (E)

πr
r−1

−−−−→ J r−1
x (E) −−−−→ 0.

Proof. Suppose s is a local section defined around x with jr−1
x s = 0. Choosing

some local trivialisation of E over an open neighbourhood U of x, we can view s as
a smooth function (s1, ..., sm) : U ⊆ M → Rm. For vector fields ξ1, .., ξℓ ∈ Γ(TM)

with
∑
i ord(ξi) = r the value (ξ1 · ... · ξℓ · s)(x) ∈ Rm depends only on the values of

the vector fields at the point x, since jr−1
x s = 0. By the same reason, it actually just

depends on the elements q−ord(ξi)(ξi(x)) ∈ gr−ord(ξi)(TxM). Therefore we obtain a
well defined linear map

T−r(gr(TxM)) → Rm. (8)

Additionally we have the symmetries of differentiation, like for example

ξ1 · ξ2 · ... · ξℓ · s− ξ2 · ξ1 · ... · ξℓ · s = [ξ1, ξ2] · ... · ξℓ · s

and since q−(ord(ξ1)+ord(ξ2))([ξ1, ξ2](x)) = Lx(ξ1(x), ξ2(x)), the map (8) factorises
to a linear map

U−r(gr(TxM)) → Rm.

Hence any element in the kernel of the projection J r
x (E) → J r−1

x (E) defines an
element in U−r(gr(TxM))∗ ⊗ Ex and so we have a linear map τ : ker(πrr−1) →

U−r(gr(TxM))∗ ⊗Ex, which obviously is injective. To see that it is even surjective
we construct an inverse map.
Let U be an open neighbourhood of x over which all filtration components of the
tangent bundle and E trivialise. Choose an adapted local frame {X1,1, ..., Xk,i(k)}

of TM defined on U . Note that such an adapted local frame defines an iso-
morphism TyM ∼= gr(TyM) for all y ∈ U , where the vector space spanned by
{Xj,1(y), ..., Xj,i(j)(y)} is mapped onto gr−j(TyM). Now suppose {f1,1, ..., fk,i(k)}

are smooth functions which vanish at x ∈M and satisfy that (Xj,p·fℓ,q)(x) = δℓjδqp.
By (7) the monomialsXα1,1

1,1 (x)...X
αk,i(k)

k,i(k) (x) with |α| = r form a basis of U−r(gr(TxM)).
For each multi-index α with |α| = r define φα ∈ U−r(gr(TxM))∗ as the linear func-
tional given by

φα(X
α1,1

1,1 (x)...X
αk,i(k)

k,i(k) (x)) =X
α1,1

1,1 · ... ·X
αk,i(k)

k,i(k) (f
α1,1

1,1 ...f
αk,i(k)

k,i(k) )(x)

φα((X
β1,1

1,1 (x)...X
βk,i(k)

k,i(k) (x))) =0 for β 6= α.

By its construction the functionals {φα : |α| = r} form a basis of U−r(gr(TxM))∗

and we define a linear map

ι : U−r(gr(TxM))∗ ⊗ Ex → J r
x (E)

φα ⊗ e 7→ jrx(f
α1,1

1,1 ...f
αk,i(k)

k,i(k) s),

where s is some section of E with s(x) = e ∈ Ex. It is easy to see that ι is a well
defined injection with values in ker(πrr−1), which is inverse to τ . �

Definition 2.5. For r ∈ N0 the disjoint union over all x of J r
x (E)

J r(E) :=
⊔

x∈M

J r
x (E)
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is called the space of jets of weighted order r. We denote by πr : J r(E) → M the
natural projection.

Using proposition 2.1 and an adapted local frame for gr(TM), it can be easily
shown that any vector bundle chart of E gives rise to a local trivialisation of J r(E)

and one can endow J r(E) with the unique structure of a smooth manifold such that
these trivialisations are smooth and πr : J r(E) → M is a vector bundle. Finally,
one obtains the following theorem, see [18] and for a proof [21].

Theorem 2.2. Let M be a filtered manifold and π : E → M a vector bundle over

M .

(1) For r ∈ N0 the natural projection πr : J r(E) → M is a vector bundle with

fiber J r
x (E) isomorphic to

⊕r
i=0 U−i(gr(TxM))∗ ⊗ Ex.

(2) For r > s the projections

πrs : J r(E) → J s(E)

are vector bundle homomorphisms and for r ∈ N we have an exact sequence

of vector bundles

0 −−−−→ U−r(gr(TM))∗ ⊗ E
ι

−−−−→ J r(E)
πr
r−1

−−−−→ J r−1(E) −−−−→ 0.

2.5. Differential operators and their weighted symbols. Suppose E and F

are vector bundles over a filtered manifold M .

Definition 2.6. A differential operator D : Γ(E) → Γ(F ) is of weighted order ≤ r,
if for any point x ∈ M and any two section s, t ∈ Γ(E) the equation jrxs = jrxt

implies that D(s)(x) = D(t)(x). The smallest number r ∈ N0 such that this holds,
is called the weighted order of D.

Given a differential operator D : Γ(E) → Γ(F ) of weighted order r, we obtain
a bundle map φ : J r(E) → F defined by φ(jrxs) = D(s)(x). Conversely, if φ :

J r(E) → F is a bundle map, then D = φ ◦ jr defines a differential operator of
weighted order at most r, where jr : Γ(E) → Γ(J r(E)) is the universal differential

operator of weighted order r given by s 7→ (x 7→ jrxs). Therefore we can equivalently
view a differential operator D : Γ(E) → Γ(F ) of weighted order r as a bundle map
from J r(E) → F . Note that a differential operator D : Γ(E) → Γ(F ) of weighted
order r is linear if and only if the associated bundle map φ : J r(E) → F is a vector
bundle map.

Definition 2.7. Let D : Γ(E) → Γ(F ) be a differential operator of weighted order
r with associated bundle map φ : J r(E) → F . The weighted symbol σr(φ) of D is
the composition of φ with the canonical inclusion ι : U−r(gr(TM))∗⊗E →֒ J r(E).

0 // U−r(gr(TM))∗ ⊗ E
ι

//

σr(φ)

((Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

J r(E)
πr
r−1

//

φ

��

J r−1(E) // 0

F

(9)

We sometimes will also just write σ(φ) for the weighted symbol.

Remark 2.2. If M is a trivial filtered TM = T−1M , then the weighted jet bundle
J r(E) of a vector bundle E coincides with the usual vector bundle Jr(E) of jets of
order r. The symbol algebra of M at some point x ∈ M is just the tangent space
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TxM viewed as abelian Lie algebra and the weighted symbol σr(φ) of a differential
operator φ : J r(E) → F is the usual principal symbol σr(φ) : Sr(TxM)∗⊗E → F .

3. Regular infinitesimal flag structures

In this section we explain briefly the notion of a regular infinitesimal flag struc-
ture and give some examples, for a detailed discussion of these structures see [9].

3.1. Parabolic subalgebras of semisimple Lie algebras. Suppose that g is a
complex semisimple Lie algebra.

Definition 3.1. A Borel subalgebra of g is a maximal solvable subalgebra of g. A
subalgebra p of g is called a parabolic subalgebra, if p contains a Borel subalgebra.

Let h be a Cartan subalgebra of g. Then we denote by ∆ the set of roots
associated to h and for α ∈ ∆ we write gα for the corresponding root space. Further,
choose a simple subsystem of roots ∆0 ⊂ ∆ and denote by ∆+ the corresponding
system of positive roots. The subalgebra of g defined by

b = h⊕
⊕

α∈∆+

gα

is a maximal solvable subalgebra of g, called the standard Borel subalgebra associ-
ated to h and ∆0. A standard parabolic subalgebra is a subalgebra which contains
b. It is well known that standard parabolic subalgebras can be classified by subsets
Σ ⊂ ∆0 of simple roots. In fact, the map

p 7→ Σp = {α ∈ ∆0 : g−α * p}

defines a bijection between standard parabolic subalgebras and subsets of simple
roots, where the inverse is given by assigning to a subset Σ of simple roots the alge-
bra pΣ, which is the direct sum of b and all root spaces corresponding to negative
roots, which can be written as a linear combination of elements of ∆0 \ Σ.
The fact that Cartan subalgebras and the choice of a simple subsystem of roots are
unique up to conjugation implies that every parabolic subalgebra is conjugate by
an inner automorphism of g to a standard one. Hence up to conjugation a parabolic
subalgebra can be uniquely described by a subset of simple roots.
There is an alternative description of parabolic subalgebras as subalgebras in semisim-
ple Lie algebras, which determine |k|-gradings on semisimple Lie algebras.

Definition 3.2. Let g be a complex or real semisimple Lie algebra and k > 1 an
integer. A |k|-grading on g is a vector space decomposition

g = g−k ⊕ ...⊕ g0 ⊕ ...⊕ gk

such that

• [gi, gj ] ⊆ gi+j , where we set gi = {0} for |i| > k

• the subalgebra g− := g−k ⊕ ...⊕ g−1 is generated as Lie algebra by g−1

• g±k 6= {0}

By the grading property each gi is a g0-module and it is easy to see that the
Killing form of g induces a duality between the g0-modules gi and g−i.
Let p be a standard parabolic subalgebra and denote by htΣp

(α) the Σp-height of
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α, i.e. the sum of all coefficients of elements in Σp in the representation of α as
linear combination of simple roots. Then p determines a |k|-grading on g as follows

g0 := h⊕
⊕

htΣp
(α)=0

gα and gi :=
⊕

htΣp
(α)=i

gα

where g0 := g0 ⊕ g1 ⊕ ...⊕ gk equals p.
Conversely, given a |k|-grading g = g−k⊕ ...⊕ g0⊕ ...⊕ gk, one can show that there
is a choice of h and ∆0 such that g0 contains the standard Borel subalgebra and
hence it is parabolic. Moreover, the grading is then given by Σg0 -height. Therefore
one obtains a bijection between conjugation classes of parabolic subalgebras and
isomorphism classes of |k|-gradings, for details we refer to [9]. Moreover, using the
description of |k|-gradings in terms of weights, one shows, see e.g. [9]:

Proposition 3.1. Suppose g = g−k ⊕ ... ⊕ gk is a complex semisimple |k|-graded

Lie algebra. Then the following holds:

(1) The subalgebra g0 is reductive. It is called the Levi subalgebra of the para-

bolic subalgebra p := g0.

(2) Let h be a Cartan subalgebra of g and ∆0 a simple subsystem of roots such

that p is a standard parabolic subalgebra. Denote by {Hα}α∈∆0 the basis of

h, where Hα ∈ h corresponds under the isomorphism h → h∗ induced by the

Killing form to α ∈ ∆0. Then we have

g0 = z(g0)⊕ h0 ⊕
⊕

htΣp
(α)=0

gα,

where z(g0) is the center of g0 and h0 is the linear span of all the Hα with

α ∈ ∆0\Σp. Hence the dimension of z(g0) equals the number of elements in

Σp. Moreover, the subalgebra h0 is a Cartan subalgebra of the semisimple

part gss0 of g0 whose corresponding root decomposition is exactly

gss0 = h0 ⊕
⊕

htΣp
(α)=0

gα.

Remark 3.1 (The real case). A subalgebra p of a real semisimple Lie algebra
g is called parabolic, if its complexification pC is a parabolic subalgebra in the
complexification gC of g. From the discussion in the complex case it follows therefore
immediately that the subalgebra g0 of a real |k|-graded semisimple Lie algebra g is a
parabolic subalgebra. It is well known that parabolic subalgebras of real semisimple
Lie algebras can be described up to conjugation by subsets of simple restricted roots
respectively by subsets Σ of non-compact simple roots of gC satisfying that if in the
Satake diagram of g two roots are connected by an arrow they are either both in Σ

or none of them is. This description can then be used analogously as in the complex
case to establish a correspondence between parabolic subalgebras and |k|-gradings
on real semisimple Lie algebras, details can for instance be found in [9].

3.2. Regular infinitesimal flag manifolds. Let g = g−k ⊕ ...⊕ g0 ⊕ ...⊕ gk be
a |k|-graded semisimple Lie algebra and set

g− := g−k ⊕ ...⊕ g−1 and p+ := g1 ⊕ ...⊕ gk.

Suppose G is a Lie group with Lie algebra g. A closed subgroup P ⊆ G is a
parabolic subgroup corresponding to the given |k|-grading, if its Lie algebra equals
the parabolic subalgebra p := g0 ⊕ p+. Having fixed a parabolic subgroup P
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corresponding to the grading, the Levi subgroup G0 of P is the closed subgroup of
P given by

G0 := {g ∈ P : Ad(g)(gi) ⊂ gi for i = −k, ..., k},

where Ad : G → GL(g) denotes the adjoint representation of G. Its Lie algebra is
the reductive Lie algebra g0. Moreover, the definition of G0 shows that the adjoint
action induces a homomorphism

Ad : G0 → Autgr(g−), (10)

where Autgr(g−) is the group of Lie algebra automorphisms of g−, which in addition
preserve the grading on g−.
For a semisimple Lie group G, whose Lie algebra is endowed with a |k|-grading and
a parabolic subgroup P with Lie algebra p a regular infinitesimal flag structures of

type (G,P ) on a manifold M consists of the following data:

• a filtration of the tangent bundle TM = T−kM ⊃ ... ⊃ T−1M, which
makes M into a filtered manifold such that the symbol algebra in each
point gr(TxM) is isomorphic to the Lie algebra g−.

• a reduction G0 →M of the structure group of the frame bundle P(gr(TM))

of gr(TM) to the subgroup G0 with respect to the homomorphism (10).

Let us give some overview of examples, for an extensive discussion of these ex-
amples and many others see [9]:

Example 3.1. Suppose g = g−1 ⊕ g0 ⊕ g1 is a |1|-graded semisimple Lie algebra,
G a Lie group with Lie algebra g and P a parabolic subgroup corresponding to
the given grading. A regular infinitesimal flag structure of type (G,P ) is just a
reduction of the structure group of the frame bundle of M to the Levi subgroup
G0 via Ad : G0 → GL(g−1). So it is just a first order G0-structure. Among
these geometric structures, which are called almost hermitian symmetric structures,
are conformal structures, almost quaternionic structures and almost Grassmannian
structures.

Example 3.2. A regular infinitesimal flag structure consists of a filtration of the
tangent bundle and a reduction of the structure group corresponding to the homo-
morphism (10). If this homomorphism is an isomorphism, the regular infinitesimal
flag structure is just a filtered manifold with symbol algebra g−. The most promi-
nent examples of this type are generic rank 2 distributions on five dimensional
manifolds (see [10]), generic rank 3 distributions on six dimensional manifolds (see
[4]) as well as quaternionic contact structures (see [2]).

Example 3.3. A contact grading on g is a |2|-grading g = g−2⊕g−1⊕g0⊕g1⊕g2

such that g− is a Heisenberg Lie algebra. It turns out that such gradings exists
only on simple Lie algebras g and are unique up to isomorphism, for a complete
classification see [24]. Given a real contact grading on a simple Lie algebra g and cor-
responding groups P ⊂ G, a regular infinitesimal flag structure of type (G,P ) can
be interpreted as a contact structure TM = T−2M ⊃ T−1M together with a reduc-
tion of the structure group of the frame bundle P(T−1M) of the contact subbundle
to G0, since Autgr(g−) can be seen as a subgroup of GL(g−1). Geometric structures
of this form are for instance oriented contact structures, partially integrable almost
CR-structures of hypersurface type and Lagrangean contact structures.
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In the sequel we will always assume that we are dealing with a manifold endowed
with a regular infinitesimal flag structure of some type (G,P ), where we have not
only a reduction of the structure group to G0 via (10), but also a further reduction
Gss0 → M to the semisimple part Gss0 of G0. In the case of conformal structures,
this additional reduction means to choose a metric from the conformal class or in
the case of contact structures it can be interpreted as the choice of a contact from.
This assumption is not necessary, but, since we are not interested in questions of
invariance here, it is even something natural to do and it will allow us to formulate
the results of this work in a more approachable way.

3.3. Natural vector bundles and representations of Gss0 . Suppose that M is
a manifold endowed with a geometric structure (Gss0 , {T

iM}) as in section 3.2. For
a representation E of Gss0 , we will denote by

E := Gss0 ×Gss
0
E

the vector bundle associated to the principal bundle Gss0 with standard fiber E.
Note that any Gss0 -equivariant map between two Gss0 -representations E and F in-
duces a vector bundle homomorphism between the corresponding associated vector
bundle E and F .
The reduction of the structure group of P(gr(TM)) to Gss0 obviously induces iso-
morphisms of vector bundles

Gss0 ×Gss
0
gi ∼= gr−i(TM) and Gss0 ×Gss

0
g− ∼= gr(TM).

Since the Killing form induces a duality of G0-modules between gi and g−i, we have
also the following isomorphisms of vector bundles

Gss0 ×Gss
0
gi ∼= gr−i(TM)∗ and Gss0 ×Gss

0
p+ ∼= gr(TM)∗.

Later we will need the decomposition of the Gss0 -representation g−1 into irre-
ducibles. Using the description of the grading on g in terms of roots and proposition
3.1 one verifies directly that the following holds:

Lemma 3.2. Suppose g = g−k ⊕ ... ⊕ gk is complex semisimple |k|-graded Lie

algebra. Let h ⊂ g be a Cartan subalgebra and ∆0 = {α1, ...αn} a simple subsystem

of roots such that the parabolic subalgebra p is standard. We define J as the subset of

I := {1, ..., n} consisting of those elements i ∈ I with αi ∈ Σp. Then the gss0 -module

g−1 decomposes into irreducibles as follows

g−1 =
⊕

j∈J

g−1,j,

where g−1,j is the unique irreducible representation with highest weight −αj |h0 .

We finish this section by fixing some notation. Suppose that E and F are com-
plex irreducible representations of gss0 with highest weight λ and µ respectively. It
is well known that there exists an irreducible component E⊚ F of multiplicity one
in E⊗ F, which has highest weight λ+ µ. It is called the Cartan product of E and
F and up to multiplication by a scalar there is a unique projection E⊗ F → E⊚ F.
If g is real and E is a real irreducible representation of gss0 having no complex invari-
ant structure, then the complexification EC is a complex irreducible representation
of gss0 and we will mean by the highest weight of E the highest weight of EC. Given
two such real irreducible representation E and F of gss0 we denote by E ⊚ F the
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unique irreducible component in E ⊗ F, whose complexification equals EC ⊚ FC in
EC ⊗ FC.

Remark 3.2. Let g be a complex |k|-graded Lie algebra. For a simple root αi of g
denote by ωαi

∈ h∗ the corresponding fundamental weight, which is characterised
by 2

<ωαi
,αℓ>

<αℓ,αℓ>
= δiℓ where <,> is the Killing form of g. Recall that the highest

weight of an irreducible representations of g can be uniquely written as a linear
combination

∑
i∈I aiωαi

with ai ∈ N0. Note that by (2) of proposition 3.1 the
highest weights of irreducible representations of gss0 can be uniquely written as
restrictions to h0 of linear combinations

∑
i∈I\J aiωαi

with ai ∈ N0.

4. Lie algebra Cohomology

One of the crucial ingredients, we will use in the sequel, is Lie algebra cohomology
and especially Kostant’s version of the Bott-Borel-Weil theorem ([15]). In this
section we therefore review Kostant’s results as far as we need them and fix some
notation related to them.
Suppose that g = g− ⊕ g0 ⊕ p+ is a |k|-graded semisimple Lie algebra, G a Lie
group with Lie algebra g and P a parabolic subgroup corresponding to the given
|k|-grading. Moreover, let V be a representation of G. The Lie algebra cohomology,
in which we will be interested, is the cohomology H∗(g−,V) of g− with values in V,
where V is viewed as representation of g−. Let us recall how the cochain complex
for computing this Lie algebra cohomology looks like. The n-th cochain space is
given by the space of n-linear alternating maps from g− to V, which we denote
by Hom(Λng−,V) and the differential ∂ : Hom(Λng−,V) → Hom(Λn+1g−,V) is
defined by

∂(φ)(X0, ..., Xn) :=

n∑

i=0

(−1)iXi · φ(X0, ..., X̂ i, ..., Xn)

+
∑

i<j

(−1)i+jφ([Xi, Xj ], X0, ..., X̂ i, ..., X̂j, ..., Xn)

for X0, ..., Xn ∈ g−, where the point · denotes the infinitesimal action of g on V
and the hat over an argument omission.
Note that the Levi subgroup G0 acts (by its definition) on g− via the adjoint action
as well as on V by restriction. Hence we also have an induced action of G0 on the
cochain spaces Hom(Λng−,V) and it can be directly verified that the differentials
∂ are G0-equivariant. Therefore the cohomology spaces Hn(g−,V) of this complex
are naturally G0-modules.
Dualising the differential of the cochain complex for computing the cohomology of
p+ with values in the dual representation V∗ leads to a P -equivariant map ∂∗ :

Λn+1p+ ⊗ V → Λnp+ ⊗ V which satisfies ∂∗ ◦ ∂∗ = 0. Explicitly, ∂∗ is given by

∂∗(Z0 ∧ ... ∧ Zn ⊗ v) =
n∑

i=0

(−1)i+1Z0 ∧ .... ∧ Ẑi ∧ ... ∧ Zn ⊗ Zn · v

+
∑

i<j

(−1)(i+j)[Zi, Zj ] ∧ Z0 ∧ ... ∧ Ẑi ∧ ... ∧ Ẑj ∧ ... ∧ Zn ⊗ v.

Since the Killing form induces an isomorphism g∗−
∼= p+ of G0-modules, we may

identify the G0-modules Hom(Λng−,V) ∼= Λng∗− ⊗ V and Λnp+ ⊗ V and view the
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codifferential as a map

∂∗ : Hom(Λng−,V) → Hom(Λn−1g−,V).

In [15] Kostant showed that the operators ∂ and ∂∗ are adjoint for some inner
product (hermitian in the complex case) on the spaces Hom(Λng−,V), which implies
that one has an algebraic Hodge decomposition:

Hom(Λng−,V) = im(∂∗)⊕ ker(�)⊕ im(∂), (11)

where � is the G0-equivariant map ∂∂∗ + ∂∗∂ on Hom(Λng−,V). Moreover, one
has ker(∂∗) = im(∂∗)⊕ ker(�) and ker(∂) = im(∂)⊕ ker(�).

This gives rise to G0-module isomorphisms

Hn(g−,V) ∼= ker(∂∗)/im(∂∗) and Hn(g−,V) ∼= ker(�). (12)

Note that via the second isomorphism Hn(g−,V) can be naturally viewed as G0-
submodule in Λng∗− ⊗ V. Since ∂∗ is obtained by dualising the differential for
computing the cohomology H∗(p+,V∗), we see that Hn(g−,V) ∼= Hn(p+,V∗)∗ as
G0-modules. Using the Hodge decomposition (11), Kostant described Hn(g−,V)
respectively Hn(p+,V∗) for an irreducible representation V of G explicitly as G0-
modules. We will be interested only in the cohomology in degree zero and one.
There Kostant’s result [15] reads as follows:

Theorem 4.1. Let g = g−⊕g0⊕p+ be a complex |k|-graded semisimple Lie algebra.

Suppose V is a complex irreducible representation of g with highest weight λ. For

a root α ∈ ∆ denote the corresponding root reflection by sα and let ρ be the lowest

weight, given by the sum of the fundamental weights of g. Then we have:

(1) H0(p+,V) = Vp+ := {v ∈ V : Xv = 0 ∀X ∈ p+}. As gss0 -module Vp+ is

the gss0 -representation with highest weight λ|h0 .

(2) As gss0 -module the first cohomology equals the direct sum

H1(p+,V) =
⊕

α∈Σp

Fλsα
,

where Fλsα
denotes the irreducible representation of gss0 with highest weight

sα(λ + ρ) − ρ restricted to h0. Moreover, viewing H1(p+,V) as submodule

in p∗+ ⊗ V ∼= g− ⊗ V, each irreducible component Fλsα
has multiplicity one

in g−⊗V and a highest weight vector of Fλsα
is given by the tensor product

of a nonzero element of the root space g−α and a nonzero weight vector of

weight sα(λ).

From the Hodge decomposition (11) one also deduces that restricting ∂ to im(∂∗)

respectively ∂∗ to im(∂), we obtain isomorphisms

∂ : im(∂∗) ∼= im(∂) and ∂∗ : im(∂) ∼= im(∂∗).

In general, these two maps are not inverse to each other. However, we may define
for later purposes the map

δ∗ : Λng∗− ⊗ V → Λn−1g∗− ⊗ V,

which is the inverse of ∂ on im(∂) and zero on ker(∂∗). Obviously, we have again
δ∗ ◦ δ∗ = 0 and so δ∗ is a differential. Since, by construction, δ∗ differs from ∂∗

on im(∂) just by a G0-equivariant isomorphism of im(∂), we conclude that δ∗ is as
well G0-equivariant. Moreover, it defines the same Hodge decomposition.
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5. Prolongation of overdetermined systems on regular infinitesimal

flag manifolds

In this section we shall now study a large class of semi-linear differential operators
between natural vector bundles over regular infinitesimal flag manifolds, which give
rise to overdetermined systems. Given such a semi-linear differential operator D,
we will establish a conceptual method to rewrite the semi-linear system Ds = 0

as a system of partial differential equations of the form ∇̃Σ + C(Σ) = 0, where ∇̃

is a linear connection on some vector bundle V over the regular infinitesimal flag
manifold M and C : V → T ∗M ⊗ V is a bundle map.

5.1. Semi-linear systems on regular infinitesimal flag manifolds corre-

sponding to |k|-gradings such that z(g0) is one dimensional. Suppose that
g = g− ⊕ g0 ⊕ p+ is a |k|-graded semisimple Lie algebra where z(g0) is one dimen-
sional. Let G be a simply connected Lie group with Lie algebra g, P a parabolic
subgroup with Lie algebra p. Moreover suppose that M is a manifold endowed with
a geometric structure ({T iM},Gss0 ) of type (G,P ) as in section 3.2.

Remark 5.1.

(1) We assume G to be simply connected only to ensure that a representation
of g integrates to a representation of G. This will allow us to formulate
the result of this section in a uniform way. The condition can be dropped,
when one is dealing with some particular representation and group, where
one knows that this is the case.

(2) Concerning the examples mentioned in section 3.2, the condition on the
center just excludes the case of partially integrable almost CR-structures of
hypersurface type and its real analogue the Lagrangean contact structures

Let now E be an irreducible representation of Gss0 and r > 0 some integer. From
proposition 3.1 and lemma 3.2 we deduce that g−1 is an irreducible representation
of gss0 and we set F := ⊚rg∗−1⊚E. For g ∈ G0 the graded Lie algebra automorphsim
Ad(g) : g− → g− lifts by the universal property of the universal enveloping algebra
to a graded algebra automorphism U(g−) → U(g−). In particular, U−r(g−) can be
given the structure of a G0-module and one shows directly that the isomorphism
(7) between S−r(g−) and U−r(g−) is G0-equivariant. In particular, we have a G0-
equivariant linear projection U−r(g−)

∗⊗E → Srg∗−1⊗E. Composing this projection
with the projection Srg∗−1 ⊗ E → ⊚rg∗−1 ⊚ E, we obtain a Gss0 -equivariant linear
projection U−r(g−)

∗ ⊗ E → ⊚rg∗−1 ⊚ E and hence also a corresponding surjective
vector bundle map

U−r(gr(TM))∗ ⊗ E → F = ⊚
rgr−1(TM)∗ ⊚ E. (13)

For semi-linear differential operators D : Γ(E) → Γ(F ) of weighted order r with
weighted symbol given by (13), i.e. D is of the form D = D1 +D2, where D1 is a
linear differential operator of weighted order r with weighted symbol given by (13)
and D2 is a differential operator of weighted order at most r− 1, we will prove the
following theorem:

Theorem 5.1. Suppose that E is a irreducible representation of Gss0 and let r > 0

be some integer. Set F = ⊚rg∗−1 ⊚ E. Then there is:

(1) a natural graded vector bundle

V = V0 ⊕ ...⊕ VN
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over M with V0 = E

(2) for any choice of a principal Gss0 -connection ∇ on Gss0 → M and for any

choice of a splitting of the filtration of the tangent bundle (i.e. an isomorphism

TM ∼= gr(TM) that restricts to a map T iM →
⊕

j≥i grj(TM) and the component

in gri(TM) equals the image of the projection T iM → T iM/T i+1M):

• a linear connection ∇̃ on V

• a linear differential operator L : Γ(V0) → Γ(V ) of weighted order N satis-

fying that p0(L(s)) = s, where p0 : V → V0 = E is the projection

with the following property:

For every semi-linear differential operator D : Γ(E) → Γ(F ) of weighted order r

with symbol given by the natural projection (13)

σ(D) : U−r(gr(TM))∗ ⊗ E → F = ⊚
rgr−1(TM)∗ ⊚ E.

the linear differential operator L induces a bijection between

{s ∈ Γ(E) : D(s) = 0} ↔ {Σ ∈ Γ(V ) : (∇̃+ C)(Σ) = 0}

for some bundle map C : V → T ∗M ⊗ V . The inverse is induced by the projection

p0 : V → V0 = E.

To prove this theorem we proceed in three steps:

1. Step - The construction of the graded vector bundle V . From theorem
4.1 one immediately deduces the following proposition:

Proposition 5.2. Suppose that g is a |k|-graded semisimple Lie algebra such that

the center of g0 is one dimensional. Let E be an irreducible representation of gss0
and r > 0 an integer. Then there exists an irreducible representation V = V[E, r]
of g such that as gss0 -modules we have

H0(g−,V) = E and H1(g−,V) = ⊚
rg∗−1 ⊚ E.

Proof. If the restriction of λ =
∑

i∈I\J aiωαi
to h0 is the highest weight of the dual

representation E∗ (see remark 3.2 for the notation), then define V = V[E, r] to be
the irreducible representation of g, whose dual representation has highest weight
µ := λ+(r−1)ωαj

∈ h∗, where ωαj
is the fundamental weight corresponding to the

simple root αj in Σp. From theorem 4.1 we deduce that H0(p+,V∗) = E∗ and that
H1(p+,V∗) is the irreducible representation of gss0 with highest weight sαj

(µ+ρ)−ρ

restricted to h0, which equals the restriction of λ− rαj to h0. From lemma 3.2 we
conclude that H1(p+,V∗) = ⊚rg−1 ⊚ E∗. Since H∗(g−,V) ∼= H∗(p+.V∗)∗ as gss0 -
modules, the claim follows. �

Suppose that we have fixed E and r > 1 and let V = V[E, r] be the irreducible
representation of g from proposition 5.2. There always exists a unique element e ∈
z(g0) ⊂ g, whose adjoint action represents the grading on g: [e,X ] = jX for X ∈ gj ,

see [24] or [9]. In particular, it acts diagonalisably on g and therefore on any finite
dimensional representation of g. So we can decompose V into eigenspaces for the
action of the grading element e on V. Observe that for an eigenvector v with
eigenvalue c and X ∈ gj the vector X · v is eigenvector with eigenvalue c+ j, since
e ·X · v = X · e · v+ [e,X ] · v. Therefore, denoting by c the eigenvalue with smallest
real part, it follows from the irreducibility of V that the set of eigenvalues is given
by {c, c+1, ..., c+N − 1} for some N ≥ 1. For 0 ≤ i ≤ N let Vi be the eigenspace
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to the eigenvalue c + i and set Vi = 0 for i < 0 or i > N . Then we obtain a
decomposition of V

V = V0 ⊕ ...⊕ VN such that gi · Vj ⊆ Vi+j for all i and j (14)

In particular, each subspace Vi is invariant under the action of g0 respectively
under the action of G0.
Moreover, the gradings on g− and V induce a grading on the space Hom(Λng−,V) ∼=
Λng∗− ⊗ V, where the i-th grading component is given by

(Λng∗− ⊗ V)i =
nk⊕

t=n

(Λn−tg−)
∗ ⊗ Vi−t, (15)

with

Λn−tg− =
⊕

i1+...+in=−t

gi1 ∧ ... ∧ gin .

It follows immediately from (14) that Lie algebra differential ∂ is grading preserving.
We will denote the restriction of ∂ to the i-th grading component by ∂i.
By (14) the Gss0 -invariant subspace V0 ⊂ V is contained in ker(∂). Since ker(∂) =

H0(g−,V) is an irreducible representation of Gss0 we conclude that as Gss0 -modules

V0 = ker(∂) = H0(g−,V) ∼= E (16)

In particular, we see that ∂i : Vi →
⊕k

t=1 g
∗
−t ⊗ Vi−t is injective for i > 0.

Now consider the Hodge decomposition (11) of section 4:

g∗− ⊗ V = im(∂)⊕ ker(�)⊕ im(δ∗) = ker(∂)⊕ im(δ∗).

Since δ∗ is also obviously compatible with the gradings on the cochain spaces, the
same holds for �. Therefore we obtain that

(g∗− ⊗ V)i = im(∂i)⊕ ker(�i)⊕ im(δ∗i ) = ker(∂i)⊕ im(δ∗i ).

Since H1(g−,V) ∼= ker(�), the first cohomolgy H1(g−,V) may be viewed as a Gss0 -
submodule of g∗−⊗V. We know from theorem 4.1 that ⊚rg∗−1⊚E ∼= H1(g−,V) has
multiplicity one in g∗− ⊗ V. Using theorem 4.1 we can even determine the grading
component, in which ⊚rg∗−1 ⊚ E is lying. In fact, by the theorem 4.1 a highest
weight vector of the irreducible representation ⊚rg−1 ⊚ E∗ ∼= H1(p+,V∗) viewed
as a submodule in p∗+ ⊗ V∗ ∼= g− ⊗ V∗ is of the form X ⊗ v, where X ∈ g−αj

and
v ∈ V∗ is a weight vector of weight sαj

(µ) = µ − (r − 1)αj, whereµ is the highest
weight of V∗. It can be easily seen that V∗

ℓ consists of all those weight spaces of
V∗ corresponding to weights of the form µ − ℓαj −

∑
i∈I\{j} niαi, where ni ∈ N0

and I is the index set of the simple roots of g as in section 3.3. This implies that
the irreducible component ⊚rg−1 ⊚ E∗ lies in g−1 ⊗ V∗

(r−1). Since H1(p+,V∗)∗ is
isomorphic to H1(g−,V), we obtain that

⊚
rg∗−1 ⊚ E ∼= ker(�) = ker(�r) ⊂ g∗−1 ⊗ V(r−1).

In particular, for 0 < i < r we therefore have an exact sequence

0 // Vi
∂i

//
⊕k

s=1 g
∗
−s ⊗ Vi−s

∂i
//
⊕2k

t=2(Λ
2
−tg−)

∗ ⊗ Vi−t. (17)

These observations lead to the following proposition:
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Proposition 5.3. For 0 ≤ i ≤ N there exists G0-equivariant inclusions

φi : Vi →֒ U−i(g−)
∗ ⊗ V0.

For all i < r these inclusions are even isomorphisms φi : Vi ∼= U−i(g−)
∗ ⊗ V0.

Proof. By means of restriction we can view V as a representation of g− and hence by
the universal property of the universal enveloping algebra also as a U(g−)-module.
From (14) we conclude that

U−i(g−)Vi ⊆ V0 for all 0 ≤ i ≤ N.

Now we define φi by
φi : Vi → Hom(U−i(g−),V0)

v 7→ (u 7→ −u⊤v),

where u 7→ u⊤ denotes the unique anti-automorphism of U(g−) such that X⊤=-X
for X ∈ g−, see e.g. [11]. It satisfies (X1X2...Xn)

⊤ = (−1)nXnXn−1...X1 for
X1, ..., Xn ∈ g−. Observing that

U−i(g−) =

k⊕

j=1

g−j ⊗ U−(i−j)(g−)/Ji (18)

Ji =< X ⊗ Y u− Y ⊗Xu− [X,Y ]⊗ u : X ∈ g−p, Y ∈ g−q, u ∈ U−(i−p−q)(g−) >

we can prove by induction on i that all φi are injective.
For i = 0 the result holds, since φ0 = −id.
The map φ1 : V1 → Hom(g−1,V0) equals ∂1 : V1 → Hom(g−1,V0), which is
injective by (16) and so the result holds also for i = 1 .
Now suppose that φj is injective for all j < i and consider the following commutative
diagram:

Vi
∂i

//

id

��

⊕k
s=1 Hom(g−s,Vi−s)

∂i
//

ı

��

⊕2k
t=2 Hom(Λ2

−tg−,Vi−t)



��

Vi
∂̃i

//
⊕k

s=1 Hom(g−s ⊗ U−(i−s)(g−),V0)
∂̃i

//
⊕2k

t=2 Hom(Λ2
−tg− ⊗ U−(i−t)(g−),V0)

where

ı(f)(X ⊗ u) = u⊤f(X) = −φi−s(f(X))(u)

for X ⊗ u ∈ g−s ⊗ U−(i−s)(g−)

(g)(X ∧ Y ⊗ u) = u⊤g(X ∧ Y ) = −φi−t(g(X ∧ Y ))(u)

for X ∧ Y ⊗ u ∈ Λ2
−tg− ⊗ U−(i−t)(g−)

∂i(f)(X ∧ Y ) = Xf(Y )− Y f(X)− f([X,Y ])

for X ∧ Y ∈ Λ2
−tg−

∂̃i(h)(X ∧ Y ⊗ u) = h(X ⊗ Y u)− h(Y ⊗Xu)− h([X,Y ]⊗ u)

for X ∧ Y ⊗ u ∈ Λ2
−tg− ⊗ U−(i−t)(g−).

Since ∂ ◦ ∂ = 0, the commutativity of the diagram implies that the composition
ı ◦ ∂i has values in the kernel of ∂̃i. By (18) the kernel ker(∂̃i) coincides with
Hom(U−i(g−),V0) ⊂

⊕k
s=1 Hom(g−s ⊗ U−(i−s)(g−),V0) and so we have

ı ◦ ∂i : Vi → Hom(U−i(g−),V0).
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Moreover, since (i ◦ ∂i)(v)(X ⊗ u) = u⊤(Xv) = −(Xu)⊤v, wee see that ı ◦ ∂i = φi.

We know by (16) that ∂i : Vi →
⊕k

s=1 Hom(g−s,Vi−s) is injective and by induction
hypothesis also ı is injective. Therefore we have that

φi : Vi
∂i∼= im(∂i)

ı
→֒ Hom(U−i(g−),V0)

is injective and so the first assertion follows.
Since for 0 < i < r we have by (17) an exact sequence

0 // Vi
∂i

//
⊕k

s=1 Hom(g−s,Vi−s)
∂i

//
⊕2k

t=2 Hom(Λ2
−tg−,Vi−t),

it follows by induction from the commutative diagram above that

φi : Vi
∂i∼= ker(∂i)

ı
∼= Hom(U−i(g−),V0)

is an isomorphism for 0 < i < r. �

Since φi is an isomorphism for i < r, one deduces from the commutative diagram
of the proof of proposition 5.3 for i = r that

Vr
∂r∼= im(∂r) ⊂ ker(∂r) = im(∂r)⊕ ker(�r)

ı
∼= ker(∂̃r) = U−r(g−)

∗ ⊗ E.

Note that the map ı viewed as a map

ı :
k⊕

s=1

g∗−s ⊗ Vr−s →
k⊕

s=1

g∗−s ⊗ U−(r−s)(g−)
∗ ⊗ V0

equals

ı =

k∑

s=1

−id⊗ φr−s

and therefore the isomorphism induced by ı between ker(�r) = ker(�) and ⊚rg∗−1⊚

E is given by

ker(�) →֒ g∗−1⊗Vr−1

−id⊗φr−1
∼= g∗−1⊗Ur−1(g−)

∗⊗E → g∗−1⊗S
r−1g∗−1⊗E → ⊚

rg∗−1⊚E.
(19)

We conclude that we obtain a Gss0 -equivariant isomorphism

φr : Vr ∼= (U−r(g−)
∗ ⊗ E) ∩K,

where K ⊂ U−r(g−)
∗ ⊗ E denotes the kernel of the Gss0 -equivariant projection

U−r(g−)
∗ ⊗ E → ⊚rg∗−1 ⊚ E. Since ker(�) = ker(�r), it follows by induction as in

the proof of the proposition 5.3 that we have Gss0 -equivariant isomorphisms

φi : Vi ∼= (U−i(g−)
∗ ⊗ E) ∩ (U−(i−r)(g−)

∗ ⊗K) for i ≥ r.

Now we define V as the graded vector bundle associated to V:

V = V0 ⊕ ...⊕ VN = Gss0 ×Gss
0
V0 ⊕ ...⊕ VN ,

where V0 = E. Moreover, we define K := G0 ×Gss
0
K as the natural vector bundle

corresponding to K. Since the isomorphisms φi are Gss0 -equivariant, they induce
vector bundle isomorphisms between the corresponding vector bundles

φi : Vi ∼= U−i(gr(TM))∗ ⊗ E for all i < r

φi : Vi ∼= U−i(gr(TM))∗ ⊗ E ∩ U−(i−r)(gr(TM))∗ ⊗K for all i ≥ r.
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Remark 5.2. Since for i ≥ r we have U−i(gr(TM))∗⊗E∩U−(i−r)(gr(TM))∗⊗K ∼=

Vi, we see that a linear differential operator D : Γ(E) → Γ(F ) of weighted order r
with weighted symbol given by (13) is of weighted finite type in the sense of [19]
and [20].

2. Step - The construction of the connection ∇̃ and the differential

operator L. Since the maps ∂ and δ∗ are Gss0 -equivariant and compatible with
the grading on Λng∗− ⊗ V, they give rise to grading preserving vector

∂ : Λngr(TM)∗ ⊗ V → Λn+1gr(TM)∗ ⊗ V

δ∗ : Λngr(TM)∗ ⊗ V → Λn−1gr(TM)∗ ⊗ V,

where the grading on the vector bundle Λngr(TM)∗ ⊗ V is induced by the grading
on Λng∗− ⊗ V.
Let us now choose a principal connection on Gss0 →M . Then we get induced linear
connection on all associated vector bundles and we will denote all of them by ∇.
In particular, we obtain a linear connection ∇ : Γ(V ) → Γ(T ∗M ⊗ V ) on V . The
filtrations of V and TM induce a filtration of T ∗M ⊗ V , where the ℓ-th filtration
component (T ∗M ⊗ V )ℓ consists of all elements in T ∗M ⊗ V of homogeneity ≥ ℓ,
i.e. φ ∈ (T ∗M ⊗ V )ℓ if and only if φ(T iM) ⊂ V i+ℓ for i < 0. Since ∇ is induced
from a principal Gss0 -connection, it has to preserve the grading on V . Hence it
raises homogeneity by one:

∇ : Γ(V i) → Γ((T ∗M ⊗ V )i+1).

Choosing a splitting of the filtration of the tangent bundle TM ∼= gr(TM), we can
view ∂ and δ∗ as grading respectively filtration preserving vector bundle maps on
ΛkT ∗M ⊗ V . In particular, the following definition makes sense:

∇̃ := ∇+ ∂ : Γ(V ) → Γ(T ∗M ⊗ V ),

It is a linear connection on V = ker(∂)⊕ im(δ∗) = V0 ⊕ im(δ∗), which is of homo-
geneity ≥ 0 and whose lowest homogeneous component is given by the algebraic
operator ∂. Now consider the following linear differential operator

δ∗ ◦ ∇̃ : Γ(V ) → Γ(im(δ∗)) ⊆ Γ(V ).

It is of homogeneity ≥ 0 with lowest homogeneous component given by δ∗ ◦ ∂. If
we restrict this operator to im(δ∗), the lowest component δ∗ ◦ ∂ is the identity on
im(δ∗) and −(δ∗∇̃ − id) is (at most) N -step nilpotent. Therefore δ∗∇̃ is invertible
on Γ(im(δ∗)) with inverse given by the von Neumann serie

(δ∗∇̃)−1 = (id− (−(δ∗∇̃ − id)))−1 =

N∑

i=0

(−1)i(δ∗∇̃ − id)i.

Now we define a linear differential operator L : Γ(V0) → Γ(V ) by

L(s) = Σ− (δ∗∇̃)−1δ∗∇̃Σ,

where Σ is a section of V with p0(Σ) = s and p0 : V → V0 the projection. This is
well defined, since Σ is determined up to adding sections of im(δ∗) and L is zero
on im(δ∗). The operator L obviously splits the projection p0, i.e. p0(L(s)) = s. In
addition, since δ∗∇̃(δ∗∇̃)−1 is the identity on Γ(im(δ∗)), we see that δ∗∇̃L = 0.
The operator L is uniquely characterised by these two properties, since for a section
Σ ∈ Γ(V ) with p0(Σ) = s and δ∗∇̃Σ = 0, we obtain L(s) = Σ− (δ∗∇̃)−1δ∗∇̃Σ = Σ.
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In particular, this shows that a section Σ of V lies in the image of L if and only if
δ∗∇̃Σ = 0.
Inserting the formula for δ∗∇̃ and using that δ∗∂ is the identity on im(δ∗), we
obtain

L(s) =

N∑

i=0

(−1)i(δ∗∇)i(Σ)−

N∑

i=0

(−1)i(δ∗∇)iδ∗∂(Σ).

Since the formula of L is independent of the choice of Σ, this implies that

L(s) = ΣNi=0(−1)i(δ∗∇)i(s), (20)

where s is viewed as a section of V by trivial extension.
Denoting by Lj the component in V0 ⊕ ...⊕ Vj of Lj , we have:

Proposition 5.4. There exists a unique linear differential operator L : Γ(V0) →

Γ(V ) such that

• p0(L(s)) = s

• L has values in the kernel of δ∗∇̃

In particular, a section Σ ∈ Γ(V ) is in im(L) if and only if δ∗∇̃(Σ) = 0. Moreover,

each operator Lj : Γ(V0) → Γ(V0 ⊕ ...⊕ Vj) induces a surjective vector bundle map

J j(V0) → V0 ⊕ ...⊕ Vj ,

which is an isomorphism for j < r.

Proof. It only remains to show the last assertion. Note that the principal connection
on Gss0 induces not only a linear connection ∇ on V , but also a linear connection
∇ on gr(TM) ∼= TM , which is compatible with the grading ∇ : Γ(gri(TM)) →

Γ(gr(TM)⊗ gri(TM)). The Gss0 -equivariance of δ∗ : g∗− ⊗ V → V implies that the
corresponding vector bundle map is parallel for the induced linear connection on
gr(TM) ⊗ V ∗ ⊗ V . Therefore we conclude that L(s) = ΣNi=0(−1)i(δ∗∇)is can be
written as

L(s) =
N∑

i=0

(−1)i(δ∗ ◦ (id⊗ δ∗) ◦ ... ◦ (id⊗ ...⊗ id︸ ︷︷ ︸
i−1

⊗δ∗)) ◦ ∇is

with the convention that the 0-th term is the identity.
Denote by T−i(gr(TM)) = Gss0 ×Gss

0
T−i(g−) the associated vector bundle corre-

sponding to the −i-th grading component of the tensor algebra T (g−) and consider
the following differential operator

Dj : Γ(V0) → Γ(

j⊕

i=0

T−i(gr(TM))∗ ⊗ V0)

s 7→ (

j∑

i=0

∇is)≤j

where ( )≤j means that we restrict
∑j

i=0 ∇
is to all grading components of degree

≤ j in
⊕j

i=0(gr(TM)i)∗⊗V0. This operator is obviously of weighted order j. Note
that we have

∇∇s(ξ, η)−∇∇s(η, ξ) = R(ξ, η)(s) +∇∇ηξs−∇∇ξηs−∇[η,ξ]s

and so

∇∇s(ξ, η)−∇∇s(η, ξ) −∇L(ξ,η)s ≡ 0 mod( terms of lower weighted order in s).
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Therefore we conclude that the weighted symbol of Dj is given by the canonical
inclusion

σ(Dj) : U−j(gr(TM))∗ ⊗ V0 →֒ T−j(gr(TM))∗ ⊗ V0 ⊂

j⊕

i=0

T−i(gr(TM))∗ ⊗ V0,

which is obtained by dualising the projection T−j(gr(TM)) → U−j(gr(TM)). Since
δ∗ is grading preserving, we deduce that

Lj(s) =

j∑

i=0

(−1)i((δ∗ ◦ (id⊗ δ∗) ◦ ... ◦ (id⊗ ...⊗ id⊗ δ∗)) ◦ ∇is)≤j =

= (

j∑

i=0

(−1)iδ∗ ◦ (id⊗ δ∗) ◦ ... ◦ (id⊗ ...⊗ id⊗ δ∗)) ◦Dj(s)

is of weighted order j and hence induces a vector bundle map

Lj : J j(V0) → V0 ⊕ ...⊕ Vj .

Since L0 is just the identity on V0, the assertion holds for j = 0.
Suppose now that j ≥ 1 and let us compute the weighted symbol σ(Lj) of Lj . It is
given by the composition of the weighted symbol of Dj with ψj :=

∑j
i=1(−1)i((δ∗ ◦

(id⊗ δ∗) ◦ ... ◦ (id⊗ ...⊗ id︸ ︷︷ ︸
i−1

⊗δ∗))

U−j(gr(TM))∗ ⊗ V0
�

� σ(Dj)
//

σ(Lj)
))T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T−j(gr(TM))∗ ⊗ V0

ψj

��

Vj

Now consider the injective vector bundle map corresponding to the Gss0 -equivariant
inclusion of proposition 5.3

φj : Vj → U−j(gr(TM))∗ ⊗ V0 ⊂ T−j(gr(TM))∗ ⊗ V0.

This vector bundle map can also be written as

φj =

j∑

i=1

(−1)i−1pj0 ◦ (id⊗ ...⊗ id︸ ︷︷ ︸
i−1

⊗∂) ◦ ... ◦ (id⊗ ∂) ◦ ∂,

where pj0 :
⊕j

i=1 T−i(gr(TM))∗⊗Vj−i → T−j(gr(TM))∗⊗V0 is the projection given
by restriction.
Setting ∂(i) := id⊗ ...⊗ id︸ ︷︷ ︸

i−1

⊗∂ ◦ ... ◦ (id⊗ ∂) ◦ ∂|Vj
and δ∗(i) := id⊗ ...⊗ id︸ ︷︷ ︸

i−1

⊗δ∗, we

obtain that

(

j∑

i=1

(−1)i(δ∗ ◦ ... ◦ (id⊗ ...⊗ id︸ ︷︷ ︸
i−1

⊗δ∗)) ◦ (

j∑

i=1

(−1)i−1p0j ◦ (id⊗ ...⊗ id︸ ︷︷ ︸
i−1

⊗∂) ◦ ... ◦ ∂)

= −[...δ∗(j−2)(p
j
0 ◦ ∂

(j−2) + δ∗(j−1)(p
j
0 ◦ ∂

(j−1) + δ∗(j) ◦ p
j
0 ◦ ∂

(j)))]. (21)

Recall that δ∗ : gr(TM)∗ ⊗ V → V is defined as the inverse of ∂ on im(∂) ⊂

gr(TM)∗ ⊗ V and zero on the rest. Since pj0 ◦ ∂
(j) = ∂(j), we therefore get that

δ∗(j) ◦ p
j
0 ◦ ∂

(j) = δ∗(j) ◦ ∂
(j) = (id− pj0) ◦ ∂

(j−1).
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Hence pj0 ◦ ∂(j−1) + δ∗(j) ◦ p
j
0 ◦ ∂(j) = ∂(j−1). Since δ∗(j−1) ◦ ∂

(j−1) equals again

(id− pj0) ◦ ∂
(j−2), we conclude inductively that the composition σ(Lj) ◦ φj , which

coincides with (21), equals −id on Vj . In particular, σ(Lj) is surjective and so is
Lj. Since we know by proposition 5.3 that φj : Vj → U−j(gr(TM))∗ ⊗ V0 is an
isomorphism for j < r, we conclude that for j < r the weighted symbol σ(Lj) is
an isomorphism, which equals −φ−1

j . Therefore it follows by induction from the
commutative diagram

0

��

0

��

U−j(gr(TM))∗ ⊗ V0

ι

��

σ(Lj)
// Vj

��

// 0

J j(V0)
Lj

//

π
j
j−1

��

V0 ⊕ ...⊕ Vj

��

// 0

J j−1(V0)
Lj−1

//

��

V0 ⊕ ...⊕ Vj−1

��

// 0

0 0

(22)

that Lj induces an isomorphism J j(V0) → V0 ⊕ ...⊕ Vj for j < r �

3. Step - The construction of the bundle map C. Now we define the following
linear differential operator

D∇ := −(id⊗ φr−1) ◦ π ◦ ∇̃ ◦ L : Γ(E) → Γ(⊚rgr−1(TM)∗ ⊚ E),

where π denotes the projection

π : gr(TM)∗ ⊗ V → gr−1(TM)∗ ⊗ Vr−1 → ker(�).

Since the projection π annihilates im(∂), we obtain that

D∇(s) = −(id⊗ φr−1)π∇(Ls)r−1,

where (Ls)r−1 denotes the component in Vr−1 of L(s). From proposition 5.4 we
know that s 7→ L(s)r−1 is a differential operator of weighted order r − 1 with
weighted symbol given by −φ−1

r−1 and so we see that D∇ is of weighted order r with
weighted symbol given by

σ(D∇) = −id⊗ φr−1 ◦ π ◦ (−id⊗ φ−1
r−1)

gr−1(TM)∗ ⊗ Ur−1(gr(TM))∗ ⊗ E ∩ U−r(gr(TM))∗ ⊗ E → ⊚
rgr−1(TM)∗ ⊚ E.

Using (19) we conclude that σ(D∇) equals the natural projection (13). Similarly as
it was done for overdetermined systems on regular flag structures corresponding to
|1|-graded semisimple Lie algebras in [3], we can now start to rewrite the equation
D(s) = 0 for a differential operator D as in theorem 5.1.

Proposition 5.5. Suppose that D is a semi-linear differential operator

D : Γ(E) → Γ(⊚rgr−1(TM)∗ ⊚ E) = Γ(F )
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of weighted order r with weighted symbol given by the projection (13).

Then there exists a bundle map A : V0⊕ ...⊕VN → F such that L and the projection

p0 : V → V0 = E induce inverse bijections between the following spaces

{s ∈ Γ(E) : Dσ = 0} ↔ {Σ ∈ Γ(V ) : ∇̃(Σ) +A(Σ) ∈ Γ(im(δ∗))}.

Proof. The operators D and D∇ have the same weighted symbol and therefore
there exists a bundle map ψ : J r−1(E) → F such that D(s) = D∇(s) + ψ(jr−1s).

By proposition 5.4 the splitting operator L induces an isomorphism

Lr−1 : J r−1(E) ∼= V0 ⊕ ...⊕ Vr−1

and so there is a unique bundle map

A : V0 ⊕ ...⊕ Vr−1 → F such that ψ(jr−1s) = A(Ls),

where A is viewed as a map on the whole bundle V by trivial extension.
Since ∇̃Ls has values in ker(δ∗) by proposition 5.4 and A(Ls) even in ker(�) ⊆

ker(δ∗), we obtain that

0 = D(s) = π(∇̃Ls+A(Ls))

if and only if
∇̃Ls+A(Ls) ∈ Γ(im(δ∗)),

where π : T ∗M ⊗ V → ker(�) is the projection.
Conversely, suppose Σ is a section of V such that ∇̃Σ + A(Σ) ∈ Γ(im(δ∗)). Then
δ∗(∇̃Σ+A(Σ)) = 0 and since the map A has values in ker(δ∗), we get δ∗(∇̃Σ) = 0.
By proposition 5.4 the equality δ∗(∇̃Σ) = 0 implies that Σ = L(p0(Σ)) and hence
D(p0(Σ)) = 0. �

The fact that A : V → ker(�) ⊂ T ∗M ⊗ V is of homogeneity ≥ 1, allows us to
compute the section ∇̃Σ+A(Σ) ∈ Γ(im(δ∗)).

Proposition 5.6. Let A : V → T ∗M ⊗ V be a bundle map of homogeneity ≥ 1.

Then there exists a differential operator B : Γ(V ) → Γ(T ∗M ⊗ V ) such that

∇̃Σ+ A(Σ) ∈ Γ(im(δ∗)) if and only if ∇̃Σ +B(Σ) = 0.

If A is a vector bundle map, then B is a linear differential operator.

Proof. Since we have chosen a splitting of the tangent bundle, we can identify TM
with gr(TM). Therefore we have a grading on differential forms with values in V

corresponding to the grading (15) on Λng∗− ⊗ V, which is given by homogeneous
degree. We denote by lower indices the grading components

(ΛnT ∗M ⊗ V )ℓ = (Λngr(TM)∗ ⊗ V )ℓ :=
nk⊕

j=n

(Λn−jgr(TM))∗ ⊗ Vℓ−j

and by upper indices the filtration components (ΛnT ∗M ⊗ V )ℓ of the associated
filtration (φ ∈ (ΛnT ∗M ⊗ V )ℓ if and only if φ(T i1M, ..., T inM) ⊂ V i1+....+in+ℓ).
Further, let us denote by d∇̃ the covariant exterior derivative corresponding to the
linear connection ∇̃. Recall that for a one form φ ∈ Γ(T ∗M ⊗ V ) the covariant
exterior derivative is given by

d∇̃φ(ξ, η) = ∇̃ξ(φ(η)) − ∇̃η(φ(ξ)) − φ([ξ, η]). (23)

Inserting φ = ∇̃Σ into (23) we see that d∇̃∇̃Σ(ξ, η) equals the curvature R̃(ξ, η)(Σ)
of ∇̃. We will write R̃(Σ) for the two form, which is given by (ξ, η) 7→ R̃(ξ, η)(Σ).
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Now let us consider our equation ∇̃Σ + A(Σ) = δ∗ψ and show how it can be
rewritten. Concerning the bundle map A, we will write Ai(Σ) for the i-th grading
component and Ai(Σ) for the i-th filtration component of A(Σ) in T ∗M ⊗ V .
Since δ∗ is filtration preserving, we have δ∗ψ ∈ (T ∗M ⊗ V )2 ⊂ (T ∗M ⊗ V )1 =

T ∗M ⊗ V and we set B1(Σ) := A1(Σ). Then the equation reads as

∇̃Σ+B1(Σ) +A2(Σ) = δ∗ψ. (24)

Since ∇̃ is of homogeneity ≥ 0 and its lowest homogeneous component is given
by ∂, the same is true for d∇̃ : T ∗M ⊗ V → Λ2T ∗M ⊗ V . Hence the operator
δ∗d∇̃ : T ∗M ⊗V → T ∗M ⊗V is also of homogeneity ≥ 0 with lowest homogeneous
component δ∗∂, which by definition of δ∗ is the identity on im(δ∗) ⊂ T ∗M ⊗ V .
Applying δ∗d∇̃ to the equation (24), we can therefore compute the lowest grading
component (δ∗ψ)2. Moving the resulting expression for (δ∗ψ)2 to the other side of
the equation and applying δ∗d∇̃ to the new equation, we can compute (δ∗ψ)3 and
so on until we have computed the whole one form δ∗ψ. More explicitly, if we apply
first d∇̃ to the equation (24), we obtain that

R̃(Σ) + d∇̃B1(Σ) + d∇̃A2(Σ) = d∇̃δ∗ψ.

This implies the following equation for the second grading component ∂((δ∗ψ)2) of
(d∇̃δ∗ψ)

(R̃(Σ) + d∇̃B1(Σ))2 + ∂(A2(Σ)) = ∂((δ∗ψ)2).

Applying now δ∗ we see that

δ∗((R̃(Σ) + d∇̃B1(Σ))2 + ∂A2(Σ)) = δ∗∂((δ∗ψ)2) = (δ∗ψ)2,

since δ∗∂ is the identity on im(δ∗).
If we set B2(Σ) := A2(Σ) − δ∗((R̃(Σ) + d∇̃B1(Σ))2 + ∂A2(Σ)), the equation (24)
can be now written as

∇̃(Σ) +B1(Σ) +B2(Σ) +A3(Σ) = (δ∗ψ)3.

Applying again δ∗d∇̃, we can compute (δ∗ψ)3 and define B3 by substracting the
resulting expression for (δ∗ψ)3 from A3(Σ). In this way, we can inductively define

Bi(Σ) := Ai(Σ)− δ∗([R̃(Σ) + d∇̃(B1(Σ) + ...+Bi−1(Σ))]i + ∂(Ai(Σ)).

Defining the differential operatorB as B(Σ) :=
∑N+k

i=1 Bi(Σ), it has by construction
the property required in the proposition and we are done. �

To compute the weighted order of the differential operator B, we need a bit of
information about the curvature R̃ of ∇̃.

Lemma 5.7. Let R ∈ Λ2T ∗M ⊗ V be the curvature of the connection ∇ on V

and T the torsion of the connection ∇ on TM ∼= gr(TM). Then the curvature of

∇̃ = ∇+ ∂ is given by

R̃(ξ, η)(Σ) = R(ξ, η)(Σ) + ∂(Σ)(T (ξ, η) + {ξ, η}).

Moreover, the map Σ 7→ R̃(Σ) is of homogeneity ≥ 1.

Proof. The curvature of ∇̃ is given by R̃(ξ, η)(Σ) = ∇̃ξ∇̃ηΣ − ∇̃η∇̃ξΣ − ∇̃[ξ,η]Σ.

For the first term we have

∇̃ξ∇̃ηΣ = ∇ξ∇ηΣ+∇ξ(∂(Σ)(η)) + ∂(∇ηΣ)(ξ) + ∂(∂Σ(η))(ξ). (25)
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The second summand of (25) can be written as ∇ξ(∂(Σ)(η)) = (∇ξ(∂Σ))(η) +

∂Σ(∇ξη). Since ∂ : V → g∗− ⊗V is Gss0 -equivariant, the induced vector bundle map
is parallel and so we have (∇ξ(∂Σ))(η) = ∂(∇ξΣ)(η). Putting this together, we
obtain that

∇̃ξ∇̃ηΣ = ∇ξ∇ηΣ+ ∂(∇ξΣ)(η) + ∂Σ(∇ξη) + ∂(∇ηΣ)(ξ) + ∂(∂Σ(η))(ξ).

Therefore we have

R̃(ξ, η)(Σ) = R(ξ, η)(Σ) + ∂Σ(T (ξ, η)) + ∂(∂Σ(η))(ξ)− ∂(∂Σ(ξ))(η)

= R(ξ, η)(Σ) + ∂(Σ)(T (ξ, η) + {ξ, η}), (26)

since
0 = ∂(∂Σ)(ξ, η) = ∂(∂Σ(η))(ξ) − ∂(∂Σ(ξ))(η) − ∂Σ({ξ, η}).

Since R̃(Σ) equals d∇̃∇̃(Σ), the map Σ 7→ R̃(Σ) is at least of homogeneity ≥ 0. To
see that is actually of homogeneity ≥ 1 we consider the formula (26).
The curvature Σ 7→ R(Σ) = d∇∇(Σ) of ∇ is of homogeneity ≥ 2, since ∇ and
d∇ both are of homogeneity ≥ 1. Now consider the second term of (26) given by
∂(Σ)(T (ξ, η) + {ξ, η}). We have

T (ξ, η) + {ξ, η} = ∇ξη −∇ηξ − [ξ, η] + {ξ, η}

and under the identification of gr(TM) with TM we can view {ξ, η} as the grading
component of lowest degree −(ord(ξ) + ord(η)) of [ξ, η]. Therefore the two form
T + { , } is of homogeneity ≥ 1. This implies that

Σ 7→ ∂(Σ)(T + { , })

is of homogeneity ≥ 1, since ∂ is filtration preserving. �

Using lemma 5.7 we can determine the weighted order of B:

Proposition 5.8. The differential operator B is of weighted order N+k−1, where

k is the depth of the filtration of TM . Therefore it defines a bundle map

B : JN+k−1(V ) → T ∗M ⊗ V.

Moreover, the component Bi factors through J i−1(V0)⊕ ...⊕ J 1(Vi−2)⊕ Vi−1.

Proof. Let us write a section Σ ∈ Γ(V ) as Σ = (Σ0, ...,ΣN ). We shall prove the
proposition by induction on i.
Since A : V → T ∗M ⊗ V is of homogeneity ≥ 1, B1(Σ) = A1(Σ) just depends on
Σ0 and so the assertion holds for i = 1.
Now consider B2(Σ) = A2(Σ)− δ∗((R̃(Σ) + d∇̃B1(Σ))2 + ∂A2(Σ)).
The component A2(Σ) depends on Σ0 and Σ1, since A is of homogeneity ≥ 1. By
lemma 5.7 we know that Σ 7→ R̃(Σ) is also of homogeneity ≥ 1 and therefore R̃(Σ)2
only depends on Σ0 and Σ1. So it remains to look at the term

(d∇̃B1(Σ))2 ∈ Γ(gr−1(TM)∗ ∧ gr−1(TM)∗ ⊗ V0).

For ξ, η ∈ Γ(T−1M) we have

d∇̃B1(Σ)(ξ, η) = ∇̃ξ(B1(Σ)(η)) − ∇̃η(B1(Σ)(ξ)) −B1(Σ)([ξ, η])

= ∇ξ(B1(Σ)(η)) −∇η(B1(Σ)(ξ)) + ∂(B1(Σ)(η))(ξ) − ∂(B1(Σ)(ξ))(η) −B1(Σ)([ξ, η])

= ∇ξ(B1(Σ)(η)) −∇η(B1(Σ)(ξ)) + ∂(B1(Σ))(ξ, η) −B1(Σ)([ξ, η] − {ξ, η}).
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Since ∂ is grading preserving, ∂ has to annihilate B1(Σ) and we obtain that

d∇̃B1(Σ)(ξ, η) = ∇ξ(B1(Σ)(η)) −∇η(B1(Σ)(ξ)) −B1(Σ)([ξ, η] − {ξ, η}).

Since the component B1(Σ) ∈ gr−1(TM)∗ ⊗ V0 just depends on Σ0, we therefore
conclude that (d∇̃B1(Σ))2 depends on the weighted one jet of Σ0. In total, we see
that B2 induces a bundle map J 1(V0)⊕ V1 → (T ∗M ⊗ V )2.
Now assume the statement is true for Bi with i < N + k. The i+ 1-th component
is given by

Bi+1(Σ) := Ai+1(Σ)− δ∗([R̃(Σ) + d∇̃(B1(Σ) + ...+Bi(Σ))]i+1 + ∂(Ai+1(Σ)).

Again, since A and R̃ are of homogeneity ≥ 1, Ai+1(Σ) and (R̃(Σ))i+1, depends
only on Σ0, ....,Σi. So it remains to study the term

(d∇̃(B1(Σ) + ...+Bi(Σ)))i+1.

For j < i + 1 consider Bj(Σ) ∈ Γ(
⊕j

ℓ=1 gr−ℓ(TM)∗ ⊗ Vj−ℓ). We know that the
operator d∇̃ is of homgeneity ≥ 0 and hence we have d∇̃(Bj(Σ)) ∈ Γ((Λ2gr(TM)∗⊗

V )j). Since ∂ is grading preserving, we obtain for vector fields ξ, η ∈ Γ(TM) with
ord(ξ) + ord(η) = i+ 1 that

(d∇̃Bj(Σ))i+1(ξ, η) =

= ∇ξ(Bj(Σ)(η)) −∇η(Bj(Σ)(ξ)) + ∂(Bj(Σ))(ξ, η) −Bj(Σ)([ξ, η] − {ξ, η})

= ∇ξ(Bj(Σ)(η)) −∇η(Bj(Σ)(ξ)) −Bj(Σ)([ξ, η] − {ξ, η}).

This implies that d∇̃(Bj(Σ))i+1 depends on Bj(Σ) and derivatives of Bj(Σ) in
direction of vector fields of order i+1−j. The claim now follows from the assumption
that Bj(Σ) factors through J j−1(V0)⊕ ...⊕ Vj−1 for all j < i+ 1. �

Now one can do the last step in rewriting the equation D(s) = 0 by solving
∇̃Σ +B(Σ) = 0 component by component.

Proposition 5.9. Suppose that B : J N+k−1(V ) → T ∗M ⊗ V is a bundle map

such that its i-th component Bi : JN+k−1(V ) → (T ∗M ⊗ V )i factors through

J i−1(V0)⊕ ...⊕J 1(Vi−2)⊕Vi−1. Then there exists a bundle map C : V → T ∗M⊗V

such that

∇̃Σ +B(Σ) = 0 if and only if ∇̃Σ+ C(Σ) = 0.

If B is a vector bundle homomorphism, then also C can be chosen to be a vector

bundle homomorphism.

Proof. The linear connection ∇̃ = ∇ + ∂ is of homogeneity ≥ 0 with lowest ho-
mogeneous component given by the vector bundle map ∂. Since we have a lin-
ear connection ∇ on TM ∼= gr(TM), we can from iterated covariant derivatives
∇̃i. We know that the linear connection on TM is of homogeneity ≥ 1, since
∇ : Γ(gri(TM)) → Γ(gr(TM)∗ ⊗ gri(TM)), and hence, since ∇̃ is of homogeneity
≥ 0 with lowest homogeneous component ∂, we conclude that the iterated covariant
derivative ∇̃i is also of homogeneity ≥ 0 and that its lowest homogeneous compo-
nent is algebraic. By assumption on B we therefore deduce that the component Bi
just depends on Σ≤i−1, (∇̃Σ)≤i−1,...,(∇̃i−1Σ)≤i−1 and we may write

Bi(Σ) = Bi(Σ≤i−1, (∇̃Σ)≤i−1, ..., (∇̃
i−1Σ)≤i−1),
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where (−)≤i−1 means that we restrict to grading components of degree ≤ i − 1.
Let us now consider the equation ∇̃(Σ)+B(Σ) = 0 grading component by grading
component. For the first component we get (∇̃Σ)1+B1(Σ) = 0 and we set C1(Σ) :=

B1(Σ0). For the second component we have

(∇̃Σ)2 +B2(Σ0,Σ1, (∇̃Σ)1) = 0

and we define C2(Σ0,Σ1) := B2(Σ0,Σ1,−C1(Σ0)). By construction we have

((∇̃Σ) +B(Σ))≤2 = 0 if and only if ((∇̃Σ) + C(Σ))≤2 = 0, (27)

where C = C1 + C2.
Suppose now inductively that we have found bundle maps C1, ..., Ci for i < N + k

such that

(∇̃Σ+B(Σ))≤i = 0 if and only if (∇̃Σ+ C(Σ))≤i = 0, (28)

where C = C1 + ... + Ci and Cj depends only on Σ≤j−1. Assume further that
for any section Σ satisfying (28) we have derived algebraic expressions in terms
of Σ0, ...,Σ≤i−1 for all (∇̃ℓΣ)≤i with ℓ = 1, ..., i. Inserting these expressions into
Bi+1(Σ), we obtain a bundle map Ci+1(Σ0, ...,Σi) such that

(∇̃Σ+B(Σ))≤i+1 = 0 if and only if (∇̃Σ+ C(Σ))≤i+1 = 0, (29)

C = C1 + ...+ Ci+1.
It remains to show that for any section Σ satisfying (29) we can deduce algebraic
expressions in terms of Σ0, ...,Σi for all (∇̃ℓΣ)≤i+1 occurring in Bi+2, where ℓ =

1, ..., i + 1. Since ∇̃j is of homogeneity ≥ 0, (∇̃Σ + C(Σ))≤i+1 = 0 implies that
(∇̃j(∇̃Σ+ C(Σ)))≤i+1 = 0. The differential operator

((∇̃1C(Σ))i+1, ..., (∇̃
iC(Σ))i+1)

depends on the weighted i-jet of C1(Σ), on the weighted i − 1-jet of C2(Σ),...,on
the weighted one jet of Ci(Σ) and algebraic on Ci+1(Σ). Therefore it just depends
on Σ≤i, (∇̃Σ)≤i..., (∇̃iΣ)≤i, for which we have by induction hypothesis algebraic
formulae in terms of Σ0, ...,Σi. Hence we get formulae in terms of Σ0, ..,Σi for
(∇̃j+1Σ)≤i+1 with j = 0, ..., i and we are done. If B is a linear differential operator,
C will be a vector bundle map by construction. �

Combining propositions 5.5, 5.6, 5.8 and 5.9, we have proved theorem 5.1. In
particular, if a system D(s) = 0 of the form of theorem 5.1 is linear, the bundle
map C is a vector bundle map and solutions of D(s) = 0 correspond bijectively to
parallel sections of the linear connection ∇̃+C. Since a parallel section is already
determined by its value in a single point, we obtain as a corollary:

Corollary 5.10. Let E be an irreducible representation of Gss0 and r > 0 be an

integer. For a linear differential operator D : Γ(E) → Γ(⊚rgr−1(TM)∗ ⊚ E) of

weighted order r with weighted symbol given by (13) the solution space of the linear

system D(s) = 0 is finite dimensional and bounded by the dimension of the irre-

ducible G representation V[E, r]. Moreover, if the grading (14) of V[E, r] is of the

form V[E, r] = V0 ⊕ ...⊕VN a solution is already determined by its weighted N -jet

in a single point.

Remark 5.3. In nearly all cases a regular infinitesimal flag structure on a mani-
fold M determines a regular normal parabolic geometry of the same type. A large
class of invariant differential operators for parabolic geometries occur as differential



PROLONGATION ON REGULAR INFINITESIMAL FLAG MANIFOLDS 29

operators in some BGG-sequence, see [8] and [5]. If the center of g0 is one dimen-
sional the first operator in a BGG-sequence is always a linear differential operator
of the form described in theorem 5.1 and hence the prolongation procedure pre-
sented here applies to them. On the one hand this shows that theorem 5.1 covers
a lot of geometrically interesting equations, like the equation for the infinitesimal
automorphisms or in the case of conformal geometries the equations for confor-
mal Killing tensors, the equation for twistor spinors and the equation for Einstein
scales. On the other hand it shows that the bound in corollary 5.10 is sharp. In
fact, considering the homogenous space G/P with its canonical regular infinitesi-
mal flag structure of type (G,P ) (see [9]), it turns out that in this case D∇ equals
the first operator in the BGG-sequence corresponding to V and that solutions of
D∇(s) = 0 corresponds to parallel sections of the flat tractor connection on V , see
[7]. The flatness of the connection implies that the dimension of the solution space
equals the rank of V .

Remark 5.4. For the first BGG-operators it was recently shown in [14] how to
construct a linear connection on the corresponding tractor bundle V , whose parallel
sections correspond bijectively to solutions of the linear system of equations defined
by a first BGG-operator. This approach has the feature that the connection on V is
natural with respect to the parabolic geometry respectively its underlying structure
infinitesimal flag structure. Our approach in contrast, although not invariant, works
for a larger class of operators, namely all semi-linear operators having the same
weighted symbol as some first BGG-operator. Note also that to apply theorem 5.1
one just has to check if the operator in question has the right weighted symbol and
one doesn’t need to know, if one is dealing with a BGG-operator.

5.2. Applications to overdetermined systems on contact manifolds. For
n ≥ 1 consider R2n+2 endowed with the skew-symmetric non-degenerate bilinear
form

< (x0, ..., x2n+1), (y0, ..., y2n+1) >= x0y2n+1 − y0x2n+1 +

n∑

i=1

(xiyn+i − xn+iyi).

Moreover, let

g = sp(2n+2,R) = {A ∈ End(R2n+2) :< Ax, y >= − < x,Ay > for allx, y ∈ R2n+2}

be the symplectic Lie algebra with respect to <,>.
It turns out that g is given by block matrices of block sizes 1, n, n and 1 of the
following form:

g =








a Z W z

X A B W t

Y C −At −Zt

x Y t −Xt −a


 : Bt = B,Ct = C




.

This realisation of g defines a |2|-grading on g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 given by



g0 g1 g1 g2

g−1 g0 g0 g1

g−1 g0 g0 g1

g−2 g−1 g−1 g0


 ,
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where the subalgebra g− is isomorphic to a Heisenberg Lie algebra. Hence we have
a contact grading (see example 3.3). Note that g0 ∼= R⊕ sp(2n,R), where sp(2n,R)
is the symplectic Lie algebra with respect of the standard symplectic form on R2n.
Let G = Sp(2n+ 2,R) be the symplectic Lie group consisting of linear symplectic
automorphisms of (R2n+2, <,>) and let P ⊂ G be the parabolic subgroup with
Lie algebra p = g0 ⊕ g1 ⊕ g2 given by the connected component of the identity
of all block upper triangular matrices in G with block sizes 1, n, n and 1. The
corresponding Levi subgroup G0 is given by all the block diagonal matrices in P

G0 =








e

D

e−1


 : D ∈ Sp(2n,R), e ∈ R>0




 ,

where Sp(2n,R) is the symplectic Lie group wit respect to the standard symplectic
form on R2n. A regular infinitesimal flag structure of type (G,P ) on a manifold M
consists of a contact structure TM = T−2M ⊃ T−1M =: H and a reduction G0 of
the structure group of P(gr(TM)) via Ad : G0 → Autgr(g−). It is easy to see that
G0 can be identified via Ad with the subgroup consisting of those automorphisms
in Autgr(g−), which in addition preserve an orientation on g−. Therefore a regular
infinitesimal flag manifold (M,H,G0) of type (G,P ) is just an oriented contact
manifold.
Recall that for an orientable contact manifold (M,H), there exists a globally defined
contact form, i.e. a section α ∈ Γ(T ∗M) such that ker(α) = H . It is unique up
to multiplication by a nowhere vanishing function and α ∧ (dα)n is a volume form
on M . Note that the choice of a contact from reduces the frame bundle of gr(TM)

further to Gss0 = Sp(2n,R). Moreover, it is well known that a contact form α gives
rise to a unique vector field r such that α(r) = 1 and irdα = dα(r,− ) = 0. It is
called the Reeb vector field associated to α. In particular, α induces a splitting of
the filtration of the tangent bundle TM ∼= gr(TM) given by ξ 7→ (ξ − α(ξ)r, α(ξ)).

Now suppose that (M,H,G0) is an oriented contact manifold. Further, assume that
we have chosen a contact form α inducing the given orientation on M and let Gss0 be
the corresponding reduction to Sp(2n,R). Moreover, will identify TM and gr(TM)

via the isomorphism of the associated Reeb vector field. Hence theorem 5.1 applies
to geometric structures of the form (M,H,Gss0 ) and corollary 5.10 reads as follows:

Corollary 5.11. Suppose that E is an irreducible representation of Sp(2n,R) and

let r > 0 be an integer. Then for every linear differential operator D : Γ(E) →

Γ(SrH∗ ⊚ E) of weighted order r with symbol given by the natural projection

σ(D) : U−r(gr(TM))∗ ⊗ E → SrH∗
⊚ E.

the dimension of the solution space of the associated linear system Ds = 0 is

bounded by the dimension of the irreducible Sp(2n+ 2,R) representation V[E, r].

Example 5.1. Choosing a principal connection on Gss0 , we obtain linear connec-
tions on all associated vector bundles. In particular, we get a partial linear connec-
tion ∇ : Γ(H∗) → Γ(H∗⊗H∗) on H∗. Now consider the following linear differential
operator D : Γ(H∗) → Γ(Sr+1H∗) given by

D : sb 7→ ∇(a1∇a2 .....∇arsb),

where one symmetrises over all the indices in the round bracket. It is a differ-
ential operator of weighted order r with symbol given by the natural projection
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U−r(gr(TM))∗ ⊗ H∗ → SrH∗ ⊚ H∗ = Sr+1H∗. By corollary 5.11 the dimension
of the solution space of D(s) = 0 is bounded by the dimension of V[g∗−1, r]. Using
elementary representation theory one immediately computes that

dim(V[g∗−1, r]) =
(2n+ r)!(2n)!r(2n + 2 + r)

(r + 1)!(2n+ 1)!(2n− 1)!
.

Example 5.2. Choosing a principal connection on Gss0 induces partial connections
on H∗ and StH∗, which we denote both by ∇. Now consider the linear differential
operator D : Γ(StH∗) → Γ(St+rH∗) given by

sb1...bt 7→ ∇(a1∇a2 ...∇arsb1....bt),

where one symmetrises over all the indices in the round bracket. It is of weighted
order r and the weighted symbol is given by the projection U−r(gr(TM))∗⊗StH∗ →

SrH∗ ⊚ StH∗ = St+rH∗. By corollary 5.11 its solution space is bounded by the
dimension of V[Stg∗−1, r] and one directly computes

dim(V[Stg∗−1, r]) =
(r + t+ 2n− 1)!(2n+ t− 1)!r(r + 2t+ 2n)

(r + t)!t!(2n+ 1)!(2n− 1)!
.

5.3. Semi-linear systems on regular infinitesimal flag manifolds corre-

sponding to |k|-gradings such that dim(z(g0)) > 1. Suppose that g = g−k ⊕

....⊕ g0 ⊕ ...⊕ gk is a complex |k|-graded semisimple where the center z(g0) of the
Levi subalgebra has dimension d > 1. Let G be a simply connected Lie group with
Lie algebra g and P ⊂ G be a parabolic subgroup corresponding to the grading on
g with Levi subgroup G0 . Further, assume that M is a manifold endowed with a
geometric structure (Gss0 , {T

iM}) of type (G,P ) as described in section 3.2.
From lemma 3.2 we know that g−1 decomposes as gss0 -module into irreducible as
follows

g−1 =
⊕

j∈J

g−1,j

where g−1,j is the irreducible representation with highest weight −αj ∈ Σp and J

as in lemma 3.2. Recall that the number of elements of J is d.
Suppose that E is an irreducible representation of Gss0 and for j ∈ J fix an element
rj ∈ N. If the restriction of λ =

∑
i∈I\J aiωαi

to h0 is the highest weight of E∗,
we define V as the irreducible representation of g, which is dual to the irreducible
representation with highest weight λ+

∑
j∈J (rj − 1)ωαj

∈ h∗. Using theorem 4.1,
one shows directly that V satisfies that

H0(g−,V) = E and H1(g−,V) =
⊕

j∈J

⊚
rjg∗−1,j ⊚ E. (30)

By relabelling we assume thatH1(g−,V) =
⊕d

j=1 ⊚
rjg∗−1,j⊚E with r1 ≤ ... ≤ rd.

Again, decomposing V with respect to the action of the grading element in z(g0)

one obtains that

V = V0 ⊕ ...⊕ VN such that V0 = E and gjVi ⊂ Vi+j .

Using theorem 4.1 one deduces that ker(�rj ) ∼= ⊚rig∗−1,j⊚E sits inside g∗−1,j⊗Vrj−1

and analogously as in proposition 5.3 one therefore deduces that the G0-equivariant
maps

φi : Vi → U−i(g−)
∗ ⊗ V0 given by v 7→ (u 7→ −u⊤v) (31)
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are inclusions, which are even isomorphisms for i < r1.

Remark 5.5. Denoting by Krj the kernel of the Gss0 -equivariant projection

U−rj (g−)
∗ ⊗ E → Srjg∗− ⊗ E → Srig∗−1,j ⊗ E → ⊚

rjg∗−1,j ⊚ E. (32)

one can proves as in the section 5.1 that there are Gss0 -equivariant isomorphisms

φi : Vi ∼= U−i(g−)
∗ ⊗ E for 0 ≤ i < r1

φi : Vi ∼= U−i(g−)
∗ ⊗ E ∩ (U−(i−r1)(g−)

∗ ⊗Kr1) for r1 ≤ i < r2

:

φi : Vi ∼= U−i(g−)
∗⊗E∩(U−(i−r1)(g−)

∗⊗Kr1)∩...∩(U−(i−rd)(g−)
∗⊗Krd) for rd ≤ i ≤ N.

Choosing a principal connection ∇ on Gss0 and a splitting of the filtration of the
tangent bundle TM ∼= gr(TM), one may define a linear connection ∇̃ of homo-
geneity ≥ 0 on V by ∇̃ := ∇+ ∂ and constructs in the same way as in section 5.1
an operator L : Γ(V0) → Γ(V ) of weighted order N , which is characterised by the
same properties as the analogous operator in proposition 5.4. It is even given by
the same formula (20). The same reasoning as in the proof of proposition 5.4 then
shows that the composition σ(Li) ◦φi equals −id and hence Li induces a surjective
vector bundle map

Li : J i(V0) → V0 ⊕ ...⊕ Vi, (33)

which is an isomorphism for i < r1.
Denote by gr−1,j(TM) the natural vector bundle corresponding to the irreducible
representation g−1,j and consider the linear differential operator given by

D∇ = (D∇
1 , ..., D

∇
d ) : Γ(E) → Γ(⊚r1gr−1,1(TM)∗⊚E⊕ ...⊕⊚

rdgr−1,d(TM)∗⊚E),

where

D∇
j := −id⊗ φrj−1 ◦ πj ◦ ∇̃ ◦ L : Γ(E) → Γ(⊚rjgr−1,j(TM)∗ ⊚ E)

and πj : gr(TM)∗⊗V → gr−1,j(TM)∗⊗Vrj−1 → ker(�rj ) is the natural projection.
The operator D∇

j is of weighted order rj with weighted symbol given by the natural
projection U−rj (gr(TM))∗ ⊗ E → ⊚rjgr−1,j(TM)∗ ⊚ E induced by (32). We set
Fj := ⊚rjgr−1,j(TM)∗ ⊚ E and F := F1 ⊕ ...⊕ Fd.
If D = (D1, ..., Dd) : Γ(E) → Γ(F1 ⊕ ... ⊕ Fd) is a differential operator, which
differs from D∇ by a bundle homomorphism J r1−1(E) → F , then the isomorphism
Lr1−1 : J r1−1(E) ∼= V0 ⊕ ... ⊕ Vr1−1 can be used to rewrite the system D(s) = 0

step by step as in section 5.1 into a system of the form ∇̃(Σ) + C(Σ) = 0 for a
bundle map C : V → T ∗M ⊗ V .
This shows in particular that we can deal with all the first operators in some BGG-
sequences, which covers many geometric interesting equations, see [8] and [5] for
details about BGG operators.

Remark 5.6. Suppose that D = (D1, ..., Dd) : Γ(E) → Γ(F1 ⊕ ...⊕ Fd) is a linear
differential operator such that Dj is of the same weighted order and has the same
weighted symbol as D∇

j , then the approach of this article won’t in general apply
straightforward, since Li is an isomorphism only for i < r1. However, one may
exploit things a bit further. Let us explain this in the case d = 2:
For a linear differential operator φ : J r(W ) → W̄ of weighted order r between
vector bundles W and W̄ over a filtered manifold M , there is a general notion of its
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ℓ-th prolongation pℓ(φ) : J r+ℓ(W ) → J ℓ(W̄ ), which is given by pr+ℓ(φ)(jr+ℓx s) =

jℓxφ(j
rs), see [18] and [20]. Correspondingly, the ℓ-th prolongation Qr+ℓ of the

equation Qr := ker(φ) associated to the operator φ is given by the kernel of pℓ(φ).
Note that a section s of W is a solution of Qr, i.e. φ(jrs) = 0, if and only if s is a
solution of Qr+ℓ for all ℓ ≥ 0. In general Qr+ℓ need not to be a vector bundle, but
generically this will be the case.
Now by assumption on D = (D1, D2), we may write

D1(s) = D∇
1 (s) + ψ1(j

r1−1s) and D2(s) = D∇
2 (s) + ψ2(j

r2−1s),

for some vector bundle maps ψ1 : J r1−1(E) → F1 and ψ2 : J r2−1(E) → F2.
If r := r1 = r2, we know that Lr−1 defines an isomorphism J r−1(E) ∼= V0⊕...⊕Vr−1

and we can find vector bundle maps Ai : V → Fi such that Di(s) = D∇
i (s)+Ai(Ls)

for i=1,2. Hence the prolongation procedure of section 5.1 can be applied without
problems to rewrite D(s) = 0 into a system of the form ∇̃(Σ) + C(Σ) = 0.
If r1 < r2, the operator Lr1−1 still defines an isomorphism J r1−1(E) ∼= V0 ⊕ ... ⊕

Vr1−1 and we can at least find a vector bundle map A1 : V → F1 such that D1(s) =

D∇
1 (s)+A1(Ls). Now let Qr1+ℓ ⊂ J r1+ℓ(E) be the ℓ-th prolongation of D1(s) = 0.

and denote by P i the kernel of the vector bundle map Li : J i(E) → V0 ⊕ ....⊕ Vi.
We claim that Qr2−1

x ∩ P r2−1
x = {0} for all x ∈M :

In fact, suppose that jr2−1
x s ∈ Qr2−1

x ∩ P r2−1
x . The diagram (22) still holds and

hence it follows that jixs ∈ P ix for all i ≤ r2 − 1. In particular, we have jr1x s ∈ P r2x
and, since P r1−1

x = {0} by (33), this implies that jr1−1
x s = 0. Hence jr1x s is

an element in U−r1(gr(TxM))∗ ⊗ Ex ⊂ J r1
x (E), which lies in the kernel of the

weighted symbol of Lr1 . On the other hand, since jixs ∈ Qix for all i, we obtain
that jr1x s also lies in the kernel of the weighted symbol of D1. Since σ(Lr1) ◦

φr1 = −id, we deduce from remark 5.5 that that the intersection of the kernels
of these weighted symbols is zero and so jr1x s = 0. Hence jr1+1

x s is an element of
U−r1−1(gr(TxM))∗ ⊗ Ex. In addition, it has to be in the kernel of the weighted
symbol of Lr1+1 and in the the kernel of the weighted symbol of the the first
prolongation p1(D1). In [20] it was shown that the kernel of σx(p1(D1)) coincides
with the intersection U−r1−1(gr(TxM))∗⊗Ex∩(U−1(gr(TxM))∗⊗Kr1

x ). Hence from
σ(Lr1+1) ◦ φr1+1 = −id and remark 5.5 one concludes again that the intersection
of the two kernels is zero and so jr1+1

x s = 0. Since the kernel of σx(pℓ(D1)) equals
U−r1−ℓ(gr(TxM))∗ ⊗ Ex ∩ (U−ℓ(gr(TxM))∗ ⊗Kr1

x ), see [20], one shows in this way
step by step that jr2−1

x s = 0.
Therefore the operator Lr2−1 induces a fiberwise injective map

Lr2−1|Qr2−1 : Qr2−1 → V0 ⊕ ...⊕ Vr2−1, (34)

which is a injective vector bundle map, if Qr2−1 is a vector bundle.
Choosing a splitting of this injection, shows that we can find a map A2 : V → F2

such that

D(s) = 0 if and only if D∇
1 (s) +A1(Ls) = 0 and D∇

2 (s) +A2(Ls) = 0,

since D∇
1 (s) + A1(Ls) = 0 implies that jr2−1

x s ∈ Qr2−1
x for all x ∈ M . The map

A = A1 + A2 is of homogeneity ≥ 1 and so the prolongation procedure of section
5.1 can be applied to rewrite D(s) = 0 into a system of the form ∇̃(Σ)+C(Σ) = 0.
Finally, let us remark that if Qi is a vector bundle for all i ≤ r2 − 1 and all maps
Qi → Qi−1, which are induced from the projections πii−1 : J i(E) → J i−1(E), are
surjective, then (34) is even an isomorphism.
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