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Abstract

We obtain some methods to construct a (strongly) proper resolution (resp. coproper
coresolution) of one end term in a short exact sequence from that of the other two terms.
By using this method, we prove that for a left and right Noetherian ring R, rR satisfies
the Auslander condition if and only if so does every flat left R-module, if and only if
the injective dimension of the ith term in a minimal flat resolution of any injective left
R-module is at most ¢ — 1 for any ¢ > 1, if and only if the flat (resp. injective) dimension
of the ith term in a minimal injective (resp. flat) resolution of any left R-module M
is at most the flat (resp. injective) dimension of M plus ¢ — 1 for any ¢ > 1, if and
only if the flat (resp. injective) dimension of the injective envelope (resp. flat cover) of
any left R-module M is at most the flat (resp. injective) dimension of M, and if and
only if any of the opposite versions of the above conditions hold true. Furthermore, we
prove that for an Artinian algebra R satisfying the Auslander condition, R is Gorenstein
if and only if the subcategory consisting of finitely generated modules satisfying the
Auslander condition is contravariantly finite. As applications, we get some equivalent
characterizations of Auslander-Gorenstein rings and Auslander-regular rings.

1. Introduction

It is well known that commutative Gorenstein rings are fundamental and important
research objects in commutative algebra and algebraic geometry. Bass proved in [B2] that a
commutative Noetherian ring R is a Gorenstein ring (that is, the self-injective dimension of
R is finite) if and only if the flat dimension of the ith term in a minimal injective coresolution
of R as an R-module is at most ¢ — 1 for any ¢ > 1. In non-commutative case, Auslander
proved that this condition is left-right symmetric ([FGR, Theorem 3.7]). In this case, R is
said to satisfy the Auslander condition. Motivated by this philosophy, Huang and Iyama
introduced the notion of certain Auslander-type conditions as follows. For any m,n > 0,

a left and right Noetherian ring is said to be G, (m) if the flat dimension of the ith term
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in a minimal injective coresolution of Rp is at most m + i — 1 for any 1 < i < n. The
Auslander-type conditions are non-commutative analogs of commutative Gorenstein rings.
Such conditions play a crucial role in homological algebra, representation theory of algebras
and non-commutative algebraic geometry ([AR3], [AR4], [Bj], [EHIS], [FGR], [H], [HI], [IS],
[11], [I2], [13], [I4], [M], [Ro], [S], [W], and so on). In particular, by constructing an injective
coresolution of the last term in an exact sequence of finite length from that of the other
terms, Miyachi obtained in [M] an equivalent characterization of the Auslander condition in
terms of the relation between the flat dimensions of any module and its injective envelope.
Then he got some properties of Auslander-Gorenstein rings and Auslander-regular rings.

This paper is organized as follows.

In Section 2, we give some terminology and some preliminary results.

In Section 3, we introduce the notion of strongly proper (co)resolutions of modules, and
then give a method to construct a (strongly) proper resolution (resp. coproper coresolution)
of the first (resp. last) term in a short exact sequence from that of the other two terms. We

will prove the following two theorems and their dual results.

Theorem 1.1. Let % be a full subcategory of Mod R closed under finite direct sums and

under kernels of epimorphisms, and let

0-X =X X 50
be an exact sequence in Mod R. If

Ol s 0505 X 50
is a (strongly) proper € -resolution of X7 for j = 0,1, then
=GP s s Y 5 C 5 X 0
is also a (strongly) proper € -resolution of X, and
0—C—ClEHcy—Ci—0

18 exact.

Theorem 1.2. Let € be a full subcategory of Mod R closed under finite direct sums, and
let
0—-X1=-Xo—=X—0 (1.1)

be an exact sequence in Mod R and

n 1 0
= =0 =0 > X; =0



a (strongly) coproper € -coresolution of X; for j =0,1. If (1.1) is (strongly) Hompg(%, —)-

exact, then
crEper ! = m it - CGEPC! - Y - X -0

is also a (strongly) coproper € -coresolution of X.

Let R be a left Noetherian ring and n,k > 0, and let {M;};c; be a family of left R-
modules and M = ligMi, where I is a directed index set. By using some techniques of
direct limits and tralé;{mite induction, we prove in Section 4 that if the flat dimension of the
(n + 1)st term in a minimal injective coresolution of M; is at most k for any ¢ € I, then the
flat dimension of the (n + 1)st term in a minimal injective coresolution of M is also at most
k.

For any m,n > 0, we introduce in Section 5 the notion of modules satisfying the
Auslander-type conditions G,,(m); in particular, a left R-module M for any ring R is said to
satisfy the Auslander condition if the flat dimension of the i¢th term in a minimal injective
coresolution of g M is at most i —1 for any ¢ > 1. By using results obtained in the former sec-
tions, we will investigate the homological behavior of modules satisfying the Auslander-type
conditions in terms of the relation between the flat (resp. injective) dimensions of modules

and their injective envelopes (resp. flat covers). In particular, we get the following

Theorem 1.3. Let R be a left and right Noetherian ring. Then the following statements
are equivalent.

(1) rR satisfies the Auslander condition.

(2) Every flat left R-module satisfies the Auslander condition.

(3) The flat dimension of the ith term in a minimal injective coresolution of any left
R-module M is at most the flat dimension of M plus i — 1 for any i > 1.

(4) The flat dimension of the injective envelope of any left R-module M is at most the
flat dimension of M.

(5) The injective dimension of the ith term in a minimal flat resolution of any injective
left R-module is at most i — 1 for any i > 1.

(6) The injective dimension of the ith term in a minimal flat resolution of any left R-
module M is at most the injective dimension of M plus i — 1 for any i > 1.

(7) The injective dimension of the flat cover of any left R-module M is at most the
injective dimension of M.

(1)°P The opposite version of (i) (1 <i<7).



As applications of this theorem, we obtain some equivalent characterizations of Auslander-
Gorenstein rings and Auslander-regular rings, respectively.

Note that a commutative Noetherian ring satisfies the Auslander condition if and only if
it is Gorenstein ([B2]). Auslander and Reiten conjectured in [AR3] that an Artinian algebra
satisfying the Auslander condition is Gorenstein. This conjecture is situated between the
well known Nakayama conjecture and the finitistic dimension conjecture. The Nakayama
conjecture states that an Artinian algebra R is selfinjective if all terms in a minimal injective
coresolution of pR are projective; and the finitistic dimension conjecture states that the
supremum of the projective dimensions of all finitely generated left R-modules with finite
projective dimension for an Artinian algebra R is finite. All of these conjectures remains
still open. In Section 6, we first obtain the approximation presentations of a given module
relative to the subcategory of modules satisfying the Auslander condition and that of modules
with finite injective dimension respectively. Then we establish the connection between the
Auslander and Reiten conjecture mentioned above with the contravariant finiteness of some

certain subcategories as follows.

Theorem 1.4. Let R be an Artinian algebra satisfying the Auslander condition. Then
the following statements are equivalent.

(1) R is Gorenstein.

(2) The subcategory consisting of finitely generated modules satisfying the Auslander con-
dition is contravariantly finite.

(3) The subcategory consisting of finitely generated modules which are n-syzygy for any

n > 1 is contravariantly finite.

As a consequence, we get that an Artinian algebra is Auslander-regular if and only if the
subcategory consisting of projective modules and that consisting of modules satisfying the

Auslander condition coincide.

2. Preliminaries

Throughout this paper, R is an associative ring with identity, Mod R is the category
of left R-modules and mod R is the category of finitely generated left R-modules. We use
gl.dim R to denote the global dimension of R. In this section, we give some terminology and

some preliminary results.

Definition 2.1. ([E]) Let ¥ C Z be full subcategories of Mod R. The homomorphism
f:C — Din Mod R with C' € ¥ and D € Z is said to be a €-precover of D if for any
homomorphism g : C’" — D in Mod R with C" € €, there exists a homomorphism h : ¢ — C



such that the following diagram commutes:

C——D

The homomorphism f : C' — D is said to be right minimal if an endomorphism h : C — C'is
an automorphism whenever f = fh. A €-precover f : C' — D is called a € -coverif f is right
minimal. Dually, the notions of a & -preenvelope, a left minimal homomorphism and a % -
envelope are defined. Following Auslander and Reiten’s terminology in [AR1], for a module
over an Artinian algebra, a ¢-(pre)cover and a €-(pre)envelope are called a (minimal) right
€ -approximation and a (minimal) left € -approzimation, respectively. If each module in
2 has a right (resp. left) €-approximation, then € is called contravariantly finite (resp.

covariantly finite) in 9.

Lemma 2.2. ([X, Theorem 1.2.9]) Let € be a full subcategory of Mod R closed under
direct products. If f; : C; — M; is a €-precover of M; in Mod R for any i € I, where I is
an index set, then [[;c; fi : [1;c; Ci = [lic; Mi is a €-precover of [[;c; M;.

We use F(Mod R) and .#°(Mod R) to denote the subcategories of Mod R consisting
of flat modules and injective modules, respectively. Recall that an .#°(Mod R)-(pre)cover
and an .#°(Mod R)-(pre)envelope are called a flat (pre)cover and an injective (pre)envelope,
respectively.

Bican, El Bashir and Enochs proved in [BEE, Theorem 3] that every R-module has a flat
cover. For an R-module M, we call an exact sequence --- — Fj — .. 2 Fy =4 Fy —%
M — 0 a proper flat resolution of M if m; : F; — Imm; is a flat precover of Imm; for any
1 > 0. Furthermore, we call the following exact sequence:

m() (M) w1 (M) mo(M)

= F{(M) Fy (M) —" Fy(M) —" M =0

a minimal flat resolution of M, where m;(M) : F;(M) — Imm;(M) is a flat precover of
Im7;(M) for any ¢ > 0. It is easy to verify that the flat dimension of M is at most n if and
only if Fy,1(M) = 0. In addition, we use

0—M— E°M)— EY M) — - = E(M) = -

to denote a minimal injective coresolution of M.
We denote by (—)T = Homgz(—, Q/Z), where Z is the additive group of integers and Q

is the additive group of rational numbers.



Lemma 2.3. (/[EH, Theorem 3.7]) The following statements are equivalent.

(1) R is a left Noetherian ring.

(2) A monomorphism f: A — E in Mod R is an injective preenvelope of A if and only
if f©: EY — AT is a flat precover of AT in Mod R°P.

Let M € Mod R. We use fdgr M, pdgr M and idr M to denote the flat, projective and

injective dimensions of M, respectively.

Lemma 2.4. (1) ([F, Theorem 2.1]) For any M € Mod R, fdg M = idge»r M.
(2) ([F, Theorem 2.2]) If R is a right Noetherian ring, then fdgr N = idger N for any
N € Mod R°P.

Recall that Fin.dim R = sup{pdp M | M € Mod R with pdp M < oco}. Observe that the
first assertion in the following result was proved by Bass in [B1, Corollary 5.5] when R is a

commutative Noetherian ring.

Lemma 2.5. (1) For a left Noetherian ring R, idg R > sup{fdg M | M € Mod R with
fdp M < o0}

(2) For a left and right Noetherian ring R, idg R > sup{idrer N | N € Mod R with
idror N < 00} .

Proof. (1) Without loss of generality, assume that idg R =n < co. Then Fin.dim R < n
by [B1, Proposition 4.3]. It follows from [J1, Proposition 6] that the projective dimension of
any flat left R-module is finite. So, if M € Mod R with fdgr M < oo, then pdp M < oo and
pdp M <n. Thus we have fdr M (< pdr M) < n.

(2) By [B1, Proposition 4.1], we have sup{fdg M | M € Mod R with fdg M < oo} =
sup{idrer N | N € Mod R with idrer N < 00}. So the assertion follows from (1). O

3. The constructions of (strongly) proper resolutions

and coproper coresolutions

In this section, we introduce the notion of strongly (co)proper (co)resolutions of modules.
Then we give a method to construct a (strongly) proper resolution (resp. coproper cores-
olution) of the first (resp. last) term in a short exact sequence from that of the other two
terms, as well as give a method to construct a (strongly) proper resolution (resp. coproper
coresolution) of the last (resp. first) term in a short exact sequence from that of the other
two terms.

We first give the following easy observation, which is a generalization of the horseshoe

lemma.



Lemma 3.1. Let 0 — A i) A 25 A" 50 be an ezact sequence in Mod R.
(1) If there exist homomorphisms o : C — A, o :C" — A" and h: ¢" — A’ in Mod R

such that o = gh, then we have the following commutative diagram with ezact rows:

e 0,1 )
o—>cﬁ>)0@cg =" —=0

|
al o o l
f

"
v g
O A A/ A// O

where o/ = (fa, h).
(2) If there exist homomorphisms : A — D, B A" D" andk:A — D inModR
such that B = kf, then we have the following commutative diagram with exact rows:

f p g

0 A A A" 0
|
B ) /3"v B”l
D p,l ")
0—>D—O>D€BD§ —=p'—=0

where B = (ﬁﬁg).
The following observation is useful in the rest of this section.

Lemma 3.2. Let
M i N
gll gl
X N Y
be a commutative diagram in Mod R and C' € Mod R.
(1) If this diagram is a pull-back diagram of f and g and Hompg(C,g) is epic, then
Homp(C, g1) is also epic.
(2) If this diagram is a push-out diagram of fi and g1 and Hompg(g1,C) is epic, then
Hompg(g,C) is also epic.

Proof. Assume that the given diagram is a pull-back diagram of f and g and Hompg(C, g)
is epic. Let @ € Homp(C,X). Then there exists § € Hompg(C,N) such that fa =
Homp(C,g)(B) = gB. By the universal property of a pull-back diagram, there exists
v € Homp(C, M) such that & = g17 = Hompg(C,g1)(y). So Hompg(C,¢1) is epic and the
assertion (1) follows.

Dually, we get the assertion (2). (]

Let % be a full subcategory of Mod R and M € Mod R. Recall that a sequence in Mod R

is called Homp (%, —)-ezact exact if it is exact and remains still exact after applying the



functor Homp(%, —); and an exact sequence:
= Ci=--=2C—=-Co—>M—0

in Mod R with each C; € ¥ is called a % -resolution of M. Avramov and Martsinkovsky
called in [AM] the above exact sequence a proper € -resolution of M if it is a €-resolution
of M and is Homp (%, —)-exact. Dually, the notions of a Hompg(—, %)-ezact exact sequence,
a @ -coresolution and a coproper € -coresolution of M are defined.

We now introduce the notion of strongly (co)proper (co)resolutions of modules as follows.

Definition 3.3. Let ¥ be a full subcategory of Mod R and M € Mod R.
(1) A sequence:
=2 X2 =2 X1 2 XM =0

in Mod R is called strongly Hompg(%, —)-exact exact if it is exact and Exth(¥, K;) = 0 for
any ¢ > 1, where K; = Im(X; — X;_1). Dually, the notion of a strongly Hompg(—, ¢)-ezact
exact sequence is defined.

(2) An exact sequence:
= Ci— =0 —-Ch—M—0

in Mod R is called a strongly proper € -resolution of M if it is a %-resolution of M and is
strongly Homp (%', —)-exact. Dually, the notion of a strongly coproper € -coresolution of M
is defined.

It is easy to see that a strongly (co)proper %-(co)resolution is a (co)proper € -(co)resolution.
But the converse does not hold true in general. For example, let ¥ be a full subcategory
of Mod R such that there exists a module M € % with ExtL(M, M) # 0. Then the exact
sequence:

('3

0— M S @m0

is both a proper %-resolution and a coproper %-coresolution of M, but it neither a strongly
proper % -resolution nor a strongly coproper % -coresolution of M.
The following result contains Theorem 1.1, which gives a method to construct a (strongly)

proper resolution of the first term in a short exact sequence from that of the last two terms.

Theorem 3.4. Let € be a full subcategory of Mod R and 0 — X — X° — X' — 0 an

exact sequence in Mod R. Let

0 = R Y o Yo I G (3.1)



be a € -resolution of X°, and let
s Ol s OO X =0 (3.2)

be a Homp(%, —)-exact exact sequence in Mod R. Then

(1) We get the following exact sequences:
o CLEPC) - P C X -0 (3.3)

and

0—C—ClEHcy—ci—0 (3.4)

Assume that € is closed under finite direct sums and under kernels of epimorphisms.
Then we have

(2) If the exact sequence (3.2) is a € -resolution of X1, then the evact sequence (3.3) is
a € -resolution of X.

(3) If both the exact sequences (3.1) and (3.2) are strongly proper € -resolutions of X°
and X1 respectively, then the exact sequence (3.3) is a strongly proper € -resolution of X .

(4) If both the exact sequences (3.1) and (3.2) are proper € -resolutions of X° and X!

respectively, then the exact sequence (3.3) is a proper € -resolution of X.

Proof. (1) Put K? =Im(C? — C? ) and K} = Im(C} — C} ;) for any i > 1. Consider
the following pull-back diagram:

0 0
K} K}
0 X M o 0
|
0 X X0 X! 0
0 0

Because the third column in the above diagram is Homp (%, —)-exact exact, so is the middle

column by Lemma 3.2(1). Thus by Lemma 3.1(1) we get the following commutative diagram



with exact columns and rows and the middle row splitting:

0 (I) 0
|
\
077>K21777>W1777>K?77>0
|
|
A
0—Cl —Cl P C)—C§ —0
|
|
A
0— K! M X0 —=0
|
|
A
0 0 0

where Wy = Ker(C} @ CJ — M). It is easy to verify the upper row in the above diagram is
Homp (%, —)-exact exact.

On the one hand, we have the following pull-back diagram:

On the other hand, again by Lemma 3.1(1) we get the following commutative diagram with
exact columns and rows and the middle row splitting:

10



0 (l) 0
|

\
0——>K§———>W2———>KS——>O
|
|
Y
0l P CY—— ) —
|

|
A
0 Ki Wi K?) 0

|

|

v
0 0 0
where Wy = Ker(C2 @ CY — W1) and the upper row in the above diagram is Hompg (%', —)-
exact exact. Continuing this process, we get the desired exact sequences (3.3) and (3.4) with

W; =Im(C}, P CY - CHPC?,) for any i > 2 and Wy = Im(C3 P CY — O).

(2) It follows from the assumption and the assertion (1).

(3) If both the exact sequences (3.1) and (3.2) are strongly proper é-resolutions of X°
and X' respectively, then Ext}%(‘g, Kf) =0 for any i > 1 and j = 0,1. By the proof of (1),
we have an exact sequence:

0— Ky =W = K =0
for any i > 1. So Exth(%,W;) = 0 for any i > 1, and hence the exact sequence (3.3) is a
strongly proper %-resolution of X.

(4) Assume that both the exact sequences (3.1) and (3.2) are proper %-resolutions of
X0 and X' respectively. Then by the proof of (1) and [EJ, Lemma 8.2.1], we have that
both the middle column in the second diagram and the first column in the third diagram are

Homp (%, —)-exact exact; and in particular we have a Homp(%, —)-exact exact sequence:
=GP s - W 0.
Thus we get the desired proper %-resolution of X. O

Based on Theorem 3.4, by using induction on 7 it is not difficult to get the following

Corollary 3.5. Let % be a full subcategory of Mod R closed under finite direct sums and
under kernels of epimorphisms, and let 0 - X — X0 — X! — ... 5 X™ — 0 be an ezxact
sequence in Mod R. If

s s 050l XY 50

11



is a (strongly) proper € -resolution of X7 for any 0 < j < n, then
n n n
%@C}H%@C’}H%@C}H —-C—->X—=0
i=0 i=0 i=0
is a (strongly) proper € -resolution of X, and there exists an exact sequence:

n n n
0-C—-Pci-Pci,-Pci,—- =@y —cy —o.
i=0 i=1 i=2

Remark. 3.6. By Wakamatsu’s lemma (see [X, Lemma 2.1.1]), if the full subcategory ¢
is closed under extensions, then a minimal proper @ -resolution of a module M is a strongly

proper % -resolution of M.

Note that any projective resolution is just a strongly proper 22°(Mod R)-resolution, where
2°(Mod R) = {projective left R-modules}. So putting ¥ = 2°(Mod R) in Corollary 3.5,
we get the following

Corollary 3.7. Let 0 - X — X" - X! — ... — X" — 0 be an exact sequence in
Mod R. If
o Pl 5 Pl 5Pl X) 50

is a projective resolution of X7 for any 0 < j <n, then
n n n
cee EBP;H — EBPLF2 — @Piﬁrl —-C—->X—0
i=0 i=0 i=0
s a projective resolution of X, and there exists an exact and split sequence:

O%C%éﬂi—)éﬂﬁl —>éPf_2 — - PP B 0.
=0 i=1 =2

The following 3.8-3.11 are dual to 3.4-3.7 respectively. The following result gives a
method to construct a (strongly) coproper coresolution of the last term in a short exact

sequence from that of the first two terms.

Theorem 3.8. Let € be a full subcategory of ModR and 0 — Y7 — Yy =Y — 0 an

exact sequence in Mod R. Let

0-Yy—=Cl—=Cl— - =C—--- (3.5)

12



be a € -coresolution of Yy, and let
0=V =-C)—=Cl - - =C— - (3.6)

be a Homp(—, €)-exact exact sequence in Mod R.

(1) We get the following exact sequences:
0-Y >C—-C Pt —- — e — - (3.7)

and

0—CY = CiEPCct »C—0 (3.8)

Assume that € is closed under finite direct sums and under cokernels of monomorphisms.

Then we have

(2) If the exact sequence (3.6) is a € -coresolution of Y1, then the exact sequence (3.7) is
a € -coresolution of Y.

(3) If both the exact sequences (3.5) and (3.6) are strongly coproper € -coresolutions of
Yy and Yy respectively, then the exact sequence (3.7) is a strongly coproper € -coresolution of
Y.

(4) If both the exact sequences (3.5) and (3.6) are coproper € -coresolutions of Yy and Y3

respectively, then the exact sequence (3.7) is a coproper € -coresolution of Y.

Proof. 1t is dual to the proof of Theorem 3.4, we give the proof here for the sake of
completeness. Put K = Im(Cj~t — C}) and K} = Im(Ci~' — C}) for any i > 1. Consider

the following push-out diagram:

0 0
0 Y Yo Y 0
|
0 o N Y 0
Ki Ki
0 0

Because the first column in the above diagram is Hompg(—, %)-exact exact, so is the middle

column by Lemma 3.2(2). Then by Lemma 3.1(2) we get the following commutative diagram

13



with exact columns and rows and the middle row splitting:

0 (l) 0
I
N
0 Yo N Kll 0
I
I
N
0—Cf —= D —=C1 —=0
I
I
N
0——>K&———>W1———>K12——>0
I
I
N
0 0 0

where W! = Coker(N — CJ @ C}). It is easy to verify that the bottom row in the above
diagram is Hompg(—, ¢')-exact exact.

On the one hand, we have the following push-out diagram:

On the other hand, again by Lemma 3.1(2) we get the following commutative diagram with

14



exact columns and rows and the middle row splitting:

0 (l) 0
I
N
0 K} Wt K? 0
I
I
N
0—C —=CiDCF —CT—=0
I
I
N
0——>Kg———>W2———>K%——>O
I
I
N
0 0 0

where W2 = Coker(W' — C} @ C?) and the bottom row in the above diagram is Hompg(—, ¢)-
exact exact. Continuing this process, we get the desired exact sequences (3.7) and (3.8) with
Wi=Im(Ciy @ C; — Cy@ CY) for any i > 2 and W' = Im(C — Cf @ C3).

(2) It follows from the assumption and the assertion (1).

(3) If both the exact sequences (3.5) and (3.6) are strongly coproper %-coresolutions of
Yy and Y) respectively, then Ext}%(K;i,%) =0 for any ¢ > 1 and j = 0,1. By the proof of

(1), we have an exact sequence:
0— Kj— W — Kitt 50

for any i > 1. So Exth(W? %) = 0 for any i > 1, and hence the exact sequence (3.7) is a
strongly coproper %-coresolution of Y.

(4) Assume that both the exact sequences (3.5) and (3.6) are coproper €-coresolutions of
X and X respectively. Then by the proof of (1) and the dual version of [EJ, Lemma 8.2.1],
we have that both the middle column in the second diagram and the first column in the
third diagram are Homp(—, ¥)-exact exact; and in particular we have a Homp(—, %)-exact

exact sequence:
0-W'=CEPCci—--- - et — -

Thus we get the desired coproper %-coresolution of X. O
Based on Theorem 3.8, by using induction on 7 it is not difficult to get the following

Corollary 3.9. Let € be a full subcategory of Mod R closed under finite direct sums and

under cokernels of monomorphisms and let 0 - Y, —» --- =Y, = Yy — Y — 0 be an exact

15



sequence in Mod R. If
0=Y; =C) > Cj—--Cl— -

is a (strongly) coproper € -coresolution of Y; for any 0 < j < n, then
n n n
0—>Y—>C—>@c;+1 %@cﬁ?_)@cﬁ_)...
i=0 i=0 i=0

is a (strongly) coproper € -coresolution of Y, and there exists an exact sequence:

0602%02_1@02%---—>€T|§CZ‘2—>€T|§C§‘1—>éC§—>C—>0.
=2 =1 1=0

Remark. 3.10. By Wakamatsu’s lemma (see [X, Lemma 2.1.1]), if the full subcategory
% is closed under extensions, then a minimal coproper %-coresolution of a module M is a

strongly coproper %-coresolution of M.

Note that any injective coresolution is just a strongly coproper .#%(Mod R)-coresolution.

So putting ¥ = #°(Mod R) in Corollary 3.9, we get the following

Corollary 3.11. (/M, Corollary 1.3]) Let 0 - Y,, — --- - Y1 - Yy = Y — 0 be an
exact sequence in Mod R. If

0=Y;=I) 1= I — -

is an injective coresolution of Y; for any 0 < j < n, then

n n n
0—>Y—>C’—>@Ij+1—>@I§+2—>@If+3—>---
i=0 i=0 i=0

s an injective coresolution of Y, and there exists an exact and split sequence:

n n n
0=I =1 Pn—--Pr>-Pr'-pr—-c—o.
i=2 i=1 i=0

The following result contains Theorem 1.2, which gives a method to construct a (strongly)

proper resolution of the last term in a short exact sequence from that of the first two terms.

Theorem 3.12. Let € be a full subcategory of Mod R and

0—-X1—=>Xo—=>X—=0 (3.9)
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an exact sequence in Mod R. Let

Cl— - =0 =0 = Xo—0 (3.10)
be a Homp(%, —)-ezact exact sequence, and

Ot .50 - CY = X1 -0 (3.11)

a € -resolution of X1 in Mod R.
(1) We get the following exact sequences:

CyEpert == CiEPCt » CGEPC! - Cf - X =0 (3.12)

Assume that € is closed under finite direct sums. Then we have

(2) If the exact sequence (3.10) is a € -resolution of Xy, then the exact sequence (3.12)
i a € -resolution of X.

(3) If the exact sequence (3.9) is strongly Homp (%, —)-exact and both the exact sequences
(3.10) and (3.11) are strongly proper € -resolutions of Xo and X; respectively, then the exact
sequence (3.12) is a strongly proper € -resolution of X.

(4) If the exact sequence (3.9) is Homp(€, —)-exact and both the exact sequences (3.10)
and (8.11) are proper € -resolutions of Xy and X1 respectively, then the exact sequence (3.12)

s a proper % -resolution of X.

Proof. (1) Put KJZ = Im(C’; — C]Z:_l) for any 1 <i<n—jand j=0,1. Consider the
following pull-back diagram:

0 0
K} K}
0 Wy Cy X 0
|
0 X1 Xo X 0
0 0

Note that the middle column in the above diagram is Hompg (%', —)-exact exact. So by Lemma
3.2(1), the first column is also Hompg(%, —)-exact exact. Then by Lemma 3.1(1) we get the

following commutative diagram with exact columns and rows and the middle row splitting:
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0 (l) 0
|

\
0——)K8———>W2———>K11——>0
|
|
Y
0l L DI — () —
|

|
A
0 K} Wy X1 0

|
|
v
0 0 0
where Wy = Ker(CE @ C) — W), It is easy to check that the upper row in the above
diagram is Homp (%, —)-exact exact. Then by using Lemma 3.1(1) iteratively we get the
exact sequence (3.12) with W; = Im(C; @ C}! — CL 1@ C;7?) for any 2 < i < n and
Wy =Im(CE P CY — CY).

(2) It follows from the assumption and the assertion (1).

(3) If the exact sequence (3.9) is strongly Hompg(%, —)-exact and both the exact se-
quences (3.10) and (3.11) are strongly proper %-resolutions of Xy and X; respectively, then
Ext}%(%,K;-) =0 for any 1 <i<n—jand j=0,1. By the proof of (1), we have an exact
sequence:

0= K, =W, > Ki™t -0
for any 1 < i < n (where KY = X;). So ExthL(¢,W;) =0 for any 1 < i < n, and hence the
exact sequence (3.12) is a strongly proper ¢ -resolution of X.

(4) If the exact sequence (3.9) is Homp (%', —)-exact and both the exact sequences (3.10)
and (3.11) are proper %-resolutions of Xy and X respectively, then the middle row in the
first diagram is Hompg (%, —)-exact exact by Lemma 3.2(1). Thus by [EJ, Lemma 8.2.1], the

exact sequence (3.12) is a proper @-resolution of X. O
Based on Theorem 3.12, by using induction on n it is not difficult to get the following

Corollary 3.13. Let € be a full subcategory of Mod R closed under finite direct sums,
and let

X, = —=X1=-Xg=>X—=0 (3.13)
and

Cr7 s = C) = X; =0 (3.14(5))
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be exact sequences in Mod R for any 0 < j < n.
(1) If the exact sequence (3.13) is strongly Hompg(%,—)-exact, and if (3.14(j)) is a
strongly proper € -resolution of X; for any 0 < j < n, then

n n—1
EBCin_i N EBCi(n—l)—z NS EBC’? —-Cl—-X—=0 (3.15)
i=0 i=0

s a strongly proper € -resolution of X.
(2) If the exact sequence (3.13) is Homp (%, —)-exact, and if (3.14(j)) is a proper € -
resolution of X; for any 0 < j < n, then (8.15) is a proper € -resolution of X.

The following corollary is an immediate consequence of Corollary 3.13.

Corollary 3.14. Let X, — --- = X7 = X9 = X — 0 be an exact sequence in Mod R.
If

n—j 1 0 )
P == P =5 PP = X; =0

is a projective resolution of X; for any 0 < j < n, then

n n—1
Drr @ o B X
i=0 =0

s a projective resolution of X.

The following 3.15-3.17 are dual to 3.12-3.14 respectively. The following result gives
a method to construct a strongly coproper coresolution of the first term in a short exact

sequence from that of the last two terms.

Theorem 3.15. Let € be a full subcategory of Mod R and
0-Y =YY"yl oo (3.16)
an exact sequence in Mod R. Let
0-Y' =)= — ... =Y (3.17)
be a Homp(—,%)-exact exact sequence, and
0—-Y'=wCl—Cl - =Cl (3.18)

a € -coresolution of Y in Mod R.
(1) We get the following exact sequences:

0-Y =)=y » i@y —--—Cr Py (3.19)
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Assume that € is closed under finite direct sums. Then we have

(2) If the exact sequence (3.17) is a € -coresolution of Y°, then the evact sequence (3.19)
is a € -coresolution of X.

(3) If the exact sequence (3.16) is strongly Homp(—,%)-exact and both the exact se-
quences (3.17) and (3.18) are strongly coproper € -coresolutions of Y° and Y respectively,
then the exact sequence (3.19) is a strongly coproper € -coresolution of Y.

(4) If the exact sequence (3.16) is Homp(—, € )-exact and both the exact sequences (3.17)
and (8.18) are coproper € -coresolutions of YO and Y'' respectively, then the evact sequence

(3.19) is a coproper € -coresolution of Y.
Proof. 1t is dual to the proof of Theorem 3.12, we give the proof here for the sake of
completeness. Put KZJ = I]rn(C’ij_1 — C’f) forany 1 <i<n-—jand j =0,1. Consider the

following push-out diagram:

0 0
0 Y Yo vyl 0
|
0 Y Cy Wt 0
K? K?)
0 0

Note that the middle column in the above diagram is Hompg(—, ¢ )-exact exact by assump-
tion. So the third column is also Hompg(—,%)-exact exact by Lemma 3.2(2). Then by

Lemma 3.1(2) we get the following commutative diagram with exact columns and rows and
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the middle row splitting:

0 0 0
|
|
Y
0 vl Wt K? 0
|
|
A

where W2 = Coker(W! — C} @ CY). It is easy to verify that the bottom row in the above
diagram is Homp(—, %)-exact exact. Then by using Lemma 3.1(2) iteratively we get the
exact sequence (3.19) with Wi = Im(CL, @ CY | — CI P C?) for any 2 < i < n and
W =Im(C§ — CL P ).

(2) Tt follows from the assumption and the assertion (1).

(3) If the exact sequence (3.16) is strongly Homp(—, % )-exact and both the exact se-
quences (3.17) and (3.18) are strongly coproper %-coresolutions of Y and Y! respectively,
then Ext}%(KZ-j,%) =0forany 1 <i<n—jandj=0,1. By the proof of (1), we have an
exact sequence:

0K W S K)—=0
for any 1 <i <n (where K} = Y1), So Exth(W? &) = 0 for any 1 < i < n, and hence the
exact sequence (3.19) is a strongly coproper %-coresolution of Y.

(4) If the exact sequence (3.16) is Hompg(—, %')-exact and both the exact sequences (3.17)
and (3.18) are coproper %-coresolutions of Y? and Y respectively, then the middle row in
the first diagram is Homp(—, ¥)-exact exact by Lemma 3.2(2). Thus by the dual version of
[EJ, Lemma 8.2.1], the exact sequence (3.19) is a coproper %-coresolution of Y. O

Based on Theorem 3.15, by using induction on n it is not difficult to get the following

Corollary 3.16. Let € be a full subcategory of Mod R closed under finite direct sums,
and let
0-Y Y syl ...5yn (3.20)

and

0-Y 5 Cf—Cf —»---CI_, (3:21(4))
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be exact sequences in Mod R for any 0 < j < n.
(1) If the exact sequence (3.20) is strongly Hompg(—,%)-exact, and if (3.21(j)) is a
strongly coproper € -coresolution of Y7 for any 0 < j < n, then

n—1 n
0-Y = Cl—»CYEHC - =P Ch 1y ~ P (3.22)
i=0 i=0

s a strongly coproper € -coresolution of Y.
(2) If the exact sequence (3.20) is Hompg(—,%)-exact, and if (3.21(j)) is a coproper
€ -coresolution of Y7 for any 0 < j < n, then (3.22) is a coproper € -coresolution of Y .

The following corollary is an immediate consequence of Corollary 3.16.

Corollary 3.17. Let0 =Y - Y0 5 Y1 — ... 5 Y™ be an exact sequence in Mod R.
If
0=YI 5[ =1 =1,

is an injective coresolution of Y for any 0 < j < n, then

n—1 n
0=Y I > LPL- =PI, .~ Pl
=0 =0

s an injective coresolution of Y.

4. Flat dimension of E" of direct limits

In this section, R is a left Noetherian ring. The aim of this section is to prove the

following

Theorem 4.1. Let n,k > 0 and let {M;}icr be a family of left R-modules, where I is a

directed index set. If M = limM; and fdp E"(M;) <k for any i € I, then fdr E™(M) < k.
el
By [R, Theorem 5.40], every flat left R-module is a direct limit (over a directed index
set) of finitely generated free left R-modules. So by Theorem 4.1, we have the following

Corollary 4.2. fdr E"(grR) = sup{fdg E"(F) | F € Mod R is flat} for any n > 0.
Before giving the proof of Theorem 4.1, we need some preliminaries.

Definition 4.3. ([J2]) Let 5 be an ordinal number. A set S is called a continuous union
of a family of subsets indexed by ordinals o with o < § if for each such o we have a subset
S, C S such that if @ < & then S, C S > and such that if v < 3 is a limit ordinal then
Sy=U,.. S

aly Far
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A main tool in our proof will be the next result.

Lemma 4.4. ([J2, Lemma 1.4]) If I is an infinite directed index set, then for some

ordinal 8, I can be written as a continuous union I = | 1., where each I, is a directed

a<f
index set with the order induced by that of I and where |I,| < |I| for each o < .

This result will be useful since it will allow us to rewrite a direct limit as a well-ordered

direct limit. So if M = thZ with [ infinite, then write I = J I, as above, and put

a<f
iel
M, = hﬂMZ Hence if o < o < f3, since I, C I/ we have an obvious map M, — M.
€1y
These maps then give us a directed system {M,}q<pg. Clearly then hAqM = h_n)uM,
a<f el

Proposition 4.5. Let B be an ordinal number and {M,} a directed system of modules
(indexed by o < 3). If

Co =0 — M, — E°(M,) — EY(M,) — ---

is a minimal injective coresolution of M, for each «, then these exact sequences (, are the
members of a directed system indezed by o < B in such a way that if « < o < B the
map from the sequence indexed by o into that indexed by o agrees with the original map
My — M.

Proof. Given an o + 1 < 8 we can form a commutative diagram:

0 M, E°(M,) EY(M,)—— -

] |

00— Myy1 — EO(MaJ,-l) - El(Ma—l—l) -

Using this observation we can successively get maps (o — (1, (1 — (o, --+. So composing we
get maps (,,, — (, whenever m < n. Since R is left Noetherian, any direct limit of injective
left R-modules is injective by [B1, Theorem 1.1]. So hg (y is in fact an injective coresolution
of hﬂMn We have a map thn — M, given by the maps M,, — M, (where w is the
least infinite ordinal). Then the above shows that this in turn gives a map lig{n — (. SO
these maps give maps (, — (, for any n > 0. Continuing this procedure we get the desired
system. U

Note that this result gives that if ¢ is an injective coresolution of M, then { =2 hg{a. In

a<p
particular, this gives that E"(M) = lim E"(My). This then gives that if fdp E"(Ma) < k
a<f
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for each « then fdg E"(M) < k. In other words, Theorem 4.1 holds true when our direct

system is over the well-ordered index set of o < 8 for some ordinal j3.

Proof of Theorem 4.1. We proceed by transfinite induction on |I|. So to begin the
induction we suppose that |I| = Rq (the first infinite cardinal number). Then I is countable,
so we suppose I = {iy|n € N} with N the set of non-negative integers. We construct
a sequence jo,j1,J2, - of elements in I by letting jo = 79. Then we choose j; so that
J1 > jo,i1. So in general we choose j,, so that j, > j,—1,%,. Then let J = {j,|n € N}. We

have that .J is well-ordered and is clearly a confinal subset of I. Hence M = limM; = lim M.
i€l =Y
Since J is well-ordered, E"(M) = limE"(M;). So the assumption that fdg E™(M;) < k for
jed
each j gives that fdg E™(M) < k.
Now we make the induction hypothesis and assume |I| > Ry. We appeal to Lemma 4.4

and write I = |J I, as in that lemma. Then M = h’gMa. We have M, is the limit

a<f
over I,. But |I,| < ||, so the assertion holds true for direct limits over I, by the induction

a<f

hypothesis. This means that we have fdg M, < k for each a. Because the system {M, }o<z
is over a well-ordered index set of indices, we get that fdr E™(M,) < k for each « gives the
assertion that fdg E"(M) < k. O

Remark 4.6. The same techniques show that if for a given n > 0 we let
0 — M, — E°(M,) — EY(M,) — --- — E""Y(M,) — C"(M,) — 0

be a partial minimal injective coresolution of M, for each a. If fdr C™(M,) < k for each «,

then we get that fdr C™(M) < k, where
0—-M—E"M)— E'(M)— - — E"Y (M) - C"(M) =0
is a partial minimal injective coresolution of M.

5. Modules satisfying the Auslander-type conditions

As a generalization of rings satisfying the Auslander condition, Huang and Iyama intro-
duced in [HI] the notion of rings satisfying the Auslander-type conditions. Now we introduce

the notion of modules satisfying the Auslander-type conditions as follows.

Definition 5.1. Let M € Mod R and let m and n be non-negative integers. M is said
to be Gy (m) if fdg E*(M) < m +i for any 0 < i <n — 1, and M is said to be G, (m) if it

is G, (m) for all n.
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Remark 5.2. Let R be a left and right Noetherian ring. Then we have

(1) rR is Gp,(m) if and only if R is G,,(m)° in the sense of Huang and Iyama in [HI].

(2) Recall from [FGR] that R is called Auslander’s n-Gorenstein if fdg E'(gR) < i for
any 0 < ¢ <n—1, and R is said to satisfy the Auslander condition if it is Auslander’s n-
Gorenstein for all n. So R is Auslander’s n-Gorenstein if and only if gR is G,,(0). Note that
the notion of Auslander’s n-Gorenstein rings (and hence that of the Auslander condition)
is left-right symmetric ([FGR, Theorem 3.7]). So R satisfies the Auslander condition if and
only if both gpR and Rp are G (0). However, in general, the notion of R being G, (m) is
not left-right symmetric when m > 1 ([AR4] or [HI]).

The aim of this section is to study the homological behavior of modules (especially, rR)

satisfying certain Auslander-type conditions. We begin with the following

Lemma 5.3. (1) fdg E°(M) < fdg M for any M € Mod R if and only if fdgr E*(M) <
fdgr M + i for any M € Mod R and i > 0.

(2) idgor Fo(N) < idgrer N for any N € Mod R if and only if idger F;(N) < idgor N 41
for any N € Mod RP and i > 0.

Proof. (1) The necessity is trivial. We next prove the sufficiency. Without loss of gener-
ality, assume that M € Mod R with fdg M = s < co. In a minimal injective coresolution

0—M— E"M)— E*M)— - = E(M)— -

of M in Mod R, putting K; 11 = Im(E*(M) — E“*}(M)) for any i > 0. By assumption,
fdr EO(M) < fdgM = s. So fdg K1 < s + 1 and hence fdgr F'(M) = fdr E°(K;) <
fdr K1 < s+ 1 again by assumption. Then fdr Ko < s+ 2. Continuing this process, we get
that fdg E*(M) < s+ for any i > 0.

(2) Tt is dual to (1). O

The following lemma plays an important role in the proof of the main result of this

section.

Lemma 5.4. For a left Noetherian ring R, idger F;(E) < fdg E'(rR) for any injective
right R-module & and ¢ > 0.

Proof. By Lemma 2.3, we have that
= [E'RR)T TS - B [BYRR)T S [E°(RR))T T (RR)T =0

is a proper flat resolution of (gR)™ in Mod R°P.
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Let E be an injective right R-module. Because (gR)" is an injective cogenerator for
Mod R°P, E is isomorphic to a direct summand of [(rR)*]! for some index set I. Because
the subcategory of Mod R consisting of flat modules is closed under direct products by [C,
Theorem 2.1], 7;! : ([E*(rR)]T)! — (Im;)! is a flat precover of (Im7;)! for any i > 0 by
Lemma 2.2. Note that F;(F) is isomorphic to a direct summand of ([E*(gR)]*)! for any i > 0.
So by Lemma 2.4(1), we have that idger F3(E) < idger([EY(gR)]T)! = idger[E(rR)]T =
fdg E'(grR) for any i > 0. O

As a consequence of Lemma 5.4 and Corollary 3.5, we get the following

Proposition 5.5. Let R be a left Noetherian ring. If rR is Goo(m) for a non-negative
integer m, then idgop F;(N) < idger N +m + i for any N € Mod R? and i > 0.

Proof. Without loss of generality, assume that idger N = s < co. We will proceed by
induction on s. Assume that grR is Goo(m), that is, fdg E*(gR) < m + i for any i > 0. If
s = 0, then the assertion follows from Lemma 5.4.

Now suppose s > 1. Then we have an exact sequence:
0—N—= E°N)—= N =0

in Mod R° with idrer N1 = s — 1. By the induction hypothesis, we have that idgor F;(N7) <
(s — 1) +m + i and idger F;(E°(N)) < m + i for any i > 0. By Corollary 3.5 and Remark
3.6, we have that

coo = Fip1 (M) @D Fi(EO(N)) — -+ = Fa(N) @D Fu(E°(N)) = Fp = N =0
is a strongly proper flat resolution of N, and
0— Fy = Fi(N) @ Fo(E°(N)) = Fy(N1) = 0

is exact. So idger Fy < s+ m, and idger Fi11(N1) @ F;(E°(N)) < s +m + i for any i > 1.
Notice that Fy(/V) is isomorphic to a direct summand of Fy and F;(N) is isomorphic to a
direct summand of F;,1(N7) @ F;(E°(N)) for any i > 1, thus we have id gor F;(N) < s+m+i
for any 7 > 0. O

Similarly, we get the following

Proposition 5.6. For a non-negative integer m, idgrop F;(E) < m + i for any injective
right R-module E and i > 0 if and only if idger F;(N) < idgor N+m+1i for any N € Mod R°P
and 1 > 0.
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As a consequence of Corollary 3.11, we get the following result. This result can be

regarded as a dual version of Proposition 5.6.

Proposition 5.7. For a non-negative integer m, any flat left R-module is Goo(m) if and

only if fdg E* (M) < fdg M + m + i for any left R-module M and i > 0.

Proof. The sufficiency is trivial. We next prove the necessity. Without loss of generality,
assume that fdp M = s < co. We will proceed by induction on s.
If s = 0, then the assertion follows from the assumption. Now suppose s > 1. Then we
have an exact sequence:
0— M — Fp(M) - M —0

in Mod R with fdg M; = s — 1. So by the induction hypothesis, we have that fdg E*(M;) <
(s —1)+m+iand fdr E*(Fo(M)) < m + i for any i > 0.
By Corollary 3.11, we have that

0— M — I° - ENFy(M)) @ E*(My) — -+ — E(Fy(M)) P EF (My) — -
is an injective coresolution of M, and
0 — E°(M;) — E%(Fy(M)) P E' (My) — I° - 0

is exact and split. So fdgr I° < s+ m and fdg EY(Fo(M)) @ EH1 (M) < s+ m + i for
any i > 1. Notice that E°(M) is isomorphic to a direct summand of I and E*(M) is
isomorphic to a direct summand of E*(Fy(M))@ ET(M;) for any i > 1, thus we have
fdr (M) < s+ m + i for any i > 0. O

We also need the following

Lemma 5.8. Let M € Mod R and n be a non-negative integer.

(1) If R is a right Noetherian ring and idgo» Fo(M ™) < idger M +n, then fdg E°(M) <
fdg M + n.

(2) If R is a left Noetherian ring and idger M* < idger Fo(M™) + n, then fdg M <
fdg E°(M) + n.

Proof. (1) Without loss of generality, assume that fdg M = s < oo. Then idgor M+ =
s by Lemma 2.4(1). So idger Fo(M™) < idger MT = s + n by assumption, and hence
we get an injective preenvelope 0 — M*+ — [Foy(M™1)]" of M+ with fdg[Fo(M1)]" =
idgor Fy(M™*) < s+ n by Lemma 2.4. Notice that there exists an embedding M «— M+
by [St, p.48, Exercise 41], thus E°(M) is isomorphic to a direct summand of [Fy(M1)]T and
therefore fdp E°(M) < s + n.
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(2) Without loss of generality, assume that fdg E°(M) = s < oo. By Lemmas 2.3 and
2.4(1), [E°(M)]t — M is a flat precover of M* in Mod R with idger[E°(M)]* = 5. So
Fy(M™) is isomorphic to a direct summand of [E°(M)]* and idger Fo(MT) < s. Then by
assumption, we have that idger M+ < idger Fo(M™) +n < s+ n. It follows from Lemma
2.4(1) that fdg M < s+ n. O

We are now in a position to state the main result in this section, which is more general
than Theorem 1.2.

Theorem 5.9. For a left Noetherian ring R, consider the following conditions.

(1) rR satisfies the Auslander condition.

(2) Any flat left R-module satisfies the Auslander condition.

(3) fdg EY(M) < fdg M + i for any left R-module M and i > 0.

(4) fdr EY(M) < fdg M for any left R-module M.

(5) idgrer F;(E) < i for any injective right R-module E and i > 0.

(6) idror F;(N) < idgror N + i for any right R-module N and i > 0.

(7) idror Fo(IN) < idper N for any right R-module N .

We have (1) < (2) & (3) & (4) = (5) & (6) < (7). If R is further right Noetherian,
then all of the above and below conditions are equivalent.

(1)°P The opposite version of (i) (1 <i<7).

<
<

Proof. (2) = (1) is trivial, and (1) = (2) follows from Corollary 4.2. (2) < (3) < (4)
follow from Proposition 5.7 and Lemma 5.3(1), and (5) < (6) < (7) follow from Proposition
5.6 and Lemma 5.3(2). By Proposition 5.5, we have (1) = (5).

Assume that R is a left and right Noetherian ring. Then (1) < (1)° follows from [FGR,
Theorem 3.7], and (7) = (4) follows from Lemma 5.8(1). O

Observe that Miyachi proved in [M, Theorem 4.1] that if R is a right coherent and left
Noetherian projective K-algebra over a commutative ring K, then R satisfies the Auslander
condition (that is, pR is Goo(0)) if and only if fdg E®(M) < fdg M for any left R-module
M. Theorem 5.9 extends this result.

By Theorems 5.9, we immediately have the following

Corollary 5.10. Let R be a left Noetherian ring such that rR satisfies the Auslander
condition. If M € Mod R with fdr M < s(< 00), then M is Goo($).

Remark 5.11. By the dimension shifting, it is easy to verify that the converse of Corol-

lary 5.10 holds true when idg M < oo even without the assumption “R is a left and right
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Noetherian ring satisfying the Auslander condition”. However, this converse does not hold
true in general. For example, let R be a quasi Frobenius ring with infinite global dimension.
Then R is a left and right Artinian ring satisfying the Auslander condition and every module
in Mod R is G (0), but there exists a module in Mod R which is not flat because gl.dim R

is infinite.

For any n,k > 0, we use ¥4,(k) to denote the full subcategory of Mod R consisting of
modules being Gy, (k), and denote by % (k) = (1,59 % (k). By Corollary 3.17, it is easy to
get the following

Proposition 5.12. Let 0 -+ X — X% — X! be an exact sequence in Mod R, and let
s>0andn>1. If X° € 4,(s) and X' € 4,_1(s+ 1), then X € G,(s).

For any n > 0, we use .#"(Mod R) to denote the subcategory of Mod R consisting of

modules with flat dimension at most n.

Corollary 5.13. Let R be a left Noetherian ring such that rR satisfies the Auslander
condition. Then we have

(1) 4-(0) = .Z°(Mod R) if and only if Gs(s) = .F*(Mod R) for any s > 0.

(2) 4»(0)mod R = F°(mod R) if and only if %~ (s)(Ymod R = Z*(mod R) for any
s> 0.

Proof. (1) The sufficiency is trivial, so it suffices to prove the necessity. By Corollary
5.10, we have .Z*(Mod R) C ¥x(s) for any s > 0. In the following we will prove the converse
inclusion by induction on s. The case for s = 0 follows from the assumption. Now suppose
s>1and M € 9 (s). Let 0 - K — Fy(M) — M — 0 be an exact sequence in Mod R. By
assumption Fy(M) € 95(0). So K € ¥ (s—1) by Proposition 5.12, and hence fdp K < s—1
by the induction hypothesis. It follows that fdg M < s and M € .#°*(Mod R), which implies
that %o (s) € Z°(Mod R).

(2) It is an immediate consequence of (1). O

As applications of the results obtained above, in the rest of this section we will study the
properties of rings satisfying the Auslander condition with finite certain homological dimen-
sion. In particular, we will get some equivalent characterizations of Auslander-Gorenstein
rings and Auslander-regular rings.

For a module M € Mod R and a non-negative integer t, we use Q¢(M) to denote the
tth syzygy of M (note: QY(M) = M). It is known that Q(M) is unique up to projective

equivalence for a given module M.
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Lemma 5.14. Let R be a left Noetherian ring. For a module M € Mod R and non-
negative integers t and n, if fdg Q' (M) < fdr E°(QY(M)) + n, then fdr M < fdgp E°(rR) +
n+t.

Proof. Let M € Mod R. Then there exist index sets Jy,--- ,J;_1 such that we have the

following exact sequence:
0— QM) — RV ... 5 RV 5 M0

in Mod R. Because E°(RVi-1)) = [E9(xR)]™+1) by [B1, Theorem 1.1] and [AF, Proposition
18.12(4)], fdr E°(R+1)) = fdg E°(grR). Notice that E°(Q!(M)) is isomorphic to a direct
summand of EO(RV=1)), so fdr E°(Q(M)) < fdg E°(rR). Thus by assumption we have
that fdg QF (M) < fdg EO(Q'(M)) + n < fdg E®(zR) +n and fdg M < fdg E®(gR) +n + t.
g

Recall from [Bj] that a left and right Noetherian ring R is called Auslander-Gorenstein
(resp. Auslander-regular) if R satisfies the Auslander condition and idg R = idger R (resp.
gl.dim R) < co. Also recall that fin.dim R = sup{pdp M | M € mod R with pdg M < oo}.

As an application of Theorem 5.9, we get some equivalent characterizations of rings
satisfying the Auslander condition with finite left self-injective dimension as follows, which

generalizes [M, Proposition 4.4].

Theorem 5.15. For a left and right Noetherian ring R and a positive integer n, the
following statements are equivalent.

(1) R satisfies the Auslander condition with idp R < n.

(2) idgror Fo(N) < idger N < idgor Fo(N) +n — 1 for any right R-module N with finite
injective dimension.

(3) fdg E°(M) < fdg M < fdg E°(M) + n — 1 for any left R-module M with finite flat

dimension.

Proof. (1) = (2) Let N € Mod R’ with finite injective dimension. By Theorem 5.9,
we have idgor Fy(N) < idgor N. So we only need to prove the latter inequality. Because
idg R < n, idger N < n by Lemma 2.5(2). So if idger Fo(IN) > 1, then the assertion holds

true. Suppose Fy(V) is injective. We have an exact sequence:
0—B— Fy(N)—-N—=0

in Mod R with idger B < 00. If idger N = n, then idro» B = n + 1. It follows from Lemma
2.5(2) that idg R > n + 1, which is a contradiction. Thus we have idger N < n — 1.
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(2) = (3) Let M € Mod R with finite flat dimension. Then M+ € Mod R with finite
injective dimension by Lemma 2.4(1). Thus by Lemma 5.8, we get the assertion.

(3) = (1) By (3) and Theorem 5.9, R satisfies the Auslander condition. Let M €
mod R with pdy M (= fdg M) < co. Then fdg Q}(M) < co. By (3), we have fdg QY(M) <
fdr E9(QY(M)) +n —1. So pdg M = fdg M < fdg E°(rR) +n = n by Lemma 5.14. Thus
we have fin.dim R < n. It follows from [HI, Corollary 5.3] that idg R < n. O

In view of Theorem 5.15 it would be interesting to ask the following

Question 5.16. Let R be a left and right Noetherian ring satisfying the Auslander

condition with idg R < 00. Is then idgor R < 00? that is, is R Auslander-Gorenstein?

By [H, Proposition 4.6], the answer to Question 5.16 is positive if R is a left and right
Artinian ring. It is a generalization of [AR3, Corollary 5.5(b)].
Putting n = 1 in Theorem 5.15, we have the following

Corollary 5.17. For a left and right Noetherian ring R, the following statements are
equivalent.

(1) R satisfies the Auslander condition with idgr R < 1.

(2) idgor Fo(N) = idger N for any right R-module N with finite injective dimension.

(3) fdr E°(M) = fdg M for any left R-module M with finite flat dimension.

As another application of Theorem 5.9, we get some equivalent characterizations of

Auslander-regular rings as follows, which generalizes [M, Corollary 4.5].

Theorem 5.18. For a left and right Noetherian ring R and a positive integer n, the
following statements are equivalent.

(1) R is an Auslander-regular ring with gl.dim R < n.

(2) idror Fo(N) < idger N < idgor Fo(N)+mn — 1 for any right R-module N .

(3) fdr EY(M) < fdg M < fdr E°(M) +n — 1 for any left R-module M.

Proof. By Theorem 5.15 and Lemma 5.8, we have (1) = (2) = (3).

(3) = (1) By (3) and Theorem 5.9, R satisfies the Auslander condition. Let M € mod R.
By (3), we have fdg QY(M) < fdg E°(Q*(M)) +n — 1. Sopdg M = fdg M < fdg E°(gR) +
n =n by Lemma 5.14. Thus we have gl.dim R < n. O

Putting n = 1 in Theorem 5.18, we have the following

Corollary 5.19. For a left and right Noetherian ring R, the following statements are
equivalent.

(1) R is an Auslander-regular ring with gl.dim R < 1.
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(2) idgor Fo(N) = idger N for any right R-module N.
(3) fdg E°(M) = fdg M for any left R-module M.

6. Approximation presentations and Gorenstein algebras

In this section, R is an Artinian algebra. We will establish the connection between
the Auslander and Reiten’s conjecture mentioned in the introduction and the contravariant
finiteness of the full subcategory of mod R consisting of modules satisfying the Auslander

condition. We begin with the following

Lemma 6.1. Let X € mod R and {M,}icr be a family of left R-modules, where I is a

directed index set. Then for any n > 0 we have

Extp(lim;, X) = lim Exty (M;, X).
iel iel

Proof. Because R is an Artinian algebra, any module in mod R is pure-injective by [GT,

Theorem 1.2.19]. Then the assertion follows from [GT, Lemma 3.3.4]. O

For n > 0, we use #™(Mod R) to denote the full subcategory of Mod R consisting of
modules with injective dimension at most n. For a module M € Mod R, we denote by
Q~"(M) the nth cosyzygy of M.

The following approximation theorem plays a crucial role in the rest of this section.

Theorem 6.2. Let gR € 4,(k) and Rr € %4,(k)°? with n,k > 0. Then for any

M € ModR and 1 <1i <n —1, there exist the following commutative diagrams with exact

Trows:.
0—M—ILi1(M) —Gip1 (M) —=0
0——= M ——I;(M) Gi(M)——0
and

00— I''Y(M) — G (M) — M —0

L

0—— I'(M) G'(M)——M—0

with G;(M),GI (M) € @;(k), and I;(M),1(M) € #3+k(Mod R) for j = i,i + 1.

Proof. By Corollary 3.14 and Lemma 3.1(1), we have the following commutative diagrams
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with exact columns and rows:

0 0 0
0 M I;,(M) G (M) 0
0 E°(M) EO(M) (D Zj Pj (BT (M) ———————— @i Pj(EI T (M) ———— 0
0 EY(M) BN M) @@Z] Py (BT (M) ——————— @) Py (BT T2 (M) ————= 0

0 — E'7?(M) —— B (M) @(P1(E*(M)) @ Po(B' 1 (M))) — P1(E'(M))@ Po(B 1 (M)) —>=0

00— E"" Y (M) ————————> E'"" Y (M) @ Py(E*(M)) Py(EY(M)) —————————> 0
00— QM) E'(M) Q-+ () ————>0
0 0 0

where I;(M) = Ker(E°(M) @@=y Pj(E7T1(M))) — E'(M) @B (D=5 (B (M)
and G;(M) = Ker('— P (BT (M) — @5 P;(E7*(M))) for any i > 1.
Consider the following pull-back diagram:

By Corollary 3.14 and Lemma 3.1(1) again, for any ¢ > 1 we have the following commutative
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and exact columns and rows:

0 0 0

0 > Qit1l(Eitl () Git1(M) Gi(M) ———— >0
0 ——— P(B' (M) ———— @ P (BIT (M) By P (BT (M) ———0
00— P (B (M) ————— @!_; Pi(BI T2 () B3 P (EIT2(M)) ———>0

0 —— Py (B (M) —— Py (BT (M)) @(P1(E (M) @ Po(E*~H(M))) —— Py (E*(M)) @ Po(E* " (M)) ——0

0 ——> P (E'TY(M)) —————— P (E'"TY (M) @ Py(E*(M)) Py(E*(M)) —————— >0

Q*(i+1)(1w) - >0

0 — (BT (M) Xit1

0 0 0

Then we get the following pull-back diagram:

0 0
Q1B (M) == 0 (B (a1))
011 ia (M) Gia (M) ——0
|
0 M I;(M) G;i(M) 0
0 0

Because Rp € 4,(k)°P, idg Pj(E'(M)) < j+k forany 0 < j <n—1and ¢ > 0 by Lemma 5.4.
So from the middle column in the first diagram we get idg I;(M) < i+ k for any 1 < i < n.
Because gR € 4, (k), any projective module in mod R is also in 4,(k). So by Corollary 3.17
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and the exactness of the rightmost column in the first diagram, we have G;(M) € (k) for
any 1 < i <n. Thus the above diagram is the first desired one.

Put I'(M) = I;(2'(M)). Then we have the following push-out diagram:

0 0
00— QY (M) Py(M) M 0
00— I'(M) G' (M) M 0

Note that Py(M) € %,(k). For any 1 < i < n, because G;(Q*(M)) € ¢ (k) by the above
argument, G*(M) is also in (k) by the horseshoe lemma and the exactness of the middle

column in the above diagram. By the above argument, we have the following pull-back

diagram:

0 0
QHH(EFH QN (M) == (B (Q(M)))
0 — Py(M) Gi+1(M) Gisr (QY(M)) —— 0
0 — Py(M) G (M) Gi(QY (M) 0
0 0

35



Then the following pull-back diagram:

0 0
Qi-i-l(Ei-i-l(Ql(M))) E— Qi-i—l(Ei—i-l (Ql(M)))
00— I'""Y(M) G (M) M 0
|
00— I'(M) G (M) M 0
0 0
is the second desired one. (]

If R satisfies the Auslander condition, then the exact sequences
0—>M—=L;(M)— Gi(M)—0

and
0— I'(M) — G (M) = M — 0

in Theorem 6.2 are a left .#*(Mod R)-approximation and a right ¢;(0)-approximation of M
respectively for any 1 < i <n.
Let M € Mod R and n,k > 0, and let

= P(M)— - — P(M)— Py(M)—- M —0

be a minimal projective resolution of M. We use Co¥, (k) to denote the full subcategory
of Mod R consisting of the modules M satisfying idg P;(M) < i+ k for any 0 <i <n —1,
and denote by Co¥ (k) = (1,59 Co¥pn(k). We use " (mod R) (resp. #"(mod R)) to
denote the full subcategory of mod R consisting of modules with projective (resp. injective)

dimension at most n. As a consequence of Theorem 6.2, we get the following

Proposition 6.3. Let R satisfy the Auslander condition and M € mod R. Then we have

(1) There exists a countably generated left R-module N € Co¥ +(0) and a monomorphism
B: M — N in Mod R such that Hompg(3,T) is epic for any T € Co¥ +(0) () mod R.

(2) There exists a countably cogenerated left R-module G € 4 (0) and an epimorphism
a:G — M in Mod R such that Homg(T', @) is epic for any T € % (0)(\mod R.
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Proof. (1) Let R satisfy the Auslander condition. By Theorem 6.2, for any M € mod R

and n > 1, we have the following commutative diagram with exact rows:

0— I""Y(DM) — G"(DM) DM 0
0 —— I"(DM) G"(DM) DM 0

with G*(DM) € %(0)°? (mod R? and I'(DM) € .#*(mod R?) for i = n,n + 1, where
D is the ordinary Matlis duality between mod R and mod R°P. Then we get the following

commutative diagram with exact rows:

0—= M —22DG" T]D)M) DI TDM) —

0—— M —2Ben 1 (DM) — DI (DM) —— 0

with DGH(DM) € Co%;(0) (Jmod R and DI*(DM) € £ (mod R) for i = n,n +1. Put N, =
DG"(DM) and K, = DI"(DM) for any n > 1. Then we have the following commutative

diagram with exact rows:

Pr(Ny) Py—1(Nn) . P (Ny) Py(Ny) Nn 0
J{%ﬁm J{gﬁﬁ,n J{giﬂ,n J{ggﬂm IgnJrl,n
Pre(Nny1) — Po1(Npg1) — - —— Pi(Npq1) — Bo(Npq1) — Nop1 —0
If n > m, then put
Inm = Inn—-19n—1n-2 """ Gm+1,m
and
gi‘i,m = gfz,n—wﬁ—l,n—z e 'gfn—l—l,m'
In this way, for any k£ > 0 we get direct systems: {Np, gn m tnez+ and {Pk(Nn),gfhm}new7

where Z7T is the set of positive integers. Because each gnm = N — N, is monic, we can

identity liﬂNn with the direct union. It follows that ligN = liﬂNn for any 1 <t <n. Put

n>1 n>1 n>t
N = ligNn. Then N is countably generated.
n>1
Because Ny € Co¥%+(0)(mod R, idg Py(Ny) < k for any 0 < k < t. So ling(Nn) is
n>t
projective and idglim Py (Ny,) < k for any 0 < k <t by [B1, Theorem 1.1]. On the other
n>t

hand, we have an exact sequence:

o = ImPy(Ny) = ImP 1 (Np) = -+ = EmPy(Ny) — Im Ny, (= N) — 0.

n>t n>t n>t n>t
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So N € Co¥9(0). Put K = thn and § = liﬂﬂn. Then we get the following exact

n>t n>t
sequence:

0>M 25N Ko
By Lemma 6.1, for any T € Co%,(0) () mod R, we have ExthL (K, T) = Ext}%(ligKn,T) =
n>t
Li&lExtE(Kn, T) = 0, which implies that Hompg(3,T) is epic.
n>t

(2) Let M € modR and T' € % (0)(Ymod R. Then DM € mod R and DT’ ¢
Co¥ »(0)°P (Nmod R°P. By (1), there exists a monomorphism 5 : DM ~— N in Mod R with
N countably generated and N € Co%(0) such that Hompger (8, DT") is epic. Put G = DN.
Then G is countably cogenerated and DS : G — M (= DDM) is epic in Mod R such that
Hompz(T",DB)(= Homp(DDT',DB)) is also epic. Because N € CoZ o (0)%, idger Pi(N) < i
for any 7 > 0. Note that P;(N) = P; P]Z with all P]Z projective in mod R for any ¢ > 0 by
[Wa, Theorem 1]. So we get an exact sequence:

0—>G—>HDP]-O—>H]DPJ-1 — —>H]DP}—>-~
j j j
in Mod R with []; ]D)P; injective and pdg [, ]D)P; < for any ¢ > 0. It implies that G' €
“Z(0). O

Following [AR2], for a full subcategory 2" of mod R we denote by
Rapp(2") = {M € mod R | there exists a right 2~ — approximation of M},

Lapp(Z") = {M € mod R | there exists a left 2" — approximation of M }.

We use Z°°(mod R) (resp. .#*°(mod R)) to denote the full subcategory of mod R consisting

of modules with finite projective (resp. injective) dimension.

Proposition 6.4. Let R satisfy the Auslander condition. Then we have

(1) Lapp(Co¥ »(0) (N mod R) = {M € mod R | there exists an exact sequence 0 — M —
X =Y = 0 with X € Co9+(0)(Ymod R and Y € Z*°(mod R)}.

(2) Rapp(%(0)(Ymod R) = {M € modR | there ezists an exact sequence 0 — Y —
X — M — 0 with X € 4(0)(Jmod R and Y € #°°(mod R)}.

Proof. Tt is easy to see that Lapp(Co¥« (0) (Ymod R) O {M € mod R | there exists an
exact sequence 0 - M — X — Y — 0 with X € Co¥(0)(Jmod R and Y € £°°(mod R)},
and Rapp(%(0)(Ymod R) 2 {M € mod R | there exists an exact sequence 0 - Y — X —
M — 0 with X € 4, (0)(Ymod Rand Y € .#°°(mod R)}. So it suffices to prove the converse

inclusions.
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(1) Let M € Lapp(Co¥ (0) (Ymod R). Because R satisfies the Auslander condition, the
injective cogenerator D(Rpg) for Mod R is in Co¥ o (0) () mod R. So we may assume that 0 —
M Ly XM 5 yM 0 s exact in mod R such that f is a minimal left Co¥ ,(0) () mod R-
approximation of M.

Let 0 — M 2 N — K — 0 be an exact sequence in Mod R as in Proposition 6.3(1) such
that Homp(3,T) is epic for any T' € Co¥(0) (1 mod R, where N' = Lim Ny, (= U,,>1 Nn) and

n>1
K = thn(: UnZl Kn) Note that HOHIR(XM, _)|Co<foo(0)ﬂmodR
n>1
HomR(XM,—)]CO%O(O)mmOdR — 0 is a projective cover of HomR(XM,—)]CO%O(O)mmOdR.

HomR(f7_)

Because Hompg(N, —)|cow.. (0) Nmod r 1S @ projective object in the category of functors from

Mod R to Abelian groups, we have the following commutative diagram:

Hompg(f,—
HOHIR(XM, _)|Co‘foo(0)ﬂmodR — OmR(Ma _)‘Cogo@(O) NmodR — 0

HomR(s,—)l

Hompg(8,—
Homp(N, =)|co . (0) (| mod R — > Hom (M, —)|Co# e (0) N mod R —= 0

HomR(t,—)l

Hompg(f,—
HOII]R(XM, _)‘Cogw(O)ﬂmodR L OmR(M7 _)‘CO%OO(O) Nmod R —> 0

where s € Homg(N, XM) and t € Homz(X™, N). Then Hompg(st, —) = Homg(t, —) Homp(s, —)
is an isomorphism. So there exist s € Homp(K,Y™) and t € Homg(Y™, K) such that the

following diagram commutes:

0 M ! XM yM 0
|k
B
0 M N K 0
|
0 M XM YyM 0

By the minimality of f, we have that st is an isomorphism and so is s't'. It implies that

t . YM  K(= limKy, = U,>; Ky) is a split monomorphism. Because YM is finitely
n>1

generated, Im¢ C K, for some n. So Y™ is isomorphic to a direct summand of K,, and

hence pdp Y™ < n.
(2) Let M € Rapp(¥%(0)(Ymod R). Then DM € Lapp(Co¥ ,(0)°? (Ymod R°P). By (1)

there exists an exact sequence:

0O—-DM—-X—-Y —0
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with X € Co¥(0)°? (N mod R°? and Y € &°°(mod R°P). So we get an exact sequence:
0—=DY -DX - M—0
with DX € ¢,,(0) (Ymod R and DY € .#°°(mod R). O

As a consequence of Proposition 6.4, we get the following

Proposition 6.5. Let R satisfy the Auslander condition. Then we have

(1) Rapp(¥~(0)(Nmod R) = {M € mod R | there exists a positive integer n such that
Q™(M) € G(n)(Ymod R}.

(2) Lapp(Co¥ »(0) (Ymod R) = {M € mod R | there exists a positive integer n such that
Q"(M) € Co¥ s (n)(mod R}.

Proof. (1) Let M € Rapp(¥4~(0)(mod R). Then by Proposition 6.4(2), there exists an
exact sequence 0 - YV — X — M — 0 with X € ¢,,(0)(YmodR and Y € .#°°(mod R).
Assume that idg Y = k(< 00). Then for any n > k, Exth(—, Q" (X)) = Ext}(—, X) =
Ext(—, M) = ExtL(—, Q7"+1(M)), which implies that Q"1 (X) and Q="+ (M) are injec-
tively equivalent. Because X € @ (0), Q7" (X) € Gp(n —1). So Q" THM) € G(n — 1)

and Q7" (M) € G (n).
Conversely, assume that Q7" (M) € @ (n) () mod R. We have the following commutative
diagrams with exact columns and rows:

0 0 0
0 I G M 0
0 Ko Py(EO(M)) ———— EO9(M) ———>0
0 K1 Py(EY(M)) ———> E'(M) ———>0
0 Kp_2 Py(E""2(M)) — E""2(M) —> 0
0 Kp_1 Py(E" Y (M)) — E""1(M) — 0

0 Q" (M) Q" (M) ——>0
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where G = Ker(Py(E°(M)) — Py(EY(M))) and I = Ker(Ky — Ki). Because R satisfies
the Auslander condition, Py(E*(M)) is injective and satisfies the Auslander condition for
any 0 < ¢ < n —1 by Theorem 5.9. So idg K; < 1 for any 0 < i < n — 1, and hence
idr I < n by the exactness of the leftmost column in the above diagram. On the other
hand, by Corollary 3.17 and the exactness of the middle column in the above diagram, we
have that G € ¢, (0)(Ymod R. Thus the exact sequence 0 — I — G — M — 0 is a right
%~ (0) () mod R-approximation of M and M € Rapp(¥~(0) (| mod R).

(2) It is dual to the proof of (1), so we omit it. O

Corollary 6.6. Let R satisfy the Auslander condition. Then we have

(1) 95 (0) (N mod R is contravariantly finite in mod R if and only if there exists a positive
integer n such that Q=" (M) € % (n)(mod R for any M € mod R.

(2) Co¥ »(0) (Y mod R is covariantly finite in mod R if and only if there exists a positive
integer n such that " (M) € Co¥(n)(Ymod R for any M € mod R.

Proof. (1) The sufficiency follows from Proposition 6.5(1).

Conversely, let 4, (0) () mod R be contravariantly finite in mod R and {Sj, Sa,--- ,S;} a
complete set of non-isomorphic simple R-modules. By Proposition 6.5(1), there exists a pos-
itive integer n; such that Q~"(S;) € @ (n;) for any 1 < i < t. Put n = max{ny,ng, - ,n¢}.
Then Q7"(S;) € Yo(n) for any 1 < i <t.

We will prove that Q7" (M) € @ (n) for any M € mod R by induction on length(M) (the
length of M). If length(M) = 1, then M = S, for some 1 < i <t and the assertion follows.
Now suppose length(M) > 2. Then there exists an exact sequence 0 — S — M — M/S — 0
in mod R with S simple and length(M/S) < length(M). By the induction hypothesis, both
S and M/S are in @ (n). Then M is also in % (n) by the horseshoe lemma.

(2) It is dual to the proof of (1), so we omit it. O

Let M € mod R and P; (M) — Py(M) — M — 0 be a minimal projective presentation of
M € mod R. For a non-negative integer n, recall from [AR4]| that M is called n-torsionfree
if Extlo,(TrM,R) = 0 for any 1 < i < n, where Tr M = Coker(Py(M)* — Py(M)*) is
the transpose of M and (—)* = Hompg(—, R). We use Q"(mod R) (resp. Z,(mod R)) to
denote the full subcategory of mod R consisting of n-syzygy (resp. n-torsionfree) modules.
In general, we have Q"(mod R) O .7, (mod R) for any n > 0 (cf. [ARA4]).

Lemma 6.7. If R € ¢,(0) with n > 0, then 4,(0) (Ymod R = Q"(mod R) = 7,,(mod R).

Proof. 4,(0)(Ymod R = Q"(mod R) by [AR3, Proposition 5.1], and Q"(mod R) =
In(mod R) by [AR4, Proposition 1.6 and Theorem 4.7]. O
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Auslander and Reiten conjectured in [AR3| that R is Gorenstein (that is, idgp R =
idrer R < o0) if R satisfies the Auslander condition. It remains still open. For a full
subcategory % of mod R, we denote by €1 = {M € modR | Exth(¢,M) = 0}. Put
Q%(mod R) = (1,50 92" (mod R). Now we are in a position to establish the connection
between this conjecture and the contravariant finiteness of ¥, (0)()mod R and that of

2°°(mod R) as follows.

Theorem 6.8. Let R satisfy the Auslander condition. Then the following statements
are equivalent.

(1) R is Gorenstein.

(2) 9+ (0)(mod R is contravariantly finite in mod R.

(8) Co%9~(0) (N mod R is covariantly finite in mod R.

(4) 2°°(mod R) is contravariantly finite in mod R.

Proof. Because R satisfies the Auslander condition if and only if so does RP, we get
(2) & (3). By Lemma 6.7, we have (2) < (4).

(1) = (2) Assume that R is Gorenstein with idgr R = idger R = n. By [I, Proposition
1], pdp E < n for any injective left R-module E. So % (0)(mod R = %,(0) () mod R, and
hence ¥4, (0) () mod R is contravariantly finite in mod R by Theorem 6.2.

(2) = (1) Assume that % (0)()mod R is contravariantly finite in mod R. Then there
exists a positive integer n such that Q=" (M) € % (n) [ mod R for any M € mod R by Corol-
lary 6.6, which implies that % (0)((mod R = %,(0)()mod R. Because %,(0)(\mod R =
In(mod R) by Lemma 6.7, (% (0)(mod R)*' = (4,(0)(mod R)** = .Z,(mod R)*! =
#"(mod R) by [HI, Theorem 1.3]. On the other hand, it is easy to see that .#°°(mod R) C
(%5(0) ' mod R)*1. So .#%(mod R) = .#"(mod R) and hence 2> (mod R?) = 2" (mod R°P).
Thus idger R < n by [HI, Corollary 5.3], which implies that R is Gorenstein by [AR3, Corol-
lary 5.5(b)]. O

As an application of Theorem 6.8, we obtain in the following result some equivalent
characterizations of Auslander-regular algebras. Note that the converse of Corollary 5.10
does not hold true in general by Remark 5.11. The following result also shows when this

converse holds true.

Theorem 6.9. The following statements are equivalent.
(1) R is Auslander-regular.

(2) 9 (0) = 29(Mod R).

(3) 95 (0)(mod R = 2°(mod R).
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(4) 9o (s) = 22°(Mod R) for any s > 0.
(5) G (s) (Ymod R = &*(mod R) for any s > 0.

Proof. Both (2) = (3) and (4) = (5) are trivial. By Corollary 5.13, we have (2) < (4)
and (3) < (5).

(1) = (2) By (1) and Corollary 5.10, we have Z°(Mod R) C %~ (0).

Assume that gl.dim R = n(< c0) and M € %,,(0). Then in a minimal injective resolution
0 — M — E°(M) - EY(M) = --- — E"(M) — 0 of M in Mod R, pdg E*(M) < i for
any 0 < ¢ < n. By the dimension shifting we have that M is projective. It implies that
%no(0) € 2°(Mod R).

(5) = (1) By (5), R satisfies the Auslander condition and %, (0) (Jmod R = #°(mod R)
is contravariantly finite in mod R. So R is Gorenstein by Theorem 6.8. Assume that
idror R = idg R = n(< o0). Then pdr E < n for any injective left R-module E by [I,
Proposition 1]. So for any M € mod R, M € ¥ (n)()mod R, and hence pdp M < n by (5).
It follows that gl.dim R < n. O
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