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Abstract

The paper is devoted to finding a homomorphic image for the c-
nilpotent multiplier of the verbal product of a family of groups with
respect to a variety V when V C N, or N, C V. Also a structure
of the c-nilpotent multiplier of a special case of the verbal product,
the nilpotent product, of cyclic groups is given. In fact, we present
an explicit formula for the c-nilpotent multiplier of the nth nilpotent
product of the group G = Z ¥ ¥ Z % Z,, ¥ ¥ Z,,, where r;1q
divides r; for all i, 1 < ¢ <t —1, and (p,r1) = 1 for any prime p less

than or equal to n + ¢, for all positive integers n, c.
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1 Introduction and Motivation

Let G = F/R be a free presentation of a group GG. Then the Baer invariant
of G with respect to the variety N, of nilpotent groups of class at most ¢ > 1,
denoted by N.M(G), is defined to be

RNy (F
M) = S
N.M(G) is also called the c-nilpotent multiplier of G. Clearly if ¢ = 1, then
N, = A is the variety of all abelian groups and the Baer invariant of G' with
respect to this variety is R
N

M(G) = RE]
which is the well-known Schur multiplier of G.

It is important to find structures for the Schur multiplier and its gen-
eralization, the c-nilpotent multiplier, of some famous products of groups.
Determining these Baer invariants of a given group is known to be very use-
ful for the classification of groups into isoclinism classes (see [1]).

In 1907, Schur [17], using a representation method, found a structure for
the Schur multiplier of a direct product of two groups. Also, Wiegold [19]
obtained the same result by some properties of covering groups. In 1979
Moghaddam [13] found a formula for the c-nilpotent multiplier of a direct
product of two groups, where ¢ 4+ 1 is a prime number or 4. Also, in 1998
Ellis [2] extended the formula for all ¢ > 1. In 1997 the second author and
Moghaddam [10] presented an explicit formula for the e-nilpotent multiplier
of a finite abelian group for any ¢ > 1. It is known that the direct product is
a special case of the nilpotent product and we know that regular and verbal
products are generalizations of the nilpotent product.

In 1972, Haebich [6] found a formula for the Schur multiplier of a regular
product of a family of groups. Then the second author [8] extended the result
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to find a homomorphic image with a structure similar to Haebich’s type for
the c-nilpotent multiplier of a nilpotent product of a family of groups.

In section two, we extend the above result and find a homomorphic image
for the c-nilpotent multiplier of a verbal product of a family of groups with
respect to a variety ¥V when V C N, or N, C V.

A special case of the verbal product of groups whose nilpotent multiplier
has been studied more than others is the nilpotent product of cyclic groups.
In 1992, Gupta and Moghaddam [5] calculated the c-nilpotent multiplier of
the nilpotent dihedral group of class n, i.e. G, = Z, ¥ Zo. (Note that in
2001 Ellis [3] remarked that there is a slip in the statement and gave the
correct one.) In 2003, Moghaddam, the second author and Kayvanfar [14]
extended the previous result and calculated the c-nilpotent multiplier of the
nth nilpotent product of cyclic groups for n =2, 3, 4 under some conditions.
Also, the second author and Parvizi [11, 12] presented structures for some
Baer invariants of a free nilpotent group that is the nilpotent product of
infinite cyclic groups. Finally the authors and Mohammadzadeh [9] obtained
an explicit formula for the c-nilpotent multiplier of the nth nilpotent product
of some cyclic groups G = Z ¥ .. %7 % Z,, ¥ ¥ Z,,, where r;;1 divides r;
for all i, 1 <i <t —1, for ¢ > n such that (p,r1) = 1 for any prime p less
than or equal to n.

In section three, we give an explicit formula for the c-nilpotent multiplier
of the above group G when (p, ) = 1 for any prime p less than or equal to

n + ¢, for all positive integers ¢, n.

2 Verbal products

A group G is said to be a regular product of its subgroups A;, ¢ € I, where [

is an ordered set, if the following two conditions hold:



i) A;NA; =1 foralli € I, where A; = (A;]5 € 1,5 #1).

Definition 2.1. Consider the map
* X
iel iel
a1asg .. .Qy — (al,a2, . ,CLn),

which is a natural map from the free product of {A;};c; on to the direct

product of {A;};c;. Clearly its kernel is the normal closure of
<[AZ7AJ]|Zuj € ]7Z % .]>

in the free product A = [[ic; A;. It is denoted by [A#] and called the Carte-
sian subgroup of the free product (see [16] for the properties of cartesian

subgroups).

The following theorem gives a characterization of a regular product.
Theorem 2.2 (Golovin 1956 [4]). Suppose that a group G is generated by
a family {A;|i € I} of its subgroups, where [ is an ordered set. Then G is
a regular product of the A; if and only if every element of G can be written
uniquely as a product

a10a2...a4,U,

where 1 # a; € Ay, M < ... < X\, and u € [AT] = ([AY, AS]|i,j € I,i # j).

Definition 2.3. Let V be a variety of groups defined by a set of laws V.
Then the verbal product of a family of groups {A;};c; associated with the
variety V is defined to be



The verbal product is also known as varietal product or simply V-product.
If V is the variety of all groups, then the corresponding verbal product is the
free product; if ¥V = A is the variety of all abelian groups, then the verbal
product is the direct product and if ¥V = N, is the variety of all nilpotent
groups of class at most ¢, then the verbal product will be the nilpotent
product.

Let {A;|i € I} be a family of groups and

1> R — F % 4,51

be a free presentation for A;. We denote by # the natural homomorphism
from the free product F' = [[;.; F; onto A = [[;<; A; induced by the §;. Also
we assume that the group G is the verbal product of {4, };c; associated with
the variety V. If ¥ is the natural homomorphism from A onto G induced by

the identity map on each A;, then we have the sequence

F=T[F S5 A=T[A %S cG=V][4 > 1L
i€l iel iel
The following notation will be used throughout this section.
Notation 2.4.
i) Dy = [Lig[Ri, F3]F;
i) E. = D10 vey1(F);
iii)Dc = Haj s.t. /.Lj;ﬁi[Ri’ F,LL17 ey Fuc]F;
iv) K, = V(F) N [F]];
V) Ke = yena(F) N [F].

Let H, be the kernel of ¢, and R be the kernel of ¢, o 0. It is clear that
R is actually the inverse image of H,, in F under #, where H, = V(A) N [A#]
by the definition of the verbal product. Put H, = v.11(A) N [AZ], then an

immediate consequence is the following lemma.
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Lemma 2.5. With the above notation we have
i) (K,) = H, and 0(K,) = H,;
ii) G=F/R and R = []c; Rva = ([Ler Ri) D1 K.

Proof. (i) This follows from the definition of 6.

(ii) Tt is easy to see that ker @ = [[;,c; RY". On the other hand, since 0(K,) =
ker 1,, we have R = (ker 0)K, = [[;c; RF'K,. Also for all 7 € R; and f € F,
rf = r[r, f]. This implies that [T,c; RF = [I,e; Ri[Ri, F]. Since [R;, F}] C R;,
[lier RZF = [lics RiD1.

We now prove some lemmas to compute the c-nilpotent multiplier of G.
Lemma 2.6. Keeping the above notation we have
i) [R, F] = (TlesRi, F])De[Ky, F].
i) If V(F) C yea(F), then RN yer1(F) = Thier (Ri N Yer1 (F7)) B Ky
ii) If yer1 (F) € V(F), then RN yeq1(F) = [lier(Bs N yer1 () Ee K.

Proof. i)
(R, F] = [[[R K., oF|
— I;IGII[R LK, oF]
_ (HI[R F)DJK,. o,

ii) Let g € RN7e41(F). Then g = ry,...r\,dk by Lemma 2.5, where ), € R),,

d € Dy and k € K,. Now consider the natural homomorphism

* X
gp:FZHFi—> HFz

el el

Since g € Yer1(F), v(9) = (ra, ) € Yerr(llier F1) = Tlics Yerr (F).
Therefore 7y, € v.11(Fy,) N Ry, and then dk € v..1(F) N [FF]. Now since
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ke V(F) C veq1(F), we have d € v.11(F) N Dy = E. and so the result
follows.

iii) Since K. C Ky, [Tier(Ri N Yey1(F;))EK. € RN Yer1(F). For the reverse
inclusion, similar to part (i), dk € v.41(F) N [FF]. Therefore RN ~.q1(F) C
[Licr(Ri N Yer1(F;)) K. Now the inclusion E, C K, shows that the equality
(iii) holds. O

Lemma 2.7. With the above notation, let . : F' — F/E, be the natural
homomorphism. Then ¢ (IT;c;(R: N Yer1(F;))K,) is the direct product of its
subgroups QOC(KU> and QOC(RZ N 70+1(Fi))7 el

Proof. The Three Subgroups Lemma shows that

[Ri VY1 (£2), K] C Ee - foralliel

and
[Rz N ’}/c-i-l(F’i)a Rj N ’}/c-i-l(Fj)] g Ec for all Z>] S 172 7& ]
So we have
[pe(Ri N Yer1(F)), pe(K,)) =1 foralli€l
and

(e(Be N Yot (F)), el By Mo ()] = 1 for all i j € I,i # .

Moreover, by Theorem 2.2 we conclude that

@e(Ri N e 1 (F3)) N (T e Ry N vesa (F)))ee(Ky)) = 1.
i#£j

Now the result follows by the definition of the direct product. O



Lemma 2.8. With the previous notation,
i) If V(F) Cveq1(F), then o (Ky)/@c([Ky, F) = Hy/[Hy, (Al
i) If yer1 (F) CV(F), then ¢.(K.)/v([K., F| = H./[Hy, A

Proof. i) If V(F) C 741 (F), then

~Y

@C(KU) ~ KUEC ~ Kv
Pe([Ky, F))  [Ky, FIE.  K,NI[K,, FIE.

On the other hand
0K, . Kykerf K, - K,

0Ky, F))  [K., Flkerf  K,N|[K,, Flker6 K,N[Ky, F)Dilics Ri

Now Theorem 2.2 and definition of E,. imply that

H(K’U) ~ K’U
0(K,, F])  K,N[K,, FIE.

Therefore by Lemma 2.5, we conclude that

pe(Ky) . 0K, H,

P, F)  O([Ky, F])  [Ho, Al

ii) The proof is similar to (i).

Now we are ready to state and prove the main result of this section.

Theorem 2.9. With the above notation,

i) If N. CV, then [[;c; NoM(4;) x H,/[H,, .A]is a homomorphic image of
N.M(V Ticr Ai), and if V], A; is finite, then the above structure is iso-
morphic to a subgroup of N.M(V [I;cr Ai).

ii) If V C N, then [[7c; NoM(A;) x H./[H,, -A] is a homomorphic image of
N MV 1lier As), and if V[I,e; A; is finite, then the above structure is iso-
morphic to a subgroup of NoM (V [Lc; Ai).



Proof. i) By Lemma 2.6 (i),(ii)

RN o1 (F) ~ [Licr(Ri N Yey1(F))EK,
[Rv CF] HiEI[Ri7 CE]DC[Kih cF]

NM(V]T A:) =

el

Therefore there is a natural epimorphism from N.M(V[;c; A;i) to

HieI(Ri N ’}/c-i-l(F’i))Ech o SOC(HZ'EI(RZ' M 70+1(E))Kv)

HiEI[Ri> CE]EC[Kva cF] @c(HieI[Ria CE] [Kva cF])
Lemma 2.7 and the fact that ¢.([K,, F]) C p(K,) and ¢ ([R;, Fi]) C
©e(Ri N yer1(F;)) imply that

Oc(ITier (R N yeq1 (F)) Ky) ~ ﬁ ©e(Ri N Yer1(F3)) % v (Ky)
Qpc(HieI[Ria ch’HKva cF]) iel Spc([Ria ch]) @c([Kva cF])

It is straightforward to see that

©e(Ri N Yeq1(F7)) ~ Ri 0 yeq1(F3)
ec([Ri, Fi]) [Ri, oFi

by Theorem 2.2. Therefore, the result holds by Lemma 2.8 (i).

ii) By an argument similar to (i), we obtain the result. O

We need the following lemma whose proof is straightforward.
Lemma 2.10. Let {A4;|i € I} be a family of groups. Put A =I[;.; A;. Then

for all integers m > 2,

Y (A) = [T v (A0) (v (A) N [AL]).

i€l
In particular if the A; are cyclic, then 7,,(A) = ,,(A) N [AZ].
The following corollary is an interesting consequence of Theorem 2.9 for

cyclic groups.

Corollary 2.11. Let {A;|i € I} be a family of cyclic groups. Then

9



i) If V. CV, then No.M(V1le; Ai) = H,/[H,, A]. Moreover if ¥V C N,
then V(Hj*;l A;) is a homomorphic image of N.M(V [Ticr Ai).

i) If V C N, then NeM(V1l,e; Ai) & H./[H,, .A]. Moreover if N, CV,
then %+1(ch A;) is a homomorphic image of N .M (V [Tic; Ai).

Proof. i) Since the A; are cyclic groups and the R; have no commuta-
tors, it is concluded that D, = E.. So the epimorphism in the proof of
Theorem 2.9, is actually an isomorphism. Also N.M(A;) = 1, therefore
NM(V1lic; Ai) =& H,/[H,, A]. Now suppose N. €V C Ny.. The inclu-
sion V(A) C 7.41(A) and Lemma 2.10 imply that V(A) C [A4] and thus
H, = V(A)[AY] = V(4). So we have NM(V Ty A) = V(A)/[V(A), A
and hence V(A)/72.41(A) is a homomorphic image of N.M(V [[;c; 4;). On
the other hand since V C Ny, we have V(A)/v2c41(A) = V(A/72e41(A)) =
V(Hj*; ; A;). This completes the proof.

ii) An argument similar to (i), shows that N.M(V [T;c; Ai) = H./[H,, A
Now since N,, €V C N, Yer1(A)/Ymrer1(A) is a homomorphic image of
NM (Ve 4;) and also

m+c

)= %+1(ﬁ A;).

Ye+1 (A) A
TYmtc+l (A) iel

7m+c+1(A) B 70+1(

Hence the result follows. O

Remark 2.12. Let {A;]i € I} be a family of groups.

i) If V is the variety of trivial groups, then Theorem 2.9 implies that [T;c; N.M(A;)
is a homomorphic image of N.M(ITjc; A;). In particular M([Tjc; Ai) =
[1;c; M(A;) which is a result of Miller [15].

ii) If V is the variety of nilpotent groups of class at most n, A, then main
results of the second author [8] are obtained by Theorem 2.9 and corollary
2.11.
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3 Nilpotent Products of Cyclic Groups

In this section we use a result of the previous section and find a structure for
the c-nilpotent multiplier of the group G = Z YA Z,, Yo% Z,,, where
rit1 divides r; for all i, 1 < i <t — 1, such that (p,r;) = 1 for any prime p
less than or equal to n + ¢. The proof relies on basic commutators [7] and
related results. We recall that the number of basic commutators of weight ¢
on n generators, denoted by x.(n), is determined by Witt formula [7]. Also,
M. Hall proved that if F' is the free group on free generators i, xs, ..., T,
and ¢y, ..., ¢; are basic commutators of weight 1,2,...,n, on x1,...,x,, then

an arbitrary element f of F' has a unique representation,

f="S . modyn(F).

In particular the basic commutators of weight n provide a basis for the free
abelian group 7, (F)/Yn41(F) (see [7]).

The following theorem represents the elements of some nilpotent products
of cyclic groups in terms of basic commutators.
Theorem 3.1 ([18]). Let Ay, ..., A; be cyclic groups of order ay, ..., ay re-
spectively, where if A; is infinite cyclic, then a; = 0. Let a; generate A; and
let G = Ay % ... ¥ A;, where n is greater than or equal to 2. Suppose that
all the primes appearing in the factorizations of the «; are greater than or
equal to n and uq, us, ..., are basic commutators of weight less than n, on the

letters a1, ...,a;. Put Ny = oy, if u; = a;; of weight 1, and
N; = ged(ouy, ..., 0g,)

if a;;, 1 < j <k, appears in u;. Then every element g of G' can be uniquely

expressed as
-
g = H u; *,
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where the m; are integers modulo N; (by gcd we mean the greatest common

divisor).

The following theorem is an interesting consequence of Corollary 2.11.
Theorem 3.2. Let {A4;]i € I} be a family of cyclic groups. Then
i) if 0> ¢, then NeM(IThey A) = v (T2, A):
ii) if ¢ > 1, then NoM (ITey As) = e (Tey Ay)-

Proof. i) Put V = N, in Corollary 2.11 and deduce that

n

NCM(ﬁ A;)) = H,/[H,, Al

iel
On the other hand by Lemma 2.10, H,, = v,11(A4) N [A2] = 4,11 (A). There-

fore

Zkl " A) A n;rc
N.M AigL:n A ).
(g ) h/""‘l(A)’ CA] ! +1(7n+c+1(A>) ! +1(i1;!7 )

ii) The result follows as for (i). O

Now, we are in a position to state and prove the main result of this sec-
tion .
Theorem 3.3. Let G = A; ¥ X Ai¢ be the nth nilpotent product of
cyclic groups such that A; =2 Z for 1 <i < m and An,y; = Z,; and 7541 | 1;
forall1 < j <t—1. If (p,m1) = 1 for any prime p less than or equal to n+c,
then
i) if n > ¢, then N.M(G) = Zl90) @ Z91=90) @ .. @ Z9=91-1);
i) if ¢ > n, then NLM(G) = ZU0) @ Z(h =) @ . @ Z{I =T,
where fi = Y1) Xei(m + k) and g, = 3251 Xnti(m + k) for 0 < k <t and
Z9 denotes the direct sum of d copies of the cyclic group Z,.
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Proof. i) If n > ¢, then by Theorem 3.2, it is enough to find the structure
n—+c

of vp41(I1;5; Ai). Suppose that a; generates A; and F' is the free group

generated by ay, ..., a,,4;. Let B be the set of all basic commutators of weight

1,2,...,c+ n on the letters aq, ..., a;,+;. Now define
D = {u"i|u € Band N; = ged(a,, ..., q;, ) if ai; appearsinu for 1 < j < k}.

n—+c
Then Theorem 3.1 implies that [[,&; A; = F/{D)Yetns1(F) and so

n+c

* a
Ll A0 = ey
7n+1(F>
<D>Vc+n+1(F) N 7n+1(F>
~ Ynt1(F) /Yernt1(F)

(D) NV Y1 (F)) Vet r (F) [Yens1 (F)
It can be deduced from Hall Theorem that 7, 11(F)/Veirnse1(F) is a free
abelian group with a basis By = {uYeins1(F)| u € B1}, where B is the set
of all basic commutators of weight n + 1,...,c+n on ay, ..., Gy Also, the

uniqueness of the presentation of elements implies that the abelian group
({D) N Yns1 (F)Vernt1(F) /Yernt1(F) is free with a basis

t
E={uyern1i(F)lue DN By = U D;} .
j=1

where D; is the set of all w7, such that u is a basic commutator of weight

n+1,...,c+mnona,..,any; such that a,,; appears in u. Also we have

|Dj| = ZXn-i—i(m +]) - Xn-i—i(m +j - 1) =0 — gj-1.
i=1
This completes the proof.
ii) The proof is similar to (i). O
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Note that the authors with F. Mohammadzadeh [9] by a different method
presented a similar structure for N.M(G), for ¢ > n with a weaker condition

(p,71) = 1 for any prime p less than or equal to n.

Remark 3.4. The condition 7,41 | rj, in the above theorem, simplifies the
structure of the c-nilpotent multiplier of G and gives a clear formula. One
can use the above method and find the structure of N, M(G) without the
condition rj4y | r;, but with a more complex formula. For example, for a
simple case if G = Z, % Z, where (p,7) = (p,s) = 1 for any prime p less than
or equal to n + ¢ and (7, s) = d, then

i) if n > ¢, then N.M(G) = ZéZlean@));

ii) if ¢ > n, then N.M(G) = Zilzi:1Xc+i(2)).
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