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Abstract

The paper is devoted to finding a homomorphic image for the c-

nilpotent multiplier of the verbal product of a family of groups with

respect to a variety V when V ⊆ Nc or Nc ⊆ V. Also a structure

of the c-nilpotent multiplier of a special case of the verbal product,

the nilpotent product, of cyclic groups is given. In fact, we present

an explicit formula for the c-nilpotent multiplier of the nth nilpotent

product of the group G = Z
n
∗ ...

n
∗ Z

n
∗ Zr1

n
∗ ...

n
∗ Zrt , where ri+1

divides ri for all i, 1 ≤ i ≤ t− 1, and (p, r1) = 1 for any prime p less

than or equal to n+ c, for all positive integers n, c.
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1 Introduction and Motivation

Let G = F/R be a free presentation of a group G. Then the Baer invariant

of G with respect to the variety Nc of nilpotent groups of class at most c ≥ 1,

denoted by NcM(G), is defined to be

NcM(G) =
R ∩ γc+1(F )

[R, cF ]
.

NcM(G) is also called the c-nilpotent multiplier of G. Clearly if c = 1, then

Nc = A is the variety of all abelian groups and the Baer invariant of G with

respect to this variety is

M(G) =
R ∩ F ′

[R,F ]
,

which is the well-known Schur multiplier of G.

It is important to find structures for the Schur multiplier and its gen-

eralization, the c-nilpotent multiplier, of some famous products of groups.

Determining these Baer invariants of a given group is known to be very use-

ful for the classification of groups into isoclinism classes (see [1]).

In 1907, Schur [17], using a representation method, found a structure for

the Schur multiplier of a direct product of two groups. Also, Wiegold [19]

obtained the same result by some properties of covering groups. In 1979

Moghaddam [13] found a formula for the c-nilpotent multiplier of a direct

product of two groups, where c + 1 is a prime number or 4. Also, in 1998

Ellis [2] extended the formula for all c ≥ 1. In 1997 the second author and

Moghaddam [10] presented an explicit formula for the c-nilpotent multiplier

of a finite abelian group for any c ≥ 1. It is known that the direct product is

a special case of the nilpotent product and we know that regular and verbal

products are generalizations of the nilpotent product.

In 1972, Haebich [6] found a formula for the Schur multiplier of a regular

product of a family of groups. Then the second author [8] extended the result
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to find a homomorphic image with a structure similar to Haebich’s type for

the c-nilpotent multiplier of a nilpotent product of a family of groups.

In section two, we extend the above result and find a homomorphic image

for the c-nilpotent multiplier of a verbal product of a family of groups with

respect to a variety V when V ⊆ Nc or Nc ⊆ V.

A special case of the verbal product of groups whose nilpotent multiplier

has been studied more than others is the nilpotent product of cyclic groups.

In 1992, Gupta and Moghaddam [5] calculated the c-nilpotent multiplier of

the nilpotent dihedral group of class n, i.e. Gn
∼= Z2

n
∗ Z2. (Note that in

2001 Ellis [3] remarked that there is a slip in the statement and gave the

correct one.) In 2003, Moghaddam, the second author and Kayvanfar [14]

extended the previous result and calculated the c-nilpotent multiplier of the

nth nilpotent product of cyclic groups for n =2, 3, 4 under some conditions.

Also, the second author and Parvizi [11, 12] presented structures for some

Baer invariants of a free nilpotent group that is the nilpotent product of

infinite cyclic groups. Finally the authors and Mohammadzadeh [9] obtained

an explicit formula for the c-nilpotent multiplier of the nth nilpotent product

of some cyclic groups G = Z
n
∗ ...

n
∗ Z

n
∗ Zr1

n
∗ ...

n
∗ Zrt , where ri+1 divides ri

for all i, 1 ≤ i ≤ t − 1, for c ≥ n such that (p, r1) = 1 for any prime p less

than or equal to n.

In section three, we give an explicit formula for the c-nilpotent multiplier

of the above group G when (p, r1) = 1 for any prime p less than or equal to

n+ c, for all positive integers c, n.

2 Verbal products

A group G is said to be a regular product of its subgroups Ai, i ∈ I, where I

is an ordered set, if the following two conditions hold:
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i) G = 〈Ai|i ∈ I〉;

ii) Ai ∩ Âi = 1 for all i ∈ I, where Âi = 〈Aj|j ∈ I, j 6= i〉.

Definition 2.1. Consider the map

ψ :
∗∏

i∈I

Ai →
×∏

i∈I

Ai

a1a2 . . . an 7→ (a1, a2, . . . , an),

which is a natural map from the free product of {Ai}i∈I on to the direct

product of {Ai}i∈I . Clearly its kernel is the normal closure of

〈[Ai, Aj]|i, j ∈ I, i 6= j〉

in the free product A =
∏∗
i∈I Ai. It is denoted by [AAi ] and called the Carte-

sian subgroup of the free product (see [16] for the properties of cartesian

subgroups).

The following theorem gives a characterization of a regular product.

Theorem 2.2 (Golovin 1956 [4]). Suppose that a group G is generated by

a family {Ai|i ∈ I} of its subgroups, where I is an ordered set. Then G is

a regular product of the Ai if and only if every element of G can be written

uniquely as a product

a1a2...anu,

where 1 6= ai ∈ Aλi , λ1 < ... < λn and u ∈ [AGi ] = 〈[AGi , A
G
j ]|i, j ∈ I, i 6= j〉.

Definition 2.3. Let V be a variety of groups defined by a set of laws V .

Then the verbal product of a family of groups {Ai}i∈I associated with the

variety V is defined to be

V
∏

i∈I

Ai =

∏∗
i∈I Ai

V (A) ∩ [AAi ]
.
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The verbal product is also known as varietal product or simply V-product.

If V is the variety of all groups, then the corresponding verbal product is the

free product; if V = A is the variety of all abelian groups, then the verbal

product is the direct product and if V = Nc is the variety of all nilpotent

groups of class at most c, then the verbal product will be the nilpotent

product.

Let {Ai|i ∈ I} be a family of groups and

1 → Ri → Fi
θi→ Ai → 1

be a free presentation for Ai. We denote by θ the natural homomorphism

from the free product F =
∏∗
i∈I Fi onto A =

∏∗
i∈I Ai induced by the θi. Also

we assume that the group G is the verbal product of {Ai}i∈I associated with

the variety V. If ψ is the natural homomorphism from A onto G induced by

the identity map on each Ai, then we have the sequence

F =
∗∏

i∈I

Fi
θ
→ A =

∗∏

i∈I

Ai
ψv→ G = V

∏

i∈I

Ai → 1.

The following notation will be used throughout this section.

Notation 2.4.

i) D1 =
∏
i 6=j[Ri, Fj]

F ;

ii) Ec = D1 ∩ γc+1(F );

iii)Dc =
∏

∃j s.t. µj 6=i[Ri, Fµ1 , ..., Fµc ]
F ;

iv) Kv = V (F ) ∩ [F F
i ];

v) Kc = γc+1(F ) ∩ [F F
i ].

Let Hv be the kernel of ψv and R be the kernel of ψv ◦ θ. It is clear that

R is actually the inverse image of Hv in F under θ, where Hv = V (A)∩ [AAi ]

by the definition of the verbal product. Put Hc = γc+1(A) ∩ [AAi ], then an

immediate consequence is the following lemma.
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Lemma 2.5. With the above notation we have

i) θ(Kv) = Hv and θ(Kc) = Hc;

ii) G = F/R and R =
∏
i∈I R

F
i Kv = (

∏
i∈I Ri)D1Kv.

Proof. (i) This follows from the definition of θ.

(ii) It is easy to see that ker θ =
∏
i∈I R

F
i . On the other hand, since θ(Kv) =

kerψv, we have R = (ker θ)Kv =
∏
i∈I R

F
i Kv. Also for all r ∈ Ri and f ∈ F ,

rf = r[r, f ]. This implies that
∏
i∈I R

F
i =

∏
i∈I Ri[Ri, F ]. Since [Ri, Fi] ⊆ Ri,

∏
i∈I R

F
i =

∏
i∈I RiD1.

We now prove some lemmas to compute the c-nilpotent multiplier of G.

Lemma 2.6. Keeping the above notation we have

i) [R, cF ] = (
∏
i∈I [Ri, cFi])Dc[Kv, cF ].

ii) If V (F ) ⊆ γc+1(F ), then R ∩ γc+1(F ) =
∏
i∈I(Ri ∩ γc+1(Fi))EcKv.

iii) If γc+1(F ) ⊆ V (F ), then R ∩ γc+1(F ) =
∏
i∈I(Ri ∩ γc+1(Fi))EcKc.

Proof. i)

[R, cF ] = [
∏

i∈I

RF
i Kv, cF ]

=
∏

i∈I

[Ri, cF ]
F [Kv, cF ]

= (
∏

i∈I

[Ri, cFi])Dc[Kv, cF ].

ii) Let g ∈ R∩γc+1(F ). Then g = rλ1 ...rλtdk by Lemma 2.5, where rλi ∈ Rλi ,

d ∈ D1 and k ∈ Kv. Now consider the natural homomorphism

ϕ : F =
∗∏

i∈I

Fi →
×∏

i∈I

Fi.

Since g ∈ γc+1(F ), ϕ(g) = (rλ1 , ..., rλt) ∈ γc+1(
∏×
i∈I Fi) =

∏×
i∈I γc+1(Fi).

Therefore rλi ∈ γc+1(Fλi) ∩ Rλi and then dk ∈ γc+1(F ) ∩ [F F
i ]. Now since
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k ∈ V (F ) ⊆ γc+1(F ), we have d ∈ γc+1(F ) ∩ D1 = Ec and so the result

follows.

iii) Since Kc ⊆ Kv,
∏
i∈I(Ri ∩ γc+1(Fi))EcKc ⊆ R ∩ γc+1(F ). For the reverse

inclusion, similar to part (i), dk ∈ γc+1(F ) ∩ [F F
i ]. Therefore R ∩ γc+1(F ) ⊆

∏
i∈I(Ri ∩ γc+1(Fi))Kc. Now the inclusion Ec ⊆ Kc shows that the equality

(iii) holds. 2

Lemma 2.7. With the above notation, let ϕc : F → F/Ec be the natural

homomorphism. Then ϕc(
∏
i∈I(Ri ∩ γc+1(Fi))Kv) is the direct product of its

subgroups ϕc(Kv) and ϕc(Ri ∩ γc+1(Fi)), i ∈ I.

Proof. The Three Subgroups Lemma shows that

[Ri ∩ γc+1(Fi), Kv] ⊆ Ec for all i ∈ I

and

[Ri ∩ γc+1(Fi), Rj ∩ γc+1(Fj)] ⊆ Ec for all i, j ∈ I, i 6= j.

So we have

[ϕc(Ri ∩ γc+1(Fi)), ϕc(Kv)] = 1 for all i ∈ I

and

[ϕc(Ri ∩ γc+1(Fi)), ϕc(Rj ∩ γc+1(Fj))] = 1 for all i, j ∈ I, i 6= j.

Moreover, by Theorem 2.2 we conclude that

ϕc(Ri ∩ γc+1(Fi)) ∩ (
∏

i 6=j

ϕc(Rj ∩ γc+1(Fj))ϕc(Kv)) = 1.

Now the result follows by the definition of the direct product. 2
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Lemma 2.8. With the previous notation,

i) If V (F ) ⊆ γc+1(F ), then ϕc(Kv)/ϕc([Kv, cF ]) ∼= Hv/[Hv, cA].

ii) If γc+1(F ) ⊆ V (F ), then ϕc(Kc)/ϕc([Kc, cF ] ∼= Hc/[Hv, cA].

Proof. i) If V (F ) ⊆ γc+1(F ), then

ϕc(Kv)

ϕc([Kv, cF ])
∼=

KvEc
[Kv, cF ]Ec

∼=
Kv

Kv ∩ [Kv, cF ]Ec
.

On the other hand

θ(Kv)

θ([Kv, cF ])
∼=

Kv ker θ

[Kv, cF ] ker θ
∼=

Kv

Kv ∩ [Kv, cF ] ker θ
∼=

Kv

Kv ∩ [Kv, cF ]D1
∏
i∈I Ri

.

Now Theorem 2.2 and definition of Ec imply that

θ(Kv)

θ([Kv, cF ])
∼=

Kv

Kv ∩ [Kv, cF ]Ec
.

Therefore by Lemma 2.5, we conclude that

ϕc(Kv)

ϕc([Kv, cF ])
∼=

θ(Kv)

θ([Kv, cF ])
∼=

Hv

[Hv, cA]
.

ii) The proof is similar to (i).

Now we are ready to state and prove the main result of this section.

Theorem 2.9. With the above notation,

i) If Nc ⊆ V, then
∏×
i∈I NcM(Ai)×Hv/[Hv, cA] is a homomorphic image of

NcM(V
∏
i∈I Ai), and if V

∏
i∈I Ai is finite, then the above structure is iso-

morphic to a subgroup of NcM(V
∏
i∈I Ai).

ii) If V ⊆ Nc, then
∏×
i∈I NcM(Ai)×Hc/[Hv, cA] is a homomorphic image of

NcM(V
∏
i∈I Ai), and if V

∏
i∈I Ai is finite, then the above structure is iso-

morphic to a subgroup of NcM(V
∏
i∈I Ai).
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Proof. i) By Lemma 2.6 (i),(ii)

NcM(V
∏

i∈I

Ai) ∼=
R ∩ γc+1(F )

[R, cF ]
∼=

∏
i∈I(Ri ∩ γc+1(Fi))EcKv∏
i∈I [Ri, cFi]Dc[Kv, cF ]

.

Therefore there is a natural epimorphism from NcM(V
∏
i∈I Ai) to

∏
i∈I(Ri ∩ γc+1(Fi))EcKv∏
i∈I [Ri, cFi]Ec[Kv, cF ]

∼=
ϕc(

∏
i∈I(Ri ∩ γc+1(Fi))Kv)

ϕc(
∏
i∈I [Ri, cFi][Kv, cF ])

.

Lemma 2.7 and the fact that ϕc([Kv, cF ]) ⊆ ϕc(Kv) and ϕc([Ri, cFi]) ⊆

ϕc(Ri ∩ γc+1(Fi)) imply that

ϕc(
∏
i∈I(Ri ∩ γc+1(Fi))Kv)

ϕc(
∏
i∈I [Ri, cFi][Kv, cF ])

∼=
×∏

i∈I

ϕc(Ri ∩ γc+1(Fi))

ϕc([Ri, cFi])
×

ϕc(Kv)

ϕc([Kv, cF ])
.

It is straightforward to see that

ϕc(Ri ∩ γc+1(Fi))

ϕc([Ri, cFi])
∼=
Ri ∩ γc+1(Fi)

[Ri, cFi]

by Theorem 2.2. Therefore, the result holds by Lemma 2.8 (i).

ii) By an argument similar to (i), we obtain the result. 2

We need the following lemma whose proof is straightforward.

Lemma 2.10. Let {Ai|i ∈ I} be a family of groups. Put A =
∏∗
i∈I Ai. Then

for all integers m ≥ 2,

γm(A) =
∏

i∈I

γm(Ai)(γm(A) ∩ [AAi ]).

In particular if the Ai are cyclic, then γm(A) = γm(A) ∩ [AAi ].

The following corollary is an interesting consequence of Theorem 2.9 for

cyclic groups.

Corollary 2.11. Let {Ai|i ∈ I} be a family of cyclic groups. Then
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i) If Nc ⊆ V, then NcM(V
∏
i∈I Ai) ∼= Hv/[Hv, cA]. Moreover if V ⊆ N2c,

then V (
∏2c

∗
i∈I Ai) is a homomorphic image of NcM(V

∏
i∈I Ai).

ii) If V ⊆ Nc, then NcM(V
∏
i∈I Ai) ∼= Hc/[Hv, cA]. Moreover if Nm ⊆ V,

then γc+1(
∏m+c

∗
i∈I Ai) is a homomorphic image of NcM(V

∏
i∈I Ai).

Proof. i) Since the Ai are cyclic groups and the Ri have no commuta-

tors, it is concluded that Dc = Ec. So the epimorphism in the proof of

Theorem 2.9, is actually an isomorphism. Also NcM(Ai) = 1, therefore

NcM(V
∏
i∈I Ai) ∼= Hv/[Hv, cA]. Now suppose Nc ⊆ V ⊆ N2c. The inclu-

sion V (A) ⊆ γc+1(A) and Lemma 2.10 imply that V (A) ⊆ [AAi ] and thus

Hv = V (A)∩ [AAi ] = V (A). So we have NcM(V
∏
i∈I Ai) = V (A)/[V (A), cA]

and hence V (A)/γ2c+1(A) is a homomorphic image of NcM(V
∏
i∈I Ai). On

the other hand since V ⊆ N2c, we have V (A)/γ2c+1(A) = V (A/γ2c+1(A)) =

V (
∏2c

∗
i∈I Ai). This completes the proof.

ii) An argument similar to (i), shows that NcM(V
∏
i∈I Ai) ∼= Hc/[Hv, cA].

Now since Nm ⊆ V ⊆ Nc, γc+1(A)/γm+c+1(A) is a homomorphic image of

NcM(V
∏
i∈I Ai) and also

γc+1(A)

γm+c+1(A)
= γc+1(

A

γm+c+1(A)
) = γc+1(

m+c
∗∏

i∈I

Ai).

Hence the result follows. 2

Remark 2.12. Let {Ai|i ∈ I} be a family of groups.

i) If V is the variety of trivial groups, then Theorem 2.9 implies that
∏×
i∈I NcM(Ai)

is a homomorphic image of NcM(
∏∗
i∈I Ai). In particular M(

∏∗
i∈I Ai) =

∏×
i∈IM(Ai) which is a result of Miller [15].

ii) If V is the variety of nilpotent groups of class at most n, Nn, then main

results of the second author [8] are obtained by Theorem 2.9 and corollary

2.11.
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3 Nilpotent Products of Cyclic Groups

In this section we use a result of the previous section and find a structure for

the c-nilpotent multiplier of the group G = Z
n
∗ ...

n
∗ Z

n
∗ Zr1

n
∗ ...

n
∗ Zrt , where

ri+1 divides ri for all i, 1 ≤ i ≤ t − 1, such that (p, r1) = 1 for any prime p

less than or equal to n + c. The proof relies on basic commutators [7] and

related results. We recall that the number of basic commutators of weight c

on n generators, denoted by χc(n), is determined by Witt formula [7]. Also,

M. Hall proved that if F is the free group on free generators x1, x2, ..., xr

and c1, ..., ct are basic commutators of weight 1, 2, ..., n, on x1, . . . , xr, then

an arbitrary element f of F has a unique representation,

f = cβ11 c
β2
2 ...c

βt
t modγn+1(F ).

In particular the basic commutators of weight n provide a basis for the free

abelian group γn(F )/γn+1(F ) (see [7]).

The following theorem represents the elements of some nilpotent products

of cyclic groups in terms of basic commutators.

Theorem 3.1 ([18]). Let A1, ..., At be cyclic groups of order α1, ..., αt re-

spectively, where if Ai is infinite cyclic, then αi = 0. Let ai generate Ai and

let G = A1
n
∗ ...

n
∗ At, where n is greater than or equal to 2. Suppose that

all the primes appearing in the factorizations of the αi are greater than or

equal to n and u1, u2, ..., are basic commutators of weight less than n, on the

letters a1, . . . , at. Put Ni = αij if ui = aij of weight 1, and

Ni = gcd(αi1, ..., αik)

if aij , 1 ≤ j ≤ k, appears in ui. Then every element g of G can be uniquely

expressed as

g =
∏
umi

i ,

11



where the mi are integers modulo Ni (by gcd we mean the greatest common

divisor).

The following theorem is an interesting consequence of Corollary 2.11.

Theorem 3.2. Let {Ai|i ∈ I} be a family of cyclic groups. Then

i) if n ≥ c, then NcM(
∏n

∗
i∈I Ai)

∼= γn+1(
∏n+c

∗
i∈I Ai);

ii) if c ≥ n, then NcM(
∏n

∗
i∈I Ai)

∼= γc+1(
∏n+c

∗
i∈I Ai).

Proof. i) Put V = Nn in Corollary 2.11 and deduce that

NcM(

n
∗∏

i∈I

Ai) ∼= Hn/[Hn, cA].

On the other hand by Lemma 2.10, Hn = γn+1(A)∩ [AAi ] = γn+1(A). There-

fore

NcM(

n
∗∏

i∈I

Ai) ∼=
γn+1(A)

[γn+1(A), cA]
= γn+1(

A

γn+c+1(A)
) = γn+1(

n+c
∗∏

i∈I

Ai).

ii) The result follows as for (i). 2

Now, we are in a position to state and prove the main result of this sec-

tion .

Theorem 3.3. Let G = A1
n
∗ ...

n
∗ Am+t be the nth nilpotent product of

cyclic groups such that Ai ∼= Z for 1 ≤ i ≤ m and Am+j
∼= Zrj and rj+1 | rj

for all 1 ≤ j ≤ t−1. If (p, r1) = 1 for any prime p less than or equal to n+ c,

then

i) if n ≥ c, then NcM(G) ∼= Z(g0) ⊕ Z(g1−g0)
r1

⊕ ...⊕ Z(gt−gt−1)
rt

;

ii) if c ≥ n, then NcM(G) ∼= Z(f0) ⊕ Z(f1−f0)
r1

⊕ ...⊕ Z(ft−ft−1)
rt

,

where fk =
∑n
i=1 χc+i(m+ k) and gk =

∑c
i=1 χn+i(m + k) for 0 ≤ k ≤ t and

Z(d)
r denotes the direct sum of d copies of the cyclic group Zr.

12



Proof. i) If n ≥ c, then by Theorem 3.2, it is enough to find the structure

of γn+1(
∏n+c

∗
i∈I Ai). Suppose that ai generates Ai and F is the free group

generated by a1, ..., am+t. Let B be the set of all basic commutators of weight

1, 2, ..., c+ n on the letters a1, ..., am+t. Now define

D = {uNi| u ∈ B and Ni = gcd(αi1, ..., αik) if aij appears in u for 1 ≤ j ≤ k}.

Then Theorem 3.1 implies that
∏n+c

∗
i∈I Ai = F/〈D〉γc+n+1(F ) and so

γn+1(

n+c
∗∏

i∈I

Ai) = γn+1(
F

〈D〉γc+n+1(F )
)

=
γn+1(F )

〈D〉γc+n+1(F ) ∩ γn+1(F )

∼=
γn+1(F )/γc+n+1(F )

(〈D〉 ∩ γn+1(F ))γc+n+1(F )/γc+n+1(F )
.

It can be deduced from Hall Theorem that γn+1(F )/γc+n+1(F ) is a free

abelian group with a basis B̄1 = {uγc+n+1(F )| u ∈ B1}, where B1 is the set

of all basic commutators of weight n + 1, ..., c + n on a1, ..., am+t. Also, the

uniqueness of the presentation of elements implies that the abelian group

(〈D〉 ∩ γn+1(F ))γc+n+1(F )/γc+n+1(F ) is free with a basis

Ē = {uγc+n+1(F )|u ∈ D ∩ B̄1 =
t⋃

j=1

Dj} ,

where Dj is the set of all urj , such that u is a basic commutator of weight

n+ 1, ..., c+ n on a1, ..., am+j such that am+j appears in u. Also we have

|Dj| =
c∑

i=1

χn+i(m+ j)− χn+i(m+ j − 1) = gj − gj−1.

This completes the proof.

ii) The proof is similar to (i). 2
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Note that the authors with F. Mohammadzadeh [9] by a different method

presented a similar structure for NcM(G), for c ≥ n with a weaker condition

(p, r1) = 1 for any prime p less than or equal to n.

Remark 3.4. The condition rj+1 | rj , in the above theorem, simplifies the

structure of the c-nilpotent multiplier of G and gives a clear formula. One

can use the above method and find the structure of NcM(G) without the

condition rj+1 | rj, but with a more complex formula. For example, for a

simple case if G = Zr
n
∗ Zs where (p, r) = (p, s) = 1 for any prime p less than

or equal to n+ c and (r, s) = d, then

i) if n ≥ c, then NcM(G) ∼= Z
(
∑c

i=1
χn+i(2))

d ;

ii) if c ≥ n, then NcM(G) ∼= Z
(
∑n

i=1
χc+i(2))

d .

References

[1] F.R. Beyl and J. Tappe, Group Extensions, Representations and the

Schur Multiplicator, Lecture Notes in Math. 958, Springer-Verlag,

Berlin, 1982.

[2] G. Ellis, On Groups with a Finite Nilpotent Upper Central Quotient,

Arch. Math. 70 (1998) 89-96.

[3] G. Ellis, On the Relation Between Upper Central Quotients and Lower

Central Series of a Group, Trans. Amer. Math. Soc. 353 (2001) 4219-

4234.

[4] O. N. Golovin, Nilpotent Products of Groups, Amer. Math. Soc. Transl.

Ser. 2 2 (1956) 89-115.

14



[5] N.D. Gupta and M.R.R. Moghaddam, Higher Schur Multiplicators of

Nilpotent Dihedral Groups, C. R. Math. Rep. Acad. Sci. Canada XIV

5 (1992) 225-230.

[6] H. Haebich, The Multiplicator of a Regular Product of Groups, Bull.

Austral. Math. Soc. 7 (1972) 279-296.

[7] M. Hall, The Theory of Groups, The Macmillan Company , New York,

1959.

[8] B. Mashayekhy, Some Notes on the Baer-invariant of a Nilpotent Prod-

uct of Groups, Jornal of Algebra 235 (2001) 15-26.

[9] B. Mashayekhy, A. Hokmabadi and F. Mohammadzade, Polynilpotent

Multipliers of some Nilpotent Products of Cyclic Groups, Submitted.

[10] B. Mashayekhy and M.R.R. Mogaddam, Higher Schur Multiplicator of

a Finite Abelian Group, Algebra Colloquium 4:3 (1997) 317-322.

[11] B. Mashayekhy and M. Parvizi, On Polynilpotent Multipliers of Free

Nilpotent Groups, Communications in Algebra 34:6 (2006) 2287-2294.

[12] B. Mashayekhy and M. Parvizi, Some Baer Invariants of Free Nilpotent

Groups, Journal of Algebra 317 (2007) 365-375.

[13] M.R.R. Moghaddam, The Baer-invariant of a Direct Product, Arch.

Math. vol. 33 (1979) 504-511.

[14] M.R.R. Moghaddam, B. Mashayekhy, and S. Kayvanfar, The Higher

Schur Multiplicator of Certain Class of groups, Southeast Asian Bulletin

of Mathematics 27 (2003) 121-128.

[15] C. Miller, The Second Homology Group of a Group: Relations Among

Commutators, Proc. Amer. Math. Soc. 3 (1952) 588-595.

15



[16] H. Neumann, Varieties of Groups, Springer Verlag, Berlin, 1967.

[17] I. Schur, Untersuchungen über die Darstellung der endlichen Gruppen

durch gebrochene lineare Substitutionen, J. für. Math. 132 (1907) 85-

137.

[18] R.R. Struik, On Nilpotent Products of Cyclic Groups , Canada. J. Math.

12 (1960) 447-462.

[19] J. Wiegold, The Multiplicator of a Direct Product, Quart. J. Math. (2)

22 (1971) 103-105.

16


