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IDEAL DEPTH OF QF EXTENSIONS

LARS KADISON

Abstract. A minimum depth dI(S → R) is assigned to a ring homomorphism
S → R and a bimodule RIR. The recent notion of depth of a subring d(S,R)
in a paper by Boltje-Danz-Külshammer is recovered when I = R and S → R

is the inclusion mapping. Ideal depth gives lower bounds for d(S,R) in case
of group algebra pair or semisimple complex algebra extensions. If R |S is a
QF extension of finite depth, minimum left and right even depth are shown
to coincide. If R ⊇ S is moreover a Frobenius extension with RS a generator,
its subring depth is shown to coincide with its tower depth. In the process
formulas for the ring, module, Frobenius and Temperley-Lieb structures are
provided for the tensor product tower above a Frobenius extension. A depth
3 QF extension is embedded in a depth 2 QF extension; in turn certain depth
n extensions embed in depth 3 extensions if they are Frobenius extensions or
other special ring extensions with ring structures on their relative Hochschild
bar resolution groups.

1. Introduction and Preliminaries

Algebras, coalgebras and Hopf algebras are some of the interesting objects with
structure in representation categories of commutative rings. In the representation
category of a noncommutative ring, these objects become ring extensions, corings
and Hopf algebroids. Some basic algebras of interest are the cohomological di-
mension 0 and ∞ cases of separable algebra and Frobenius algebra; which become
separable extensions and Frobenius extensions in noncommutative representation
theory. Also, QF rings, semisimple rings, and Azumaya algebras generalize to ring
extensions; however depth is not such a notion, originating as a tool of induced
representation theory. Depth is essentially constant on (especially projective) alge-
bras over a commutative ring, but gives different and interesting outcomes for ring
extensions.

The depth of many subgroups are recently computed, both as induced complex
representations [6] and as induced representations over general commutative rings of
group algebras [1]. For example, the depth of the permutation groups Sn ⊂ Sn+1 is
2n−1 over any ground ring and depends only on a combinatorial depth of subgroups
defined in terms of bisets in [1]. The authors of [1] show that combinatorial depth
dc(H,G) of a subgroup H in a finite group G satisfies dc(H,G) ≤ 2n for n ≥ 1
(respectively, dc(H,G) ≤ 2n − 1 for n > 1) ⇔ for any x1, . . . , xn ∈ G, there is
y1, . . . , yn−1 ∈ G such that H ∩n

i=1 xiHx
−1
i = H ∩n−1

i=1 yiHy
−1
i (respectively, the

latter condition and additionally x1hx
−1
1 = y1hy

−1
1 , all h ∈ H ∩n

i=1 xiHx
−1
i ). All

notions of depth ≤ 2 are the same and occur precisely if H is a normal subgroup.
However, depth of subalgebras over base rings (of varying characteristic denoted
by a subscript) for R = k[G] and S = k[H ] and combinatorial depth diverge in a
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string of inequalities given in [1] as follows:

(1) d0(H,G) ≤ dp(H,G) ≤ dZ (H,G) ≤ dc(H,G) ≤ 2[G : NG(H)].

Also dk(H,G) ≤ dc(H,G) showing that all extensions of finite dimensional group
algebras have finite depth.

The authors begin in [1] with a new notion of subring depth d(S,R), given below
in (4). They show in an appendix how it is based on and equal to a previous notion
where S and R are semisimple complex algebras given below in (5). Such a pair R ⊇
S is a special case of (split separable) Frobenius extensions; in Theorem 5.3 below
we show that subring depth is equal to tower depth of Frobenius extensions [15]
satisfying a generator module condition. The authors of [1] define a left and right
even depth and show these are the same on group algebra extensions; Theorem 3.4
below shows this equality holds for all QF extensions.

In this paper an obvious change is made to the definition of subring depth; we
define an I-depth dI(S → R) of a ring homomorphism S → R with R-bimodule I,
which we use in place of R in the n-fold tensor products over S in the definition (4)
of d(S,R) (as well as a converse, automatic in the presence of units). When I is an
ideal of a semisimple complex algebra R with semisimple subalgebra S the I-depth
dI(S → R) gives a lower bound, dI(S → R) ≤ d(S,R) discussed in Section 2 in
terms of the part of the bipartite graph of the inclusion which is directly below the
ideal I.

There are tantalizing similarities and intriguing relations between relative ho-
mological algebra and the subring depth definition and theory. For example, the
depth two condition on a subring S ⊆ R leads in [14] to an isomorphism of dif-
ferential graded algebras between the relative Hochschild R-valued cochains with
cup product and the Amitsur complex of a coring with grouplike element (on the
endomorphism ring End SRS over the centralizer subring RS). Also the paper [16]
contains some relations between depth 2 and notions of relative homological algebra
carried over to corings in [4]. The tower of iterated endomorphism rings above a ring
extension becomes in the case of Frobenius extensions a tower of rings on the bar
resolution groups Cn(R,S) (n = 0, 1, 2, . . .) with Frobenius and Temperley-Lieb
structures explicitly calculated from their more usual iterative definition in Sec-
tion 4.1. At the same time Frobenius extensions of depth more than 2 are known to
have depth 2 further out in the tower: we extend this observation in [15] with new
proofs to include other ring extensions satisfying the hypotheses of Proposition 4.3.

1.1. H-equivalent modules. Let R be a ring. Two left R-modules, RN and RM ,

are said to be h-equivalent, denoted by RM
h
∼ RN if two conditions are met. First,

for some positive integer r, N is isomorphic to a direct summand in the direct sum
of r copies of M , denoted by

(2) RN ⊕ ∗ ∼= RM
r ⇔ N |M r ⇔

∃fi ∈ Hom(RM,RN), gi ∈ Hom(RN,RM), i = 1, . . . , r :

r
∑

i=1

fi ◦ gi = idN

Second, symmetrically there is s ∈ Z+ such that M |Ns. It is easy to extend this
definition of h-equivalence (sometimes referred to as similarity) to h-equivalence of
two objects in an abelian category, and to show that it is an equivalence relation.
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If two modules are h-equivalent, RN
h
∼ RM , then they have Morita equivalent

endomorphism rings, EN := EndRN and EM := EndRM . This is quite easy to
see since a Morita context of bimodules are given by H(M,N) := Hom (RM,RN),
which is an EN -EM -bimodule via composition, and the bimodule EM

H(N,M)EN
;

these are progenerator modules, by applying to (2) or its reverse, M |Ns, any of
the four Hom-functors such as Hom(R−,RM) from the category of left R-modules
into the category of left EM -modules showing that EM

H(N,M) is finite projective;
similarly, generator. Then the explicit conditions on mappings for h-equivalence
show that H(M,N)⊗EM

H(N,M) → EN and the reverse mapping given by com-
position are both bimodule isomorphisms as required. Since EM and EN are Morita
equivalent rings, their centers are isomorphic:

EndRMEM

∼= EndRNEN
.

The theory of h-equivalent modules applies to bimodules TMS
h
∼ TNS by letting

R = T ⊗Z Sop which sets up an equivalence of abelian categories between T -S-
bimodules and leftR-modules. Two additive functors F,G : C →֒ D are h-equivalent
if there are natural split epis F (X)n → G(X) and G(X)m → F (X) for all X in C.
We leave the proof of the lemma below as an elementary exercise.

Lemma 1.1. Suppose two R-modules are h-equivalent, M
h
∼ N and two additive

functors from R-modules to an abelian category are h-equivalent, F
h
∼ G. Then

F (M)
h
∼ G(N).

For example, the following substitution in equations involving the
h
∼ -equivalence

relation follows from the lemma:

(3) RPT
h
∼ RQT TUS

h
∼ TVS ⇒ RP ⊗T US

h
∼ RQ⊗T VS

Example 1.2. If R is a semisimple artinian ring with simples {P1, . . . , Pt} (repre-
sentatives from each isomorphism class), all finitely generated modulesMR and NR

have a unique factorization into simple components. Denote the simple constituents
ofMR by Simples (M) = {Pi | [Pi,M ] 6= 0} where [Pi,M ] is the number of factors in
M isomorphic to Pi. ThenM |N q for some positive q if Simples (M) ⊆ Simples (N);

and M
h
∼ N iff Simples (M) = Simples (N).

Suppose R has central primitive idempotents e1, . . . , et such that each [Pi, eiR] =
ni, so that R decomposes into the product of matrix rings over each of the division
rings Di := End (Pi)R: R ∼= Mn1

(D1) × · · · × Mnt
(Dt). If M and N are h-

equivalent f.g. R-modules, then the endomorphism rings EM and EN are explicitly
Morita equivalent as they are both products of matrix rings over the same subset
of division rings D1, . . . , Dt.

Example 1.3. Via some more category theory, we may see that positive integers
n and m are h-equivalent if n |mr and m |ns for some positive integers r, s; whence
there are primes p1, . . . , pk such that n and m lie in the same h-equivalence class
{pr11 · · · prkk | r1, . . . , rk ≥ 1}. This explains the notation for eq. (2).

1.2. Depth two. A subring pair S ⊆ R is said to have left depth 2 (or be a left

depth two extension [13]) if R ⊗S R
h
∼ R as natural S-R-bimodules. Right depth

2 is defined similarly in terms of h-equivalence of natural R-S-bimodules. In [13] it
was noted that the left condition implies the right and conversely if R is a Frobenius
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extension of S. Also in [13] a Galois theory of Hopf algebroids was defined on the
endomorphism ring H := End SRS as total ring and the centralizer C := RS as
base ring. The antipode is the restriction of the natural anti-isomorphism stemming
from following the arrows,

EndRS

∼=
−→ R ⊗S R

∼=
−→ (End SR)

op.

The Galois properties may then be summarized by the invariants under the
obvious action of H , RH = S if RS is faithfully flat, and EndRS

∼= R#H a smash
product product ring structure on R ⊗C H : the details are in [13]. There is also
a duality structure by going a step further along in the tower above S ⊆ R →֒
EndRS →֒ EndR⊗S RR, where the dual Hopf algebroid H ′ := (R⊗S R)

S plays a
role [13].

Conversely, Galois extensions have depth 2, which is most easily seen from the
Galois map of an H-comodule algebra A with invariant subalgebra B and finite

dimensional Hopf algebra H over a base field k, which is given by A ⊗B A
∼=
−→

A ⊗k H , a′ ⊗ a 7→ a′a(0) ⊗ a(1), whence A ⊗B A ∼= AdimH as A-B-bimodules.
The Hopf subalgebras within a finite dimensional Hopf algebra which have depth
2 are precisely the normal Hopf subalgebras; if normal, it has depth 2 by applying
the Hopf-Galois observation just made. The converse follows from an argument
discovered by [2, Boltje-Külshammer] which divides the normality notion into right
and left just like depth 2, where left normal is invariance under the left adjoint
action. Note their argument given in the context of any augmented algebra A
(such as a quasi-Hopf algebra) next. Let ε : A→ k be the algebra homomorphism
into a base ring k. Let A+ denote ker ε, and for a subalgebra B ⊆ A, let B+ denote
ker ε ∩B. For example, it may be shown that if a (quasi-)Hopf algebra H has left
normal (quasi-)Hopf subalgebra, then HK+ ⊆ K+H .

Proposition 1.4. Suppose B ⊆ A is a subalgebra of an augmented algebra. If
B ⊆ A has right depth 2, then AB+ ⊆ B+A.

Proof. To A⊗BA |Aq as A-B-bimodules, apply the additive functor kε⊗A−, which
results in A/B+A | kq as right B-modules. The annihilator of kq restricted to B is
of course B+, which then also annihilates A/B+A, so AB+ ⊆ B+A. �

The opposite inclusion is of course satisfied by a left depth 2 extension of aug-
mented algebras.

Also subalgebra pairs of semisimple complex algebras have depth 2 exactly when
they are normal in a classical sense of Rieffel. We note the theorem in [6] below
and give a new proof in one direction along the lines of the previous proposition.

Theorem 1.5. [6, Theorem 4.6] Suppose B ⊆ A is a subalgebra pair of semisimple
complex algebras. Then B ⊆ A has depth 2 if and only if for every maximal ideal
I in A, one has A(I ∩B) = (I ∩B)A.

Proof. (⇐) See [6, Section 4]. (⇒) Given maximal ideal I in A, there is an ideal
J with identity element 1J such that A = I ⊕ J , and algebra homomorphism
ε : A → A/I ∼= J . Denote I = A+, I ∩ B = B+, and note that the A-module
JA = Jε. Given the right depth 2 condition AA⊗B AB |Aq, tensor from the left by
JA obtaining J ⊗B AB | Jq.

Note the B-module homomorphism A/B+A → J ⊗B A given by a + B+A 7→
1J ⊗B a (well-defined since 1J · B+ = 0) which we claim is monic. For suppose
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that 1J ⊗ a = 0 for a in the projective module BA, so a =
∑

i fi(a)ei in some free
module Bn. Then

0 = 1J ⊗ a =
∑

i

ε(fi(a))⊗ ei ⇒ ε(fi(a)) = 0 ⇒ fi(a) ∈ B+, ∀i = 1, . . . , n

hence a =
∑

i fi(a)ei ∈ B+A so a+B+A = 0 which proves the claim.
Since B+ annihilates Jq

B, it annihilates J ⊗B AB and therefore A/B+A via the
monomorphism. Thus AB+ ⊆ B+A. The opposite inclusion follows from a similar
argument applied to the left depth 2 condition. �

2. Ideal depth of a ring homomorphism

Let S and R be unital associative rings and S → R a ring homomorphism where
1S 7→ 1R. Suppose RIR is a bimodule. With no further ado, we will restrict I to
bimodules SIR, RIS or SIS via the homomorphism S → R. Note that the kernel
of S → R is contained in the annihilator ideal in S of the left (or right) S-module
I denoted by ann SI.

We let CI
0 (S → R) = S, and for n ≥ 1,

CI
n(S → R) = I ⊗S · · · ⊗S I (n times I)

For n ≥ 1, the CI
n(S → R) has a natural R-R-bimodule (briefly R-bimodule)

structure which restricts to S-R-, R-S- and S-bimodule structures occuring in the
next definition.

Definition 2.1. The ring homomorphism S → R has I-depth 2n + 1 ≥ 1 if as

S-bimodules CI
n(S → R)

h
∼ CI

n+1(S → R). The ring homomorphism S → R has

left (right) I-depth 2n ≥ 2 if CI
n(S → R)

h
∼ CI

n+1(S → R) as S-R-bimodules
(respectively, R-S-bimodules).

It is clear that if S → R has either I-depth 2n, it has I-depth 2n+1 by restricting
the h-equivalence condition to S-bimodules. If it has I-depth 2n+1, it has I-depth
2n+2 by tensoring the h-equivalence by −⊗S I or I ⊗S −. The minimum I-depth
is denoted by dI(S → R).

Note that the minimum left and right minimum even I-depths may differ by 2
(in which case dI(S → R) is the least of the two). In the next section we provide
a general condition, which includes a Hopf subalgebra pair S ⊆ R of symmetric
Frobenius algebras with I an ideal in R, where the left and right minimum even
I-depths coincide.

We also remark that once S → R has I-depth 2n + 1 the CI
n+m(S → R)’s

stop growing as m → ∞ in terms of adding new indecomposables in a category

of modules with unique factorization, since CI
n(S → R)

h
∼ CI

n+m(S → R) for all
m ≥ 0 (see the example in the previous section). This corresponds well with the
classical notion of finite depth in subfactor theory.

Lemma 2.2. Let S → R have kernel K, S := S/K and S →֒ R be the induced ring
monomorphism. Then the left or right minimum depth dI(S → R) = dI(S →֒ R)
unless dI(S →֒ R) = 1, in which case equality holds if the quotient homomorphism
p : S → S has a section.

Proof. Note that if MR |N q
R, then annNR ⊆ annMR. Since K is in annCI

n(R,S)

for all n ≥ 1 and CI
n(R,S)

∼= CI
n(R,S) as S-modules, it follows that CI

n(R,S)
h
∼
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CI
n+1(R,S) implies CI

n(R,S)
h
∼ CI

n+1(R,S) for the bimodules at issue. The con-
verse is easy by pullback along p.
S → R has I-depth 1 iff there are central elements wj , zi ∈ IS and mappings

fj, gi ∈ Hom(SIS , SSS) such that x =
∑

i zigi(x) for all x ∈ I and
∑

j fj(wj) =

1S. By composing with the quotient homomorphism S → S, we obtain f̃j , g̃i ∈

Hom(SIS , SSS) and zi ∈ IS such that x =
∑

i g̃i(x)zi and
∑

j f̃j(wj) = 1S . The
converse may be proven with the extra hypothesis in the lemma, since all mappings
in Hom (SIS , SSS) have a lifting to Hom(SIS , SSS) along p via a section σ : S →֒ S
satisfying p ◦ σ = idS . �

Example 2.3. Suppose S is a subring of R (where 1S = 1R). Let S → R be
the inclusion monomorphism and I = R, the natural R-bimodule. The minimum
depth of the subring S ⊆ R as defined in [1, Boltje-Danz-Külshammer] is denoted
by d(S,R). We note that d(S,R) = dR(S →֒ R). In fact, CR

n (S → R) = R ⊗S

· · · ⊗S R := Cn(R,S) (n times R) for n > 0, and the depth 2n+ 1 condition in [1]
is that

(4) Cn+1(R,S) |Cn(R,S)
q

as S-bimodules (some q ∈ Z+). The left depth 2n condition in [1] is (4) more
strongly as natural S-R-bimodules (and as R-S-bimodules for the right depth 2n
condition). But (using a pair of classical face and degeneracy maps of homological
algebra) we always have Cn(R,S) |Cn+1(R,S) as R-S-, S-R- or S-bimodules, so
that the depth 2n as well as 2n+ 1 conditions coincide in the case of subring with
the I-depth 2n and 2n + 1 conditions above where I = R. (Note though that
R-depth 1 is slightly stronger than subring depth 1 since R is not just centrally
projective over S (i.e., R |Sq as S-bimodules) but also R is a split extension of S
as S-bimodules since S |Rq implies S |R; the split extension condition is satisfied
by all group algebra extensions and subfactor examples of finite depth.)

Example 2.4. Let S ⊆ R be a subring pair of semisimple complex algebras.
Then the minimum depth d(S,R) may be computed from the inclusion matrix M ,
alternatively an n by m induction-restriction table of n S-simples induced to non-
negative integer linear combination of m R-simples along rows, and by Frobenius
reciprocity, columns show restriction of R-simples in terms of S-simples). The
procedure to obtain d(S,R) given in the paper [6] is the following: let M [2n] =
(MM t)n and M [2n+1] = M [2n]M (and M [0] = In), then the matrix M has depth
n ≥ 1 if for some q ∈ Z+

(5) M [n+1] ≤ qM [n−1]

The minimum depth of M is equal to d(S,R) by [1, appendix] (or Theorem 5.3
below combined with [5, 6]).

In terms of the bipartite graph of the inclusion S ⊆ R, d(S,R) is the lesser of
the minimum odd depth and the minimum even depth [6]. The matrix M is an
incidence matrix of this bipartite graph if all entries greater than 1 are changed
to 1, while zero entries are retained as 0: let the S-simples be represented by n
white dots in a bottow row of the graph, and R-simples by m black dots in a top
row, connected by edges joining black and white dots (or not) according to the 0-
1-matrix entries obtained fromM . The minimum odd depth of the bipartite graph
is 1 plus the diameter in edges of the row of white dots (indeed an odd number),
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while the minimum even depth is 2 plus the largest of the diameters of the bottom
row where a subset of black dots under one white dot is identified together.

Now suppose I is an ideal in R. Let the primitive central idempotents of R
be given by e1, . . . , em and those of S by f1, . . . , fn. Then I is itself a semisimple
complex algebra with unit e = e1 + · · · + er (assumed with no loss of generality).
Now suppose fiej = 0 for i > s and all j ≤ r, while fiej 6= 0 for i ≤ s and some
j ≤ r. Let J = f1S ⊕ · · · ⊕ fsS, a semisimple subalgebra of S: this ideal satisfies
J ⊕ ann (SI) = S. Then it is not hard to see that I-depth of S ⊆ R is computed as
the depth of the subring pair of semisimple algebras J →֒ I via s 7→ es:

(6) dI(S,R) = d(J, I),

the minimum depth of the s× r submatrix M1 in the upper lefthand corner of M .
This follows from the lemma where S/K = J and the realization that I ⊗J · · ·⊗J I
is induction and restriction n times of I-simples as explained in the appendix of [1].

Example 2.5. As a sub-example of the previous example, let R = CS4, the
complex group algebra of the permutation group on four letters, and S = CS3. The
inclusion diagram pictured below with the degrees of the irreducible representations,
is determined from the character tables of S3 and S4 or the branching rule (for the
Young diagrams labelled by the partitions of n and representing the irreducibles of
Sn).

1
◦

3
◦

��
��

��
��

99
99

99
99

2
◦

3
◦

��
��

��
��

99
99

99
99

1
◦

•
1

•
2

•
1

This graph has minimum odd depth 5 and minimum even depth 6, whence d(S,R) =
5. Alternatively, the inclusion matrix M is given by

M =





1 1 0 0 0
0 1 1 1 0
0 0 0 1 1





whose bracketed powers defined above satisfy a depth 5 inequality (5).
Now let I be the ideal in R associated with the two-dimensional representation,

the white dot labelled 2. Then d(J, I) is the depth of the matrix (1), so dI(S,R) = 1.
If I is the ideal of R associated with the first three white dots in the diagram above,
then J is the ideal in S associated to the first two black dots, and d(J, I) is the
minimum depth of the (upper-left hand corner) matrix

M ′ =

(

1 1 0
0 1 1

)

which has minimum depth 3. If I is the ideal associated to the three white dots la-
belled 3,2, and 3, we similarly compute dI(S,R) = 4. Finally, if I is ideal associated
to the first four white dots in the diagram above, the dI(S,R) = 5.

Proposition 2.6. Suppose S ⊆ R is a subring pair of semisimple complex algebras
and I ⊆ R is an ideal. Then dI(S,R) ≤ d(S,R).

Proof. This follows from the observation above that dI(S,R) = d(J, I) where J ⊆ S
and I ⊆ R are both subring pairs of semisimple algebras. But d(J, I) is the depth
of a subgraph of the inclusion graph of S ⊆ R. By the description of depth of a
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bipartite graph as the minimum of the odd and even depths in terms of diameter
of the row of black dots, it is clear that d(J, I) ≤ d(S,R) . �

3. Even depth of QF extensions

A proper ring extension is taken to be a monomorphism S →֒ R; stretching
this terminology slightly, a ring homomorphism S → R is referred to as a ring
extension, denoted by R |S. A ring extension R |S is a left QF extension if the in-
duced module SR is finitely generated projective and the natural bimodules satisfy

RRS |RHom(SR, SS)S
q
for some positive integer q. A right QF extension is oppo-

sitely defined. A QF extension R |S is both a left and right QF extension and may
be characterized by both RS and SR being finite projective, and two h-equivalences

of bimodules given by RRS
h
∼ RHom(SR, SS)S and SRR

h
∼ SHom(RS , SS)R

[19, 20]. For example, a Frobenius extension S → R is a QF extension since it is
left and right finite projective and satisfies the stronger conditions that R is iso-
morphic to its right S-dual R∗ and its left S-dual ∗R as natural S-R-bimodules,
respectively R-S-bimodules.

3.1. β-Frobenius extensions vs. QF extensions. In Hopf algebras and quan-
tum algebras, examples of Frobenius extensions often occur with a twist foreseen
by Nakayama and Tzuzuku, their so-called beta-Frobenius extension. Let β be an
automorphism of the ring S and S ⊆ R a subring pair. We next denote the pull-
back module of a module SM along β : S → S by βM . A proper ring extension
R |S is a β-Frobenius extension if RS is finite projective and there is a bimodule
isomorphism SRR

∼= βHom(RS , SS). One shows that R |S is a Frobenius extension
if and only if β is an inner automorphism. A subring pair of Frobenius algebras
S ⊆ R is β-Frobenius extension so long as RS is finite projective and the Nakayama
automorphism ηR of R stabilizes S, in which case β = ηS ◦ η−1

R [22]. For instance
a finite dimensional Hopf algebra R = H and S = K a Hopf subalgebra of H are
a pair of Frobenius algebras satisfying the conditions just given: the formula for β
reduces to the following given in terms of the modular functions of H and K and
the antipode S [11, 7.8]:

(7) β(x) =
∑

(x)

mH(x(1))mK(S(x(2)))x(3)

When a β-Frobenius extension is a QF extension is addressed in the next propo-
sition.

Proposition 3.1. A β-Frobenius extension R |S is a left QF extension if and only
if there are ui, vi ∈ R (i = 1, . . . , n) such that sui = uiβ(s) and vis = β(s)vi for all
i, s ∈ S, and

(8) β−1(s) =

n
∑

i=1

uisvi.

Proof. Suppose R |S is β-Frobenius extension. Then the bimodule isomorphism
given above applied to 1R has valueE : R→ S, a cyclic generator of βHom(RS , SS)R
satisfying E(s1rs2) = β(s1)E(r)s2 for all s1, s2 ∈ S, r ∈ R. If x1, . . . , xm ∈ R and
φ1, . . . , φm ∈ Hom(RS , SS) are projective bases of RS , and E(yj−) = φj the equa-
tions

∑m
j=1 xjE(yjr) = r and

∑m
j=1 β

−1(E(rxj))yj = r hold for all r ∈ R. (Call
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(E, xj , yj) a β-Frobenius coordinate system of R |S. Note that also SR is finite
projective.)

Given the elements ui, vi ∈ R satisfying the equations above, let Ei = E(ui−)
which defines n mappings in (the untwisted) Hom(SRS , SSS). Also define n map-
pings ψi ∈ Hom(R(

∗R)S ,RRS) by ψi(g) =
∑m

j=1 xjg(viyj) where it is not hard to

show using the β-Frobenius coordinate equations that
∑

j xj ⊗S viyj ∈ (R⊗S R)
R

for each i (a Casimir element). It follows that
∑n

i=1 ψi(Ei) = 1R and that R | ∗Rn

as natural R-S-bimodules, whence R is a left QF extension of S.
Conversely, assume the left QF condition SR

∗
R |Rn, equivalent to RRS | ∗Rn

by applying the right S-dual functor and noting (∗R)∗ ∼= R as well ∗(R∗) ∼= R.
Also assume the slightly rewritten β-Frobenius condition β−1RR

∼= S(R
∗)R, which

then implies β−1RR |Rn. So there are n mappings gi ∈ Hom(β−1RR, SRR) and n
mappings fi ∈ Hom(SRR, β−1RR) such that

∑n
i=1 fi ◦ gi = idR. Equivalently, with

ui := f(1R) and vi := g(1R),
∑n

i=1 uivi = 1R, and the equations in the proposition
are satisfied. �

The following corollary weakens one of the equivalent conditions in [7]. It im-
plies that a finite dimensional Hopf algebra that is QF over a Hopf subalgebra is
necessarily Frobenius over it; nontrivial examples of QF extensions occur for weak
Hopf algebras over their separable base algebra [10].

Corollary 3.2. Let H be a finite dimensional Hopf algebra and K a Hopf subal-
gebra. In the notation of (7) the following are equivalent:

(1) The automorphism, β = idK .
(2) The algebra extension H |K is a QF extension.
(3) The modular functions mH(x) = mK(x) for all x ∈ K.

Proof. (1 ⇒ 2) A Frobenius extension is a QF extension. (2 ⇒ 3) Applying the
counit ε to (8), one obtains ε◦β = ε, since ε(

∑

i uivi) = 1. Applied to (7) uniqueness
of inverse in convolution algebra Hom(K, k) shows that mH = mK on K. (3 ⇒ 1)
This follows from (7). �

It is well-known that for a Frobenius extension R |S, coinduction of a moduleMS

(to the right R-module Hom(RS ,MS)) is naturally isomorphic to induction of MS

(to the right R-module M ⊗S R). Similarly, a QF extension has h-equivalent coin-
duction and induction functors, which is seen from the naturality of the mappings
in the next proof.

Proposition 3.3. Suppose AMS is a bimodule and R |S is a QF extension. Then
there is an h-equivalence of bimodules,

(9) AM ⊗S RR
h
∼ AHom(RS ,MS)R.

Proof. Since RS is f.g. projective, it follows that there is an A-R-bimodule isomor-
phism

(10) M ⊗S Hom(RS , SS) ∼= Hom(RS ,MS),

given by m⊗S φ 7→ mφ(−) with inverse constructed from projective bases for RS .
But the right S-dual of R is h-equivalent to SRR, so (9) holds by Lemma 1.1. �

The next theorem notes that minimum even depth of a QF extension is the
same in its right and left versions given in Definition 2.1 (where I = R, Cn(R,S) =
R⊗S · · · ⊗S R, n times R).
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Theorem 3.4. If R |S is QF extension, then R |S has left depth 2n if and only if
R |S has right depth 2n.

Proof. The left depth 2n condition on S → R recall is Cn+1(R,S)
h
∼ Cn(R,S) as S-

R-bimodules. To this apply the additive functor Hom (−R, RR) (into the category
of R-S-bimodules), noting that Hom (Cn(R,S)R, RR) ∼= Hom(Cn−1(R,S)S , RS)
via f 7→ f(− ⊗S · · · − ⊗S1R) for each integer n ≥ 1. It follows (from Lemma 1.1)
that there is an R-S-bimodule h-equivalence,

(11) Hom (Cn(R,S)S , RS)
h
∼ Hom(Cn−1(R,S)S , RS)

(Then in the depth two case, the left depth two condition is equivalent to EndRS
h
∼

R as natural R-S-bimodules.)

Given bimodule RMS , we have RM ⊗S RR
h
∼ RHom(RS ,MS)R by the previous

lemma: apply this to Cn+1(R,S) = Cn(R,S) ⊗S R using the hom-tensor adjoint
relation: there are h-equivalences and isomorphisms of R-bimodules,

Cn+1(R,S)
h
∼ Hom(RS , Cn(R,S)S)(12)
h
∼ Hom(RS ,Hom(RS , Cn−1(R,S)S)S)
∼= Hom(R⊗S RS , Cn−1(R,S)S)

· · ·
h
∼ Hom(Cp(R,S)S , Cn−p+1(R,S)S)

for each p = 1, 2, . . . , n and n = 1, 2, . . .. Compare (11) and (12) with p = n to get

RCn+1(R,S)S
h
∼ RCn(R,S)S which is the right depth 2n condition.

The converse is proven similarly from the symmetric conditions of the QF hy-
pothesis. �

The next proposition is an easy corollary of the proofs of Theorem 3.4 and of
Proposition 3.3, therefore omitted. An R-bimodule I is said to be QF relative to

a subring S ⊆ R below if IS and SI are f.g. projectives, SIR
h
∼ SHom(IS , SS)R

and RIS
h
∼ RHom(SI, SS)S . We also suppose below an R-bimodule I is a ring

with multiplication that is associative in all respects with the bimodule structure,
such as (x1 · r)x2 = x1(r · x2) for all x1, x2 ∈ I, r ∈ R. For example, an ideal
I in a semisimple complex algebra R with semisimple subalgebra S satisfies this
hypothesis.

Corollary 3.5. Suppose I is a multiplicative R-bimodule with unit e and is QF
relative to a subring S ⊆ R. Then S ⊆ R has left I-depth 2n if and only if S ⊆ R
has right I-depth 2n.

4. Frobenius extensions

As noted above a Frobenius extension R |S is characterized by any of the follow-
ing four conditions [11]. First, thatRS is finite projective and SRR

∼= Hom(RS , SS).
Secondly, that SR is finite projective and RRS

∼= Hom(SR, SS). Thirdly, that coin-
duction and induction of right (or left) S-modules is naturally equivalent. Fourth,
there is a Frobenius coordinate system (E : R → S;x1, . . . , xm; y1, . . . , ym), which
satisfies

(13) E ∈ Hom(SRS , SSS),
m
∑

i=1

E(rxi)yi = r =
m
∑

i=1

xiE(yir) (∀r ∈ R).



IDEAL DEPTH OF QF EXTENSIONS 11

Lemma 4.1. The natural module RS is a generator iff SR is a generator iff there
are elements {aj}

n
j=1 and {cj}

n
j=1 such that

∑n

j=1 E(ajcj) = 1S.

Proof. The bimodule isomorphism SRR

∼=
−→ SHom(RS , SS)R is realized by r 7→

E(r−) (with inverse φ 7→
∑m

i=1 φ(xi)yi). If RS is a generator, then there are
elements {cj}

n
j=1 of R and mappings {φj}

n
j=1 of R∗ such that

∑n

j=1 φj(cj) = 1S.

Let Eaj = φj . Then
∑n

j=1 E(ajcj) = 1S.

Another bimodule isomorphism RRS

∼=
−→ RHom(SR, SS)S is realized by r 7→

E(−r) := rE. Then writing the last equation as
∑

j cjE(aj) = 1S exhibits BA as
a generator. �

A Frobenius (or QF) extension R |S enjoys an endomorphism ring theorem
[19, 18], which states that R | E := EndRS is a Frobenius (respectively, QF) ex-
tension, where the default ring homomorphism R → E is understood to be the left
multiplication mapping λ : r 7→ λr where of course λr(x) = rx. It is worth noting
that λ is a left split R-monomorphism (by evaluation at 1R) so RE is a generator.

The tower of a Frobenius (resp. QF) extension is obtained by iteration of the
endomorphism ring and λ, obtaining a tower of Frobenius (resp. QF) extensions
where occasionally we need the notation S := E−1, R = E0 and E = E1

(14) S → R →֒ E1 →֒ E2 →֒ · · · →֒ En →֒ · · ·

so E2 = EndER, etc. By transitivity ([22], resp. [19, Müller]), all sub-extensions
Em →֒ Em+n in the tower are also Frobenius (resp. QF) extensions.

The rings En are h-equivalent to Cn+1(R,S) = R⊗S · · · ⊗S R as R-bimodules in
case R |S is a QF extension. This follows from noting the

EndRS
∼= R⊗S Hom(RS , SS)

h
∼ R⊗S R

also holding as natural E-R-bimodules, obtained by substitution of R∗ h
∼ R. This

observation is then iterated followed by cancellations of the type R⊗R M ∼=M .

4.1. Tower above Frobenius extension. Specialize now to R |S a Frobenius
extension with Frobenius coordinate system E and {xi}

m
i=1, {yi}

m
i=1. Then the h-

equivalences above are replaced by isomorphisms, and En ∼= Cn+1(R,S) for each
n ≥ −1 as ring isomorphisms with respect to a certain induced “E-multiplication.”

The E-multiplication onR⊗SR is induced from the endomorphism ring EndRS

∼=
−→

R⊗SR given by f 7→
∑

i f(xi)⊗S yi with inverse r⊗r′ 7→ λr ◦E ◦λr′ . The outcome
is E-multiplication on C2(R,S) given by

(15) (r1 ⊗S r2)(r3 ⊗S r4) = r1E(r2r3)⊗S r4

with unity element 11 =
∑m

i=1 xi ⊗S yi. Note that the R-bimodule structure on E1
induced by λ : R →֒ E corresponds to the natural R-bimodule R⊗S R.

The E-multiplication is defined inductively on

(16) En ∼= En−1 ⊗En−2
En−1

using the Frobenius homomorphism En−1 : En−1 → En−2 obtained by iterating
the following construction: a simple and natural Frobenius coordinate system on
E1 ∼= R ⊗S R is given by E1(r ⊗S r

′) = rr′ and {xi ⊗S 1R}
m
i=1, {1R ⊗S yi}

m
i=1 [21]

as one checks.
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The iterative E-multiplication on Cn(R,S) clearly exists as an associative al-
gebra, but it seems worthwhile (and not available in the literature) to compute it
explicitly. The multiplication on C2n(R,S) is given by (⊗ = ⊗S, n ≥ 1)

(17) (r1 ⊗ · · · ⊗ r2n)(t1 ⊗ · · · ⊗ t2n) =

r1 ⊗ · · · ⊗ rnE(rn+1E(· · ·E(r2n−1E(r2nt1)t2) · · · )tn−1)tn)⊗ tn+1 ⊗ · · · ⊗ t2n.

The identity on C2n(R,S) is in terms of the dual bases,

(18) 12n−1 =

m
∑

i1,...,in=1

xi1 ⊗ · · · ⊗ xin ⊗ yin ⊗ · · · ⊗ yi1 .

The multiplication on C2n+1(R,S) is given by

(19) (r1 ⊗ · · · ⊗ r2n+1)(t1 ⊗ · · · ⊗ t2n+1) =

r1 ⊗ · · · ⊗ rn+1E(rn+2E(· · ·E(r2nE(r2n+1t1)t2) · · · )tn)tn+1 ⊗ · · · ⊗ t2n+1

with identity

(20) 12n =

m
∑

i1,...,in=1

xi1 ⊗ · · · ⊗ xin ⊗ 1R ⊗ yin ⊗ · · · ⊗ yi1 .

Let the rings Cn(R,S) := Rn and distinguish them from the isomorphic rings En−1

(n = 0, 1, . . .).
The inclusions Rn →֒ Rn+1 are given by r[n] 7→ r[n]1n, which works out in the

odd and even cases to:
R2n−1 →֒ R2n,

(21) r1 ⊗ · · · ⊗ r2n−1 7−→
∑

i

r1 ⊗ · · · ⊗ rnxi ⊗ yi ⊗ rn+1 ⊗ · · · ⊗ r2n−1

R2n →֒ R2n+1,

(22) r1 ⊗ · · · ⊗ r2n 7−→ r1 ⊗ · · · ⊗ rn ⊗ 1R ⊗ rn+1 ⊗ · · · ⊗ r2n

Here the fact that
∑

i xi ⊗ yi ∈ (R⊗S R)
R is used.

The bimodule structure on Rn over a subalgebra Rm (with m < n via composi-
tion of left multiplication mappings λ) is just given in terms of the multiplication
in Rm as follows:

(23) (r1 ⊗ · · · ⊗ rm)(a1 ⊗ · · · ⊗ an) =

[(r1 ⊗ · · · ⊗ rm)(a1 ⊗ · · · ⊗ am)]⊗ am+1 ⊗ · · · ⊗ an

with a similar formula for the right module structure.
The formulas for the successive Frobenius homomorphisms Em : Rm+1 → Rm

are given in even degrees by

(24) E2n(r1 ⊗ · · · ⊗ r2n+1) = r1 ⊗ · · · ⊗ rnE(rn+1)⊗ rn+2 ⊗ · · · ⊗ r2n+1.

for n ≥ 0. The formulas in the odd case is

(25) E2n+1(r1 ⊗ · · · ⊗ r2n+2) = r1 ⊗ · · · ⊗ rn ⊗ rn+1rn+2 ⊗ rn+3 ⊗ · · · ⊗ r2n+2

for n ≥ 0.
The dual bases of En denoted by xni and yni are given by all-in-one formulas

xni = xi ⊗ 1n−1(26)

yni = 1n−1 ⊗ yi(27)
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for n ≥ 0 (where 10 = 1R). Note that
∑

i x
n
i ⊗Rn

yni = 1n+1.
With another choice of Frobenius coordinate system (F, zj , wj) for R |S there

is in fact an invertible element d in the centralizer subring RS of R such that
F = E(d−) and

∑

i xi ⊗S yi =
∑

j zj ⊗S d
−1wj [11, 21]; whence an isomorphism of

the E-multiplication onto the F -multiplication, both on R⊗SR, given by r1⊗r2 7→
r1⊗d

−1r2. If the tower with E-multiplication is denoted by RE
n and the tower with

F -multiplication by RF
n , there is a sequence of ring isomorphisms

RE
2n

∼=
−→ RF

2n,

(28) r1 ⊗ · · · ⊗ r2n 7−→ r1 ⊗ · · · ⊗ rn ⊗ d−1rn+1 ⊗ · · · ⊗ d−1r2n

RE
2n+1

∼=
−→ RF

2n+1,

(29) r1 ⊗ · · · r2n+1 7−→ r1 ⊗ · · · ⊗ rn+1 ⊗ d−1rn+2 ⊗ · · · ⊗ d−1r2n+1

which commute with the inclusions RE,F
n →֒ RE,F

n+1.

Theorem 4.2. The multiplication, module and Frobenius structures for the tower
Rn = R⊗S · · ·⊗S R (n times R) above a Frobenius extension R |S are given by the
formulas (15) to (29).

Proof. First define Temperley-Lieb generators iteratively by en = 1n−1 ⊗Rn−2

1n−1 ∈ Rn+1 for n = 1, 2, . . ., which results in the explicit formulas,

e2n =
∑

i1,...,in+1

xi1 ⊗ · · · ⊗ xin ⊗ yinxin+1
⊗ yin+1

⊗ yin−1
⊗ · · · ⊗ yi1(30)

e2n+1 =
∑

i1,...,in

xi1 ⊗ · · · ⊗ xin ⊗ 1R ⊗ 1R ⊗ yin ⊗ · · · ⊗ yi1

These satisfy braid-like relations [13, p. 106]; namely,

(31) eiej = ejei, |i− j| ≥ 2, ei+1eiei+1 = ei+1, eiei+1ei = ei1i+1.

(The generators above fail to be idempotents to the extent that E(1) differs from
1.) The proof that the formulas above are the correct outcomes of the inductive
definitions may be given in terms of Temperley-Lieb generators, braid-like relations
and important relations

(32) enxen = enEn−1(x), ∀x ∈ Rn

(33) yen = En(yen)en, ∀y ∈ Rn+1, En(en) = 1n−1

(34) xen = enx, ∀x ∈ Rn−1

[13, p. 106] (for background see [8]) as well as the symmetric left-right relations.
These relations and the Frobenius equations (13) may be checked to hold in terms
of the equations above in a series of exercises left to the reader.

The formulas for the Frobenius bases follow from the iteratively apparent xni =
xie1e2 · · · en and yni = en · · · e2e1yi and uniqueness of bases w.r.t. same Frobenius
homomorphism. In fact en · · · e2e1r = 1n−1 ⊗ r for any r ∈ R, n = 1, 2, . . . (and
symmetrically) as well as 1n =

∑

i xie1 · · · en−1enen−1 · · · e1yi.
Since the inductive definitions of the ring and modules structures on the Rn’s also

satisfy the relations listed above, and agree on and below R2, the proof is finished
with an induction argument based on expressing tensors as words in Temperley-Lieb
generators and elements of R.
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We note that

(35) a1 ⊗ · · · ⊗ an+1 = (a1 ⊗ · · · ⊗ an)(1n−1 ⊗ an+1)

= (a1 ⊗ · · · ⊗ an−1)(1n−2 ⊗ an)(en · · · e1an+1)

= · · · = a1(e1a2)(e2e1a3) · · · (en−1 · · · e1an)(en · · · e1an+1)

The formulas for multiplication (19), (17) and (23) follow from induction and ap-
plying the relations (31) through (34). �

For the next proposition the main point above is that given a Frobenius extension
there is a ring structure on the Cn(R,S)’s satisfying the hypotheses below (for we
compare with (23)). This is true as well if R is a commutative ring with S a subring,
since the ordinary tensor algebra on R ⊗S R may be extended to any number of
tensor products.

Proposition 4.3. Let R |S be a ring extension. Suppose that there is a ring
structure on each Rn := Cn(R,S) for each n ≥ 0, a ring homomorphism Rn−1 →
Rn for each n ≥ 1, and that the composite R → Rn induces the natural bimodule
given by r · (r1 ⊗ · · · rn) · r

′ = rr1 ⊗ r2 ⊗ · · · ⊗ rnr
′. Then R |S has depth 2n+ 1 if

and only if Rn |S has depth 3.

Proof. If R |S has depth 2n + 1, then Rn
h
∼ Rn+1 as S-bimodules. By induction

of modules, also Rn
h
∼ R2n as S-bimodules. But R2n

∼= Rn ⊗S Rn. Then Rn |S
has depth three.

Conversely, ifRn |S has depth 3, then R2n
h
∼ Rn as S-bimodules. ButRn+1 |R2n

via the split S-bimodule epi r1 ⊗ · · · ⊗ r2n 7→ r1 · · · rn ⊗ rn+1 ⊗ · · · ⊗ r2n. Then
Rn+1 |R

q
n for some q ∈ Z+. It follows that R |S has depth 2n+ 1. �

We may in turn embed a depth three extension into a ring extension having
depth two. The proof requires the QF condition. Retain the notation for the
endomorphism ring introduced earlier in this section.

Theorem 4.4. Suppose R |S is a QF extension. If R |S has depth 3, then E |S
has depth 2. Conversely, if E |S has depth 2, and RS is a generator, then R |S has
depth 3.

Proof. Since R is a QF extension of S, we have E
h
∼ R ⊗S R as E-R-bimodules.

Then E ⊗S E
h
∼ R⊗SR⊗SR⊗SR as E-S-bimodules. Given the depth 3 condition,

R⊗SR
h
∼ R as S-bimodules, it follows by two substitutions that E ⊗S E

h
∼ R⊗SR

as E-S-bimodules. Consequently, E ⊗S E
h
∼ E as E-S-bimodules. Hence, E |S has

right depth 2, and since it is a QF extension by the endomorphism ring theorem
and transitivity, E |S also has left depth 2.

Conversely, we are given RS a progenerator, so that E and S are Morita equiva-
lent rings, where SHom(RS , SS)E and ERS are the context bimodules. If E |S has

depth two, then E ⊗S E
h
∼ E as E-S-bimodules. Then R⊗SR⊗SR⊗SR

h
∼ R⊗SR

as E-S-bimodules. Since Hom (RS , SS) ⊗E R ∼= S as S-bimodules, a cancella-

tion of the bimodules ERS follows, so R ⊗S R ⊗S R
h
∼ R as S-bimodules. Since

R⊗S R |R⊗S R⊗S R, it follows that R⊗S R |Rq for some q ∈ Z+. Then R |S has
depth 3. �
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5. Tower depth vs. depth of subrings

In this section we review tower depth from [15] and find a general case when it is
the same as subring depth defined in (4) and in [1]. We first require a generalization
of left and right depth 2 to a tower of three rings. We say that a tower R |S |T where

R |S and S |T are ring extensions, has generalized right depth 2 if R⊗S R
h
∼ R as

natural R-T -bimodules (where mappings T → S → R are composed to induce the
module RT ). (Note that if T = S, this is the definition of the ring extension R |S
having right depth 2. )

Throughout the section below we suppose R |S a Frobenius extension and Ei →֒
Ei+1 its tower above it, as defined in (14) and the ensuing discussion in Section 4.
Following [15] (with a small change in vocabulary), we say that R |S has right tower
depth n ≥ 2 if the sub-tower of composite ring extensions S → En−3 →֒ En−2 has
generalized right depth 2; i.e., as natural En−2-S-bimodules,

(36) En−2 ⊗En−3
En−2 ⊕ ∗ ∼= Eq

n−2

for some positive integer q, since the reverse condition is always satisfied. Since
E−1 = S and E0 = R, this recovers the right depth two condition on a subring S of
R. To this definition we add that a Frobenius extension R |S has depth 1 if it is a
centrally projective ring extension; i.e., SRS |Sq for some q ∈ Z+. Left tower depth
n is just defined using (36) but as natural S-En−2-bimodules. By [15, Theorem 2.7]
the left and right tower depth n conditions are equivalent on Frobenius extensions.

From the definition of tower depth and a comparison of (16) and (2.1) with
I = R, the following lemma is obtained:

Lemma 5.1. Suppose S ⊆ R is a subring such that R is a Frobenius extension of
S. If R |S has tower depth n, then S ⊆ R has depth 2n− 2 for each n = 1, 2, . . ..

Proof. From (36) we obtain Rn |Rq
n−1 as R-S-bimodules; the rest of the proof is

sorting out notation and indices. �

From [15, Lemma 8.3], it follows that if R |S has tower depth n, it has tower
depth n + 1. Define dF (R,S) to be the minimum tower depth if R |S has tower
depth n for some integer n, dF (R,S) = ∞ if the condition (36) is not satisfied for
any n ≥ 2 nor is it depth 1. Notice that if S ⊆ R is a subring with R a Frobenius
extension of S, then dF (R,S) = d(S,R) if one of d(S,R) ≤ 2 or dF (R,S) ≤ 2.
This is extended to dF (R,S) = d(S,R) if one of d(S,R), dF (R,S) ≤ 3 in the next
lemma.

Notice that tower depth n makes sense for a QF extension R |S: by elementary

considerations, it has right tower depth 3 if S → R →֒ E satisfies E ⊗R E
h
∼ E as

E-S-bimodules. It has been noted elsewhere that a QF extension has right tower
depth 3 if and only if it has left tower depth 3 by an argument essentially identical
to that in [15, Th. 2.8] but replacing Frobenius isomorphisms with quasi-Frobenius
h-equivalences.

Lemma 5.2. A QF extension R |S such that RS is a generator has tower depth 3
if and only if S has depth 3 as a subring in R.

Proof. Since RS is a generator, R |S is a proper extension by a short argument.
Assume S ⊆ R.
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(⇒) By the QF property, E
h
∼ R ⊗S R as E-S-bimodules. By the tower depth

3 condition, E ⊗R E
h
∼ E as E-S-bimodules. Then R ⊗S R ⊗S R

h
∼ R ⊗S R as

E-S-bimodules. Since RS is a progenerator, we cancel bimodules ERS as in the

proof of Theorem 4.4 to obtain R ⊗S R
h
∼ R as S-bimodules. Hence S ⊆ R has

depth 3.

(⇐) Given SRS
h
∼ SR ⊗S RS , by tensoring with ER ⊗S − we get R ⊗S R

h
∼

R⊗SR⊗SR as E-S-bimodules. By the QF property, E⊗RE
h
∼ E as E-S-bimodules

follows, whence R |S has tower depth 3. �

The theorem below proves that subring depth and tower depth coincide on Frobe-
nius generator extensions. At a certain point in the proof, we use the following
fundamental fact about the tower Rn above a Frobenius extension R |S: since
the compositions of the Frobenius extensions remain Frobenius, the iterative con-
structions of E-multiplication on tensor-squares isomorphic to endomorphism rings
applies, but gives isomorphic ring structures to those on the Rn. For example, the
composite extension S → Rn is Frobenius with End (Rn)S ∼= Rn ⊗S Rn

∼= R2n,
isomorphic in its E ◦E1 ◦ · · · ◦En−1-multiplication or its E-multiplication given in
(17) [12].

Theorem 5.3. Let S ⊆ R be a subring such that R is a Frobenius extension of S
and RS is a generator. Then R |S has tower depth m for m = 1, 2, . . . if and only
if the subring S ⊆ R has depth m. Consequently, dF (R,S) = d(S,R).

Proof. The cases m = 1, 2, 3 have been dealt with above. We divide the rest of the
proof into odd m and even m. The proof for odd m = 2n + 1: (⇒) If R |S has
tower depth 2n + 1, then R2n ⊗R2n−1

R2n |R
q
2n as R2n-S-bimodules. Continuing

with R2n
∼= R2n−1 ⊗R2n−2

R2n−1, iterating and performing standard cancellations,
we obtain

(37) R2n+1 |R
q
2n

as End (Rn)S-S-bimodules. But the module (Rn)S is a generator for all n by
Lemma 4.1, the endomorphism ring theorem for Frobenius generator extensions and
transitivity of generator property for modules (if MR and RS are generators, then
restricted moduleMS is clearly a generator). It follows that (Rn)S is a progenerator
and cancellable as an End (Rn)S-S-bimodule (applying the Morita theorem as in
the proof of Theorem 4.4). Then S(Rn+1)S | S(Rn)S after cancellation of Rn from
(37), which is the depth 2n+ 1 condition in (4).

(⇐) Suppose Rn+1⊕∗ ∼= Rn as S-bimodules. Apply to this the additive functor
Rn⊗S− from category of S-bimodules into the category of End (Rn)S-S-bimodules.
We obtain (37) which is equivalent to the tower depth 2n+ 1 condition of R |S.

The proof in the even case, m = 2n does not need the generator condition (since
even non-generator Frobenius extensions have endomorphism ring extensions that
are generators):

(⇒) Given the tower depth 2n condition R2n−1 ⊗R2n−2
R2n−1

∼= R2n is iso-
morphic as R2n−1-S-bimodules to a direct summand in Rq

2n−1 for some positive
integer q. Introduce a cancellable extra term in R2n

∼= Rn ⊗R Rn+1 and in
R2n−1

∼= Rn⊗RRn. Now note that R2n−1
∼= End (Rn)R which is Morita equivalent

to R. After cancellation of the End (Rn)R-R-bimodule Rn, we obtain Rn+1 |Rn as
R-S-bimodules as required by (4).
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(⇐) Given R(Rn+1)S |R(Rn)S , we apply End (Rn)R
Rn⊗R− obtainingR2n |R2n−1

as R2n−1-S-bimodules, which is equivalent to the tower depth 2n condition. �

A depth 2 extension R |S often has easier equivalent conditions, e.g., a normality
condition, to fulfill than the S-R-bimodule condition R⊗SR |Rq [2]. Therefore the
next corollary (or one like it stated more generally for Frobenius extensions) is in-
teresting in pursuing questions of whether a special type of ring extension has finite
depth (and placing finite depth ring extensions in the context of a Galois-normal
extension). The corollary follows from [15, 8.6], Proposition 4.3 and Theorem 4.4.

Corollary 5.4. Let K ⊆ H be a Hopf subalgebra pair of finite dimensional uni-
modular Hopf algebras. Then K has finite depth in H if and only if there is a tower
algebra Hm such that K ⊆ Hm has depth 2.

In practice, the depth is n or less if m ≥ n−1 where Hm denotes H⊗K · · ·⊗KH
(m times H); cf. [6, Theorem 3.14]. In particular, when H = k[G] and K = k[J ]
are group algebras of a subgroup pair G ≥ J , K ⊆ Hm has depth 2 for some
m > 2[G : NG(J)] [1].

5.1. Acknowledgements. The author thanks Sebastian Burciu, Mio Iovanov, Chris-
tian and Paula Lomp for interesting conversations.
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