ODD CATALAN NUMBERS MODULO 2^k

HSUEH-YUNG LIN

ABSTRACT. This article proves a conjecture by S.-C. Liu and C.-C. Yeh about Catalan numbers, which states that odd Catalan numbers can take exactly k-1 distinct values modulo 2^k , namely the values $C_{2^1-1}, \ldots, C_{2^{k-1}-1}$.

0. NOTATION

In this article we denote $C_n := \frac{(2n)!}{(n+1)!n!}$ the *n*-th Catalan number. We also define $(2n+1)!! := 1 \times 3 \times \cdots \times (2n+1)$. For *x* an integer, $\nu_2(x)$ stands for the 2-adic valuation of *x*, i.e. $\nu_2(x)$ is the largest integer *a* such that 2^a divides *x*.

1. INTRODUCTION

The main result of this article is Theorem 1.2, which proves a conjecture by S.-C. Liu and C.-C. Yeh about odd Catalan numbers [2]. To begin with, let us recall the characterization of odd Catalan numbers:

Proposition 1.1. A Catalan number C_n is odd if and only if $n = 2^a - 1$ for some integer a.

That result is easy, see e.g. [3].

The main theorem we are going to prove is the following:

Theorem 1.2. For all $k \geq 2$, the numbers $C_{2^1-1}, C_{2^2-1}, \ldots, C_{2^{k-1}-1}$ all are distinct modulo 2^k , and modulo 2^k the sequence $(C_{2^n-1})_{n\geq 1}$ is constant from rank k-1 on.

Here are a few historical references about the values of the C_n modulo 2^k . Deutsch and Sagan [1] first computed the 2-adic valuations of the Catalan numbers. Next S.-P. Eu, S.-C. Liu and Y.-N. Yeh [4] determined the modulo 8 values of the C_n . Then S.-C. Liu et C.-C. Yeh determined the modulo 64 values of the C_n by extending the method of Eu, Liu and Yeh in [2], in which they also stated Theorem 1.2 as a conjecture.

Our proof of Theorem 1.2 will be divided into three parts. In Section 2 we will begin with the case k = 2, which is the initialization step for a proof of Theorem 1.2 by induction. In Section 3 we will prove that the numbers $C_{2^1-1}, C_{2^2-1}, \ldots, C_{2^{k-1}-1}$ all are distinct modulo 2^k . Finally in Section 4 we will prove that $C_{2^n-1} \equiv C_{2^{k-1}-1}$ (mod 2^k) for all $n \geq k-1$.

Date: January 12, 2011.

HSUEH-YUNG LIN

2. Odd Catalan numbers modulo 4

In this section we prove that any odd Catalan number is congruent to 1 modulo 4, which is Theorem 1.2 for k = 2. Though this result can be found in [4], I give a more "elementary" proof, in which I shall also make some computations which will be used again in the sequel.

Before starting, we state two identities:

Lemma 2.1. For any $a \ge 3$, the following identities hold:

(1)
$$(2^a - 1)!! \equiv 1 \pmod{2^a};$$

(2)
$$(2^a - 3)!! \equiv -1 \pmod{2^{a+1}}$$

Proof. We are proving the two identities separately. In both cases we reason by induction on a, both equalities being trivial for a = 3. So, let $a \ge 4$ and suppose the result stands true for a - 1. First we have

$$\begin{array}{rcl} (2^{a}-1)!! &=& 1 \times 3 \times \dots \times (2^{a-1}-1) \times (2^{a-1}+1) \times \dots \times (2^{a}-1) \\ &\equiv& 1 \times 3 \times \dots \times (2^{a-1}-1) \times (-(2^{a-1}-1)) \times \dots \times (-1) \\ &=& (1 \times 3 \times \dots \times (2^{a-1}-1))^{2} \times (-1)^{2^{a-2}} \pmod{2^{a}}. \end{array}$$

Since, by the induction hypothesis, $1 \times 3 \times \cdots \times (2^{a-1} - 1)$ is equal to 1 or $2^{a-1} + 1$ modulo 2^a , we have $(1 \times 3 \times \cdots \times (2^{a-1} - 1))^2 \equiv 1 \pmod{2^a}$ in both cases, from which the first identity follows.

For the second identity,

$$(2^{a}-3)!! = \prod_{k=1}^{2^{a-2}-1} (2k+1) \cdot \prod_{k=2^{a-2}}^{2^{a-1}-2} (2k+1).$$

Reversing the order of the indexes in the first product and translating the indexes in the second one, we get

$$(2^{a}-3)!! = \prod_{k=0}^{2^{a-2}-2} (2^{a-1} - (2k+1)) \cdot \prod_{k=0}^{2^{a-2}-2} (2^{a-1} + (2k+1))$$
$$= \prod_{k=0}^{2^{a-2}-2} [2^{2(a-1)} - (2k+1)^{2}]$$
$$\equiv \prod_{k=0}^{2^{a-2}-2} [-(2k+1)^{2}] = -(2^{a-1}-3)!!^{2} \pmod{2^{a+1}}.$$

By the induction hypothesis, $(2^{a-1}-3)!!$ is equal to -1 or 2^a-1 modulo 2^{a+1} , and in either case the result follows.

Now comes the main proposition of this section:

Proposition 2.2. Fore all integer $a, C_{2^a-1} \equiv 1 \pmod{4}$.

Proof. Put $n := 2^a - 1$. We want to prove that $4 \mid \frac{(2n)!}{n!(n+1)!} - 1 = \frac{(2n)! - n!(n+1)!}{n!(n+1)!}$. Let us denote $\omega := \nu_2[(2n)!]$. Since $C_n = \frac{(2n)!}{n!(n+1)!}$ is odd, one also has $\omega = \nu_2[n!(n+1)!]$. Then, proving that $4 \mid \frac{(2n)! - n!(n+1)!}{n!(n+1)!}$ is equivalent to proving that $4 \mid \frac{(2n)!}{2^{\omega}} - \frac{n!(n+1)!}{2^{\omega}}$. To do that, it suffices to show that $\frac{n!(n+1)!}{2^{\omega}} \equiv 1 \pmod{4}$ and $\frac{(2n)!}{2^{\omega}} \equiv 1 \pmod{4}$.

As $\omega = \nu_2[n!(n+1)!] = \nu_2[(n!)^2 2^a] = a + 2\nu_2(n!)$, one has $\nu_2(n!) = (\omega - a)/2$, thus $n!/2^{(\omega-a)/2}$ is an odd number by the very definition of valuation. That yields the first equality:

$$\frac{n!(n+1)!}{2^{\omega}} = \frac{(n!)^2(n+1)}{2^{\omega}} = \frac{(n!)^2 2^a}{2^{\omega}} = \left(\frac{n!}{2^{(\omega-a)/2}}\right)^2 \equiv 1 \pmod{4}$$

Concerning the equality $\frac{(2n)!}{2^{\omega}} \equiv 1 \pmod{4}$, it is easy to check for $a \leq 2$; now we consider the case $a \geq 3$, to which we can apply Lemma 2.1. For all $i \leq a$, put $\omega_i := \nu_2[(2^{a-i+1}-1)!]$. For i < a, one has

$$\frac{(2^{a-i+1}-1)!}{2^{\omega_i}} = \frac{(2^{a-i+1}-1)!!(\prod_{p=1}^{2^{a-i}-1}2p)}{2^{\omega_i}} = (2^{a-i+1}-1)!!\frac{(2^{a-i}-1)!}{2^{\omega_i+2^{a-i}-1}}.$$

As the left-hand side of this equality is odd, so is its right-hand side, so that $\omega_i + 2^{a-i} - 1$ is actually the 2-adic valuation of $2^{a-i} - 1$. In the end, we have shown that

$$\frac{(2^{a-i+1}-1)!}{2^{\omega_i}} = (2^{a-i+1}-1)!!\frac{(2^{a-i}-1)!}{2^{\omega_{i+1}}}$$

Moreover, for i = a it is immediate that $(2^{a-i+1} - 1)!/2^{\omega_i} = 1$, whence

$$\begin{aligned} \frac{(2n)!}{2^{\omega}} &= \frac{(2^{a+1}-2)!}{2^{\omega}} = \frac{1}{2^{a+1}-1} \cdot \frac{(2^{a+1}-1)!}{2^{\omega}} \\ &= \frac{1}{2^{a+1}-1} \cdot (2^{a+1}-1)!! \cdot \frac{(2^a-1)!}{2^{\omega_1}} \\ &= \frac{1}{2^{a+1}-1} \cdot (2^{a+1}-1)!! \cdot (2^a-1)!! \cdot \frac{(2^{a-1}-1)!}{2^{\omega_2}} \\ &= \cdots \\ &= \frac{1}{2^{a+1}-1} \cdot \prod_{k=1}^{a+1} (2^k-1)!! \\ &= \frac{1}{2^{a+1}-1} \cdot (2^{a+1}-1)!! \cdot \prod_{k=1}^{a} (2^k-1)!! \\ &= (2^{a+1}-3)!! \cdot \prod_{k=1}^{a} (2^k-1)!!. \end{aligned}$$

But, modulo 4, one has $(2^{a+1} - 3)!! \equiv -1$ by (2) in Lemma 2.1, $(2^1 - 1)!! \equiv 1$, $(2^2 - 1)!! \equiv -1$ and $(2^k - 1)!! \equiv 1$ for $k \ge 3$ by (1) in Lemma 2.1, whence $(2n)!/2^{\omega} \equiv 1$.

Before ending this section, I highlight an intermediate result of the previous proof by stating it as a lemma:

Lemma 2.3. For $a \ge 0$, putting $\omega := \nu_2[(2^{a+1}-2)!]$,

$$\frac{(2^{a+1}-2)!}{2^{\omega}} = (2^{a+1}-3)!! \cdot \prod_{k=1}^{a} (2^k-1)!!.$$

HSUEH-YUNG LIN

3. Distinctness modulo 2^k of the $C_{2^1-1}, \ldots, C_{2^{k-1}-1}$

In this section we prove that for all $k \ge 2$, the numbers $C_{2^1-1}, \ldots, C_{2^{k-1}-1}$ are distinct modulo 2^k . To begin with, we state a lemma which gives an equivalent formulation to the equality " $C_{2^m-1} \equiv p \pmod{2^k}$ ". This lemma will be used in Sections 3 and 4.

Lemma 3.1. Let $k \ge 2$ and $m \ge 1$, then $C_{2^m-1} \equiv p \pmod{2^k}$ if and only if

$$(2^{m+1}-3)!! \equiv p \prod_{n=1}^{m} (2^n-1)!! \pmod{2^k}.$$

Proof. Denote $\omega := \nu_2[(2^{m+1} - 2)!] = \nu_2[(2^m)!(2^m - 1)!]$ (recall that $C_{2^m-1} = \frac{(2^{m+1}-2)!}{(2^m)!(2^m-1)!}$ is odd). Applying Lemma 2.3,

$$C_{2^{m}-1} \equiv p \pmod{2^{k}}$$

$$\Leftrightarrow 2^{k} \mid \frac{(2^{m+1}-2)!}{(2^{m})!(2^{m}-1)!} - p$$

$$\Leftrightarrow 2^{k} \mid \frac{(2^{m+1}-2)!}{2^{\omega}} - \frac{p(2^{m})!(2^{m}-1)!}{2^{\omega}}$$

$$\Leftrightarrow 2^{k} \mid (2^{m+1}-3)!! \prod_{n=1}^{m} (2^{n}-1)!! - p \left(\prod_{n=1}^{m} (2^{n}-1)!!\right)^{2}$$

$$\Leftrightarrow 2^{k} \mid \left(\prod_{n=1}^{m} (2^{n}-1)!!\right) \left((2^{m+1}-3)!! - p \prod_{n=1}^{m} (2^{n}-1)!!\right).$$

But $\prod_{n=1}^{m} (2^n - 1)!!$ is odd, so $C_{2^m - 1} \equiv p \pmod{2^k}$ if and only if 2^k divides $((2^{m+1} - 3)!! - p \prod_{n=1}^{m} (2^n - 1)!!)$, which is our lemma.

Proposition 3.2. Let $k \ge 2$ be an integer. For all $j \in \{1, ..., k-1\}$, $C_{2^{j}-1} \not\equiv C_{2^{k}-1} \pmod{2^{k+1}}$.

Proof. We prove this proposition by contradiction. Suppose there exists a $j \in \{1, \ldots, k-1\}$ such that $C_{2^j-1} \equiv C_{2^k-1} =: p \pmod{2^{k+1}}$. By Lemma 3.1, one would have

$$p\prod_{n=1}^{j} (2^n - 1)!! \equiv (2^{j+1} - 3)!! \pmod{2^{k+1}},$$

and by Lemma 3.1 and Fomula (2) in Lemma 2.1,

$$p\prod_{n=1}^{k} (2^n - 1)!! \equiv (2^{k+1} - 3)!! \equiv -1 \pmod{2^{k+1}}.$$

As $j+2 \leq k+1$, both equalities would remain true modulo 2^{j+2} . Thus one would have

$$\begin{aligned} -1 &\equiv p \prod_{n=1}^{k} (2^{n} - 1)!! \pmod{2^{j+2}} \\ &= p \prod_{n=1}^{j} (2^{n} - 1)!! \times \prod_{n=j+1}^{k} (2^{n} - 1)!! \\ &\equiv (2^{j+1} - 3)!! \times \prod_{n=j+1}^{k} (2^{n} - 1)!! \\ &= (2^{j+1} - 3)!! \cdot (2^{j+1} - 1)!! \times \prod_{n=j+2}^{k} (2^{n} - 1)!! \\ &\equiv (2^{j+1} - 3)!! \cdot (2^{j+1} - 1)!! \quad (by (1) \text{ in Lemma 2.1}) \\ &= (2^{j+1} - 3)!!^{2} \cdot (2^{j+1} - 1)! \\ &\equiv 2^{j+1} - 1 \pmod{2^{j+2}} \quad (by (2) \text{ in Lemma 2.1}), \end{aligned}$$

which is absurd.

Thanks to the previous proposition, we prove the first claim of Theorem 1.2:

Corollary 3.3. For $k \ge 2$, the numbers $C_{2^{1}-1}, C_{2^{2}-1}, \ldots, C_{2^{k-1}-1}$ all are distinct modulo 2^{k} .

Proof. The case k = 2 is trivial. Let $k \ge 2$ and suppose that, modulo 2^k , the numbers $C_{2^1-1}, C_{2^2-1}, \ldots, C_{2^{k-1}-1}$ all are distinct, so that they are also distinct modulo 2^{k+1} . By Proposition 3.2, $C_{2^j-1} \not\equiv C_{2^k-1} \pmod{2^{k+1}}$ for all $j \in \{1, \ldots, k-1\}$, so the numbers $C_{2^1-1}, C_{2^2-1}, \ldots, C_{2^k-1}$ all are distinct modulo 2^{k+1} . The claim follows by induction.

4. Ultimate constancy of the sequence of the C_{2^n-1} modulo 2^k

To complete the proof of Theorem 1.2, it remains to prove that the C_{2^n-1} all are equal modulo 2^k for $n \ge k-1$.

Proposition 4.1. Let $k \ge 2$, then for all $m \ge k - 1$, $C_{2^m - 1} \equiv C_{2^{k-1} - 1} \pmod{2^k}$.

Proof. Denote $C_{2^{k-1}-1} \equiv p \pmod{2^k}$. We will show that $C_{2^m-1} \equiv p \pmod{2^k}$ for all $m \geq k-1$ by induction. Let $m \geq k$ be such that the previous equality stands true for m-1. By Lemma 3.1, it suffices to show that $(2^{m+1}-3)!! \equiv p \prod_{n=1}^m (2^n-1)!! \pmod{2^k}$. To do this, we are going to show that $(2^{m+1}-3)!! \equiv (2^m-3)!! \pmod{2^k}$ and that $p \prod_{n=1}^m (2^n-1)!! \equiv (2^m-3)!! \pmod{2^k}$.

The first equality follows from the following computation:

$$(2^{m+1} - 3)!! = (2^m - 3)!! \times (2^m - 1) \times (2^m + 1) \times \dots \times (2 \cdot 2^m - 3) \\ \equiv (2^m - 3)!! \cdot (1 \times 3 \times \dots \times (2^k - 1))^{2^{m-k}} \pmod{2^k} \\ \equiv (2^m - 3)!! \quad (by (1) \text{ in Lemma 2.1}).$$

HSUEH-YUNG LIN

To get the other equality, using again (1) in Lemma 2.1, one has

$$p\prod_{n=1}^{m} (2^n - 1)!! = (2^m - 1)!! \cdot p\prod_{n=1}^{m-1} (2^n - 1)!! \equiv p\prod_{n=1}^{m-1} (2^n - 1)!! \pmod{2^k}.$$

But by Lemma 3.1, the induction hypothesis means that $p \prod_{n=1}^{m-1} (2^n - 1)!! \equiv (2^m - 3)!! \pmod{2^k}$, whence the result.

5. Going further

After the series of works on odd Catalan numbers modulo 2^k this article belongs to, a natural question would be how many distinct *even* Catalan numbers there are modulo 2^k and how these numbers behave. An idea to do this would be to study the C_n having some fixed 2-adic valuation.

More generally, one could also wonder what happens for Catalan numbers modulo p^k for prime p, which is a question that mathematicians studying the arithmetic properties of Catalan numbers have been asking for a long time.

Acknowledgements

The author thanks Pr P. Shuie and Pr S.-C. Liu for their mathematical advice, and R. Peyre for helping to improve the writing of this article.

References

- E. Deutch and B. Sagan, Congruences for Catalan and Motzkin numbers and related sequences, J. Number Theory 117 (2006), 191–215.
- 2. S.-C. Liu and J. C.-C. Yeh, Catalan numbers modulo 2^k, J. of Integer Sequences 13 (2010).
- K.Kubota R. Alter, Prime and prime power divisibility of Catalan numbers, J. of Combinatoric Theory (A) 15 (1973), 243–256.
- S.-C. Liu S.-P. Eu and Y.-N. Yeh, Catalan and Motzkin numbers modulo 4 and 8, European J. of Combin 29 (2008), 1449–1466.

École Normale Supérieure de Lyon