ODD CATALAN NUMBERS MODULO 2^{k}

HSUEH-YUNG LIN

Abstract

This article proves a conjecture by S.-C. Liu and C.-C. Yeh about Catalan numbers, which states that odd Catalan numbers can take exactly $k-1$ distinct values modulo 2^{k}, namely the values $C_{2^{1}-1}, \ldots, C_{2^{k-1}-1}$.

0. Notation

In this article we denote $C_{n}:=\frac{(2 n)!}{(n+1)!n!}$ the n-th Catalan number. We also define $(2 n+1)!!:=1 \times 3 \times \cdots \times(2 n+1)$. For x an integer, $\nu_{2}(x)$ stands for the 2 -adic valuation of x, i.e. $\nu_{2}(x)$ is the largest integer a such that 2^{a} divides x.

1. Introduction

The main result of this article is Theorem 1.2 , which proves a conjecture by S.C. Liu and C.-C. Yeh about odd Catalan numbers [2]. To begin with, let us recall the characterization of odd Catalan numbers:

Proposition 1.1. A Catalan number C_{n} is odd if and only if $n=2^{a}-1$ for some integer a.

That result is easy, see e.g. [3].
The main theorem we are going to prove is the following:
Theorem 1.2. For all $k \geq 2$, the numbers $C_{2^{1}-1}, C_{2^{2}-1}, \ldots, C_{2^{k-1}-1}$ all are distinct modulo 2^{k}, and modulo 2^{k} the sequence $\left(C_{2^{n}-1}\right)_{n \geq 1}$ is constant from rank $k-1$ on.

Here are a few historical references about the values of the C_{n} modulo 2^{k}. Deutsch and Sagan [1] first computed the 2-adic valuations of the Catalan numbers. Next S.-P. Eu, S.-C. Liu and Y.-N. Yeh [4] determined the modulo 8 values of the C_{n}. Then S.-C. Liu et C.-C. Yeh determined the modulo 64 values of the C_{n} by extending the method of Eu , Liu and Yeh in [2, in which they also stated Theorem 1.2 as a conjecture.

Our proof of Theorem 1.2 will be divided into three parts. In Section 2 we will begin with the case $k=2$, which is the initialization step for a proof of Theorem 1.2 by induction. In Section 3 we will prove that the numbers $C_{2^{1}-1}, C_{2^{2}-1}, \ldots, C_{2^{k-1}-1}$ all are distinct modulo 2^{k}. Finally in Section 4 we will prove that $C_{2^{n}-1} \equiv C_{2^{k-1}-1}$ $\left(\bmod 2^{k}\right)$ for all $n \geq k-1$.

[^0]
2. Odd Catalan numbers modulo 4

In this section we prove that any odd Catalan number is congruent to 1 modulo 4 , which is Theorem 1.2 for $k=2$. Though this result can be found in [4], I give a more "elementary" proof, in which I shall also make some computations which will be used again in the sequel.

Before starting, we state two identities:
Lemma 2.1. For any $a \geq 3$, the following identities hold:

$$
\begin{gather*}
\left(2^{a}-1\right)!!\equiv 1 \quad\left(\bmod 2^{a}\right) \tag{1}\\
\left(2^{a}-3\right)!!\equiv-1 \quad\left(\bmod 2^{a+1}\right) \tag{2}
\end{gather*}
$$

Proof. We are proving the two identities separately. In both cases we reason by induction on a, both equalities being trivial for $a=3$. So, let $a \geq 4$ and suppose the result stands true for $a-1$. First we have

$$
\begin{aligned}
\left(2^{a}-1\right)!! & =1 \times 3 \times \cdots \times\left(2^{a-1}-1\right) \times\left(2^{a-1}+1\right) \times \cdots \times\left(2^{a}-1\right) \\
& \equiv 1 \times 3 \times \cdots \times\left(2^{a-1}-1\right) \times\left(-\left(2^{a-1}-1\right)\right) \times \cdots \times(-1) \\
& =\left(1 \times 3 \times \cdots \times\left(2^{a-1}-1\right)\right)^{2} \times(-1)^{2^{a-2}} \quad\left(\bmod 2^{a}\right)
\end{aligned}
$$

Since, by the induction hypothesis, $1 \times 3 \times \cdots \times\left(2^{a-1}-1\right)$ is equal to 1 or $2^{a-1}+1$ modulo 2^{a}, we have $\left(1 \times 3 \times \cdots \times\left(2^{a-1}-1\right)\right)^{2} \equiv 1\left(\bmod 2^{a}\right)$ in both cases, from which the first identity follows.

For the second identity,

$$
\left(2^{a}-3\right)!!=\prod_{k=1}^{2^{a-2}-1}(2 k+1) \cdot \prod_{k=2^{a-2}}^{2^{a-1}-2}(2 k+1)
$$

Reversing the order of the indexes in the first product and translating the indexes in the second one, we get

$$
\begin{aligned}
\left(2^{a}-3\right)!! & =\prod_{k=0}^{2^{a-2}-2}\left(2^{a-1}-(2 k+1)\right) \cdot \prod_{k=0}^{2^{a-2}-2}\left(2^{a-1}+(2 k+1)\right) \\
& =\prod_{k=0}^{2^{a-2}-2}\left[2^{2(a-1)}-(2 k+1)^{2}\right] \\
& \equiv \prod_{k=0}^{2^{a-2}-2}\left[-(2 k+1)^{2}\right]=-\left(2^{a-1}-3\right)!!^{2} \quad\left(\bmod 2^{a+1}\right) .
\end{aligned}
$$

By the induction hypothesis, $\left(2^{a-1}-3\right)!$! is equal to -1 or $2^{a}-1$ modulo 2^{a+1}, and in either case the result follows.

Now comes the main proposition of this section:
Proposition 2.2. Fore all integer $a, C_{2^{a}-1} \equiv 1(\bmod 4)$.
Proof. Put $n:=2^{a}-1$. We want to prove that $4 \left\lvert\, \frac{(2 n)!}{n!(n+1)!}-1=\frac{(2 n)!-n!(n+1)!}{n!(n+1)!}\right.$. Let us denote $\omega:=\nu_{2}[(2 n)!]$. Since $C_{n}=\frac{(2 n)!}{n!(n+1)!}$ is odd, one also has $\omega=\nu_{2}[n!(n+1)!]$. Then, proving that $4 \left\lvert\, \frac{(2 n)!-n!(n+1)!}{n!(n+1)!}\right.$ is equivalent to proving that $4 \left\lvert\, \frac{(2 n)!}{2^{\omega}}-\frac{n!(n+1)!}{2^{\omega}}\right.$. To do that, it suffices to show that $\frac{n!(n+1)!}{2^{\omega}} \equiv 1(\bmod 4)$ and $\frac{(2 n)!}{2^{\omega}} \equiv 1(\bmod 4)$.

As $\omega=\nu_{2}[n!(n+1)!]=\nu_{2}\left[(n!)^{2} 2^{a}\right]=a+2 \nu_{2}(n!)$, one has $\nu_{2}(n!)=(\omega-a) / 2$, thus $n!/ 2^{(\omega-a) / 2}$ is an odd number by the very definition of valuation. That yields the first equality:

$$
\frac{n!(n+1)!}{2^{\omega}}=\frac{(n!)^{2}(n+1)}{2^{\omega}}=\frac{(n!)^{2} 2^{a}}{2^{\omega}}=\left(\frac{n!}{2^{(\omega-a) / 2}}\right)^{2} \equiv 1 \quad(\bmod 4)
$$

Concerning the equality $\frac{(2 n)!}{2^{\omega}} \equiv 1(\bmod 4)$, it is easy to check for $a \leq 2$; now we consider the case $a \geq 3$, to which we can apply Lemma 2.1. For all $i \leq a$, put $\omega_{i}:=\nu_{2}\left[\left(2^{a-i+1}-1\right)!\right]$. For $i<a$, one has

$$
\frac{\left(2^{a-i+1}-1\right)!}{2^{\omega_{i}}}=\frac{\left(2^{a-i+1}-1\right)!!\left(\prod_{p=1}^{2^{a-i}-1} 2 p\right)}{2^{\omega_{i}}}=\left(2^{a-i+1}-1\right)!!\frac{\left(2^{a-i}-1\right)!}{2^{\omega_{i}+2^{a-i}-1}}
$$

As the left-hand side of this equality is odd, so is its right-hand side, so that $\omega_{i}+2^{a-i}-1$ is actually the 2 -adic valuation of $2^{a-i}-1$. In the end, we have shown that

$$
\frac{\left(2^{a-i+1}-1\right)!}{2^{\omega_{i}}}=\left(2^{a-i+1}-1\right)!!\frac{\left(2^{a-i}-1\right)!}{2^{\omega_{i+1}}}
$$

Morevoer, for $i=a$ it is immediate that $\left(2^{a-i+1}-1\right)!/ 2^{\omega_{i}}=1$, whence

$$
\begin{aligned}
\frac{(2 n)!}{2^{\omega}} & =\frac{\left(2^{a+1}-2\right)!}{2^{\omega}}=\frac{1}{2^{a+1}-1} \cdot \frac{\left(2^{a+1}-1\right)!}{2^{\omega}} \\
& =\frac{1}{2^{a+1}-1} \cdot\left(2^{a+1}-1\right)!!\cdot \frac{\left(2^{a}-1\right)!}{2^{\omega_{1}}} \\
& =\frac{1}{2^{a+1}-1} \cdot\left(2^{a+1}-1\right)!!\cdot\left(2^{a}-1\right)!!\cdot \frac{\left(2^{a-1}-1\right)!}{2^{\omega_{2}}} \\
& =\cdots \\
& =\frac{1}{2^{a+1}-1} \cdot \prod_{k=1}^{a+1}\left(2^{k}-1\right)!! \\
& =\frac{1}{2^{a+1}-1} \cdot\left(2^{a+1}-1\right)!!\cdot \prod_{k=1}^{a}\left(2^{k}-1\right)!! \\
& =\left(2^{a+1}-3\right)!!\cdot \prod_{k=1}^{a}\left(2^{k}-1\right)!!
\end{aligned}
$$

But, modulo 4, one has $\left(2^{a+1}-3\right)!!\equiv-1$ by (2) in Lemma 2.1) $\left(2^{1}-1\right)!$! \equiv $1,\left(2^{2}-1\right)!!\equiv-1$ and $\left(2^{k}-1\right)!!\equiv 1$ for $k \geq 3$ by (1) in Lemma 2.1, whence $(2 n)!/ 2^{\omega} \equiv 1$.

Before ending this section, I highlight an intermediate result of the previous proof by stating it as a lemma:

Lemma 2.3. For $a \geq 0$, putting $\omega:=\nu_{2}\left[\left(2^{a+1}-2\right)!\right]$,

$$
\frac{\left(2^{a+1}-2\right)!}{2^{\omega}}=\left(2^{a+1}-3\right)!!\cdot \prod_{k=1}^{a}\left(2^{k}-1\right)!!
$$

3. Distinctness modulo 2^{k} of the $C_{2^{1}-1}, \ldots, C_{2^{k-1}-1}$

In this section we prove that for all $k \geq 2$, the numbers $C_{2^{1}-1}, \ldots, C_{2^{k-1}-1}$ are distinct modulo 2^{k}. To begin with, we state a lemma which gives an equivalent formulation to the equality " $C_{2^{m}-1} \equiv p\left(\bmod 2^{k}\right)$ ". This lemma will be used in Sections 3 and 4.

Lemma 3.1. Let $k \geq 2$ and $m \geq 1$, then $C_{2^{m}-1} \equiv p\left(\bmod 2^{k}\right)$ if and only if

$$
\left(2^{m+1}-3\right)!!\equiv p \prod_{n=1}^{m}\left(2^{n}-1\right)!!\quad\left(\bmod 2^{k}\right)
$$

Proof. Denote $\omega:=\nu_{2}\left[\left(2^{m+1}-2\right)!\right]=\nu_{2}\left[\left(2^{m}\right)!\left(2^{m}-1\right)!\right]$ (recall that $C_{2^{m}-1}=$ $\frac{\left(2^{m+1}-2\right)!}{\left(2^{m}\right)!\left(2^{m}-1\right)!}$ is odd). Applying Lemma 2.3 .

$$
\begin{aligned}
& C_{2^{m}-1} \equiv p\left(\bmod 2^{k}\right) \\
\Leftrightarrow & 2^{k} \left\lvert\, \frac{\left(2^{m+1}-2\right)!}{\left(2^{m}\right)!\left(2^{m}-1\right)!}-p\right. \\
\Leftrightarrow & 2^{k} \left\lvert\, \frac{\left(2^{m+1}-2\right)!}{2^{\omega}}-\frac{p\left(2^{m}\right)!\left(2^{m}-1\right)!}{2^{\omega}}\right. \\
\Leftrightarrow & 2^{k} \mid\left(2^{m+1}-3\right)!!\prod_{n=1}^{m}\left(2^{n}-1\right)!!-p\left(\prod_{n=1}^{m}\left(2^{n}-1\right)!!\right)^{2} \\
\Leftrightarrow & 2^{k} \mid\left(\prod_{n=1}^{m}\left(2^{n}-1\right)!!\right)\left(\left(2^{m+1}-3\right)!!-p \prod_{n=1}^{m}\left(2^{n}-1\right)!!\right) .
\end{aligned}
$$

But $\prod_{n=1}^{m}\left(2^{n}-1\right)!!$ is odd, so $C_{2^{m}-1} \equiv p\left(\bmod 2^{k}\right)$ if and only if 2^{k} divides $\left(\left(2^{m+1}-3\right)!!-p \prod_{n=1}^{m}\left(2^{n}-1\right)!!\right)$, which is our lemma.

Proposition 3.2. Let $k \geq 2$ be an integer. For all $j \in\{1, \ldots, k-1\}, C_{2^{j}-1} \not \equiv$ $C_{2^{k}-1}\left(\bmod 2^{k+1}\right)$.

Proof. We prove this proposition by contradiction. Suppose there exists a $j \in$ $\{1, \ldots, k-1\}$ such that $C_{2^{j}-1} \equiv C_{2^{k}-1}=: p\left(\bmod 2^{k+1}\right)$. By Lemma 3.1, one would have

$$
p \prod_{n=1}^{j}\left(2^{n}-1\right)!!\equiv\left(2^{j+1}-3\right)!!\quad\left(\bmod 2^{k+1}\right)
$$

and by Lemma 3.1 and Fomula (22) in Lemma 2.1 ,

$$
p \prod_{n=1}^{k}\left(2^{n}-1\right)!!\equiv\left(2^{k+1}-3\right)!!\equiv-1 \quad\left(\bmod 2^{k+1}\right)
$$

As $j+2 \leq k+1$, both equalities would remain true modulo 2^{j+2}. Thus one would have

$$
\begin{aligned}
-1 & \equiv p \prod_{n=1}^{k}\left(2^{n}-1\right)!!\quad\left(\bmod 2^{j+2}\right) \\
& =p \prod_{n=1}^{j}\left(2^{n}-1\right)!!\times \prod_{n=j+1}^{k}\left(2^{n}-1\right)!! \\
& \equiv\left(2^{j+1}-3\right)!!\times \prod_{n=j+1}^{k}\left(2^{n}-1\right)!! \\
& =\left(2^{j+1}-3\right)!!\cdot\left(2^{j+1}-1\right)!!\times \prod_{n=j+2}^{k}\left(2^{n}-1\right)!! \\
& \equiv\left(2^{j+1}-3\right)!!\cdot\left(2^{j+1}-1\right)!!\quad(\text { by (1) in Lemma [2.1) }) \\
& =\left(2^{j+1}-3\right)!!^{2} \cdot\left(2^{j+1}-1\right) \\
& \equiv 2^{j+1}-1 \quad\left(\bmod 2^{j+2}\right) \quad(\text { by (2) in Lemma 2.1) },
\end{aligned}
$$

which is absurd.
Thanks to the previous proposition, we prove the first claim of Theorem 1.2
Corollary 3.3. For $k \geq 2$, the numbers $C_{2^{1}-1}, C_{2^{2}-1}, \ldots, C_{2^{k-1}-1}$ all are distinct modulo 2^{k}.

Proof. The case $k=2$ is trivial. Let $k \geq 2$ and suppose that, modulo 2^{k}, the numbers $C_{2^{1}-1}, C_{2^{2}-1}, \ldots, C_{2^{k-1}-1}$ all are distinct, so that they are also distinct modulo 2^{k+1}. By Proposition $3.2, C_{2^{j}-1} \not \equiv C_{2^{k}-1}\left(\bmod 2^{k+1}\right)$ for all $j \in\{1, \ldots, k-1\}$, so the numbers $C_{2^{1}-1}, C_{2^{2}-1}, \ldots, C_{2^{k}-1}$ all are distinct modulo 2^{k+1}. The claim follows by induction.

4. Ultimate constancy of the sequence of the $C_{2^{n}-1}$ modulo 2^{k}

To complete the proof of Theorem [1.2, it remains to prove that the $C_{2^{n}-1}$ all are equal modulo 2^{k} for $n \geq k-1$.

Proposition 4.1. Let $k \geq 2$, then for all $m \geq k-1, C_{2^{m}-1} \equiv C_{2^{k-1}-1}\left(\bmod 2^{k}\right)$.
Proof. Denote $C_{2^{k-1}-1}=: p\left(\bmod 2^{k}\right)$. We will show that $C_{2^{m}-1} \equiv p\left(\bmod 2^{k}\right)$ for all $m \geq k-1$ by induction. Let $m \geq k$ be such that the previous equality stands true for $m-1$. By Lemma 3.1, it suffices to show that $\left(2^{m+1}-3\right)!!\equiv p \prod_{n=1}^{m}\left(2^{n}-\right.$ $1)!!\left(\bmod 2^{k}\right)$. To do this, we are going to show that $\left(2^{m+1}-3\right)!!\equiv\left(2^{m}-3\right)!!$ $\left(\bmod 2^{k}\right)$ and that $p \prod_{n=1}^{m}\left(2^{n}-1\right)!!\equiv\left(2^{m}-3\right)!!\left(\bmod 2^{k}\right)$.

The first equality follows from the following computation:

$$
\begin{aligned}
& \left(2^{m+1}-3\right)!! \\
= & \left(2^{m}-3\right)!!\times\left(2^{m}-1\right) \times\left(2^{m}+1\right) \times \cdots \times\left(2 \cdot 2^{m}-3\right) \\
\equiv & \left(2^{m}-3\right)!!\cdot\left(1 \times 3 \times \cdots \times\left(2^{k}-1\right)\right)^{2^{m-k}} \quad\left(\bmod 2^{k}\right) \\
\equiv & \left(2^{m}-3\right)!!\quad(\text { by (11) in Lemma 2.1) } .
\end{aligned}
$$

To get the other equality, using again (11) in Lemma 2.1, one has

$$
p \prod_{n=1}^{m}\left(2^{n}-1\right)!!=\left(2^{m}-1\right)!!\cdot p \prod_{n=1}^{m-1}\left(2^{n}-1\right)!!\equiv p \prod_{n=1}^{m-1}\left(2^{n}-1\right)!!\quad\left(\bmod 2^{k}\right)
$$

But by Lemma 3.1, the induction hypothesis means that $p \prod_{n=1}^{m-1}\left(2^{n}-1\right)!$! \equiv $\left(2^{m}-3\right)!!\left(\bmod 2^{k}\right)$, whence the result.

5. Going further

After the series of works on odd Catalan numbers modulo 2^{k} this article belongs to, a natural question would be how many distinct even Catalan numbers there are modulo 2^{k} and how these numbers behave. An idea to do this would be to study the C_{n} having some fixed 2-adic valuation.

More generally, one could also wonder what happens for Catalan numbers modulo p^{k} for prime p, which is a question that mathematicians studying the arithmetic properties of Catalan numbers have been asking for a long time.

Acknowledgements

The author thanks Pr P. Shuie and Pr S.-C. Liu for their mathematical advice, and R. Peyre for helping to improve the writing of this article.

References

1. E. Deutch and B. Sagan, Congruences for Catalan and Motzkin numbers and related sequences, J. Number Theory 117 (2006), 191-215.
2. S.-C. Liu and J. C.-C. Yeh, Catalan numbers modulo 2^{k}, J. of Integer Sequences 13 (2010).
3. K.Kubota R. Alter, Prime and prime power divisibility of Catalan numbers, J. of Combinatoric Theory (A) 15 (1973), 243-256.
4. S.-C. Liu S.-P. Eu and Y.-N. Yeh, Catalan and Motzkin numbers modulo 4 and 8, European J. of Combin 29 (2008), 1449-1466.

École Normale Supérieure de Lyon

[^0]: Date: January 12, 2011.

