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On the torsion homology of non-arithmetic hyperbolic tetrahedral

groups

Mehmet Haluk Şengün

Abstract

Numerical data concerning the growth of torsion in the first homology of non-arithmetic hyperbolic

tetrahedral groups are collected. The data provide supportthe speculations of Bergeron and Venkatesh

on the growth of torsion homology and the regulators for lattices in SL2(C).

1. Introduction

In this note, I report on my computations related to the torsion in the first homology of certain non-

arithmetic Kleinian groups. The motivation for these computations is the recent paper of Bergeron and

Venkatesh [1] on the size of the torsion in the homology of arithmetic uniform lattices in semisimple Lie

groups. For SL2(C), they have the following result.

Theorem. (Bergeron-Venkatesh) Let {Γn} be a decreasing tower of cocompact arithmetic congruence

subgroups of SL2(C) such that
⋂

n Γn = {1}. Put Xn = Γn\H where H is the hyperbolic 3-space. Then

lim
n→∞

log |H1(Γn, Ek,ℓ)tor |
vol(Xn)

=
1
6π
· ck,ℓ, k , ℓ

where Ek,ℓ is standard module Symk(Z2)⊗Symℓ(Z2). Here ck,ℓ is a positive integer depending only on the

parameters k, ℓ, in particular c0,0 = 1.

The goal of this note is to explore the asymptotic behavior oftorsion for non-arithmetic lattices.

More precisely, I computationally investigated the limit

lim
n→∞

log |H1(Γn,Z)tor|
vol(Xn)

(1)

for families of groups{Γn} coming from projective covers of non-arithmetic hyperbolic tetrahedral groups

(defined below). Note thatZ ≃ E0,0(Z) in the notation of the theorem. The data I collected show that if

one considers only the projective covers with vanishing first Betti number (that is, dimH1(Γn,Q) = 0),

then the limit (1) tends to 1/(6π). In the case of positive first Betti numbers, the ratios “log(torsion)/volume”

get much smaller than 1/(6π). These observations support the general philosophy of Bergeron and

Venkatesh as discussed in Sections 4. and 6. Moreover, the data show that it is extremely rare that

residue degree one prime level projective covers of non-arithmetic hyperbolic 3-folds have positive first

Betti number. This has been first observed by Calegari and Dunfield in [4].
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2. Hyperbolic Tetrahedral Groups

A hyperbolic tetrahedral group is the index two subgroup consisting of orientation-preserving isometries

in the discrete group generated by reflections in the faces ofa hyperbolic tetrahedron whose dihedral

angles are submultiples ofπ. Lannér [11] proved in 1950 that there are thirty two such hyperbolic

tetrahedra.

Consider a tetrahedron in the hyperbolic 3-spaceH with verticesA, B,C,D with its dihedral angles

submultiples ofπ. If the dihedral angles along the edgesAB, AC, BC,DC,DB,DA areπ/λ1, π/λ2, π/λ3,

π/µ1, π/µ2, π/µ3 respectively, then we denote the tetrahedron withT (λ1, λ2, λ3, µ1, µ2, µ3).A presentation

for the tetrahedral groupΓ associated to this tetrahedron is

Γ = 〈a, b, c, | aµ1 = bµ2 = cλ3 = (ca)λ2 = (cb−1)λ1 = (ab)µ3 = 1〉.

For my computations explicit realizations of these groups in PSL2(C) are needed. Note that by

Mostow’s Rigidity Theorem, up to conjugation, such a realization will be unique. A general method to

produce a realization is described to me by Grant Lakeland in[10].

It is well known that there are seven non-arithmetic tetrahedral groups and only of them is cocom-

pact. Moreover, one of the non-cocompact ones is an index twosubgroup of another. As nature of the

experiment is insensitive to commensurability, I consideronly the larger of these two tetrahedral groups.

Thus I work with only six groups. Perhaps it should be noted that all the non-cocompact arithmetic

tetrahedral groups are commensurable with the Bianchi groups PSL2(Z[ω]) with ω a 4th or 6th root of

unity. These two Bianchi groups are covered with the computations in [13].

I will now go over each of the six groups, starting with the cocompact one. The volumes of the

associated tetrahedra can be found in section 10.4 of the book [5] or the article [8]. Note that the volume

of the 3-fold given by the tetrahedral group is twice the volume of the associated tetrahedron.

2.1. Descriptions of the Groups

2.1.1. H(1)

Let H(1) be the tetrahedral group attached to the Coxeter symbol

• •

••

4

3

5

3

The tetrahedron associated to the Coxeter symbol can be described asT (5, 3, 2; 4, 3, 2). The volume of

the tetrahedron is≃ 0.3586534401. A presentation can be given as (see [6])

H(1) = 〈a, b, c | a3 = b2 = c5 = (bc−1)3 = (ac−1)2 = (ab)4 = 1〉.

where

a :=















2t3+t2+t+2
5 1

−t3+t2−2
5

−2t3−t2−t+3
5















, b :=















−3t3+t2−4t+2
5 β

α 3t3−t2+4t−2
5















, c :=















t−1 0

0 t
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wheret is a primitive 10-th root of unity andα is one of the two complex roots of the polynomial

x4 +
−6t3 + 6t2 + 8

5
x3 +

−t3 + t2 − 3
5

x2 +
−4t3 + 4t2 + 2

25
x +

3t3 − 3t2 + 2
25

.

Moreover,

β = (−20t3 + 20t2 + 35)α3 + (−50t3 + 50t2 + 80)α2 + (9t3 − 9t2 − 17)α − 4t3 + 4t2 + 6.

2.1.2. H(2)

Let H(2) be the tetrahedral group attached to the Coxeter symbol

• • • •6 3 5

The tetrahedron associated to the Coxeter symbol can be described asT (5, 2, 2 ; 6, 2, 3). It has one ideal

vertex. The volume of the tetrahedron is≃ 0.1715016613. A presentation is:

H(2) = 〈a, b, c, | a6 = b2 = c2 = (ca)2 = (cb−1)5 = (ab)3 = 1〉,

where

a :=















ζ 0

0 ζ−1















, b :=















i −( 1+
√

5
2 )i

0 −i















, c :=















0 i

i 0















.

2.1.3. H(3)

Let H(3) be the tetrahedral group given by the Coxeter symbol

• •

••

6

3

3

3

The tetrahedron associated to the Coxeter symbol can be described asT (3, 3, 2 ; 6, 3, 2). It has two ideal

vertices. The volume of the tetrahedron is≃ 0.3641071004. A presentation is

H(3) = 〈a, b, c, | a6 = b3 = c2 = (ca)3 = (cb−1)3 = (ab)2 = 1〉,

where

a :=















ζ i

0 ζ−1















, b :=















ζ2 −i

0 ζ−2















, c :=















0 i

i 0















.

Hereζ = ei(π/6).

2.1.4. H(4)

Let H(4) be the tetrahedral group given by the Coxeter symbol

• •

••

3

4

3

6



4

The tetrahedron associated to the Coxeter symbol can be described asT (4, 3, 2 ; 6, 3, 2). It has two ideal

vertices. The volume of the tetrahedron is≃ 0.5258402692. A presentation is

H(4) = 〈a, b, c, | a6 = b3 = c2 = (ca)3 = (cb−1)4 = (ab)2 = 1〉,

where

a :=















ζ i

0 ζ−1















, b :=















ζ2 −
√
−2

0 ζ−2















, c :=















0 i

i 0















.

Hereζ = ei(π/6).

2.1.5. H(5)

Let H(5) be the tetrahedral group given by the Coxeter symbol

• •

••

3

4

4

4

The tetrahedron associated to the Coxeter symbol can be described asT (3, 4, 2 ; 4, 4, 2). It has two ideal

vertices. The volume of the tetrahedron is≃ 0.5562821156. A presentation is

H(5) = 〈a, b, c, | a4 = b4 = c2 = (ca)4 = (cb−1)3 = (ab)2 = 1〉,

where

a :=















ζ
√
−2

0 ζ−1















, b :=















ζ −i

0 ζ−1















, c :=















0 i

i 0















.

Hereζ = ei(π/8).

2.1.6. H(6)

Let H(6) be the tetrahedral group given by the Coxeter symbol

• •

••

3

5

3

6

The tetrahedron associated to the Coxeter symbol can be described asT (5, 3, 2 ; 6, 3, 2). It has two ideal

vertices. The volume of the tetrahedron is≃ 0.6729858045. A presentation is

H(6) = 〈a, b, c, | a6 = b3 = c2 = (ca)3 = (cb−1)5 = (ab)2 = 1〉,

where

a :=















ζ i

0 ζ−1















, b :=















ζ2 −( 1+
√

5
2 )i

0 ζ−2















, c :=















0 i

i 0















.

Hereζ = ei(π/6).
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3. Projective Covers

Let me describe the kind of covers that will be used for the experiment. LetΓ be a tetrahedral group as

discussed above. As it has finite covolume, there is a number field K with ring of integersO and a finite

setS of finite primes ofO such that there is an embedding

Γ −֒→ PSL2(OS )

whereOS is the localization ofO by the primes inS . Let p be a prime ideal ofO not in S and over the

rational primep. LetP be the prime ideal ofOS corresponding top. As the ideal is prime, the residue

ring F is a finite field of characteristicp. We say thatp is of residue degree a if F ≃ Fpa . Composing the

above embedding with the reduction moduloPmap gives us a homomorphism

φ : Γ −→ PSL2(F).

By Strong Approximation Theorem (see Theorem 3.2. of [9]), this map is a surjection for almost all

primesp. Let B denote the Borel subgroup of upper triangular elements in PSL2(F). The elements inΓ

which land inB underφ form a subgroup that we shall denote withΓ0(p). Note that by rigidity,Γ0(p)

does not depend onφ.

It is well known that the coset representatives ofΓ0(p) in Γ can be identified with the projective line

P1(F). With this in mind, we will callΓ0(p) theprojective cover of level p of Γ.

4. More Background for the Experiment

In this section I willloosely discuss some aspects of the work of Bergeron and Venkatesh. Any error is

due solely to me.

In their recent preprint [1], Bergeron and Venkatesh study the growth of torsion in the homology

of cocompact arithmetic groups. Their strongest result is in the case where the ambient Lie group is

SL2(C). In this case one only needs to consider the first homology. Let us specialize our discussion

to trivial coefficients (see [1] p.45). LetM be a hyperbolic 3-manifold of finite volume. The principal

object of interest is the product

|H1(M,Z)tor| · R(M)

where R(M) is the regulator. WhenM is compact, the regulatorR(M) can be given explicitly as
∣

∣

∣

∣

∣

(

∫

γi
ω j

)

i, j

∣

∣

∣

∣

∣

−2

whereω1, . . . , ωn is anL2-basis of harmonic 1-forms andγ1, . . . , γn is a basis ofH1(M,Z).

In the non-compact case, harmonic 2-forms andH2(M,Z) also get involved inR(M).

The general philosophy is that given a tower of finite volume hyperbolic 3-manifoldsMn with “nice”

properties, we should have

logR(Mn)
vol(Mn)

+
log|H1(Mn,Z)tor|

vol(Mn)
−→ −τ(2)(Z),

whereτ(2)(Z) is a certain quantity which only depends on the ambient Lie group and the coefficient

module, which isZ in our limited discussion. This quantity can be explicitly computed and in fact it

is equal to−1/(6π) (see [1], p.29). It is a key fact that the product ofτ(2) with vol(Mn) is equal to the

L2-analytic torsion ofMn.

Hence to study the growth of the torsion, we need to understand that of the regulator. When the

first Betti number is zero, the regulator vanishes and according to the general philosophy, the ratio
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Group A B # of prime levels Group A B # of prime levels

H(1) H(4) 66000 257 205

H(2) 150000 400 280 H(5) 63000 257 131

H(3) 94200 307 147 H(6) 55000 233 213

Table 1: description of the ranges of the second computations

“log(torsion)/volume” should converge to 1/(6π). When the first Betti number is positive, the regulator

comes into the play and the problem of controlling the conductor is a hard one which has connections

with the ABC conjecture (see Goldfeld [7], p.13). Nevertheless, extensive numerical data [13] show that

in the case of arithmetic Kleinian groups, the ratio “log(torsion)/volume” converges to 1/(6π) regardless

the first Betti numbers are zero or not. Bergeron and Venkatesh suspect that this has to do with the

existence of Hecke operators acting on the homology (see thediscussion on p.45 of [1]). In fact, they

conjecture that the ratio “log(regulator)/volume” goes to zero in the arithmetic case.

5. The Experiment

The method of my computations is essentially the same with the one I employed for the congruence

subgroups of the Euclidean Bianchi groups in [13]. Namely, Icompute the abelianization of the group

instead of its first homology with trivialZ-coefficients.

Let us fix one of our non-arithmetic tetrahedral groups above, call it Γ. Let K be the number field

generated by the entries of the matrix realizations of the generators ofΓ given in Section 2.1. and letO
be the ring of integers ofK. Let p be a prime ideal ofO which does not divide the ideal generated by the

denominators of the entries of the matrices. Then we can reduce the matrices modulop as the reductions

of the denominators are invertible in the residue fieldF := O/p. The groupΓ0(p), defined in Section 3.,

has finite index inΓ and a set of coset representatives can be identified with the projective lineP1(F).

The generators ofΓ act as permutations on the set of coset representatives. Thecorresponding action

on the projective line is the usual action of the matrices, after reducing the entries modulop. Once the

presentation ofΓ is given to a symbolic algebra program (I used Magma [2]), next one computes the

action of the generator matrices on the projective line. Theresulting permutations uniquely determine

the subgroupΓ0(p). Now computing the abelian quotient invariants is a standard functionality.

I have performed two main sets of computations for each of thesix tetrahedral groups above. In

the first set, I computed the ratios “log(torsion)/volume” for projective covers with prime levelp over a

rational prime 400< p with normN(p) ≤ 50000. In this way, one captures only prime levels of residue

degree one. In a second set, I aimed at prime levels with residue degree at least two. Table 1 gives

the rangesA, B such thatN(p) ≤ A and p ≤ B for this second set of computations for each group. In

addition, I performed an extra set of computations for the groupsH(1) andH(2) where I considered one

prime level over each rational primep which splits completely in the coefficient field attached to the

given matrix realizations of these groups withp ≤ 90000 andp ≤ 100000 respectively.

6. Results of the Experiment and Observations

The data collected by the experiments are provided on my website [14]. Table 2 gives sample data for

projective covers of prime levelp of the tetrahedral groupH(2). Herep is the rational prime thatp is
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p f (p) N(p) rank log(torsion)/volume

149 2 22201 35 0.00223459973429235102460489173120

157 2 24649 26 0.00127800797749390070146611206041

163 2 26569 27 0.00119388737659470181463861107528

179 2 32041 42 0.00284289451885127707642991787490

179 2 32041 42 0.00271675896640833678080894982568

191 2 36481 44 0.00287523607600174888464895189987

191 2 36481 44 0.00298602044559159299824708408103

193 2 37249 32 0.00093228187971271537570822454679

223 2 49729 37 0.00063399023400905122552042623100

239 2 57121 56 0.00204858493468061135230951713718

239 2 57121 56 0.00197783049030932370565346415877

251 2 63001 58 0.00213916088532177764793377551638

251 2 63001 58 0.00207500997945566716013518089664

269 2 72361 63 0.00106809775602345757933959528322

277 2 76729 46 0.00042737846130476991778286827508

281 2 78961 65 0.00115206386564044163781991095396

283 2 80089 47 0.00046147256599894360457102615905

307 2 94249 51 0.00039717749821458448534705458744

311 2 96721 72 0.00161519518746068399522925506475

311 2 96721 72 0.00165698128960266506419274897754

313 2 97969 52 0.00036262142827441423794453634641

337 2 113569 56 0.00031660479790195204470659803953

359 2 128881 84 0.00127125170976407173402131001026

359 2 128881 84 0.00130261090167121697503469479815

367 2 134689 61 0.00025564809254642626286356822328

373 2 139129 62 0.00026269400067799622367417655168

383 2 146689 0 0.05318174735691597383859191212400

Table 2: sample data on growth of torsion for projective covers of H(2)
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over, f (p) is the residue degree ofp, N(p) is the norm ofp (which is equal top f (p)) and rank denotes the

first Betti number of the associated 3-foldM (that is, the dimension ofH1(M,Q)).

It is interesting that %99.9 of the time the homology of a projective cover of residue degree one

prime level has first Betti number equal to zero. For each of the six tetrahedral groups, I have computed

approximately 5000 projective covers whose levels are prime with residue degree one. For each group,

there were no more than 12 such covers with positive first Betti number, all of them with norm less than

200. Note that a similar paucity was observed by Calegari ad Dunfield [4] among the projective covers

of twist knot orbifolds.

An immediate observation is that if we letΓ run only through the projective covers ofG with

first Betti number equal tozero, then the data strongly suggest that the limit (1) tends to 1/(6π) ≃
0.053051647697298. Such a growth was observed in [13] for the Euclidean Bianchi groups also,but

regardless the first Betti number was zero or not. The convergence here seems to be faster than it was in

[13].

We see that the behaviour is different in the cases of positive first Betti number. Here the ratios

“log(torsion)/volume” get much smaller than 1/(6π). This suggests, under the general philosophy of

Bergeron and Venkatesh, that the contribution of the regulator comes into play and decreases the con-

tribution of the torsion. Remember that we are in the nonarithmetic case; there is no suitable family of

operators acting on the homology. This fact and the numerically observed contribution of the regulator

are in favor of the validity of the speculations of Bergeron and Venkatesh on the general behaviour of the

regulator.
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