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On the torsion homology of non-arithmetic hyperbolic teadral

groups

Mehmet Haluk Sengiin

Abstract

Numerical data concerning the growth of torsion in the fighiology of non-arithmetic hyperbolic
tetrahedral groups are collected. The data provide supip@gpeculations of Bergeron and Venkatesh
on the growth of torsion homology and the regulators foidat in SL»(C).

1. Introduction

In this note, | report on my computations related to the torsn the first homology of certain non-
arithmetic Kleinian groups. The motivation for these comagions is the recent paper of Bergeron and
Venkatesh[1] on the size of the torsion in the homology dhamietic uniform lattices in semisimple Lie
groups. For Sk(C), they have the following result.

Theorem. (Bergeron-Venkatesh) Let {I'y} be a decreasing tower of cocompact arithmetic congruence
subgroups of SL,(C) such that N, I'n = {1}. Put X, = I'h\H where H is the hyperbolic 3-space. Then
IOg|Hl(rn, Ek,[)tor| _ 1

lim — - Cky, k%
s T vol(X%) or Ko KF

where Ey , is standard module Sym¥(Z?) ® Synt (Z?). Here ¢, is a positive integer depending only on the
parametersk, ¢, in particular coo = 1.

The goal of this note is to explore the asymptotic behaviotoadion for non-arithmetic lattices.
More precisely, | computationally investigated the limit

||m |Og |H1(Fn, Z)tor|
N—co vol(Xy)

(1)

for families of groupgl'n} coming from projective covers of non-arithmetic hyperbtditrahedral groups
(defined below). Note th& ~ Eqo(Z) in the notation of the theorem. The data | collected showitha
one considers only the projective covers with vanishing Besti number (that is, dint,(I'y, Q) = 0),
then the limit (1) tends to/{6r). In the case of positive first Betti numbers, the ratios (togsion)volume”
get much smaller than/{6x). These observations support the general philosophy afjéen and
Venkatesh as discussed in Sectiéds 4. [ahd 6. Moreover, thestaw that it is extremely rare that
residue degree one prime level projective covers of natwagtic hyperbolic 3-folds have positive first
Betti number. This has been first observed by Calegari andi€@drin [4].

Acknowledgements It is a pleasure to express my gratitude to Grant LakelancbnUpy request,
he kindly computed the matrix realizations which were caufor my experiments. Most of this work
has been done while | was a visitor of the SFB 45 at the Institute for Experimental Mathematics,


http://arxiv.org/abs/1012.1795v2

Essen and | gratefully acknowledge the wonderful hospjtaind the state of the art clusters of this

institute. | thank Akshay Venkatesh for our encouragingegpondence on the contents of this note.
Last but certainly not least, | am grateful to Nicolas Beagefor hosting me in Paris and explaining to

me, among many other things, his joint work with Akshay Veekh.

2. Hyperbolic Tetrahedral Groups

A hyperbolic tetrahedral group is the index two subgroupststing of orientation-preserving isometries
in the discrete group generated by reflections in the facestgfperbolic tetrahedron whose dihedral
angles are submultiples af Lannér [11] proved in 1950 that there are thirty two suclpdmpolic
tetrahedra.

Consider a tetrahedron in the hyperbolic 3-spHoasith verticesA, B, C, D with its dihedral angles
submultiples ofr. If the dihedral angles along the edg®B, AC, BC, DC, DB, DA arerx/A1, 7t/ A2, ©/ A3,
/1, /2, /us respectively, then we denote the tetrahedron Withy, A, A3, u1, 2, u3). A presentation
for the tetrahedral group associated to this tetrahedron is

I'=(ab,c|a*=b%2=ch=(ca)® = (cb )" = (ab) = 1).

For my computations explicit realizations of these group$85L,(C) are needed. Note that by
Mostow’s Rigidity Theorem, up to conjugation, such a reatlian will be unique. A general method to
produce a realization is described to me by Grant Lakelafiidh

It is well known that there are seven non-arithmetic tetdakgroups and only of them is cocom-
pact. Moreover, one of the non-cocompact ones is an indexstlsgroup of another. As nature of the
experiment is insensitive to commensurability, | consioidy the larger of these two tetrahedral groups.
Thus | work with only six groups. Perhaps it should be noteat #il the non-cocompact arithmetic
tetrahedral groups are commensurable with the Bianchipg®5L(Z[w]) with w a 4th or 6th root of
unity. These two Bianchi groups are covered with the contjmrtain [13].

I will now go over each of the six groups, starting with the @mpact one. The volumes of the
associated tetrahedra can be found in section 10.4 of the[Bbor the article[[8]. Note that the volume
of the 3-fold given by the tetrahedral group is twice the woduof the associated tetrahedron.

2.1. Descriptions of the Groups

211 H(1)

Let H(1) be the tetrahedral group attached to the Coxeter symbol

5

4
The tetrahedron associated to the Coxeter symbol can belksasT (5, 3, 2; 4, 3, 2). The volume of

the tetrahedron is 0.3586534401. A presentation can be given as (see [6])
H(1) = (ab,cla®=b? = c® = (bc™})® = (ac™})? = (ab)* = 1.

28424142 —3t3+12—4t+2 -1
e 1 === t 0
a:= s ] bzz[ 5 A ] czz[ ]

where

3422 2312143 33-t2+4t-2
5 = a = 0 t
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wheret is a primitive 10-th root of unity and is one of the two complex roots of the polynomial

s —6t3+6t2+8X3+ —t3+t2—3x2+ —4t3+4t2+2x+ 3A-3t2+2
5 5 25 25

Moreover,

B = (=20t + 20t? + 35)2 + (50> + 50t + 80)a? + (92 — 9% — 17)r — 4t3 + 4t2 + 6.

212. H(2)

Let H(2) be the tetrahedral group attached to the Coxeter symbol

6 .3_5

*—o—o0—o

The tetrahedron associated to the Coxeter symbol can baltesasT (5, 2,2 ; 6,2, 3). It has one ideal
vertex. The volume of the tetrahedroni®.1715016613. A presentation is:

H(2) = (a,b,c,|a® = b? = ¢ = (ca)® = (cb™)° = (ab)® = 1),

where
H _ 1+V5y: i
a::go,b:zI (?)I,c:qu.
0 % 0 i i 0
213. H(3)
Let H(3) be the tetrahedral group given by the Coxeter symbol
3
3 3
6

The tetrahedron associated to the Coxeter symbol can baliksdasT (3,3,2 ; 6, 3, 2). It has two ideall
vertices. The volume of the tetrahedror-i9.3641071004. A presentation is

H(3) =(a,b,c,|a® = b* = ¢? = (ca)® = (cb™)® = (ab)® = 1),

a::[g §i1]’ b::[i 442]’ C:z[? (IJ]

where

Heres = €/0),

2.14. H(4)

Let H(4) be the tetrahedral group given by the Coxeter symbol
4




The tetrahedron associated to the Coxeter symbol can balksdasT (4, 3,2 ; 6, 3, 2). It has two ideall
vertices. The volume of the tetrahedror-i9.5258402692. A presentation is

H(4) = (a,b.c,|a° = b® = ¢? = (ca)® = (cb™)" = (ab)* = 1),

where
. ) :
a:= [g évl_l], b:= [% _{_\/;_2) c:= (? (I)]

Herel = €(/0),
215 H(5)
Let H(5) be the tetrahedral group given by the Coxeter symbol

4

3 4
4

The tetrahedron associated to the Coxeter symbol can balkbasT (3,4, 2 ; 4,4, 2). It has two ideal
vertices. The volume of the tetrahedror-i9.5562821156. A presentation is

H(5) = (a,b.c,|a* = b* = ¢ = (ca)* = (cb™)® = (ab)* = 1),

a::[g \/__2] b:=(§ _i),
0o ¢1* 0 1

where

Here = /9,

2.16. H(6)
Let H(6) be the tetrahedral group given by the Coxeter symbol
5
3 3
6

The tetrahedron associated to the Coxeter symbol can baliksdasT (5,3, 2 ; 6, 3, 2). It has two ideall
vertices. The volume of the tetrahedror-i9.6729858045. A presentation is

H(6) = (a,b,c,|a° = b® = ¢ = (ca)® = (cb™)° = (ab)* = 1),

a=[¢ "] b= -5 :
0 ¢ 0 ?

where

—_—
- O
o -
N——

Herel = €(/9),
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3. Projective Covers

Let me describe the kind of covers that will be used for theeeixpent. Letl” be a tetrahedral group as
discussed above. As it has finite covolume, there is a nundddiiwith ring of integersD and a finite
setS of finite primes ofO such that there is an embedding

I' — PSLy(0s)

whereOs is the localization oD by the primes irS. Let p be a prime ideal o not in S and over the
rational primep. Let$ be the prime ideal 0Ds corresponding t@. As the ideal is prime, the residue
ring F is a finite field of characteristip. We say thap is of residue degree a if F ~ F». Composing the
above embedding with the reduction modtianap gives us a homomorphism

¢ T — PSLy(F).

By Strong Approximation Theorem (see Theorem 3.2.[ of [9])s map is a surjection for almost all
primesp. Let B denote the Borel subgroup of upper triangular elements lp @3 The elements i
which land inB underg form a subgroup that we shall denote witf(p). Note that by rigidity,l'o(p)
does not depend an

It is well known that the coset representative§gp) in I' can be identified with the projective line
PY(F). With this in mind, we will calllo(p) the projective cover of level p of T.

4. MoreBackground for the Experiment

In this section | willloosely discuss some aspects of the work of Bergeron and Venkatesheror is
due solely to me.

In their recent preprint]1], Bergeron and Venkatesh stuay dgrowth of torsion in the homology
of cocompact arithmetic groups. Their strongest resulbithe case where the ambient Lie group is
SL,(C). In this case one only needs to consider the first homology. uls specialize our discussion
to trivial codficients (seel 1] p.45). Ldtl be a hyperbolic 3-manifold of finite volume. The principal
object of interest is the product

|H1(M,Z)tor| : R(M)

where R(M) is the regulator. WhemM is compact, the regulatd®(M) can be given explicitly as

-2
(f% wj)i j

In the nbn—compact case, harmonic 2-forms &h¢M, Z) also get involved irR(M).

The general philosophy is that given a tower of finite volumpérbolic 3-manifolddvi,, with “nice”

properties, we should have

wherews, ... ., wy is anlL?-basis of harmonic 1-forms and, . . ., y, is a basis oH1(M, Z).

logR(Mp)  log|H1(Mp, Z)tor|

vol(M)  — vol(My) — @),

wheret®(Z) is a certain quantity which only depends on the ambient r@ug and the ca@cient
module, which isZ in our limited discussion. This quantity can be explicityneputed and in fact it
is equal to—1/(6x) (seel[1], p.29). Itis a key fact that the product&® with vol(M,) is equal to the
L2-analytic torsion oM.

Hence to study the growth of the torsion, we need to undeddiaat of the regulator. When the
first Betti number is zero, the regulator vanishes and adegrib the general philosophy, the ratio



Group A B | # of prime levels Group A B | # of prime levels
H(1) H(4) | 66000| 257 205
H(2) | 150000 400 280 H(5) | 63000| 257 131
H(3) | 94200 | 307 147 H(6) | 55000| 233 213

Table 1: description of the ranges of the second compugation

“log(torsion)/volume” should converge to/16xr). When the first Betti number is positive, the regulator
comes into the play and the problem of controlling the comaluis a hard one which has connections
with the ABC conjecture (see Goldfeld [7], p.13). Never#ssl, extensive numerical datal[13] show that
in the case of arithmetic Kleinian groups, the ratio “logg¢ion)volume” converges to/X6x) regardless
the first Betti numbers are zero or not. Bergeron and Venkataspect that this has to do with the
existence of Hecke operators acting on the homology (sedisiteission on p.45 of[1]). In fact, they
conjecture that the ratio “log(regulatdrdlume” goes to zero in the arithmetic case.

5. TheExperiment

The method of my computations is essentially the same wihotie | employed for the congruence
subgroups of the Euclidean Bianchi groupsin/[13]. Namebgrpute the abelianization of the group
instead of its first homology with trivid-codficients.

Let us fix one of our non-arithmetic tetrahedral groups aboa# it I'. Let K be the number field
generated by the entries of the matrix realizations of threegtors of” given in Sectiof 2.1. and |&
be the ring of integers df. Let p be a prime ideal o® which does not divide the ideal generated by the
denominators of the entries of the matrices. Then we carceetie matrices moduloas the reductions
of the denominators are invertible in the residue figld= O/p. The groudo(p), defined in Sectioh B.,
has finite index i" and a set of coset representatives can be identified withrtjegtive lineP(F).
The generators df act as permutations on the set of coset representativescorhesponding action
on the projective line is the usual action of the matricegratducing the entries moduto Once the
presentation of" is given to a symbolic algebra program (I used Magma [2])t m&e computes the
action of the generator matrices on the projective line. fEsailting permutations uniquely determine
the subgroups(p). Now computing the abelian quotient invariants is a stath@ianctionality.

| have performed two main sets of computations for each ofktkéetrahedral groups above. In
the first set, | computed the ratios “log(torsipmlume” for projective covers with prime levglover a
rational prime 400< p with normN(p) < 50000. In this way, one captures only prime levels of residue
degree one. In a second set, | aimed at prime levels withuegiggree at least two. Taljle 1 gives
the ranged\, B such thatN(p) < A andp < B for this second set of computations for each group. In
addition, | performed an extra set of computations for theeigsH (1) andH(2) where | considered one
prime level over each rational prinfewhich splits completely in the cdigcient field attached to the
given matrix realizations of these groups wighk 90000 andp < 100000 respectively.

6. Resultsof the Experiment and Observations

The data collected by the experiments are provided on myitegfd<l]. Tabld 2 gives sample data for
projective covers of prime level of the tetrahedral groupl(2). Herep is the rational prime that is
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p | f(p) | N(p) | rank log(torsion)volume
149 2 22201 | 35 | 0.002234599734292351024604891731
157 2 24649 | 26 | 0.00127800797749390070146611206(
163| 2 26569 | 27 | 0.001193887376594701814638611075
179 2 32041 | 42 | 0.002842894518851277076429917874
179 2 32041 | 42 | 0.002716758966408336780808949824
191 2 36481 | 44 | 0.002875236076001748884648951899
191 2 36481 | 44 | 0.002986020445591592998247084081
193 2 37249 | 32 | 0.000932281879712715375708224546
223 | 2 49729 | 37 | 0.000633990234009051225520426231
239 | 2 57121 | 56 | 0.002048584934680611352309517137
239 | 2 57121 | 56 | 0.001977830490309323705653464158
251 | 2 63001 | 58 | 0.002139160885321777647933775516
251 | 2 63001 | 58 | 0.002075009979455667160135180896
269 | 2 72361 | 63 | 0.001068097756023457579339595283
277 | 2 76729 | 46 | 0.000427378461304769917782868274
281 | 2 78961 | 65 | 0.001152063865640441637819910953
283 | 2 80089 | 47 | 0.000461472565998943604571026159
307| 2 94249 | 51 | 0.000397177498214584485347054587
311 2 96721 | 72 | 0.001615195187460683995229255064
311| 2 96721 | 72 | 0.001656981289602665064192748977
313| 2 97969 | 52 | 0.000362621428274414237944536346
337| 2 | 113569| 56 | 0.00031660479790195204470659803¢
359| 2 | 128881| 84 | 0.00127125170976407173402131001(
359| 2 | 128881| 84 | 0.001302610901671216975034694799
367 | 2 | 134689| 61 | 0.000255648092546426262863568223
373| 2 | 139129| 62 | 0.000262694000677996223674176551
383| 2 | 146689 0 | 0.053181747356915973838591912124

Table 2: sample data on growth of torsion for projective cowd H(2)

20
41
28
90
68
87
03
79
00
18
77
38
64
22
08
96
05
44
75
54
41
53
26
15
28
68
00



over, f(p) is the residue degree of N(p) is the norm ofp (which is equal tgp'®) and rank denotes the
first Betti number of the associated 3-fdlti(that is, the dimension dfi1(M, Q)).

It is interesting that %99 of the time the homology of a projective cover of residuerdegne
prime level has first Betti number equal to zero. For each@stk tetrahedral groups, | have computed
approximately 5000 projective covers whose levels are @sirith residue degree one. For each group,
there were no more than 12 such covers with positive firsi Bathber, all of them with norm less than
200. Note that a similar paucity was observed by Calegari aafiBld [4] among the projective covers
of twist knot orbifolds.

An immediate observation is that if we I€ run only through the projective covers & with
first Betti number equal taero, then the data strongly suggest that the limit (1) tends/{6) =~
0.053051647697298. Such a growth was observed in [13] for thetidean Bianchi groups alsbut
regardless the first Betti number was zero or not. The coeveghere seems to be faster than it was in
[13].

We see that the behaviour isfiidirent in the cases of positive first Betti number. Here thiosat
“log(torsionyvolume” get much smaller than/(6r). This suggests, under the general philosophy of
Bergeron and Venkatesh, that the contribution of the régulzomes into play and decreases the con-
tribution of the torsion. Remember that we are in the noharétic case; there is no suitable family of
operators acting on the homology. This fact and the numlrichserved contribution of the regulator
are in favor of the validity of the speculations of Bergerod &enkatesh on the general behaviour of the
regulator.
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