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A GEOMETRIC CONSTRUCTION FOR INVARIANT JET DIFFERENTIALS

GERGELY BERCZI AND FRANCES KIRWAN
MATHEMATICAL INSTITUTE, OXFORD OX1 3BJ, UK

1. Introduction

The action of the reparametrization groupGk, consisting ofk-jets of germs of biholo-
morphisms of (C, 0), on the bundleJk = JkT∗X of k-jets at 0 of germs of holomorphic
curves f : C → X in a complex manifoldX has been a focus of investigation since
the work of Demailly [5] which built on that of Green and Griffiths [13]. HereGk is a
non-reductive complex algebraic group which is the semi-direct productGk = Uk ⋊ C∗

of its unipotent radicalUk with C∗; it has the form

Gk �










α1 α2 α3 · · · αk

0 α2
1 · · ·

0 0 α3
1 · · ·

· · · · ·

0 0 0 · · · αk
1





: α1 ∈ C
∗, α2, . . . , αk ∈ C






where the entries above the leading diagonal are polynomials in α1, . . . , αk, andUk is
the subgroup consisting of matrices of this form withα1 = 1. The bundle of Demailly-
Semple jet differentials of orderk over X has fibre atx ∈ X given by the algebra
O((Jk)x)Uk of Uk-invariant polynomial functions on the fibre (Jk)x = (JkT∗X)x of JkT∗X.
This bundle of algebras

O(Jk)
Uk =

⊕

m≥0

Ek,m

is graded by the induced action ofC∗ which has weightm on Ek,m. For any positive
integerℓ we can consider the bundle of subalgebras

O(Jk)
Uk
ℓ =

⊕

m≥0

Ek,mℓ

spanned by theUk-invariant polynomial functions with weight divisible byℓ; equiva-
lently O(Jk)

Uk
ℓ = O(Jk)Uk⋊µℓ is given by the polynomial functions which are invariant

under the semi-direct productUk ⋊ µℓ of Uk with the finite groupµℓ of ℓth roots of 1 in
C. We have a natural identification

O(Jk)
Uk
ℓ � O(Jk × C)Gk
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whereUk acts trivially onC andGk/Uk � C
∗ acts as multiplication by the character

t 7→ tℓ. In particular whenℓ = 1+ · · · + k = k(k+ 1)/2 this action ofGk onC extends to
the action ofGL(k) given by multiplication by the determinant.

More generally following [32] we can replaceC with Cp for p ≥ 1 and consider the
bundleJk,pT∗X of k-jets at 0 of holomorphic mapsf : Cp→ X and the reparametrization
groupGk,p consisting ofk-jets of germs of biholomorphisms of (Cp, 0); thenGk,p is the
semi-direct product of its unipotent radicalUk,p and the complex reductive groupGL(p),
while its subgroupG′k,p = Uk,p⋊S L(p) (which equalsUk,p whenp = 1) fits into an exact
sequence 1→ G′k,p → Gk,p → C

∗ → 1. The generalized Demailly-Semple algebra is

thenO((Jk,p)x)
G
′
k,p.

The Demailly-Semple algebrasO(Jk)Uk and their generalizations have been studied
for a long time. The invariant jet differentials play a crucial role in the strategy devised
by Green, Griffiths [13], Bloch [4], Demailly [5], Siu [29, 30, 31] and othersto prove
Kobayashi’s 1970 hyperbolicity conjecture [23] and the related conjecture of Green and
Griffiths in the special case of hypersurfaces in projective space. This strategy has been
recently used successfully by Diverio, Merker and Rousseauin [7] and then by the first
author in [3] to give effective lower bounds for the degrees of generic hypersurfaces in
Pn for which the Green-Griffiths conjecture holds.

In particular it has been a long-standing problem to determine whether the algebras
of invariantsO((Jk,p)x)

G
′
k,p and bi-invariantsO((Jk,p)x)

G
′
k,p×Un,x (whereUn,x is a maximal

unipotent subgroup ofGL(TxX) � GL(n)) are finitely generated as graded complex
algebras, and if so to provide explicit finite generating sets. In [24] Merker showed
that whenp = 1 and bothk andn = dimX are small then these algebras are finitely
generated, and forp = 1 and allk and n he provided an algorithm which produces
finite sets of generators when they exist. In this paper we will use methods inspired
by [3] and the approach of [9] to non-reductive geometric invariant theory to prove the
finite generation of the subalgebraO(Jk)

Uk
k(k+1)/2 of O(Jk)Uk spanned by theUk-invariant

polynomial functions with weight divisible byk(k + 1)/2 for all n and k ≥ 4 (from
which the finite generation of the corresponding bi-invariants follows). We will use
these methods to obtain a similar result forp > 1, and forp ≥ 1 to study the geometric
invariant theoretic quotients

((Jk,p)x × C)//Gk,p = Spec(O((Jk,p)x × C)Gk,p)

and give geometric descriptions for the invariants and bi-invariants. In particular when
k ≥ 4 we find an explicit finite set of generators for the subalgebraO(Jk)

Uk
k(k+1)/2 ofO(Jk)Uk

(and a similar result forp > 1 and allk). In fact we will show that ifk ≥ 4 thenGk

is a Grosshans subgroup ofGL(k), so that every linear action ofGk which extends to a
linear action ofGL(k) has finitely generated invariants; similarly ifp > 1 thenGk,p is a
Grosshans subgroup ofGL(sym≤k(p)) where sym≤k(p) =

∑k
i=1 dim Symi

C
p.

The layout of this paper is as follows.§2 reviews the reparametrization groupsGk

andGk,p and their actions on jet bundles and jet differentials over a complex manifold
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X. Next§3 reviews the results of [9] and [1] on non-reductive geometric invariant theory.
In §4 we recall from [3] a geometric description of the quotientsby Uk andGk of open
subsets of (Jk)x, and in§5 this is used to find explicit affine and projective embeddings
of these quotients. In§6 it is proved that the complements of these quotients in their
closures for suitable embeddings in affine and projective spaces have codimension at
least two, from which it follows that the relevant invariants on (Jk)x extend to these
closures. In§7 this is used to prove thatGk is a Grosshans subgroup ofGL(p), and thus
thatO(Jk)

Uk
k(k+1)/2 is finitely generated, and to provide a geometric description of the the

invariants and bi-invariants. Finally§8 and§9 extend the results of§6 and§7 to the
action ofGk,p on the jet bundleJk,p → X of k-jets of germs of holomorphic maps from
C

p to X for p > 1.
AcknowledgmentsWe are indebted to Damiano Testa, who called our attention tothe
importance of the groupGk in the Green-Griffiths problem. We would also like to thank
Brent Doran for helpful discussions.

The first author warmly thanks Andras Szenes, his former PhD supervisor, for his
patience and their joint work from which this paper has grown.

2. Jets of curves and jet differentials

Let X be a complexn-dimensional manifold and letk be a positive integer. Green and
Griffiths in [13] introduced the bundleJk→ X of k-jets of germs of parametrized curves
in X; its fibre overx ∈ X is the set of equivalence classes of germs of holomorphic maps
f : (C, 0) → (X, x), with the equivalence relationf ∼ g if and only if the derivatives
f ( j)(0) = g( j)(0) are equal for 0≤ j ≤ k. If we choose local holomorphic coordinates
(z1, . . . , zn) on an open neighbourhoodΩ ⊂ X aroundx, the elements of the fibreJk,x are
represented by the Taylor expansions

f (t) = x+ t f ′(0)+
t2

2!
f ′′(0)+ . . . +

tk

k!
f (k)(0)+O(tk+1)

up to orderk at t = 0 ofCn-valued maps

f = ( f1, f2, . . . , fn)

on open neighbourhoods of 0 inC. Thus in these coordinates the fibre is

Jk,x =
{

( f ′(0), . . . , f (k)(0)/k!)
}

= (Cn)k,

which we identify withCnk. Note, however, thatJk is not a vector bundle over X, since
the transition functions are polynomial, but not linear.

LetGk be the group ofk-jets at the origin of local reparametrizations of (C, 0)

t 7→ ϕ(t) = α1t + α2t
2 + . . . + αkt

k, α1 ∈ C
∗, α2, . . . , αk ∈ C,

in which the composition law is taken modulo termst j for j > k. This group acts
fibrewise onJk by substitution. A short computation shows that this is a linear action on
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the fibre:

f ◦ ϕ(t) = f ′(0) · (α1t + α2t
2 + . . . + αkt

k) +
f ′′(0)
2!
· (α1t + α2t

2 + . . . + αkt
k)2 + . . .

. . . +
f (k)(0)

k!
· (α1t + α2t

2 + . . . + αkt
k)k (modulotk+1)

so the linear action ofϕ on thek-jet ( f ′(0), f ′′(0)/2!, . . . , f (k)(0)/k!) is given by the
following matrix multiplication:

(1) ( f ′(0), f ′′(0)/2!, . . . , f (k)(0)/k!) ·





α1 α2 α3 · · · αk

0 α2
1 2α1α2 · · · α1αk−1 + . . . + αk−1α1

0 0 α3
1 · · · 3α2

1αk−2 + . . .
· · · · ·

0 0 0 · · · αk
1





where the matrix has general entry

(Gk)i, j =
∑

s1≥1,...,si≥1, s1+...+si= j

αs1 . . . αsi

for i, j ≤ k.
There is an exact sequence of groups:

(2) 1→ Uk→ Gk→ C
∗ → 1,

whereGk → C
∗ is the morphismϕ→ ϕ′(0) = α1 in the notation used above, and

Gk = Uk ⋊ C∗

is a semi-direct product. With the above identification,C∗ is the subgroup of diagonal
matrices satisfyingα2 = . . . = αk = 0 andUk is the unipotent radical ofGk, consisting of
matrices of the form above withα1 = 1. The action ofλ ∈ C∗ onk-jets is thus described
by

λ · ( f ′(0), f ′′(0)/2!, . . . , f (k)(0)/k!) = (λ f ′(0), λ2 f ′′(0)/2!, . . . , λk f (k)(0)/k!)

LetEn
k,m denote the vector space of complex valued polynomial functionsQ(u1, u2, . . . , uk)

of u1 = (u1,1, . . . , u1,n), . . . , uk = (uk,1, . . . , uk,n) of weighted degreemwith respect to this
C
∗ action, whereui = f (i)(0)/i!; that is, such that

Q(λu1, λ
2u2, . . . , λ

kuk) = λ
mQ(u1, u2, . . . , uk).

Thus elements ofEn
k,m have the form

Q(u1, u2, . . . , uk) =
∑

|i1|+2|i2|+...+k|ik |=m

ui1
1 ui2

2 . . .u
ik
k ,

wherei1 = (i1,1, . . . , i1,n), . . . , ik = (ik,1, . . . , ik,n) are multi-indices of lengthn. There is
an induced action ofGk on the algebra

⊕

m≥0E
n
k,m. Following Demailly (see [5]), we

denote byEn
k,m (or Ek,m) the Demailly-Semple bundle whose fibre atx consists of the
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Uk-invariant polynomials on the fibre ofJk at x of weighted degreem, i.e those which
satisfy

Q(( f ◦ϕ)′(0), ( f ◦ϕ)′′(0)/2!, . . . , ( f ◦ϕ)(k)(0)/k!) = ϕ′(0)m·Q( f ′(0), f ′′(0)/2!, . . . , f (k)(0)/k!),

and we letEn
k = ⊕mEn

k,m denote the Demailly-Semple bundle of graded algebras of
invariants.

We can also consider higher dimensional holomorphic surfaces inX, and therefore,
we fix a parameter 1≤ p ≤ n, and study germs of mapsCp→ X.

Again, we fix the degreek of our map, and introduce the bundleJk,p → X of k-jets
of mapsCp → X. The fibre overx ∈ X is the set of equivalence classes of germs of
holomorphic mapsf : (Cp, 0)→ (X, x), with the equivalence relationf ∼ g if and only
if all derivatives f ( j)(0) = g( j)(0) are equal for 0≤ j ≤ k.

We need a description of the fibreJk,p,x in terms of local coordinates as in the case
when p = 1. Let (z1, . . . , zn) be local holomorphic coordinates on an open neighbour-
hoodΩ ⊂ X aroundx, and let (u1, . . . , up) be local coordinates onCp. The elements of
the fibreJk,p,x areCn-valued maps

f = ( f1, f2, . . . , fn)

onCp, and two maps represent the same jet if their Taylor expansions aroundz = 0

f (z) = x+ z f ′(0)+
z2

2!
f ′′(0)+ . . . +

zk

k!
f (k)(0)+O(zk+1)

coincide up to orderk. Note that here

f (i)(0) ∈ Hom ( Symi
C

p,Cn)

and in these coordinates the fibre is

Jk,p,x =
{

( f ′(0), . . . , f (k)(0)/k!)
}

= Cn(k+p−1
k−1 )

which is a finite-dimensional vector space.
Let Gk,p be the group ofk-jets of germs of biholomorphisms of (Cp, 0). Elements of

Gk,p are represented by holomorphic maps

(3) u→ ϕ(u) = Φ1u+Φ2u2+ . . .+Φkuk =
∑

i∈Zp\0

ai1...ipu
i1
1 . . .u

ip
p , Φ1 is non-degenerate

whereΦi ∈ Hom ( Symi
C

p,Cp). The groupGk,p admits a natural fibrewise right action
on Jk,p, by reparametrizing thek-jets of holomorphicp-discs. A computation similar to
that in [3] shows that

f ◦ ϕ(u) = f ′(0)Φ1u + ( f ′(0)Φ2 +
f ′′(0)
2!
Φ2

1)u
2 + . . . +

∑

i1+...+il=d

f (l)(0)
l!
Φi1 . . .Φil u

l .

This defines a linear action ofGk,p on the fibresJk,p,x of Jk,p with the matrix representa-
tion given by
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(4)





Φ1 Φ2 Φ3 . . . Φk

0 Φ2
1 Φ1Φ2 . . .

0 0 Φ3
1 . . .

. . . . .
Φk

1





,

where

• Φi ∈ Hom ( Symi
C

p,Cp) is ap×dim(Symi
C

p)-matrix, theith degree component
of the mapΦ, which is represented by a map (Cp)⊗i → Cp;
• Φi1 . . .Φil is the matrix of the map Symi1+...+il (Cp) → Syml

C
p, which is repre-

sented by
∑

σ∈Sl

Φi1 ⊗ · · · ⊗Φil : (Cp)⊗i1 ⊗ · · · ⊗ (Cp)⊗il → (Cp)⊗l;

• the (l,m) block of Gk,p is
∑

i1+...+il=mφi1 . . .Φil . The entries in these boxes are
indexed by pairs (τ, µ) whereτ ∈

(
p+l−1
l−1

)

, µ ∈
(

p+m−1
m−1

)

correspond to bases of
Syml(Cp) and Symm(Cp).

Example 2.1. For p = 2, k = 3 we get the following9× 9 matrix for a general element
ofG3,2, using the standard basis

{

ei , eiej , eiejek : 1 ≤ i ≤ j ≤ k ≤ 2
}

of (J3,2)x.

(5)




α10 α01 α20 α11 α02 α30 α21 α12 α03

β10 β01 β20 β11 β02 β30 β21 β12 β03

0 0 α2
10 α10α01 α2

01 α10α20 α10α11 + α01α20 α10α02 + α11α01 α01α02

0 0 α10β10 α10β01 + α01β10 α01β01 α10β20 + α20β10 P Q α01β02 + α02β01

0 0 β2
10 β10β01 β2

01 β10β20 β10β11+ β20β01 β01β11+ β02β10 β01β02

0 0 0 0 0 α3
10 α2

10α01 α10α
2
01 α3

01
0 0 0 0 0 α2

10β10 α10α10β01 α10α01β01 α01β
2
01

0 0 0 0 0 α10β
2
10 α10β10β01 α10β01β01 α01β

2
01

0 0 0 0 0 β3
10 β2

10β01 β10β
2
01 β3

01





where

P = α10β11+ α11β10 + α20β01+ α01β20 and Q= α01β11 + α11β01+ α02β10 + α10β02.

This is a subgroup of the parabolic P2,3,4 ⊂ GL(9). The diagonal blocks are the repre-
sentationsSymi

C
2 for i = 1, 2, 3, whereC2 is the standard representation of GL(2).

In general the linear groupGk,p is generated along its firstp rows; that is, the param-
eters in the firstp rows are independent, and all the remaining entries are polynomials
in these parameters. The assumption on the parameters is that the determinant of the
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smallest diagonalp× p block is nonzero; for thep = 2, k = 3 example above this means
that

det

(

α10 α01

β10 β01

)

, 0.

The parameters in the (1,m) block are indexed by a basis of Symm(Cp) ×Cp, so they
are of the formαl

ν whereν ∈
(

p+m−1
m−1

)

is anm-tuple and 1≤ l ≤ p. An easy computation
shows that:

Proposition 2.2. The polynomial in the(l,m) block and entry indexed by

τ = (τ[1], . . . , τ[l]) ∈

(

p+ l − 1
l − 1

)

andν ∈
(

p+m−1
m−1

)

is

(6) (Gk,p)τ,ν =
∑

ν1+...+νl=ν

ατ[1]
ν1
ατ[2]
ν2
. . . ατ[l]νl

Note thatGk,p is an extension of its unipotent radical byGL(p); that is, we have an
exact sequence

1→ Uk,p→ Gk,p→ GL(p) → 1,

andGk,p is the semi-direct productUk,p ⋊GL(p). HereGk,p has dimensionp× sym≤k(p)
where sym≤k(p) = dim(⊕k

i=1Symi
C

p), and is a subgroup of the parabolic subgroup
Pp,sym2(p),...,symk(p) of GL(sym≤k(p)) where symi(p) = dim(Symi

C
p). We defineG′k,p to

be the subgroup ofGk,p which is the semi-direct product

G
′
k,p = Uk,p ⋊ S L(p)

(so thatG′k,p = Uk,p whenp = 1) fitting into the exact sequence

1→ Uk,p→ G
′
k,p→ S L(p) → 1.

The action of the maximal torus (C∗)p ⊂ GL(p) of the Levi subgroup ofGk,p is

(7) (λ1, . . . , λp) · f (i) = (λi
1

∂i f

∂ui
1

, . . . , λi1
1 · · · λ

ip
p

∂i f

∂ui1
1 · · ·∂u

ip
p

. . . λi
p

∂i f
∂ui

p

)

We introduce theGreen-Griffithsvector bundleEGG
k,p,m→ X, whose fibres are complex-

valued polynomialsQ( f ′(0), f ′′(0)/2!, . . . , f (k)(0)/k!) on the fibres ofJk,p, having weighted
degree (m, . . . ,m) with respect to the action (7) of (C∗)p. That is, forQ ∈ EGG

k,p,m

Q(λ f ′(0), λ f ′′(0)/2!, . . . , λ f (k)(0)/k!) = λm
1 · · ·λ

m
p Q( f ′(0), f ′′(0)/2!, . . . , f (k)(0)/k!)

for all λ ∈ Cp and (f ′(0), f ′′(0)/2!, . . . , f (k)(0)/k!) ∈ Jk,p,m.



8 GERGELY BERCZI AND FRANCES KIRWAN MATHEMATICAL INSTITUTE, OXFORD OX1 3BJ, UK

Definition 2.3. The generalized Demailly-Semple bundle Ek,p,m → X over X has fi-
bre consisting of theG′k,p-invariant jet differentials of order k and weighted degree
(m, . . . ,m); that is the complex-valued polynomials Q( f ′(0), f ′′(0)/2!, . . . , f (k)(0)/k!) on
the fibres of Jk,p which transform under any reparametrizationφ ∈ Gk,p of (Cp, 0) as

Q( f ◦ φ) = (Jφ)
mQ( f ) ◦ φ,

where Jφ = detΦ1 denotes the Jacobian ofφ at 0. The generalized Demailly-Semple
bundle of algebras Ek,p = ⊕m≥0Ek,p,m is the associated graded algebra ofG′k,p-invariants,

whose fibre at x∈ X is the generalized Demailly-Semple algebraO((Jk,p)x)
G
′
k,p.

The determination of a suitable generating set for the invariant jet differentials when
p = 1 is important in the longstanding strategy to prove the Green-Griffiths conjecture.
It has been suggested in a series of papers [13, 5, 34, 24, 7, 25] that the Schur decompo-
sition of the Demailly-Semple algebra, together with good estimates of the higher Betti
numbers of the Schur bundles and an asymptotic estimation ofthe Euler charactristic,
should result in a positive lower bound for the global sections of the Demailly-Semple
jet differential bundle.

3. Geometric invariant theory

Suppose now thatY is a complex quasi-projective variety on which a linear algebraic
groupG acts. For geometric invariant theory (GIT) we need a linearization of the action;
that is, a line bundleL on Y and a liftL of the action ofG to L. UsuallyL is ample,
and hence (as it makes no difference for GIT if we replaceL with L⊗k for any integer
k > 0) we can assume that for some projective embeddingY ⊆ Pn the action ofG on Y
extends to an action onPn given by a representationρ : G→ GL(n+ 1), and take forL
the hyperplane line bundle onPn.

For classical GIT developed by Mumford [27] we require the complex algebraic group
G to be reductive. LetY be a projective complex variety with an action of a complex
reductive groupG and linearizationLwith respect to an ample line bundleL onY. Then
y ∈ Y is semistablefor this linear action if there exists somem> 0 and f ∈ H0(Y, L⊗m)G

not vanishing aty, andy is stableif also the action ofG on the open subset

Yf := {x ∈ Y | f (x) , 0}

is closed with all stabilizers finite.Yss has a projective categorical quotientYss→ Y//G,
which restricts on the set of stable points to a geometric quotient Ys → Ys/G (see [27]
Theorem 1.10). The morphismYss→ Y//G is surjective, and identifiesx, y ∈ Yss if and
only if the closures of theG-orbits ofx andy meet inYss. There is an induced action of
G on the homogeneous coordinate ring

ÔL(Y) =
⊕

k≥0

H0(Y, L⊗k)
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of Y. The subringÔL(Y)G consisting of the elements of̂OL(Y) left invariant byG is
a finitely generated graded complex algebra becauseG is reductive, and the GIT quo-
tient Y//G is the projective variety Proj(̂OL(Y)G) [27]. The subsetsYss andYs of Y are
characterized by the following properties (see [27, Chapter 2] or [28]).

Proposition 3.1. (Hilbert-Mumford criteria) (i) A point x∈ Y is semistable (respectively
stable) for the action of G on Y if and only if for every g∈ G the point gx is semistable
(respectively stable) for the action of a fixed maximal torusof G.
(ii) A point x ∈ Y with homogeneous coordinates[x0 : . . . : xn] in some coordinate
system onPn is semistable (respectively stable) for the action of a maximal torus of G
acting diagonally onPn with weightsα0, . . . , αn if and only if the convex hull

Conv{αi : xi , 0}

contains0 (respectively contains0 in its interior).

Similarly if a complex reductive groupG acts linearly on an affine varietyY then we
have a GIT quotient

Y//G = Spec(O(Y)G)

which is the affine variety associated to the finitely generated algebraO(Y)G of G-
invariant regular functions onY. In this caseYss = Y and the inclusionO(Y)G ֒→ O(Y)
induces a morphism of affine varietiesY→ Y//G.

Now suppose thatH is any complex linear algebraic group, with unipotent radical
U E H (so thatR = H/U is reductive andH is isomorphic to the semi-direct product
U ⋊ R), acting linearly on a complex projective varietyY with respect to an ample line
bundleL. Then Proj(̂OL(Y)H) is not in general well-defined as a projective variety, since
the ring of invariants

ÔL(Y)H =
⊕

k≥0

H0(Y, L⊗k)H

is not necessarily finitely generated as a graded complex algebra. However in some
cases it is known that̂OL(Y)U is finitely generated, which implies that

ÔL(Y)H =





⊕

k≥0

H0(Y, L⊗k)U





H/U

is finitely generated and hence theenveloping quotientin the sense of [9]is given by the
associated projective variety

Y//H = Proj(ÔL(Y)H).

Similarly if Y is affine andH acts linearly onY with O(Y)H finitely generated, then we
have the enveloping quotient

Y//H = Spec(O(Y)H).
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There is a morphism
q : Yss→ Y//H,

from an open subsetYss of Y (whereYss = Y whenY is affine), which restricts to a
geometric quotient

q : Ys→ Ys/H

for an open subsetYs ⊂ Yss. However in contrast with the reductive case, the morphism
q : Yss → Y//H is not in general surjective; indeed the image ofq is not in general a
subvariety ofY//H, but is only a constructible subset.

Suppose thatU is a unipotent group with a one-parameter group of automorphisms
λ : C∗ → Aut(U) such that the weights of the inducedC∗ action on the Lie algebrau of
U are all nonzero. Then we can form the semi-direct product

Û = C∗ ⋉ U

given byC∗ × U with group multiplication

(z1, u1).(z2, u2) = (z1z2, (λ(z
−1
2 )(u1))u2).

Linear actions of such unipotent groupsU which extend to the semi-direct productÛ
are studied in [1], motivated by the actions of the groupsGk = Uk ⋊ C∗ andGk,p =

Uk,p ⋊ GL(p) on the fibres of the jet bundlesJk and Jk,p. In this paper we will use a
different approach from that of [1] to study the Demailly-Semplealgebras of invariant
jet differentialsEn

k andEn
k,p and prove

Theorem 3.2. The fibresO((Jk)x)
Uk
ℓ � O((Jk)x × C)Gk (when k≥ 4) andO((Jk,p)x)

G
′
k,p

ℓ �

O((Jk,p)x ×C)Gk,p of the bundles Enk and En
k,p are finitely generated graded complex alge-

bras whenℓ is divisible by
k∑

i=1

i(dim Symi
C

p).

Thus we have non-reductive GIT quotients

((Jk)x × C)//Gk = Spec(O((Jk)x)
Uk
ℓ )

and
((Jk,p)x × C)//Gk,p = Spec(O((Jk,p)x)

G
′
k,p

ℓ )

and we would like to understand them geometrically. There isa crucial difference here
from the case of reductive group actions, even though the invariants are finitely gen-
erated: whenH is a non-reductive group we cannot describeY//H geometrically as
Yss modulo some equivalence relation. Instead our aim is to use methods inspired by
[3] to study these geometric invariant theoretic quotientsand the associated algebras of
invariants.

Here the crucial ingredient is to be able to find an open subsetW of (Jk,p)x × C with
a geometric quotientW/Gk,p embedded as an open subset of an affine varietyZ such
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that the complement ofW/Gk,p in Z has (complex) codimension at least two, and the
complement ofW in (Jk,p)x × C has codimension at least two. For then we have

O((Jk,p)x × C) = O(W)

and
O((Jk,p)x × C)Gk,p = O(W)Gk,p = O(W/Gk,p) = O(Z),

and it follows thatO((Jk,p)x × C)Gk,p is finitely generated sinceZ is affine, and that

Z = Spec(O(Z)) = Spec(O((Jk,p)x × C)Gk,p) = ((Jk,p)x × C)//Gk,p.

Similarly if we can find a complex reductive groupG containingGk,p as a subgroup, and
an embedding ofG/Gk,p as an open subset of an affine varietyZ with complement of
codimension at least two, thenO(G)Gk,p is finitely generated (that is,Gk,p is a Grosshans
subgroup ofG) and so ifY is any affine variety on whichG acts linearly then

O(Y)Gk,p � (O(Y) ⊗ O(G)Gk,p)G

is finitely generated.
We will use the ideas of [3] to find suitable affine varietiesZ as above, and in particular

to prove

Theorem 3.3. If p = 1 and k≥ 4, or if p > 1, thenGk,p is a Grosshans subgroup of the
general linear group GL(sym≤kp) where

sym≤kp =
k∑

i=1

dim Symi
C

p =

(

k+ p− 1
k− 1

)

,

so that every linear action ofGk,p which extends to a linear action of GL(sym≤kp) has
finitely generated invariants.

Theorem 3.2 is an immediate consequence of this theorem, since the action ofGk,p

on (Jk,p)x extends to an action of the general linear groupGL(sym≤kp), and the action of
Gk,p on (Jk,p)x×Cwith weightℓ onC extends to an action ofGL(sym≤kp) if ℓ is divisible
by

∑k
i=1 i(dim Symi

C
p) (which equalsk(k+ 1)/2 whenp = 1).

4. A description via test curves

In [3] the action ofGk on jet bundles is studied using an idea coming from global
singularity theory. The construction goes as follows.

If u, vare positive integers, letJk(u, v) denote the vector space ofk-jets of holomorphic
maps (Cu, 0) → (Cv, 0) at the origin; that is, the set of equivalence classes of maps
f : (Cu, 0)→ (Cv, 0), wheref ∼ g if and only if f ( j)(0) = g( j)(0) for all j = 1, . . . , k.

With this notation, the fibres ofJk are isomorphic toJk(1, n), and the groupGk is
simply Jk(1, 1) with the composition action on itself.
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If we fix local coordinatesz1, . . . , zu at 0 ∈ Cu we can again identify thek-jet of
f , using derivatives at the origin, with (f ′(0), f ′′(0)/2!, . . . , f (k)(0)/k!), where f ( j)(0) ∈
Hom(Symj

C
u,Cv). This way we get an identification

Jk(u, v) = ⊕k
j=1Hom(Symj

C
u,Cv).

We can compose map-jets via substitution and elimination ofterms of degree greater
thank; this leads to the composition maps

(8) Jk(v,w) × Jk(u, v)→ Jk(u,w), (Ψ2,Ψ1) 7→ Ψ2 ◦ Ψ1modulo terms of degree> k .

Whenk = 1, J1(u, v) may be identified withu-by-v matrices, and (8) reduces to multi-
plication of matrices.

Thek-jet of a curve (C, 0)→ (Cn, 0) is simply an element ofJk(1, n). We call such a
curveϕ regular if ϕ′(0) , 0. Let us introduce the notationJreg

k (1, n) for the set of regular
curves:

Jreg
k (1, n) = {γ ∈ Jk(1, n); γ′(0) , 0} .

Note that ifn > 1 then the complement ofJreg
k (1, n) in Jk(1, n) has codimension at least

two. LetN ≥ n be any integer and define

Υk =
{

Ψ ∈ Jk(n,N) : ∃γ ∈ Jreg
k (1, n) : Ψ ◦ γ = 0

}

to be the set of thosek-jets which take at least one regular curve to zero. By definition,
Υk is the image of the closed subvariety ofJk(n,N) × Jreg

k (1, n) defined by the algebraic
equationsΨ ◦ γ = 0, under the projection to the first factor. IfΨ ◦ γ = 0, we callγ a test
curveof Ψ.

This term originally comes from global singularity theory,where this is called the test
curve model ofAk-singularities. In global singularity theory singularities of polynomial
mapsf : (Cn, 0)→ (Cm, 0) are classified by their local algebras, and

Σk = { f ∈ Jk(n,m) : C[x1, . . . , xn]/〈 f1, . . . , fm〉 ≃ C[t]/tk+1}

is called a Morin singularity, orAk-singularity. The test curve model of Gaffney [12]
tells us that

Σk = Υk

in Jk(n,m).
A basic but crucial observation is the following. Ifγ is a test curve ofΨ ∈ Υk, and

ϕ ∈ Jreg
k (1, 1) = Gk is a holomorphic reparametrization ofC, thenγ ◦ ϕ is, again, a test

curve ofΨ:

C
ϕ

- C
γ

- C
n Ψ

- C
N(9)

Ψ ◦ γ = 0 ⇒ Ψ ◦ (γ ◦ ϕ) = 0.
In fact, we get all test curves ofΨ in this way from a singleγ if the following open
dense property holds: the linear part ofΨ has 1-dimensional kernel. Before stating
this more precisely in Proposition 4.3 below, let us write down the equationΨ ◦ γ = 0
in coordinates in an illustrative case. Letγ = (γ′, γ′′, . . . , γ(k)) ∈ Jreg

k (1, n) andΨ =
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(Ψ′,Ψ′′, . . . ,Ψ(k)) ∈ Jk(n,N) be thek-jets. Using the chain rule, the equationΨ ◦ γ = 0
reads as follows fork = 4:

Ψ′(γ′) = 0,(10)
1
2!Ψ

′(γ′′) + Ψ′′(γ′, γ′) = 0,
1
3!Ψ

′(γ′′′) + 2
2!Ψ

′′(γ′, γ′′) + Ψ′′′(γ′, γ′, γ′) = 0,
1
4!Ψ

′(γ′′′′) + 2
3!Ψ

′′(γ′, γ′′′) + 1
2!2!Ψ

′′(γ′′, γ′′) + 3
2!Ψ

′′′(γ′, γ′, γ′′) + Ψ′′′′(γ′, γ′, γ′, γ′) = 0.

Definition 4.1. To simplify our formulas we introduce the following notation for a par-
tition τ = [i1 . . . i l] of the integeri1 + . . . + i l:

• the length: |τ| = l,
• thesum:

∑

τ = i1 + . . . + i l,
• thenumber of permutations: perm(τ) is the number of different sequences con-

sisting of the numbersi1, . . . , i l (e.g. perm([1, 1, 1, 3]) = 4),
• γτ =

∏l
j=1 γ

(i j ) ∈ Syml
C

n and Ψ(γτ) = Ψl(γ(i1), . . . , γ(il )) ∈ CN.

Lemma 4.2. Letγ = (γ′, γ′′, . . . , γ(k)) ∈ Jreg
k (1, n) andΨ = (Ψ′,Ψ′′, . . . ,Ψ(k)) ∈ Jk(n,N)

be k-jets. Then the equationΨ ◦ γ = 0 is equivalent to the following system of k linear
equations with values inCN:

(11)
∑

τ∈Π[m]

perm(τ)
∏

i∈τ i!
Ψ(γτ) = 0, m= 1, 2, . . . , k,

whereΠ[m] denotes the set of all partitions of m.

For a givenγ ∈ Jreg
k (1, n) letSγ denote the set of solutions of (11); that is,

Sγ = {Ψ ∈ Jk(n,N);Ψ ◦ γ = 0} .

The equations (11) are linear inΨ, hence

Sγ ⊂ Jk(n,N)

is a linear subspace of codimensionkN. Moreover, the following holds:

Proposition 4.3. ([3], Proposition 4.4)

(i) For γ ∈ Jreg
k (1, n), the set of solutionsSγ ⊂ Jk(n,N) is a linear subspace of

codimension kN.
(ii) Set

Jo
k(n,N) = {Ψ ∈ Jk(n,N)| dim ker(Ψ′) = 1} .

For anyγ ∈ Jreg
k (1, n), the subsetSγ ∩ Jo

k(n,N) ofSγ is dense.
(iii) If Ψ ∈ Jo

k(n,N), thenΨ belongs to at most one of the spacesSγ. More precisely,

if γ1, γ2 ∈ Jreg
k (1, n), Ψ ∈ Jo

k(n,N) andΨ ◦ γ1 = Ψ ◦ γ2 = 0,

then there existsϕ ∈ Jreg
k (1, 1) such thatγ1 = γ2 ◦ ϕ.
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(iv) Givenγ1, γ2 ∈ Jreg
k (1, n), we haveSγ1 = Sγ2 if and only if there is someϕ ∈

Jreg
k (1, 1) such thatγ1 = γ2 ◦ ϕ.

By the second part of Proposition 4.3 we have a well-defined map

ν : Jreg
k (1, n)→ Grass(codim= kN, Jk(n,N)), γ 7→ Sγ

to the Grassmannian of codimension-kN subspaces inJk(n,N). From the last part of
Proposition 4.3 it follows that:

Proposition 4.4. ([3]) ν isGk-invariant on the Jreg
k (1, 1)-orbits, and the induced map on

the orbits

(12) ν̄ : Jreg
k (1, n)/Gk ֒→ Grass(codim= kN, Jk(n,N))

is injective.

5. Embedding into the flag of equations

In this section we will recast the embedding (12) ofJreg
k (1, n)/Gk given by Proposition

4.4 into a more useful form, still following [3]. Let us rewrite the linear systemΨ ◦ γ =
0 associated toγ ∈ Jreg

k (1, n) in a dual form. The system is based on the standard
composition map (8):

Jk(n,N) × Jk(1, n) −→ Jk(1,N),

which, via the identificationJk(n,N) = Jk(n, 1)⊗ CN, is derived from the map

Jk(n, 1)× Jk(1, n) −→ Jk(1, 1)

via tensoring withCN. Observing that composition is linear in its first argument,and
passing to linear duals, we may rewrite this correspondencein the form

(13) φ : Jk(1, n) −→ Hom (Jk(1, 1)∗, Jk(n, 1)∗).

If γ = (γ′, γ′′, . . . , γ(k)) ∈ Jk(1, n) = (Cn)k is thek-jet of a curve, we can putγ( j) ∈ Cn

into the jth column of ann× k matrix, and

• identify Jk(1, n) with Hom (Ck,Cn);
• identify Jk(n, 1)∗ with Sym≤k

C
n = ⊕k

l=1 Syml
C

n;
• identify Jk(1, 1)∗ with Ck.

Using these identifications, we can recast the mapφ in (13) as

(14) φk : Hom (Ck,Cn) −→ Hom (Ck,Sym≤k
C

n),

which may be written out explicitly as follows

(γ′, γ′′, . . . , γ(k)) 7−→




γ′, γ′′ + (γ′)2, . . . ,

∑

i1+i2+...+is=d

1
i1! . . . is!

γ(i1)γ(i2) . . . γ(is)




.
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The set of solutionsSγ is the linear subspace orthogonal to the image ofφk(γ′, . . . γ(k))
tensored byCN; that is,

Sγ = im(φk(γ))
⊥ ⊗ CN ⊂ Jk(n,N).

Consequently, it is straightforward to takeN = 1 and define

(15) Sγ = im(φk(γ)) ∈ Grass(k,Sym≤k
C

n).

Moreover, letBk ⊂ GL(k) denote the Borel subgroup consisting of upper triangular
matrices and let

Flagk(C
n) = Hom (Ck,Sym≤k

C
n)/Bk = {0 = F0 ⊂ F1 ⊂ · · · ⊂ Fk ⊂ C

n, dimFl = l}

denote the full flag ofk-dimensional subspaces of Sym≤k
C

n. In addition to (15) we can
analogously define

(16) Fγ = (im(φ(γ1)) ⊂ im(φ(γ2)) ⊂ . . . ⊂ im(φ(γk))) ∈ Flagk(Sym≤k
C

n).

Using these definitions Proposition 4.3 implies the the following version of Proposi-
tion 4.4, which does not contain the parameterN.

Proposition 5.1. The mapφ in (14) is aGk-invariant algebraic morphism

φ : Jreg
k (1, n)→ Hom (Ck,Sym≤k

C
n),

which induces

• an injective map on theGk-orbits to the Grassmannian:

φGr : Jreg
k (1, n)/Gk ֒→ Grass(k,Sym≤k

C
n)

defined byφGr(γ) = Sγ;
• an injective map on theGk-orbits to the flag manifold:

φFlag : Jreg
k (1, n)/Gk ֒→ Flagk(Sym≤k

C
n)

defined byφFlag(γ) = Fγ.

In addition,
φGr = φFlag ◦ πk

whereπk : Flag(k,Sym≤k
C

n)→ Grassk(Sym≤k
C

n) is the projection to the k-dimensional
subspace.

ComposingφGr with the Plücker embedding

Grass(k,Sym≤k
C

n) ֒→ P(∧kSym≤k
C

n)

we get an embedding

(17) φProj : Jreg
k (1, n)/Gk ֒→ P(∧

k(Sym≤k
C

n)).

The image
φGr(Jreg

k (1, n))/Gk ⊂ Grass(k,Sym≤k
C

n)
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is aGL(n)-orbit in Grass(k,Sym≤k
C

n), and therefore a nonsingular quasi-projective va-
riety. Its closure is, however, a highly singular subvariety of Grass(k,Sym≤k

C
n), which

whenk ≤ n is a finite union ofGL(n) orbits, with a nice orbit structure. We will return
to describe the orbits in the next section.

Definition 5.2. We introduce the following notation

Xn,k = φ
Proj(Jnondeg

k (1, n)), Yn,k = φ
Proj(Jreg

k (1, n)) ⊂ P(∧k(Sym≤k
C

n)).

Then

(18) Xn,k = Yn,k = φProj(Jnondeg
k (1, n)) ⊂ P(∧k(Sym≤k

C
n))

and
Xn,k ⊂ Yn,k ⊂ Xn,k ⊂ P(∧

k(Sym≤k
C

n)).

6. Boundary components

In this section we study the boundary components ofXn,k andYn,k as defined in Def-
inition 5.2 above. We will focus on the case whenk ≤ n first, and in§6.5 we will deal
with the situation whenk > n.

The main technical theorem which we are aiming to prove is Theorem 6.5 below,
which tells us that the complement ofXn,k in its closure in a subsetAn,k of P(∧k(Sym≤k

C
n))

has codimension at least two. Whenn = k this subsetAk,k is affine, and as discussed at
the end of§3, this result will be crucial in proving our finite generation result Theorem
3.2.

It is clear thatJnondeg
k (1, n) is an open subset ofJreg

k (1, n). If we identify the elements
of Jk(1, n) asn × k matrices whose columns are the derivatives of the map germsf =
( f ′, . . . , f (n)) : C → Cn, thenJnondeg

k (1, n) is the set of matrices of maximal rankk and
Jreg

k (1, n) consists of the matrices with nonzero first column.

Definition 6.1. Let e1, . . . , en be the standard basis ofCn; then

{ei1,i2,...,is = ei1 . . .eis : 1 ≤ i1 ≤ . . . ≤ is ≤ n, 1 ≤ s≤ k}

is a basis ofSym≤k
C

n, and

{eε1 ∧ . . . ∧ eεn : εl ∈ Π≤n}

is a basis ofP(∧n(Sym≤k
C

n)), where

Π≤n = {(i1, i2, . . . , is) : 1 ≤ i1 ≤ . . . ≤ is ≤ n, 1 ≤ s≤ k}.

The corresponding coordinates of x∈ Sym≤k
C

n will be denoted by xε1,ε2,...,εd. Let An,k ⊂

P(∧k(Sym≤k
C

n)) consist of the points whose projection to∧k(Cn) is nonzero. This is the
subset where xi1,i2,...,ik , 0 for some1 ≤ i1 ≤ . . . ≤ ik ≤ n.

Remark 6.2. If n = k thenAn,n ⊂ P(∧k(Sym≤k
C

n)) is the affine chart wherex1,2,...,n , 0.
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Let us take a closer look at the space Grass(n,Sym≤k
C

n). This has an induced right
GL(n) action coming from theGL(n) action on Sym≤k

C
n, andGL(n)/Gn has a leftGL(n)

action induced by multiplication on the left. SinceφProj is aGL(n)-equivariant embed-
ding, we conclude that

Lemma 6.3. (i) For k ≤ n Xn,k is the GL(n) orbit of

(19) z = φProj(e1, . . . , ek) = [e1 ∧ (e2 ⊕ e2
1) ∧ . . . ∧ (

∑

i1+...is=k

ei1 . . .eis)]

in P(∧k(Sym≤k
C

n)). For arbitrary g ∈ GL(n) with column vectors v1, . . . , vn the
action is given by

g · z = φProj(g) = φProj(v1, . . . , vn) = [v1 ∧ (v2 ⊕ v2
1) ∧ . . . ∧ (

∑

i1+...+is=n

vi1 . . . vis)].

(ii) For k ≤ n Yn,k is the finite union of GL(n) orbits.
(iii) For k > n the images Xn,k and Yn,k are GL(n)-invariant quasi-projective varieties,

but they have no dense GL(n) orbit.

Similar statements hold for the closure of the image in the Grassmannian.

Lemma 6.4. Let k≤ n, then

(i) An,k is invariant under the GL(n) action onP(∧k(Sym≤k
C

n)).
(ii) Xn,k ⊂ An,k; however, Yn,k * An,k.

(iii) Xn,k is the union of finitely many GL(n)-orbits.

Proof. To prove the first part take a lift

z̃= z̃1 ⊕ z̃2 ∈ Hom (Cn,Sym≤k
C

n)

of z ∈ Grass(n,Sym≤k
C

n), where

z1 ∈ Hom (Cn,Cn) andz2 ∈ Hom (Cn,⊕n
i=2 Symi(Cn))

Thenz ∈ An,k if and only if x1,2,...,n(z) = det(z̃1) , 0, which is preserved by theGL(n)
action. For the second part note that for (v1, . . . , vk) ∈ Jnondeg

k (1, n) v1 ∧ . . . ,∧vk , 0 so
by definitionφProj(v1, . . . , vk) ∈ An,k. On the other hand

φProj(e1, 0, . . . , 0) = e1 ∧ e2
1 ∧ . . . ∧ ek

1 ∈ Yn,k \ An,k.

The last part follows from the existense of a dense openGL(n) orbit. �

The main technical theorem of this paper, which will allow usto prove Theorems 3.3
and 3.2, is the following:

Theorem 6.5.Let k≥ 4. Then

(i) The boundary components of Yn,k ⊂ P(∧n(Sym≤k
C

n)) have codimension at least
two inYn,k.
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(ii) The intersection with An,k of the boundary components of Xn,k have codimension
at least two inXn,k = Yn,k.

Remark 6.6. There is a codimension-one boundary component ofXn,k for k = n. This is
the closure of the image of the singular matrices. This component is, however, outside
An,k, and the image of the singular matrices withv1 , 0 is inYn,k, so this is not a boundary
component ofYn,k.

Remark 6.7. In fact it is not hard to see that Theorem 6.5 is true fork ≤ 2, but it fails
for k = 3 (see Example 7.5 below).

We devote the rest of this section to the proof of Theorem 6.5.We start with the proof
of the case whenk ≤ n, and in§6.5 we study the case whenk > n.

The strategy of the proof is the following: first we notice that the dimension of the
stabilizer of any point inXn,k is k+n(n− k), and next we prove that the dimension of the
stabilizer of any point inYn,k \Yn,k and (Xn,k \ Xn,k)∩An,k is at leastk+ n(n− k)+ 2. The
result will then follow from Lemmas 6.3 and 6.4.

The first half of this strategy is clear: the stabilizer ofz in GL(n) is

(20) Gz = {

(

Gk ∗

0 GL(n− k)

)

},

where the entries∗ are arbitrary, and the stabilizer of any point inXn,k is conjugate to
Gz. In order to execute the second step, we need to identify the boundary components
of Xn,k andYn,k. These boundary components are closures ofGL(n) orbits and fall into
two groups: the ones inAn and the rest, and the stabilizer subgroups are very different
in these two cases.

6.1. Orbit structure. As we indicated before, we assume from now on until§6.5 that
k ≤ n. Let Zn,k ⊂ Xn,k be the torus orbitT · z ⊂ P(∧n(Sym≤k

C
n)); then Zn,k is, by

definition, a toric variety.

Proposition 6.8. Assume that k≤ n. Then every GL(n)-orbit in Xn,k intersectsZn,k. In
other words

(GL(n) · z) ∩ Zn,k , ∅ for all z ∈ Xn,k.

In particular, anyGL(n)-fixed points inXn,k sit in Zn,k.

Proof. For the proof we make two observations; the first is a straightforward computa-
tion and the second is easy to check:

Lemma 6.9. Let (τ1, . . . , τk) ∈ F ⊂ Z
T

be a fixed point of the T⊂ GL(n) action on
Bn · z, andλ(t) = (tλ1, . . . , tλn) ⊂ T ⊂ GL(n) such thatlimt→0 λ(t) · z = eτ1 ∧ . . . ∧ eτk.
Thenλ acts with positive weights on Aτ1∧...∧τk ∩ P̃.

Lemma 6.10. Let S be a closed subset containing the origin of a vector space V on
whichC∗ acts with all weights positive. ThenC∗ · S is closed in V.
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Now we claim that

(21) G · z = G · (T · z),

whereG = GL(n); that is,Xn,k ⊂ P(∧k(Sym≤k
C

n)) is the union ofG-orbits of the points
of Zn,k, the closure of the torus orbit. This will imply Proposition6.8. SinceG · z ⊃
G · (T · z) automatically holds, it is enough to prove thatG · z ⊂ G · (T · z), and this
follows from the property

(22) G · (T · z) is closed inP(∧k(Sym≤k
C

n))

To prove (22), letBn ⊂ GL(n) be the standard Borel subgroup ofGL(n) consisting
of upper triangular matrices andBn−1 ⊂ GL(n) (respectivelyUn−1 ⊂ GL(n)) be the
standard Borel subgroup ofGL(n − 1) (respectively the standard maximal unipotent of

Bn−1) embedded asA 7→

(

1 0
0 A

)

. SinceGL(n)/Bn is projective andBn · z = Un−1T · z,

it is enough to prove that

(23) Un−1 · (T · z) is closed inP(∧k(Sym≤k
C

n))

Recall thatP(∧k(Sym≤k
C

n)) is the union of the affine chartsAε1∧...∧εk where the coordi-
nate dual toeε1∧ . . .∧eεk is nonzero. To prove (23) it is enough to show thatUn−1 · (T · z)
contains all its limit points in each of these affine charts. Indeed it is not necessary to

consider all of these charts; we need only a cover ofZn,k. LetF = Z
T

n,k be the set of fixed
points inZn,k under the action of the maximal torusT of GL(n) onP(∧k(Sym≤k

C
n). Ele-

ments ofF are points of the formeε1 ∧ . . .∧ eεk, whereεi ∈ Π≤n defined as in Definition
6.1, and

Zn,k ⊂
⋃

(ε1,...,εk)∈F

Aε1∧...∧εk.

If Σ(εi) > i for some 1≤ i ≤ k, whereΣ(εi) is the sum of the partitionεi defined as in
Definition 4.1, then the coordinate dual toeε1 ∧ . . . ∧ eεk is zero for any point inBn · z.
Therefore for any (τ1, . . . τk) ∈ F we haveΣ(εi) ≤ i, and (τ1, . . . τk) lies in

P̃ = {z ∈ P(∧k(Sym≤k
C

n)) : xε1,...,εk(z) , 0⇒ Σ(εi) ≤ i for 1 ≤ i ≤ k}.

Let (τ1, . . . τk) ∈ F ∈ P̃ be a fixed point. There is a 1-parameter subgroupλ(t) =
(tλ1, . . . , tλn) ∈ T ⊂ GL(n) such that limt→0 λ(t) · z = eτ1 ∧ . . .∧ eτk. According to Lemma
6.9 above, the weights ofλ on the affine spaceAτ1,...,τk ∩ P̃ are positive. Now

(24) Un−1 =
⋃

t∈C∗

λ(t){u ∈ Un−1 : ||u|| ≤ 1}λ(t−1)

where|| · || is any norm on LieUn−1. Indeed,λ normalizesUn−1 and the induced conju-
gation action on LieUn−1 has all weights> 0. Consequently,

Un−1T · z = C∗{u ∈ Un−1 : ||u|| ≤ 1}T · z.
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Since{u ∈ Un−1 : ||u|| ≤ 1} is compact, the setS = {u ∈ Un−1 : ||u|| ≤ 1}T · z is closed.
Now the Proposition follows from Lemma 6.10. �

Corollary 6.11. The boundary components of Xn,k are closures of orbits GL(n) ·z where
z ∈ Zn,k is a boundary point of Zn,k = T · z.

In order to identify the boundary points ofZn,k we use the following standard result:

Lemma 6.12.Let T be an algebraic torus acting on the projective variety Z, and z∈ Z.
Then y∈ Tz if and only if there isτ ∈ T and a one-parameter subgroupλ : C∗ → T
such that y∈ λ(C∗)τz.

Apply Lemma 6.12 withZ = Zn,k, z = z = φproj(e1, . . . , en) andT the maximal torus
of diagonal elements inGL(n). It is clear from Lemma 6.4 thatXn,k is the union of
GL(n)-orbits. Choose a one-parameter subgroup:

λ(t) =






tλ1

.
.

tλn






Let τ = (ρ1, . . . , ρn) ∈ T. We aim to compute the limit points

zλ,t = lim
t→0
λ(t)(τ · z) ∈ Grass(k,Sym≤k

C
n).

Notice that the lastn − k coordinates ofλ are irrelevant for the action onz sincez ∈
Sym≤k

C
n. By Lemma 6.21 the closure of the orbitTzλ,t forms a boundary component of

Zn,k. Since

τ · z = ρ1e1 ∧ (ρ2e2 ⊕ ρ
2
1e

2
1) ∧ . . . ∧ (

⊕

i1+...+is=k

ρi1 . . . ρisei1 . . .eis)

we have

λ(t)zτ = [tλ1ρ1e1 ∧ (tλ2ρ2v2 ⊕ t2λ1ρ2
1v

2
1) ∧ . . . ∧ (

⊕

i1+...+is=k

tλi1+...+λisρi1 . . . ρisei1 . . .eis)] =

= [tλ1+...+λkρ1 . . . ρk(e1 ∧ . . . ∧ ek) + tλ1+2λ1+λ3+...+λkρ1ρ
2
2ρ3 . . . ρk(e1 ∧ e2

1 ∧ e3 ∧ . . . ∧ ek) + . . .].

The generic term of the last expression is

tλε1+λε2+...λεkρε1 . . . ρεk(eε1 ∧ . . . ∧ eεk), Σ(εi) = i

where

(25) λτ =
∑

i∈τ

λi; eτ = Πi∈τei; ρτ = Πi∈τρi if τ = (i1, . . . , is) is an ordered sequence.

Definition 6.13. Let
• mλ = min(ε1,...εk)

Σ(εi)=i
(λε1 + λε2 + . . . λεk),

• mλ[i] = minΣ(ε)=i λε for 1 ≤ i ≤ k,
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• zλ[i] =
∑

Σε=i,λε=mλ[i] eε.

Remark 6.14. We make three straightforward observations:

(i) zλ,t2 = [
∑

λε1+...λεk=m(λ) ρε1 . . . ρεkeε1 ∧ . . . ∧ eεk];
(ii) zλ,t2 = t2 · zλ, where

zλ = lim
t→0
λ(t)z = [

∑

λε1+...λεk=m(λ)

eε1 ∧ . . . ∧ eεk] = ∧
k
i=1zλ[i],

so the boundary components ofZn,k (respectivelyXn,k) areT · zλ (respectively
G · zλ) for some one-parameter subgroupsλ;

(iii) zλ ∈ An,k if and only if λ1 + . . . + λk = m(λ).

From this we see that theGL(n)-orbits in the boundary ofXn,k correspond to the
combinatorial data in the description of the limit point. The proof of Theorem 6.5 now
consists of three steps:

• In the first step we describe the maximal boundary componentsas closures of
orbits of limit pointszλ for some 1-parameter subgroupsλ, µ : C∗ → TC. There
arek − 1 maximal boundary components inAn,k indexed byλσ for 2 ≤ σ ≤ k,
andk − 1 maximal boundary components inP(∧k(Sym≤k

C
n)) \ An,k indexed by

µσ, which are inYn,k.
• The next step is to compute the limit limGλσ(t)z of the stabilizer subgroups as we

move to the boundary component, and check that it has dimensionk+ n(k− n).
• Finally, we study the stabilizer groupGzλσ of the limit point, and find two extra

dimensions in addition to limGλσ(t)z in order to complete the proof of Theorem
6.5.

6.2. The maximal boundary components.The open dense orbitO0 is theGL(n)-orbit
of z = z0 in the Grassmannian, wherez is defined in (19). It is clear that the 1-parameter
subgroup̃λ(t) = (t, t2, . . . , tk, 1, . . . , 1) stabilizesz, and thereforez = zλ̃.

LetOλ denote theGL(k)-orbit of zλ. ThenO0 = Oλ̃ by definition. If

Λ = {λ : λ1 + . . . + λk = m(λ)}

is the set of one-parameter subgroups whereλ1 + . . . + λk is minimal among the sums
λε1 + λε2 + . . . λεk, then the orbits inAn,k are{Oλ : λ ∈ Λ}.

We need a more precise description of the orbit structure. Since λ̃i = iλ̃1 for i =
1, . . . , k, for λ , λ̃ we have a smallest index 1< σ ≤ k with λσ , σλ1.

Definition 6.15. We callσ = Head(λ) the head ofλ = (λ1, . . . , λn) if

λi = iλ1 for i < σ andλσ , σλ1.

If λσ < σλ1 then we callλ regular; otherwise we callλ degenerate.
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We will often identify a one-parameter subgroupλ with the orbitGL(n) · zλ ∈ Xn,k

and say thatλ is maximalif GL(k) · zλ is a maximal boundary component ofXn,k, in the
sense that the orbit closureGL(k) · zλ is contained inXn,k \ Xn,k and is not contained in
the closure of any otherGL(k)-orbit in Xn,k \ Xn,k.

Definition 6.16. Fix 0 < ε << 1 and 2 ≤ σ ≤ k. Letλσ = (λσ1 , . . . , λ
σ
n ) and µσ =

(µσ1 , . . . , µ
σ
n ) be the following one-parameter subgroups of GL(n):

(26) λσi =






i − ⌊ i
σ
⌋ ε for 1 ≤ i ≤ k,

0 for k < i ≤ n;

(27) µσi =






i for i , σ, i ≤ k,

σ + ε for i = σ,

0 for k < i ≤ n.

Here⌊ i
σ
⌋ denotes the largest integer m such that m≤ i

σ
.

It is easy to see that Head(λσ) = Head(µσ) = σ, andλσ is regular, whereasµσ is
degenerate.

Definition 6.17. Letλ be a 1-parameter subgroup. We call

♯{i : zλ[i] = ei}

the toral dimension ofλ, or of the limit pointzλ.

We will see that the dimension of a maximal torus of the stabilizer of zλ in GL(n) is
equal to the toral dimension ofλ, and so if the toral dimension ofλ is at least three the
orbit of zλ will have codimension at least two, and we have to focus on thoseλ whose
toral dimension is 1 or 2.

Lemma 6.18. (i) The maximal regular 1-parameter subgroups have toral dimen-
sion at least2. Those with toral dimension2 areλ2, . . . λk; in other words for a
regular λ with Head(λ) = σ we haveOλ ⊂ Oλσ . The regular boundary compo-
nents lie in An,k.

(ii) The maximal degenerate 1-parameter subgroups areµ2, . . . µk; in other words
for a regularµ with Head(µ) = σ we haveOµ ⊂ Oµσ. The degenerate boundary
components lie outside An,k.

(iii) zµσ ∈ Yn,k and therefore the degenerate boundary orbits are in Yn,k, and they are
not boundary orbits.

Proof. Let λ be a regular 1-parameter subgroup with Head(λ) = σ. Without loss of
generality we can assume that

λi = i for i < σ andλσ = σ − ε.
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We will call d(i) = ⌊ i
σ
⌋ the defect ofi and the defect ofτ = (i1, . . . , is) is d(τ) =

d(i1) + . . . + dis. Since

λ( j,σ, . . . , σ
︸   ︷︷   ︸

m

) = j +m(σ − ε) for 1 ≤ j ≤ σ − 1,m≥ 0,

we have

(28) mλ[i] ≤ i − d(i)ε for 1 ≤ i ≤ n.

If λs < s− d(s)ε for s> i ands is the smallest index with this property thenmλ[s] = λs

andzλ[s] = es, so the dimension ofλ is at least 3. Indeed,

zλ[1] = e1, zλ[σ] = eσ, zλ[s] = es.

So we can assume thatλi ≥ i − d(i)ε for 1 ≤ i ≤ k, and therefore

mλ[i] = i − d(i)ε for 1 ≤ i ≤ k.

So

(29) eτ < zλ[i] if d(τ) > d(i).

On the other hand the distinguished 1-parameter subgroupλσ is defined so thatλσi =
i − d(i)ε, where 0< ε << 1, and therefore

(30) zλσ [i] =
∑

Σ(τ)=i,d(τ)=d(i)

eτ.

Comparing (29) and (30) we conclude

zλ[i] ⊂ zlσ [i] for 1 ≤ i ≤ n

and the first part of Lemma 6.18 follows. To prove the second part let µ be a degenerate
1-parameter subgroup with Head(µ) = σ. Without loss of generality we can assume
again that

µi = i for i < σ andµσ = σ + ε.

Since
µ(1, . . .1
︸ ︷︷ ︸

i

) = i for 1 ≤ i ≤ k

we have

(31) mµ[i] ≤ i.

Again, µs < s cannot happen fors > σ since in that casezµ[s] = es would hold and
the toral dimension would be at least 3. Soµs ≥ s and thereforeµτ ≥ Σ(τ) with strict
inequality ifσ ∈ τ. Therefore

(32) eτ < zµ[i] if σ ∈ τ
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On the other handµσ satisfies equality in (31), and

(33) zµσ[i] =
∑

Σ(τ)=i,σ<τ

eτ.

Comparing (32) and (33) we get

zλ[i] ⊂ zlσ [i] for 1 ≤ i ≤ k

and the second part of Lemma 6.18 follows. �

Remark 6.19. According to Lemma 6.18, the codimension-at-least-two property has to
be proved only for the regular boundary components.

We summarize our information about the maximal boundary components in

Proposition 6.20. We havezλσ = ∧k
i=1zλσ [i], wherezλσ [i] = ⊕Σ(τ)=i,d(τ)=d(i)eτ, andzµσ =

∧k
i=1zµσ[i] wherezµσ[i] = ⊕Σ(τ)=i,σ<τeτ.

Lemma 6.18 describes the boundary components ofXn,k. In section§6.5 we will need
a bit more information about the boundary components ofYn,k. We prove the following

Proposition 6.21.Let k≤ n. The boundary orbits of Yn,k lie in the closures of boundary
orbits in An,k.

Proof. Let zλ be a boundary point corresponding to a 1-parameter subgroupλ.
Case 1.If λi ≥ iλ1 for 1 ≤ i ≤ k thenmλ[i] = i sinceλ(1,...,1) = i. Let Iλ = {i : λi > iλ1}

be the set of abundant indices; then

zλ[i] =
∑

I∩τ=∅

eτ,

and therefore

zλ = φproj(δ1,Ie1, . . . , δk,Iek) whereδi,I =






0 if i ∈ I

1 if i < I
,

showing that these orbits lie inYn,k, so they are not boundary orbits.
Case 2.If λσ > σλ1 andλρ < ρλ1 with some 1< σ, ρ ≤ k, then we claim thatOλ ⊂ Oλ̃,
whereλ̃ = (λ1, . . . λσ−1, σλ1, λσ+1, . . . , λk). Indeed,

zλ[i] =
∑

λ(τ)=mλ [i]

eτ,

and since we can replace in any partitionτwhich containsσ the partition 1i = (1, . . . , 1
︸  ︷︷  ︸

σ

),

andλ(τ − σ + 1i) < λ(τ). So

mλ[i] = min
Σ(τ)=i
λ(τ) = min

Σ(τ)=i,σ<τ
λ(τ).

Therefore
zλ[i] ⊂ zλ̃[i] for 1 ≤ i ≤ n,
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andzλ = limθ→0 λ(t)zλ̃. Repeating the same procedure, we can get rid of the indices
whereλi > iλ1 andOλ ⊂ Oλ̃ whereλ̃i ≤ iλ̃1 for 1 ≤ i ≤ k.
Case 3.Finally, assume thatλi ≤ iλ1 for 1 ≤ i ≤ k. Note that

λi ≤ mλ[i] ∀i ⇔ zλ ∈ An,k.

Assume that

(34) λσ > mλ[σ],

andσ is the smallest index with this property, and furthermoreµ is a partition with
mλ[σ] = λµ. Defineλ̃ = (λ1, . . . , λσ−1,mλ[σ], λσ+1, . . . , λk). Thenzλ , zλ̃ sinceeσ ∈
zλ̃[σ] but eσ < zλ[σ]. We show thatzλ = limt→0 λ(t)zλ̃, andλ̃ has fewer indicesσ with
property (34) thanλ has, and then by induction we can prove thatzλ is in the closure
of a maximal orbitOµ in An,k. For by (34) in any partitionτ which contains the index
σ, we can replaceσ with the maximal partitionµ such that Head(µ) = σ and then
λ(τ − σ + µ) < λ(τ). So

mλ[i] = min
Σ(τ)=i
λ(τ) = min

Σ(τ)=i,σ<τ
λ(τ),

which implies
zλ[i] ⊂ zλ̃[i] for 1 ≤ i ≤ k,

and therefore the result follows. �

6.3. The limit of the stabilizers. According to Remark 6.19, we have to prove that
the boundary components ofXn,k corresponding to the 1-parameter subgroupsλσ have
codimension at least 2 for 2≤ σ ≤ k.

Recall that the second step in the proof of Theorem 6.5 according to our strategy is
the study of the limits of the stabilizer groups, i.e. of limGλσ(t)z and limGλσ(t)z for the
one-parameter subgroupsλσ andµσ when 2≤ σ ≤ k.

In this subsection we prove

Proposition 6.22.Gσ = limt→0 Gλσ(t)z ⊂ GL(n) is a k+ n(n− k)-dimensional subgroup
of Gzλσ .

Proof. Consider the stabilizerGλσ(t)z. SinceGL(n) acts on the right on Grass(k,Sym≤2
C

n),

Gλσ(t)z = λ
σ(t)−1Gzλ

σ(t).

Recall that (in shorthand)Gz = {

(

Gk ∗

0 GL(n− k)

)

} where

Gk = {





α1 α2 α3 . . . αk

0 α2
1 2α1α2 . . . 2α1αn−1 + . . .

0 0 α3
1 . . . 3α2

1αk−2 + . . .
0 0 0 . . . ·

· · · . . . αd
1





}
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and the polynomial in the (i, j) entry is

pi, j(α) =
∑

a1+a2+...+ai= j

αa1αa2 . . . αai .

Therefore, the (i, j) entry of the stabilizer ofλs(t)z is

(35) (Gλσ(t)z)i, j = tλ
σ
i −λ

σ
j pi, j(α).

If ε is small enough thenλσ1 < λ
σ
2 < . . . < λ

σ
k , and we define the positive number

(36) nσi = max
1≤ j≤n−i+1

(λσj+i−1 − λ
σ
j ), i = 1, . . . , k.

Note that by definitionnσ1 = 0 for allσ.

Lemma 6.23.Under the substitution

βσi = t−nσi ασi

we have
Gλσ(t)z(β1, . . . , βk) ∈ GL(C[β1, . . . , βk][ t]),

so the entries are polynomials in t with coefficients inC[β1, . . . , βk].

Proof. Compute the substitution as follows:

Gλσ(t)z)i, j = tλ
σ
i −λ

σ
j

∑

a1+a2+...+ai= j

αa1αa2 . . . αai =(37)

=
∑

a1+...ai= j

tλ
σ
i −λ

σ
j tnσa1

+nσa2
+...+nσai βa1βa2 . . . βai .(38)

By definition

nσa1
≥ λσi+a1−1 − λ

σ
i ; nσa2

≥ λσi+a1+a2−2 − λ
σ
i+a1−1; . . . ; nσaj

≥ λσi+a1+...+ai−i − λ
σ
i+a1+...+ai−1−(i−1).

Adding up these inequilites and usinga1 + . . . + ai = j we get an alternating sum on the
left cancelling up to

nσa1
+ . . . + nσai

≥ λσj − λ
σ
i .

Substituting this into (37) we get

(39) (Gλσ(t)z)i, j =
∑

a1+...ai= j

tλ
σ
i −λ

σ
j tnσa1

+nσa2
+...+nσai βa1βa2 . . . βai ∈ C[β1, . . . , βk][ t].

This proves Lemma 6.23. �

As a corollary we get the existence of

Gσ = lim
t→0

Gλσ(t)z(β1, . . . , βk) ∈ GL(C[β1, . . . , βk]).

To prove that dimGσ = k + n(n − k) and complete the proof of Proposition 6.22, for
1 ≤ i ≤ k chooseθ(i) such that

(40) nσi = λθ(i)+i−1 − λθ(i)
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holds. Then

pθ(i),θ(i)+i−1(β1, . . . , βk) =
∑

a1+...+aθ(i)=θ(i)+i−1

tnσa1
+...+nσaθ (i)βa1 . . . βaθ(i)(41)

so

(42) (Gσ)θ(i),θ(i)+i−1 = lim
t→0

t−nσi pθ(i),θ(i)+i−1(β1, . . . , βk) = lim
t→0

(tnσi βθ(i)−1
1 βi + . . .) =

= βθ(i)−1
1 βi + qθ(i),θ(i)+i−1

where
qθ(i),θ(i)+i−1 ∈ C[β1, . . . , βk][ t].

It follows that the elementsddtA
σ(t(e1+ei)1) ∈ Lie(Gσ) are independent, wheret(e1+ei) =

(t, 0, . . . , 0, t, 0, . . . , 0) with thet’s are in the 1st andith position if i > 1 but interpreted
as (2t, 0, . . . , 0) if i = 1. This completes the proof of Proposition 6.22. �

6.4. Two extra dimensions in the stabilizer of the limit point. In order to prove The-
orem 6.5, it is now enough to prove its statements for the maximal orbits, i.e. to prove

Proposition 6.24.
dimGzλσ ≥ k + n(n− k) + 2 if 2 ≤ σ ≤ k.

According to Proposition 6.22 and our strategy described atthe end of§6.1, this
follows from

Proposition 6.25.There exists a 2-dimensional subgroup Bσ ⊂ Gzλσ with Gσ ∩ Bσ = 0.

Proof. First, note that the maximal torus of the principalk×k minor inGσ is 1-dimensional,
and has the form diag(χ, χ2, . . . , χk). However,Gzλσ contains a 2-dimensional torus

(43) diag(p1(χ, δ), . . . , pk(χ, δ))

where

(44) pi(χ, δ) = aχ + bδ if i = bσ + a.

Indeed, by Proposition 6.20

zλσ = zλσ [1] ∧ . . . ∧ zλσ [k]

where

(45) zλσ [i] =
∑

rεi=rσi

eεi .

This means that if we give the weightrσi to ei, thenzλσ[i] is homogeneous of degree

rσi = i − ⌊
i
σ
⌋ε = a+ b(σ − ε),

wherei = bσ + a. Therefore, the torus diag(rσ1 , . . . , r
σ
k ) is in the stabilizer. If we weight

r1 with χ and rσ with δ then by the same argument,zλσ [i] is homogeneous of weight
aχ + bδ, and we get the torus in (43).
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It remains to find an extra one-dimensional unipotent subgroup of the stabilizer which
is not inGσ. It turns out that we have to distinguish three cases here.

Lemma 6.26. There exists a one-dimensional unipotent subgroup in Gzλσ \ Gσ when
σ = k.

Proof. Let T ∈ GL(k) denote the transformation

T(ei) = ei for i , k− 1 ; T(ek−1) = ek−1 + ζek

Sinceek−1 does not occur just inzλσ [k−1] in (45), we getT ∈ Gzλσ . ButT < Gσ, because
T is not upper triangular. �

Lemma 6.27. There exists a one-dimensional unipotent subgroup in Gzλσ \ Aσ when
σ < k and k, −1 modσ.

Proof. Let T be the transformation

(46) T(ei) = ei for i , k ; T(ek) = ek + ζeσ.

Sinceek occurs only inzλσ[k], andzλσ [σ] = σ (see (45)), we have

(47) T · zλσ = zλσ(e1, . . . , ek−1, ek + ζeσ) =

= zλσ [1] ∧ . . . ∧ zλσ[σ − 1] ∧ eσ ∧ zλσ [σ + 1] ∧ . . . ∧ zλσ [k])+

+ ζ · zλσ[1] ∧ . . . ∧ zλσ [σ − 1] ∧ eσ ∧ zλσ[σ + 1] ∧ . . . ∧ zλσ[k− 1] ∧ eσ = zλσ ,

soT ∈ Gzλσ .
It is slightly harder task to show thatT < Gσ = limθ→0 Gλσ(t)z. First, we computeni

for i = k − σ. We claim that forn , −1 modσ

(48) nk−σ+1 = λ
σ
k − λ

σ
σ = λ

σ
k−σ+1 − λ

σ
1 .

Indeed,
λ j+k−σ−1 − λ j = . . . ... ≤ λ

σ
k − λ

σ
σ = λ

σ
k−σ+1 − λ

σ
1

This means that we can chooseθ(k− σ + 1) = σ in (40) and substitute into (42)

(49) (Gσ)σ,k = β
σ−1
1 βk−σ+1 + qσ,k(β1, . . . , βk),

whereqσ,k(β1, . . . , βk) is a polynomial, whose monomialsβb1
i1
. . . βbσ

iσ
satisfy

(50) i1b1 + . . . + iσbσ = k.

Moreover, we can also chooseθ(k− σ + 1) = 1, by (48), and then (42) gives us

(51) (Gσ)1,k−σ+1 = βk−σ+1.

Suppose now thatT ∈ Gσ, that is

(52) T = Gσ(β1, . . . , βk) for someβ1 ∈ C
∗, β2, . . . , bk ∈ C.

Let (T)i, j denote the (i, j) entry ofT. Then

(T)σ,k = ζ , (T)i, j = 0 for i , j , (T)i,i = 1.
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Comparing the (1, 1) and (1, k− σ + 1) entries ofT andGσ we get

(53) β1 = 1, βδ−σ+1 = 0.

Chooseθ(i) for i = 2, . . . , k as in (40) and letθ(k − σ + 1) = σ. Since all off-diagonal
entries ofT but the (σ, k) are zero, (52) forces the following equations

βi + qθ(i),θ(i)+i−1 = 0 for i , k− σ + 1,(54)

βk−σ+1 + qσ,k = ζ.(55)

By (53), these arek− 1 polynomial equations ink− 2 variables, and the Jacobian at 0 is
the origin, so we have finitely many solutions near the origin. Therefore, for someζ, it
follows thatT is not inGσ. �

Lemma 6.28. There exists a one-dimensional unipotent subgroup in Gzλσ \ Gσ when
σ < k and d= −1 modσ.

Proof. This case works very similarly to the previous one. Supposek − 1 > σ, that is,
if k = aσ − 1 wherea ≥ 2 (this holds becausek ≥ σ), the condition is thataσ − 2 > σ.
This is true for allk > 3. Fork = 3,σ = 2 Theorem 6.5 is not true.

Let T be the transformation

(56) T(ei) = ei for i , k, k− 1 ; T(ek−1) = ek−1 + ζeσ ; T(ek) = ek + ζeσ

First we check again thatT ∈ Gzλσ . By (45)

zλσ [σ] = eσ ;

zλσ[σ + 1] = eσ+1 + e1eσ ;

zλσ [k] = ek +

k−1∑

i=1

eiek−i .

An easy computation shows that

(57) T · zλσ = zλσ(e1, . . . , ek−2, ek−1 + ζeσ, ek + ζeσ+1) =

= zλσ [1] ∧ . . . ∧ zλσ[k − 2] ∧ (zλσ [k− 1] + ζzλσ[σ]) ∧ (zλσ [k] + ζzλσ [σ + 1] =

= zλσ [1] ∧ . . . ∧ zλσ [k] = zλσ .

Now we prove thatT < Gσ in a similar way to the second case covered by Lemma
6.27. Sincek− 1 , −1 modσ we can substitutek− 1 instead ofk in (48):

(58) nk−σ = λ
σ
k−1 − λ

σ
σ = λ

σ
k−σ − λ

σ
1 .

Moreover, we also get the extra equation

(59) nk−σ = λ
σ
k − λ

σ
σ+1,
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and similarly to (49) and (51) it follows that

(Gσ)σ,k−1 = β
σ−1
1 βk−σ + qσ,k−1(β1, . . . , βk);(60)

(Gσ)σ+1,k = β
σ
1βk−σ + qσ+1,k(β1, . . . , βk);(61)

(Gσ)1,k−σ = βk−σ.(62)

SinceT differs from the identity matrix only by the entries

(T)σ,k−1 = (T)σ+1,k = ζ,

the equality
T = Gσ(β1, . . . , βk)

forcesβk−σ = 0, β1 = 1 and the analogue of (54) ,(55):

βi + qθ(i),θ(i)+i−1 = 0 for i , k− σ(63)

βk−σ + qσ,k−1 = ζ(64)

βk−σ + qσ+1,k = ζ(65)

which are, again,k+1 nondegenerate polynomial equations ink−1 variables, and there
is no solution for someζ. �

We have now proved Proposition 6.25, which together with Proposition 6.22 com-
pletes the proof of Proposition 6.24 and thus of Theorem 6.5 whenk ≤ n.

�

6.5. Boundary components fork > n. Whenk > n the argument used in§§6.1-6.4 to
prove Theorem 6.5 in the case whenk ≤ nbreaks down since the imageφProj(Jnondeg

k (1, n))
is not aGL(n) orbit, and therefore we cannot localize the boundary points in the same
way using 1-parameter subgroups. The embeddingφProj is still GL(n)-invariant, but the
image is the union of infinitely manyGL(n)-orbits. In fact, however, as we will see be-
low, Theorem 6.5 fork > n follows from Theorem 6.5 fork ≤ n which we have already
proved.

Let k > n andi = (i1 < i2 < . . . < in) be ann-element subset of{1, . . . , k}. Fix a basis
e1, . . . , ek of Ck, and denote

C
n
i = Cei1 ⊕ . . . ⊕ Cein ⊂ C

k

the coordinate subspace spanned by bases elements fromi. Define the corresponding
subspace

∧k Sym≤k
C

n
i ⊂ ∧

k Sym≤k
C

k,

and letπi : ∧k Sym≤k
C

k → ∧k Sym≤k
C

n
i denote the projection. Their direct sum

(66) π = ⊕i∈(k
n)πi : ∧k Sym≤k

C
k →

⊕

i∈(k
n)
∧k Sym≤k

C
n
i
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descends to a rational map

π̄ : P(∧k Sym≤k
C

k) − −− → P





⊕

i∈(k
n)
∧k Sym≤k

C
n
i





,

which is well-defined onYk,k ⊂ P(∧k Sym≤k
C

k). In fact, it is well-defined onCk ∧

Sym2
C

k ∧ . . . ∧ Symk
C

k ⊂ ∧k Sym≤k
C

k, andYk,k sits in this subspace.
Now we have a well-defined map

π̄ : Yk,k → P





⊕

i∈(k
n)
∧k Sym≤k

C
n
i





,

and

ι : Yn,k ֒→ P(∧
k Sym≤k

C
n
1,...,n) ֒→ P





⊕

i∈(k
n)
∧k Sym≤k

C
n
i





defines an embedding. Moreover,Jreg
k (1, n) ⊂ Jreg

k (1, k) simply by adding the (k− n) × k
zero matrix to get ak× k matrix from ann× k matrix. The diagram

Jreg
k (1, k) � ⊃ Jreg

k (1, n)
φ

proj
k - Yk,k

⊂ - P(∧k Sym≤k
C

k)

Jreg
k (1, n)

=

? φproj
- Yn,k

π̄

?

⊂
ι
- P





⊕

i∈(k
n)
∧k Sym≤k

C
n
i





(67)

commutes by definition, soYn,k ⊂ π̄(Yk,k), and therefore it extends to a surjective mor-
phism

π̄ : Yk,k → Yn,k.

Since dim(Yk,k) = k(k − 1) and dim(Yn,k) = k(n − 1), the generic fiber has dimension
k(k− n). Furthermore,

Yn,k \ Yn,k ⊂ π̄(Yk,k \ Yk,k),

and by Proposition 6.21

Yn,k \ Yn,k ⊂
⋃

zλ∈Ak,k

π̄(Oλ).

Now, Oλ is irreducible, and therefore ¯π(Oλ), too. We want to prove that for a generic
pointz ∈ π̄(Oλ) ∩ Yn,k

dim(π̄−1(z)) ∩ Oλ ≥ k(k− n)
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holds. The genericzsits in π̄(Oλ), and therefore has the form

z= π̄(zλ[1](v) ∧ . . . ∧ zλ[k](v))

for somev ∈ Jreg
k (1, k). Let κ : Ck → Cn

1,...,n denote the projection to the subspace
spanned by the firstn basis vectors ofCk. Now κ(v) ∈ Jk(1, n) ⊂ (Cn

1,...,n)
k, and by the

diagram (67)

zλ[1](κ−1(κ(v))) ∧ . . . ∧ zλ[k](κ−1(κ(v))) ⊂ π̄−1(z) ∩ Oλ.

So we have a commutative diagram

Jk(1, k) ⊂
(zλ[1], . . . , zλ[k])

- Hom (Ck, Sym≤k
C

k)

Jk(1, n)

κ

?
?

⊂
(zλ[1], . . . , zλ[k])

- Hom (Ck, Sym≤k
C

n
1,...,n)

κ̃

?
?

(68)

where the horizontal maps are injective, becausezλ ∈ Ak,k implies thatvi ∈ zλ[i] for
1 ≤ i ≤ k. So we can apply the following observation with Sym≤k

C
n
1,...,n ⊂ Sym≤k

C
k.

Observation: Let V ⊂W be complex vector spaces. Then

κ̃ : Hom (Ck,W)→ Hom (Ck,V)

is a GL(k)-equivariant projection, and the stabilizer of a pointp ∈ Hom (Ck,W) is a
subroup of the stabilizer of ˜κ(p) ∈ Hom (Ck,V).

This implies that the dimension of ¯π−1(z) ∩ Oλ ⊂ Hom (Ck, Sym≤k
C

k)/GL(k) is
greater or equal to the dimension of the fibre ofκ, which isk(k − n). Combining this
with the codimension two property forOλ which has already been proved, we find that

dim(π(Oλ)) ≤ dim(Oλ) − k(k− n) ≤ dimYk,k − 2− k(k− n) = kn− k− 2 = dimYn,k − 2,

proving Theorem 6.5 fork > n.

7. Geometric description of Demailly-Semple invariants

By using Theorem 6.5 in the case whenn = k, we can now prove Theorem 3.3 in the
case whenp = 1.

Theorem 7.1. If k ≥ 4 thenGk is a Grosshans subgroup of the general linear group
GL(k), so that every linear action ofGk which extends to a linear action of GL(k) has
finitely generated invariants.

Proof. We taken = k in Theorem 6.5 to obtain an affine varietyX̄n,n containingGL(k)/Gk

as a dense open subset with complement of codimension at least two. �

In particular we have the special case of Theorem 3.2 whenp = 1.
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Theorem 7.2. If k ≥ 4 the fibreO((Jk)x)
Uk
ℓ � O((Jk)x×C)Gk of the bundle Enk is a finitely

generated graded complex algebra whenℓ is divisible by k(k+ 1)/2.

Proof. If ℓ is divisible byk(k+1)/2 then the action ofGk on (Jk)x×C extends to a linear
action ofGL(k) (with GL(k) acting onC as multiplication by a power of the determinant)
and so Theorem 7.1 applies. �

Theorem 6.5 also allows us to describe the subalgebraO((Jk)x)
Uk
k(k+1)/2 of the Demailly-

Semple algebra. This is the invariant ring

O(Jreg
k (1, n))Uk⋊µk(k+1)/2 = O(Jreg

k (1, n) × C)Gk,

that is the ring of invariant polynomials in the entries of Hom reg(Ck,Cn) under the linear
action on the right of the semi-direct productUk ⋊ µk(k+1)/2 of Uk with the group of
k(k + 1)/2th roots of 1 inC, or equivalently the ring ofGk-invariant polynomials in the
entries of Homreg(Ck,Cn) × C.

In §5 we constructed an embedding

φProj : Jreg
k (1, n)/Gk ֒→ P(∧

k(Sym≤k
C

n))

of Jreg
k (1, n)/Gk in the projective spaceP(∧k(Sym≤k

C
n)) and in Theorem 6.5 we proved

that the boundary components of the closureYn,k of its imageYn,k = Im (φProj) ⊂
P(∧k(Sym≤k

C
n)) have codimension at least two. Equivalently this construction gives us

an embedding ofJreg
k (1, n)/(Uk ⋊ µk(k+1)/2) in the affine space∧k(Sym≤k

C
n) such that the

boundary components of the closure of its image (which is theaffine cone overYn,k have
codimension at least two. LetOP(1) be the tautological line bundle onP(∧k(Sym≤k

C
n)).

The global sections ofOP(1) pull back toUk⋊µk(k+1)/2-invariant polynomials of weighted
degree 1+2+ . . .+k = k(k+1)/2 onJreg

k (1, n), and since the complement ofJreg
k (1, n) in

Jk,n has codimension at least two, these polynomials all extend toUk ⋊µk(k+1)/2-invariant
polynomials of weighted degree 1+2+ . . .+k = k(k+1)/2 onJk,n. Moreover the fact that
the boundary components of the closure ofJreg

k (1, n)/(Uk ⋊ µk(k+1)/2) in the affine space
∧k(Sym≤k

C
n) have codimension at least two tells us that everyUk ⋊ µk(k+1)/2-invariant

polynomial onJk,n is the pullback of a polynomial in the global sections ofOP(1) (or
equivalently in the Plücker coordinates on the Grassmannian Grassk(k+1)/2(Sym≤k

C
n)).

Thus we obtain the following corollary of Theorem 6.5:

Theorem 7.3. (i) If k ≥ 4 the subalgebra

O((Jk)x)
Uk
k(k+1)/2 = O(Jreg

k (1, n))Uk⋊µk(k+1)/2 = O(Jreg
k (1, n) × C)Gk

of the Demailly-Semple algebra spanned by theUk-invariant polynomials which
are homogeneous of degree divisible by k(k + 1)/2 is generated by the Plücker
coordinates onP(∧k(Sym≤k

C
n)). These can be expressed as

{∆i1,...,is : s≤ n},
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wherei j denotes a multi-index corresponding to basis elements ofSym≤k
C

n, and
∆i1,...,is is the corresponding minor ofφ( f ′ . . . , f (n)) ∈ Hom (Cn,Sym≤k

C
n).

(ii) A polynomial p inO((Jk)x) which is homogeneous of degree h with respect to the
C
∗-action isUk-invariant (or equivalently lies in the Demailly-Semple algebra)

if and only if pk(k+1)/2 lies in the subalgebraO((Jk)x)
Uk
k(k+1)/2 generated by the

Plucker coordinates{∆i1,...,is : s≤ n}.

Example 7.4.n = k = 2. Although our codimension-two property has been proved only
for k ≥ 4, we get all the invariants as Plücker coordinates in this case too. Now

Jreg
2 (1, 2) = {( f ′1, f

′
2, f

′′
1 , f

′′
2 ) ∈ (C2)2; ( f ′1, f

′
2) , (0, 0)},

and fixing a basis{e1, e2} ofC2 and the induced basis{e1, e2, e2
1, e1e2, e2

2} ofC2⊕ Sym2
C

2,
the mapφ : J2(1, 2) = Hom (C2,C2)→ Hom (C2, Sym≤2

C
2) of (14) is given by

( f ′1, f
′
2, f

′′
1 , f

′′
2 ) 7→

(

f ′1 f ′2 0 0 0
1
2! f ′′1

1
2! f ′′2 ( f ′1)2 f ′1 f ′2 ( f ′2)2

)

.

The2× 2 minors of this2× 5 matrix are( f ′1)3, ( f ′1)2 f ′2, f ′1( f ′2)2, ( f ′2)3 and

∆[1,2] = f ′1 f ′′2 − f ′′1 f ′2.

These give generators of the subalgebraO((Jk)x)
U2
3 of the Demailly-Semple algebra

O((Jk)x)U2. In fact the Demailly-Semple algebra itself is generated byf ′1, f ′2 and∆[1,2].

Example 7.5. n = k = 3. Recall that Theorem 6.5 requires k≥ 4, and in fact it fails
for k = 3 as indeed happens in this example, though nonetheless the Demailly-Semple
algebraO((Jk)x)Uk is finitely generated in this case as proved by Rousseau in[34]. We
have

Jreg
3 (1, 3) = {( f ′1, f

′
2, f

′
3, f

′′
1 , f

′′
2 , f

′′
3 , f

′′′
1 , f

′′′
2 , f

′′′
3 ) ∈ (C3)3; ( f ′1, f

′
2, f

′
3) , (0, 0, 0)},

and if we fix a basis{e1, e2, e3} ofC2 and the induced basis

{e1, e2, e3, e
2
1, e1e2, e

2
2, e1e3, e2e3, e

2
3, e

3
1, e

2
1e2, . . . , e

3
3}

ofC3 ⊕ Sym2
C

3 ⊕ Sym3
C

3, the mapφ : Hom (C3,C3)→ Hom (C3, Sym≤3
C

3) in (14)
sends

( f ′1, f
′
2, f

′
3, f

′′
1 , f

′′
2 , f

′′
3 , f

′′′
1 , f

′′′
2 , f

′′′
3 )

to a 3× 19matrix, whose first9 columns (corresponding toSym≤2
C

3) are




f ′1 f ′2 f ′3 0 0 0 0 0 0
1
2! f ′′1

1
2! f ′′2

1
2! f ′′3 ( f ′1)2 f ′1 f ′2 ( f ′2)2 f ′1 f ′3 f ′2 f ′3 ( f ′3)2

1
3! f ′′′1

1
3! f ′′′2

1
3! f ′′′3 f ′1 f ′′1 f ′1 f ′′2 + f ′′1 f ′2 f ′2 f ′′2 f ′1 f ′′3 + f ′3 f ′′1 f ′2 f ′′3 + f ′′2 f ′3 f ′3 f ′′3




,

and the remaining10columns (corresponding toSym3
C

3) are




0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

( f ′1)3 ( f ′1)2 f ′2 f ′1( f ′2)2 ( f ′2)3 f ′1( f ′3)2 ( f ′1)2 f ′3 ( f ′2)2 f ′3 f ′2( f ′3)2 ( f ′3)3 f ′1 f ′2 f ′3




.
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The3×3minors of this matrix in the ring of polynomials in f′1, f
′
2, f

′
3, f

′′
1 , f

′′
2 , f

′′
3 , f

′′′
1 , f

′′′
2 , f

′′′
3

localized with respect to f′1 generate the invariants with weight (for theC∗-action) divis-
ible by 6. The necessity to localize with respect to f′

1 corresponds to the fact that Yn,k has
a boundary component of codimension1 in this case (so that Theorem 6.5 fails here);
this boundary component is described as the closure of the subset

{v1 ∧ v2 ∧ (v3 ⊕ v1v2) : v1, v2, v3 ∈ C
3, (v1, v2, v3) ∈ GL3} ⊂ P(∧

3 Sym≤3
C

3).

Example 7.6.n = 2, k = 4. In this case

Jreg
4 (1, 2) = {( f ′1, f

′
2, f

′′
1 , f

′′
2 , f

′′′
1 , f

′′′
2 , f

′′′′
1 , f

′′′′
2 ) ∈ (C2)4; ( f ′1, f

′
2) , (0, 0)},

and fixing a basis{e1, e2} ofC2 and

{e1, e2, e
2
1, e1e2, e

2
2, e

3
1, . . . , e1e

4
2, e

4
2}

of Sym≤4
C

2 the mapφ : J4(1, 2)→ Hom (C4,Sym≤4
C

2) in (14) sends

( f ′1, f
′
2, f

′′
1 , f

′′
2 , f

′′′
1 , f

′′′
2 , f

′′′′
1 , f

′′′′
2

to a 4× 15matrix, whose first5 columns (corresponding toSym≤2
C

2) are




f ′1 f ′2 0 0 0
1
2! f ′′1

1
2! f ′′2 ( f ′1)2 f ′1 f ′2 ( f ′2)2

1
3! f ′′′1

1
3! f ′′′2 f ′1 f ′′1 ( f ′1 f ′′2 + f ′′1 f ′2) f ′2 f ′′2

1
4! f ′′′′1

1
4! f ′′′′2

2
3! f ′1 f ′′′1 +

1
2!2!( f ′′1 )2 2

3! ( f ′1 f ′′′2 + f ′′′1 f ′2) + 1
2! f ′′1 f ′′2

2
3! f ′2 f ′′′2 +

1
2!2! ( f ′′2 )2





,

and next four columns (corresponding toSym3
C

2) are




0 0 0 0
0 0 0 0

( f ′1)3 ( f ′1)2 f ′2 f ′1( f ′2)2 ( f ′2)3

3
2!(( f ′1)2 f ′′1 ) 3

2!(( f ′1)2 f ′′2 + 2 f ′1 f ′2 f ′′1 ) 3
2!(( f ′2)2 f ′′1 + 2 f ′2 f ′1 f ′′2 ) 3

2!(( f ′2)2 f ′′2 )





,

and the remaining five columns (corresponding toSym3
C

3) are




0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

( f ′1)4 ( f ′1)3 f ′2 ( f ′1)2( f ′2)2 f ′1( f ′2)3 ( f ′2)4





.

Then the weight1+2+3+4 = 10pieceO((J4)x)
U4
10 of the invariant algebraO((J4)x)U4

is generated by the4× 4 minors of this4× 15 matrix.

7.1. Construction of the bi-invariants. In this section we deal with the problem of
finding a decomposition of the Demailly-Semple bundleEk,m (whose fibre atx ∈ X
consists of theUk-invariant jet differentials of orderk and weightm) into a direct sum
of irreducible Schur bundles

Γ(l1,l2,...,ln)T∗X
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with l1 ≥ l2 ≥ . . . ≥ ln, wheren = dimX. According to the strategy of Merker [24] a
suitable description of these basic bricks of the Demailly-Semple bundle should lead to
cohomology computations, as follows. Knowing the (asymptotic) Euler characteristic of
the Schur bundlesΓ(l1,l2,...,ln)T∗X, and upper bounds for the higher Betti numbers gives us a
lower bound forh0(Γ(l1,l2,...,ln)T∗X) and thereforeh0(X,Ek,m). The existence of global sec-
tions ofEk,m forces differential equations to be satisfied by all entire holomorphiccurves
in X, which is the basis of Demailly’s strategy for solving the Kobayashi conjecture. In
[24] Merker carries out this strategy for small values ofk andn.

On the fibre⊕m≥0E
n
k,m = O((Kk)x)Uk of ⊕m≥0Ek,m at x there is aGL(n) action, where

n = dimX. To describe this action recall that the fibre is identified with O(Jk(1, n))G
′
k

consisting of polynomialsQ( f ′, f ′′, . . . f (k)) invariant under the unipotent reparametriza-
tion groupG′k = Uk. Here f ∈ Jk(1, n) can be identified with ann × k matrix M f ; that
is, an element of Hom (Ck,Cn), as in§5, by putting the components off (i) in the ith
column. The matrixw = (wi j ) ∈ GL(n) acts onJk(1, n) by multiplication on the right

w · f = M f w.

In more detail, the action onf λ is given by

w · f λ = (
n∑

j=1

w1 j f
λ
j , . . . ,

n∑

j=1

wn j f
λ
j ).

Moreover, this action commutes with the action ofGk.
According to elementary representation theory, the fibreEn

k,m of the Demailly-Semple
bundleEk,m then decomposes into a direct sum of irreducibleGL(n)-representations.
General reasons ensure that this decomposition of the fibre extends to a global decom-
position ofEk,m, which is the Schur decomposition. So the task is to find the highest
weights of theGL(n)-representation⊕m≥0E

n
k,m = O((Jk)x)Uk.

GL(n) has a natural action on Sym≤k
C

n, and therefore on Homreg(Ck,Sym≤k
C

n). This
induces an action on Grass(k,Sym≤k

C
n), andφProj is GL(n)-equivariant.

The description of the highest weight minors in Homreg(Ck,Sym≤k
C

n) goes as fol-
lows. Recall that Sym≤k

C
n has a basisei indexed by seriesi = (i1, . . . , is) with 1 ≤ i1 ≤

. . . ≤ is ≤ n for somes ≤ k. Let <lex be the lexicographic partial order on the set of
indices, that is, (i1, . . . , is) <lex ( j1, . . . , j t) if and only if s = t and i l < j l for the first
index l with i l , j l. We call a set of indicesΛ descendentif

i ∈ Λ⇒ i′ ∈ Λ for all i′ < i.

Theorem 7.7. (i) ∆i1,...,is is a highest weight if and only if{i1, . . . , is} is descendent.
(ii) The k(k + 1)/2th graded piece of the ring of bi-invariantsGL(n)O((Jk)x)

Uk
k(k+1)/2 is

generated by

{∆i1,...,is : {i1, . . . , is} descendent}.
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Example 7.8.n = k = 2. We have three descendent sets of indicesi1, i2, namely(i1, i2) =
((1), (2)), (i1, i2) = ((1), (1, 1)) and (i1, i2) = ((1, 1), (1, 2)). The corresponding minors
are

∆((1),(2)) = ∆[1,2], ∆((1),(1,1)) = ( f ′1)3, ∆((1,1),(1,2)) = 0,

so the weight-3 pieceGL(2)O((J2)x)
U2
3 of the bi-invariant algebraGL(2)O((J2)x)U2 is gen-

erated by∆[1,2] and ( f ′1)3, and the remaining minors( f ′1)2 f ′2, f
′
1( f ′2)2, and ( f ′2)3 are not

bi-invariants.

Example 7.9.n = 2, k = 4. We list some of the descendent sets of indices(i1 < i2 < i3 <
i4) in the following table:

i1 i2 i3 i4
(1) (2) (1, 1) (1, 2)
(1) (2) (1, 1, 1) (1, 1, 2)
(1) (2) (1, 1, 1, 1) (1, 1, 1, 2)

(1, 1) (1, 2) (1, 1, 1) (1, 1, 2)
(1, 1) (1, 2) (1, 1, 1, 1) (1, 1, 1, 2)

(1, 1, 1) (1, 1, 2) (1, 1, 1, 1) (1, 1, 1, 2)
(1) (1, 1) (1, 2) (2, 2)
(1) (1, 1, 1) (1, 1, 2) (1, 2, 2)

(1, 1, 1) (1, 1, 2) (1, 2, 2) (2, 2, 2)
· · · · · · · · · · · ·

According to[6, 34, 24], the bi-invariant algebra is generated by5 independent invari-
ants:

I1 = f ′1; I3 = ∆[1,2] = f ′1 f ′′2 − f ′′1 f ′2; I5 = [I3, f ′1]; I7 = [I5, f ′1]; I8 =
[I5, I3]

f ′1
.

It can be checked that the weight-10 pieceO((J4)x)
U4
10 of the bi-invariant algebra is in-

deed generated by all the descendent minors of the4× 15 matrix in Example 7.6.

8. Generalized Demailly-Semple jet bundles

The aim of this section is to extend the earlier constructions for p = 1 to generalized
Demailly-Semple invariant jet differentials whenp > 1.

Let X be a compact, complex manifold of dimensionn. We fix a parameter 1≤ p ≤ n,
and study the mapsCp → X. Recall that as before we fix the degreek of the map, and
introduce the bundleJk,p → X of k-jets of mapsCp → X, so that the fibre overx ∈ X is
the set of equivalence classes of germs of holomorphic mapsf : (Cp, 0)→ (X, x), with
the equivalence relationf ∼ g if and only if all derivativesf ( j)(0) = g( j)(0) are equal for
0 ≤ j ≤ k. Recall also thatGk,p is the group ofk-jets of germs of biholomorphisms of
(Cp, 0), which has a natural fibrewise right action onJk,p with the matrix representation
given by
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(69) Gk,p =





Φ1 Φ2 Φ3 . . . Φk

0 Φ2
1 Φ1Φ2 . . .

0 0 Φ3
1 . . .

. . . . .
Φk

1





,

whereΦi ∈ Hom ( Symi
C

p,Cp) and detΦ1 , 0, and thatGk,p is generated along its
first p rows, in the sense that the parameters in the firstp row are independent, and
all the remaining entries are polynomials in these parameters. The parameters in the
(1,m) block are indexed by a basis of Symm(Cp)×Cp, so they are of the formαl

ν where
ν ∈

(
p+m−1
m−1

)

is anm-tuple and 1≤ l ≤ p, and the polynomial in the (l,m) block and entry

indexed byτ = (τ[1], . . . , τ[l]) ∈
(

p+l−1
l−1

)

andν ∈
(

p+m−1
m−1

)

is given by

(70) (Gk,p)τ,ν =
∑

ν1+...+νl=ν

ατ[1]
ν1
ατ[2]
ν2
. . . ατ[l]νl .

Recall also thatGk,p = Uk,p ⋊ GLp is an extension of its unipotent radicalUk,p by GLp,
and that the generalized Demailly-Semple jet bundleEk,p,m → X of invariant jet differ-
entials of orderk and weighted degree (m, . . . ,m) consists of the jet differentials which
transform under any reparametrizationφ ∈ Gk,p of (Cp, 0) as

Q( f ◦ φ) = (Jφ)
mQ( f ) ◦ φ,

whereJφ = detΦ1 denotes the Jacobian ofφ, so thatEk,p = ⊕m≥0Ek,p,m is the graded
algebra ofUk,p-invariants.

8.1. Geometric description for p > 1. As in the case whenp = 1 our goal is to give
a geometric description of the invariants by finding a suitable projective embedding of
the quotientJreg

k,p/Gk,p.

Remark 8.1. In [32] Pacienza and Rousseau generalize the inductive process given
in [5] of constructing a smooth compactification of the Demailly-Semple jet bundles.
Using the concept of a directed manifold, they define a bundleXk,p → X with smooth fi-
bres, and the effective locusZk,p ⊂ Xk,p, and a holomorphic embeddingJreg

k,p/Gk,p ֒→ Zk,p

which identifiesJreg
k,p/Gk,p with Zreg

k,p = Xreg
k,p∩Zk,p, and thereforeZk,p is a relative compact-

ification of Jk,p/Gk,p.We choose a different approach, generalizing the test curve model,
resulting in a holomorphic embeddingJk,p/Gk,p into a partial flag manifold and a dif-
ferent compactification, which is a singular subvariety of the patial flag manifold, such
that the invariant jet differentials of degree divisible by sym≤kp are given by polynomial
expressions in the Plücker coordinates.

Fix x ∈ X and an identification ofTxX with Cn; then letJk(p, n) = Jk,p,x as defined in
§2. Let

Jreg
k (p, n) =

{

γ ∈ Jk(p, n) : Γ1 is non-degenerate
}
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whereγ is represented by

u 7→ γ(u) = Γ1u + Γ2u2 + . . . + Γkuk

with Γi ∈ Hom ( Symi
C

p,Cp). Let N ≥ n be any integer and define

Υk,p =
{

Ψ ∈ Jk(n,N) : ∃γ ∈ Jreg
k (p, n) : Ψ ◦ γ = 0

}

.

Remark 8.2. The global singularity theory description ofΥk,p is

Υk,p �

{

p = (p1, . . . , pN) ∈ Jk(n,N) : C[z1, . . . , zn]/〈p1, . . . , pN〉 � C[x, y]/〈z1, . . . , zn〉
k+1

}

.

Note, again, as in thep = 1 case, that ifγ ∈ Jreg
k (p, n) is a test surface ofΨ ∈ Υk,p,

andϕ ∈ Gk is a holomorphic reparametrization ofCp, thenγ ◦ ϕ is, again, a test surface
of Ψ:

C
p ϕ

- C
p γ

- C
n Ψ

- C
N(71)

Ψ ◦ γ = 0 ⇒ Ψ ◦ (γ ◦ ϕ) = 0

Example 8.3.k = 2, p = 2.
LetΨ(z) = Ψ′z+ Ψ′′z2 for z ∈ Cn, and

γ(u1, u2) = γ10u1 + γ01u2 + γ20u
2
1 + γ11u1u2 + γ02u

2
2, γi j ∈ C

n.

ThenΨ ◦ γ = 0 has the form

Ψ′(γ10) = 0 ; Ψ′(γ01) = 0(72)

Ψ′(γ20) + Ψ′′(γ10, γ10) = 0, ; Ψ′(γ11) + 2Ψ′′(γ10, γ01) = 0, ; Ψ′(γ01) + Ψ′′(γ01, γ01) = 0,

We introduce
Sγ = {Ψ ∈ Jk(n,N) : Ψ ◦ γ = 0}

and the following analogue ofJo
k(1, n):

Jo
k(n,N) = {Ψ ∈ Jk(n,N) : dim kerΨ = p} .

The proof of the following proposition is analogous to that of Proposition 4.7 in [3], and
we omit the details. We use the notation

symi(p) = dim(Symi
C

p); sym≤k(p) = dim(Cp ⊕ Sym2
C

p ⊕ . . . ⊕ Symk
C

p) =
k∑

i=1

symi p.

Proposition 8.4. (i) If γ ∈ Jreg
k (p, n) thenSγ ⊂ Jk(n,N) is a linear subspace of

codimension Nsym≤k(p).
(ii) For anyγ ∈ Jreg

k (p, n), the subsetSγ ∩ Jo
k(n,N) ofSγ is dense.

(iii) If Ψ ∈ Jo
k(n,N), thenΨ belongs to at most one of the spacesSγ. More precisely,

if
γ1, γ2 ∈ Jreg

k (p, n), Ψ ∈ Jo
k(n,N) andΨ ◦ γ1 = Ψ ◦ γ2 = 0,

then there existsϕ ∈ Jreg
k (p, p) such thatγ1 = γ2 ◦ ϕ.
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(iv) Givenγ1, γ2 ∈ Jreg
k (1, n), we haveSγ1 = Sγ2 if and only if there is someϕ ∈

Jreg
k (1, 1) such thatγ1 = γ2 ◦ ϕ.

With the notation
Υk,p = Υk,p ∩ Jo

k(n,N),

we deduce from Proposition 8.4 the following

Corollary 8.5. Υ0
k,p is a dense subset ofΥk,p, andΥ0

k,p has a fibration over the orbit
space Jreg

k (p, n)/Jreg
k (p, p) = Jreg

k (p, n)/Gk,p with linear fibres.

Remark 8.6. In fact, Proposition 8.4 says a bit more, namely thatΥ0
k,p is fibrewise dense

in Υk,p overJreg
k (p, n)/Gk,p, but we will not use this stronger statement.

By the first part of Proposition 8.4 the assignmentγ→ Sγ defines a map

ν : Jreg
k (p, n)→ Grass(kN, Jk(n,N))

which, by the fourth part, descends to the quotient

(73) ν̄ : Jreg
k (p, n)/Gk,p ֒→ Grass(kN, Jk(n,N))

(cf. Proposition 4.4). Next, we want to rewrite this embedding in terms of the identifi-
cations introduced in§5. So we

• identify Jk(p, n) with Hom (Csym1p⊕. . .⊕Csymkp,Cn) = Hom (Csym≤k(p),Cn) where
symj p = dim Symj

C
p and sym≤k(p) =

∑k
j=1 symj p;

• identify Jk(n, 1)∗ with Sym≤k
C

n = ⊕k
l=1 Syml

C
n.

We think of an elementv of Hom (Csym≤k(p),Cn) as ann× sym≤k(p) matrix, with column
vectors inCn. These columns correspond to basis elements ofC

sym1p ⊕ . . . ⊕ Csymkp, and
the columns in theith component are indexed byi-tuples 1≤ t1 ≤ t2 ≤ . . . ≤ ti ≤ p, or
equivalently by

(et1 + et2 + . . . + eti ) ∈ Z
p
≥0

whereej = (0, . . . , 1, . . . , 0) with 1 in the jth place, giving us

v = (v10,...0, v01...0, . . . , v0...0k) ∈ Hom (Csym≤k(p),Cn).

The elements ofJreg
k (p, n) correspond to matrices whose firstp columns are linearly

independent. Whenn ≥ sym≤k(p) there is a smaller dense open subsetJnondeg
k (p, n) ⊂

Jreg
k (p, n) consisting of then× sym≤k(p) matrices of rank sym≤k(p).
Define the following map, whose components correspond to theequations in (72):

φ : Hom (Csym≤k(p),Cn)→ Hom (Csym≤k(p),Sym≤k
C

n)(74)

(v10,...0, v01...0, . . . , v0...0k) 7→ (. . . ,
∑

s1+s2+...+sj=s vs1vs2 . . . vsj , . . .),

where on the right hand sides ∈ Zp
≥0.
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Example 8.7. If k = p = 2 thenφ is given by

φ(v10, v01, v20, v11, v02) = (v10, v01, v20+ v2
10, v11 + 2v10v01, v02+ v2

01).

Let Pk,p ⊂ GLsym≤k(p) denote the parabolic subgroup with Levi subgroup

GL(sym1p) × . . . ×GL(symkp),

where symj p = dim Symj
C

p and sym≤k(p) =
∑k

j=1 symj p. Then (73) has the following
reformulation, analogous to Proposition 5.1.

Proposition 8.8. The mapφ in (74) is aGk,p-invariant algebraic morphism

φ : Jreg
k (p, n)→ Hom (Csym(p),Sym≤k

C
n)

which induces an injective mapφGrasson theGk,p-orbits:

φGrass: Jreg
k (p, n)/Gk,p ֒→ Grasssym≤k(p)(Sym≤k

C
n)

and

φFlag : Jreg
k (p, n)/Gk,p ֒→ Flagsym1(p),...,symk(p)(Sym≤k

C
n) ֒→ Hom (Csym(p),Sym≤k

C
n)/Pk,p.

Composition with the Plücker embedding gives

φProj = Pluck◦ φGrass: Jreg
k (p, n)/Gk,p ֒→ P(∧

sym≤k(p)Sym≤k
C

n).

As in the case whenp = 1, we introduce the following notation

Xn,k,p = φ
Proj(Jreg

k (p, n)), Yn,k,p = φ
Proj(Jnondeg

k (p, n)) ⊂ P(∧sym≤k
(Sym≤k

C
n)).

9. Boundary components for p > 1

In this section we study the boundary components ofXn,k,p andYn,k,p.

Definition 9.1. Let n≥ sym≤k(p) = sym1(p) + . . . + symk(p). Then the open subset of
P(∧sym≤k(p)(Sym≤k

C
n)) where the projection to∧sym≤k(p)

C
n is nonzero is denoted by An,k,p.

SinceφGrassandφProj areGL(n)-equivariant, and forn ≥ sym≤k(p) the action ofGL(n)
is transitive on Homnondeg(Csym≤k(p),Cn), we have

Lemma 9.2. (i) If n ≥ sym≤k(p) then Xn,k,p is the GL(n) orbit of

(75) z = φProj(e1, . . . , eSym≤k(p)) = [∧ j1+...+ jp≤k

∑

i1+...+is=( j1,..., jp)

ei1 . . .eis]

in P(∧sym≤k(p)(Sym≤k
C

n)).
(ii) If n ≥ sym≤k(p) then Xn,k,p and Yn,k,p are finite unions of GL(n) orbits.

(iii) For k > n the images Xn,k,p and Yn,k,p are GL(n)-invariant quasi-projective vari-
eties, though they have no dense GL(n) orbit.

Similar statements hold for the closure of the image in the Grassmannian Grasssym≤k(p)(Sym≤k
C

n)
(or equivalently in the projective spaceP(∧sym≤k(p)(Sym≤k

C
n))).
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Lemma 9.3. Let n≥ sym≤k(Cn); then

(i) An,k,p is invariant under the GL(n) action onP(∧sym≤k(p)(Sym≤k
C

n));
(ii) Xn,k,p ⊂ An,k,p, although Yn,k,p * An,k,p;

(iii) Xn,k,p is the union of finitely many GL(n)-orbits.

The image ofJreg
k (p, n)/Gk,p is contained inAn,k,p, and the goal is to prove the follow-

ing generalization of Theorem 6.5:

Theorem 9.4. (i) Assume that p> 1and n≥ sym≤k(p) wheresym≤k(p) = dim Sym≤k
C

p.
Then the intersection with An,k,p of the boundary components of Xn,k,p have codi-
mension at least two.

(ii) The boundary components of Yn,k,p ⊂ P(∧sym≤k(p)(Sym≤k
C

n)) have codimension
at least two.

Note that forp > 1 the condition thatk ≥ 4 is not necessary. The proof follows the
ideas of the case whenp = 1 and therefore we do not give all the details. The strategy
of the proof is the same: first we notice that the dimension of the stabilizer of any point
in Xn,k,p is p · sym≤k(p), and then we prove that the dimension of the stabilizer of any
point inYn,k,p \Yn,k,p and (Xn,k,p \ Xn,k,p)∩ An,k,p is at leastp · sym≤k(p)+ 2. The first part
is clear from the observation that the stabilizer of any point in Xn,k,p is conjugate to (in
shorthand)

Gz = {

(

Gk,p ∗

0 GL(n− sym≤k(p))

)

}.

9.1. Orbit structure and maximal boundary orbits. Let

Zn,k,p = T · z ⊂ P(∧sym≤k(p)( Sym≤k(Cn))

be the torus orbit. Proposition 6.8, Corollary 6.11 and Lemma 6.12 remain valid for
p > 1, allowing us to identify the boundary components using 1-parameter subgroups
of T. Note that the stabilizer ofz contains ap+ (n− sym≤k(p)-dimensional torus inside
T, which is the maximal torus inGL(p) ×GL(n− sym≤k(p)) ⊂ Gz.

Take a one-parameter subgroupλ of the maximal torus inGL(n) given by

λ(t) =





tλ1

.
.

tλn





and note that the action ofλ(t) onz does not depend on the lastn−sym≤k(p) coordinates
of λ.

Definition 9.5. We will often index the first sym≤k(p) coordinates ofλ by orderedp-
tuples (i1, . . . , ip) with i1 + . . . + ip ≤ k, and

sym≤k(p) = sym1(p) ∪ sym2(p) ∪ · · · ∪ symk(p)
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will denote the set of thesep-tuples. We will use the following notation:
• for i = (i1, . . . , ip) ∈ sym≤k(p) let mλ[i] = minε1+...+εs=i λε for 1 ≤ i ≤ k, where

ε j ∈ sym≤k(p).
• zλ[i] =

∑

Σε=i,λε=mλ[i] eε whereeε = eε1 . . .eεs.

Then
(i) the boundary components ofZn,k,p (respectivelyXn,k,p) areT · zλ (respectively

G · zλ) for some one-parameter subgroupsλ, wherezλ = ∧
sym≤k(p)
i1

zλ[i];
(1) zλ ∈ An,k,p if and only if λi = mλ[i] for all i ∈ sym≤k(p).

Let Oλ denote theGL(n)-orbit of zλ, and recall that symj(p) = dim Symj
C

p where
sym≤k(p) = dim Sym≤k

C
p. The stabilizerGz contains the maximal torusT p of GLp,

embedded as diag(tλ̃τ : τ ∈ sym≤k(p)) ⊂ GLn, where

λ̃(0,...,1i ,...,0) = λi for τ = (0, . . . , 1i, . . . , 0) ∈ sym1(p)

and

(76) λ̃(i1,...,ip) = i1λ1 + . . . + ipλp for τ = (i1, . . . , ip) ∈ symi1+...+ip(p).

The lastn− sym≤k(p) coordinates are irrelevant forλ̃, so we can define them to be 0.
Now we define the 1-parameter subgroups which movez to the maximal boundary

components.

Definition 9.6. Choose a positiveε << 1 andσ ∈ sym2(p) ∪ sym3(p) ∪ . . . ∪ symk(p).

For τ ∈ sym≤k(p) we denote by L(τ, σ) = τ/σ the quotient of the two p-tuples, i.e. the
greatest integer such that

τ = L(τ, σ)σ + ξ
for someξ ∈ sym≤k(p). Letλσ andµσ be the one-parameter subgroups of the maximal
torus T of GL(p) ×GL(n− sym≤k(p)) such that

λστ =






λ̃τ − L(τ, σ) ε if τ ∈ sym≤k(p)

0 if τ < sym≤k(p)

µστ =






λ̃τ if τ , σ andτ ∈ sym≤k(p)

λ̃σ if τ = σ

0 if τ < sym≤k(p).

A short computation shows that

zλσ [σ] = eσ

wherezλσ[σ] is defined as in Definition 9.5. Forτ1, τ2 ∈ sym≤k(p) let τ1 < τ2 if either
Σ(τ1) < Σ(τ2) or Σ(τ1) = Σ(τ2) andτ1 is smaller with respect to the lexicographic order.
We callσ = Head(λ) the head ofλ = (λτ : τ ∈ sym≤k(p)) if λi = λ̃i for i < σ, but
λσ , λ̃σ. If λσ < λ̃σ then we callλ regular, otherwise degenerate.
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Using Definition 6.17, we can see just as forp = 1 that the dimension of the maximal
torus in the stabilizer ofzλ is equal to the toral dimension ofλ, and again, we have
to focus on thoseλ whose toral dimension is 1 or 2. The following description ofthe
maximal boundary components ofXn,k,p can be proved similarly to Lemma 6.18:

Lemma 9.7. (i) The maximal regular 1-parameter subgroups have toral dimension
at least2. Those with toral dimension2 are λσ such thatσ ∈ sym2(p) ∪ . . . ∪

symk(p); in other words for a regularλ with Head(λ) = σ Oλ ⊂ Oλσ . The
regular boundary components lie in An,k,p.

(ii) The maximal degenerate 1-parameter subgroups areµσ such thatσ ∈ sym2(p)∪

. . . ∪ symk(p); in other words for a regularµ with Head(µ) = σ we haveOµ ⊂

Oµσ. The degenerate boundary components lie outside An,k,p.
(iii) zµσ ∈ Yn,k,p and therefore the degenerate boundary orbits sit in Yn,k,p, and they

are not boundary orbits.

According to Lemma 9.7, the codimension-at-least-two property has to be proved
only for the regular boundary components. The following analogue of Proposition 6.21
(with the same proof) identifies the boundary orbits ofYn,k,p.

Proposition 9.8. Let n≥ sym≤k(p). The boundary orbits of Yn,k,p lie in the closures of
boundary orbits in An,k,p.

9.2. The limit of the stabilizers. The next step is to prove

Proposition 9.9. Gσ = limt→0 Gλσ(t)z ⊂ GL(n) is a subgroup of Gzλσ with dimension

dimGz = p(sym≤k(p)) + n(n− sym≤k(p)).

Proof. The (τ, ν) entry of the stabilizer ofλs(t)z is

(77) (Gλσ(t)z)τ,ν = tλ
σ
τ −λ

σ
ν pτ,ν(α).

To determine the limit ast → 0 we study the Lie algebragz = Lie(Gz). We are only
interested in the upper left sym≤k(p) × sym≤k(p) minor, which isgk,p = Lie(Gk,p). This
is generated along the firstp rows, and the entries in the other rows are linear forms in
thesep · sym≤k(p) variables. For a parametera let Ea denote the set of those entries of
gk,p wherea occurs with nonzero coefficient, and define

nσa = max
(τ,ν)∈Ea

λστ − λ
σ
ν

Note that by definitionnσ1 = 0 for all σ. Then the following analogue of Lemma 6.23
holds:

Lemma 9.10. (i) Under the substitution

βσa = t−nσaασa
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we have

Gλσ(t)z(β1,1, . . . , βp,sym≤k(p)) ∈ GL(C[β1,1, . . . , βp,sym≤k(p)][ t],

so the entries are polynomials in t with coefficients inC[β1,1, . . . , βp,sym≤k(p)].
(ii) Aσ = limt→0 Gλσ(t)z has dimension p· sym≤k(p) + n(n− sym≤k(p)).

�

9.3. Two extra dimensions in the stabilizer of the limit. Finally, we prove the ana-
logue of Proposition 6.25 in this more general situation, and find two extra dimensions
in the stabilizer.

Proposition 9.11.There exists a 2-dimensional subgroup Bσ ⊂ Gzλσ with Gσ ∩ Bσ = 0.

Proof. One can easily check thatzλσ [σ] = eσ implies that there is anp+ 1-dimensional
torus in the upper left sym≤k(p)× sym≤k(p) minor – which we call temporarily the main
minor – ofGzσλ . Indeed, giving the weightλστ to eτ, zλσ[τ] is homogeneous of degree

λστ = λτ − L(τ, σ)ε.

Therefore, thep-dimensional torus diag(λστ : τ ∈ sym≤k(p)) is in the stabilizer.
This implies that the weights

λ(0,...,1i ,...,0) = λi, i = 1, . . . , p, tσ = χ

induce a 1-parameter subgroup sitting in the stabilizerGzλσ :

λτ = λ̃τ + L(τ, σ)χ for τ ∈ sym≥2(p).

This is thep+1-dimensional torus in the main minor ofGzλσ , and it can be easily shown
that there is no higher dimensional torus in the main minor.

It remains to find an extra dimension in the unipotent radicalof Gzλσ . We will see
that here there are only two cases, corresponding to Lemma 6.26 and Lemma 6.27; we
do not have to study the situation in Lemma 6.28 separately. For this reason, we do not
need the conditionk ≥ 4 which was required whenp = 1.

Lemma 9.12.There exists a one-dimensional unipotent subgroup in Gzλσ \ limt→0 Gλσ(t)z

whenσ ∈ symk(p).

Proof. Fix δ ∈ symk−1(p). Let T ∈ GL(n) denote the transformation

T(eτ) = eτ for τ , δ ; T(eδ) = eδ + ζeσ

For the same reason as in the case whenp = 1 this is inGzλσ \ limt→0 Gλσ(t)z. �

Lemma 9.13.There exists a one-dimensional unipotent subgroup in Gzλσ \ limt→0 Gλσ(t)z

whenσ ∈ symi(p) with i < k, p> 1.
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Proof. Forδ ∈ symk(p) let Tδ be the transformation

(78) T(eτ) = eτ for τ , δ ; T(eδ) = eδ + ζeσ.

Sincezλσ[σ] = eσ, it is clear thatTδ ∈ Gzλσ for all δ ∈ symk(p). We show that there is

someδ ∈ symk(p) such thatTδ < limt→0 Gλσ(t)z.
Case 1.If σ = (0, i2 . . . , ip) with i2, . . . , ip > 0 thenδ = (k, 0 . . . , 0) is a good choice. In-
deed, in this case (gz)σ,δ = 0, and therefore (limt→0 Gλσ(t)z)σ,δ = 0, soTδ < limt→0 Gλσ(t)z.
The same reasoning works for anyσ with at least one 0 coordinate.
Case 2.If σ = (i1, . . . , ip) with positive entries, letδ be ap-tuple in symk(p) such that
L(δ, σ) = δ/σ is maximal. We will prove that for this choiceTδ < limt→0 Gλσ(t)z.

We haveδ = L(δ, σ)σ + ξ for someξ ∈ symk−L(δ,σ)i(p), and therefore

λσδ − λ
σ
σ = λδ − λσ − (L(δ, σ) − 1)ε.

The (δ, σ)-entry ofgz is a linear form in the parametersαi,τ such that 1≤ i ≤ p and
τ ∈ sym≤k(p), namely forδ = (i1, . . . , ip) according to Proposition 2.2 (gz)σ,δ contains a
monomial term of the formC · αi

ν for someC , 0. The key observation is that all the
parameters appear in one of the entries

{(gz)(0,...,is,...,0),τ : 1 ≤ s≤ p, τ ∈ symk(p)}

and if a parameterαm,ν appears with nonzero coefficient in (gz)(0,...,is,...,0),τ then by the
definition ofδ andλs

λσδ − λ
σ
σ ≤ λ

σ
(0,...,ks,...,0) − λ

σ
τ ,

so
(lim

t→0
gλσ(t)z)σ,δ

is either 0 or a linear form in the parameters which appear also in other entries of
limt→0 gλσ(t)z. But the (σ, δ) entry of LieTδ is independent of the remaining entries, so

LieTδ < lim
t→0
gλσ(t)z.

�

Proposition 9.11 and Theorem 9.4 are now proved forn ≥ sym≤k(p).

Theorem 9.4 for the case whenn < sym≤k(p) can now be proved in exactly the same
way as forp = 1. Namely, the projectionCsym≤k(p) → Cn inducesπ : ∧sym≤k(p) Symk

C
sym≤k(p) →

∧sym≤k(p) Sym≤k
C

n, and a rational map

π : P(∧sym≤k(p) Sym≤k
C

sym≤k(p)) − − → P(
⊕

i ∈





sym≤k(p)
n





∧sym≤k(p) Sym≤k
C

n
i )

which restricts to a morphism

π̄ : Ysym≤k(p),k,p → Yn,k,p.
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If z ∈ π(Oλ) is a generic point of the boundary ofYn,k,p thenOλ is a maximal boundary
orbit of Ysym≤k(p),k,p sitting in Asym≤k(p),k,p, and

dim(π−1(z) ∩ Oλ) ≥ dimYsym≤k(p),k,p − dimYn,k,p.

Since the codimension ofOλ is at least two inYsym≤k(p),k,p, the same holds for the bound-
ary component containingz. �

It now follows just as in§7 for the case whenp = 1 that

Theorem 9.14.If p > 1, thenGk,p is a Grosshans subgroup of the general linear group
GL(sym≤kp) where

sym≤kp =
k∑

i=1

dim Symi
C

p =

(

k+ p− 1
k− 1

)

,

so that every linear action ofGk,p which extends to a linear action of GL(sym≤kp) has
finitely generated invariants.

In particular we have

Theorem 9.15.When p> 1 the fibresO((Jk,p)x)
G
′
k,p

ℓ � O((Jk,p)x × C)Gk,p of the bundle
En

k,p are finitely generated graded complex algebras whenℓ is divisible by

s(k, p) =
k∑

i=1

i(dim Symi
C

p).

Moreover just as in§7 we have generators of the subalgebra

O((Jk,p)x)
G
′
k,p

s(k,p)

of the generalized Demailly-Semple algebraO((Jk,p)x)
G
′
k,p spanned by homogeneous

G
′
k,p-invariant polynomials of weight divisible bys(k, p) (where the weight is with re-

spect to the central 1-parameter subgroupC∗ of GL(p) ≤ Uk,p ⋊ GL(p) = Gk,p) given by
the Plücker coordinates on the Grassmannian

Grasssym≤k(p)(Sym≤k
C

n) ⊆ P(∧sym≤k(p)(Sym≤k
C

n))

as in Theorem 9.4.
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