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1. INTRODUCTION

The action of the reparametrization graGg consisting ok-jets of germs of biholo-
morphisms of C, 0), on the bundle), = JT*X of k-jets at O of germs of holomorphic
curvesf : C — X in a complex manifoldX has been a focus of investigation since
the work of Demailly [5] which built on that of Green and @iths [13]. HereGy is a
non-reductive complex algebraic group which is the semealiproductGy = Uy x C*
of its unipotent radical, with C*; it has the form

a1 @y a3z -+ @
0 a? -
Gy = 0O O ozf a1 €Chag,...,aeC
K
0O 0 0 - af

where the entries above the leading diagonal are polynermiat,, ..., ax, andUy is
the subgroup consisting of matrices of this form with= 1. The bundle of Demailly-
Semple jet dierentials of ordek over X has fibre atx € X given by the algebra
O((J)x)"* of Uy-invariant polynomial functions on the fibrdJ, = (JT*X)y of JT*X.

This bundle of algebras
0(3)* = P Eim

m>0
is graded by the induced action G&f which has weightm on E,,. For any positive
integer¢ we can consider the bundle of subalgebras

O()* = ) B
m>0

spanned by thé&l-invariant polynomial functions with weight divisible k¥ equiva-
lently O(Jk)?k = O(J )" is given by the polynomial functions which are invariant
under the semi-direct produti = u, of Uy with the finite groupu, of ¢th roots of 1 in

C. We have a natural identification

O(Jk)?k = O(Jk X C)Gk
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whereUy acts trivially onC and Gy /Uy, = C* acts as multiplication by the character
t — t’. In particular whert = 1+ --- + k = k(k + 1)/2 this action ofGy on C extends to
the action ofGL(k) given by multiplication by the determinant.

More generally following[[32] we can replacéwith CP for p > 1 and consider the
bundleJ, , T*X of k-jets at 0 of holomorphic maps: CP — X and the reparametrization
groupGyp consisting ofk-jets of germs of biholomorphisms off, 0); thenGy, is the
semi-direct product of its unipotent radid| , and the complex reductive gro@d.(p),
while its subgroumkp = Uy p x» S L(p) (which equaldJy , whenp = 1) fits into an exact
sequence b Gy , - Gyp - C - 1. The generalized Demailly-Semple algebra is

thenO((Jx p)x) e

The Demailly-Semple algebra®(J,)"« and their generalizations have been studied
for a long time. The invariant jet fflerentials play a crucial role in the strategy devised
by Green, Gfffiths [13], Bloch [4], Demailly[[5], Siul[29, 30, 31] and othexs prove
Kobayashi’s 1970 hyperbolicity conjecture [23] and thatedl conjecture of Green and
Griffiths in the special case of hypersurfaces in projective spidus strategy has been
recently used successfully by Diverio, Merker and Roussel] and then by the first
author in [3] to give &ective lower bounds for the degrees of generic hyperswsface
P, for which the Green-Gfiiths conjecture holds.

In particular it has been a long-standing problem to deteemvhether the algebras
of invariantsO((J.p)x) “» and bi-invariantg((Jp)x) “»*“™* (whereU,x is a maximal
unipotent subgroup oGL(TyX) = GL(n)) are finitely generated as graded complex
algebras, and if so to provide explicit finite generatingssdn [24] Merker showed
that whenp = 1 and bothk andn = dim X are small then these algebras are finitely
generated, and fop = 1 and allk andn he provided an algorithm which produces
finite sets of generators when they exist. In this paper weusg methods inspired
by [3] and the approach of[9] to non-reductive geometri@amant theory to prove the
finite generation of the subalgebtm\]k)kk+l /2 of O(Jx)"« spanned by th&-invariant
polynomial functions with weight dIVISIb|e bi(k + 1)/2 for all n andk > 4 (from
which the finite generation of the corresponding bi-invatsafollows). We will use
these methods to obtain a similar result fo» 1, and forp > 1 to study the geometric
invariant theoretic quotients

((Jep)x X ©)//Cp = SPecO((Jep)x X C)°*7)

and give geometric descriptions for the invariants andaiiants. In particular when
k > 4 we find an explicit finite set of generators for the subalgelﬁr]k)k ke 1)/2 of O(Jy)
(and a similar result fop > 1 and allk). In fact we will show that |fk > 4 thenGy
is a Grosshans subgroup @t (k), so that every linear action @, which extends to a
linear action ofGL(K) has finitely generated invariants; similarlygf> 1 thenGy, is a
Grosshans subgroup 6fL(sym(p)) where sym*(p) = ¥, dim Symc®.

The layout of this paper is as follow$.2 reviews the reparametrization groupg
andGy , and their actions on jet bundles and jeffelientials over a complex manifold
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X. Next§3 reviews the results of [9] and|[1] on non-reductive georoatrvariant theory.
In §4 we recall from|[[3] a geometric description of the quotidmgsJ, andGy of open
subsets of d)x, and in§5 this is used to find explicitthne and projective embeddings
of these quotients. I§6 it is proved that the complements of these quotients i thei
closures for suitable embeddings ifiime and projective spaces have codimension at
least two, from which it follows that the relevant invariardn Ji)x extend to these
closures. Ir§7 this is used to prove thét is a Grosshans subgroup®t(p), and thus
thatO(Jk)[lf(kkﬂ)/2 is finitely generated, and to provide a geometric descmptiothe the
invariants and bi-invariants. Finall§8 and§9 extend the results @6 and§7 to the
action ofGy , on the jet bundle),, — X of k-jets of germs of holomorphic maps from
CPto X for p> 1.
AcknowledgmentsWe are indebted to Damiano Testa, who called our attentidineto
importance of the grou@y in the Green-Gfiiths problem. We would also like to thank
Brent Doran for helpful discussions.

The first author warmly thanks Andras Szenes, his former Rifg2rsisor, for his
patience and their joint work from which this paper has grown

2. FETS OF CURVES AND JET DIFFERENTIALS

Let X be a complex-dimensional manifold and I&tbe a positive integer. Green and
Griffiths in [13] introduced the bundl& — X of k-jets of germs of parametrized curves
in X; its fibre overx € X is the set of equivalence classes of germs of holomorphiecmap
f: (C,0) — (X x), with the equivalence relatioh ~ g if and only if the derivatives
f(0) = g(0) are equal for &< j < k. If we choose local holomorphic coordinates
(z,...,2,) on an open neighbourho@c X aroundx, the elements of the fibig  are
represented by the Taylor expansions

2 k
F(t) = X+ t£/(0) + %f”(O) - %f(")(O) + Ot
up to orderk att = 0 of C"-valued maps
f=(f, ..., f)

on open neighbourhoods of 0@ Thus in these coordinates the fibre is
Jux = {(f’(O), e f(")(O)/k!)} = (CM,

which we identify withC™. Note, however, thal, is not a vector bundle over X, since
the transition functions are polynomial, but not linear.
Let G be the group ok-jets at the origin of local reparametrizations Gf Q)

t&—><,0(t):alt+azt2+...+aktk, a1 € Cay,...,aceC,

in which the composition law is taken modulo termisfor j > k. This group acts
fibrewise onJ by substitution. A short computation shows that this is adinaction on
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the fibre:
f//(o)
2!

fop(t) = f(0)- (ast +ant? + ... + art*) + ot el

£9(0)
k!
so the linear action of on thek-jet (f’(0), f”(0)/2!,..., f®(0)/k!) is given by the
following matrix multiplication:

(aat + @ot? + . .. + i t)* (modulot<?)

a1 a2 as tee (074)¢

0 af 201 -+ @11t ...+ ape1ay
(1) (f'(0), f7(0)/2,,..., f(k)(O)/k!) 1 0 O ozi’ 3a§ak_2 +...

0 O 0 e 0/{

where the matrix has general entry
(Gwij = Z g, - - - Qs
s1>1,...,5>1, S+...+5=]
fori, j <k.
There is an exact sequence of groups:
(2) 150> G—»C" -1,
whereGy — C* is the morphisny — ¢’(0) = @, in the notation used above, and
Gk =Ux x C*

is a semi-direct product. With the above identificatian,is the subgroup of diagonal
matrices satisfying, = ... = ax = 0 andUy is the unipotent radical dby, consisting of
matrices of the form above witly = 1. The action oft € C* onk-jets is thus described
by
A-(f(0), £7(0)/21, ..., f®)/k!) = (1f'(0), 22£”(0)/2), ..., 2XF0(0)/k!)

Let&y ,, denote the vector space of complex valued polynomial fons®@(us, Uy, . . ., Ux)
of up = (Uy1,...,Up), - U = (Uc1, - - -, Ugn) Of weighted degreen with respect to this
C* action, wheray; = f0(0)/i!; that is, such that

2 k
Q(Aug, 27Uy, ..., 2uy) = AMQ(ug, Uy, . . ., L).
Thus elements off  have the form
Qug, Up, ..., W) = Z ufuz. .. ul,
lig|+2)io]+...+klik|l=m

wherei; = (i11,...,110)s .-,k = (ik1, - --,lkn) are multi-indices of lengtim. There is
an induced action ofsx on the algebr@mZO &g Following Demailly (seel[5]), we
denote byE} | (or Exm) the Demailly-Semple bundle whose fibrexatonsists of the
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Ug-invariant polynomials on the fibre @k at x of weighted degreen, i.e those which
satisfy

Q((fog) (0), (fog)(0)/2, ..., (fop)®(0)/K!) = ¢’ (0)™Q(f'(0), f7(0)/2L, ..., f®(0)/KY),
and we letE; = @nEy,, denote the Demailly-Semple bundle of graded algebras of
invariants.

We can also consider higher dimensional holomorphic sasf@aeX, and therefore,
we fix a parameter ¥ p < n, and study germs of mag¥ — X.

Again, we fix the degre& of our map, and introduce the bundlg, — X of k-jets
of mapsCP — X. The fibre overx € X is the set of equivalence classes of germs of
holomorphic mapd : (CP,0) — (X, x), with the equivalence relatioh ~ g if and only
if all derivativesf((0) = g’ (0) are equal for & j < k.

We need a description of the fibdg, x in terms of local coordinates as in the case
whenp = 1. Let (z,...,Z) be local holomorphic coordinates on an open neighbour-
hoodQ c X aroundx, and let (i, ..., u,) be local coordinates o@P. The elements of
the fibreJy , x areC"-valued maps

f :(fl, fz,...,fn)

onCP, and two maps represent the same jet if their Taylor expasgimundz = 0

2 k
£(2) = x + 2f/(0) + %f”(O) S %f(")(O) + O

coincide up to ordek. Note that here
f0(0) e Hom (SymCP, C")
and in these coordinates the fibre is
Jepx = {(F0)......, F9(O)/k) | = cn(iE

which is a finite-dimensional vector space.
Let Gy, be the group ok-jets of germs of biholomorphisms of¥, 0). Elements of
Gy p are represented by holomorphic maps

(3) u— p(u) = du+ DOoU2 +.. .+ DUk = Z a,-lmipuill . ui,?, ®, is non-degenerate
i€ZP\0

where®; € Hom (Sym'CP, CP). The groupGy , admits a natural fibrewise right action

on Jip, by reparametrizing thk-jets of holomorphig-discs. A computation similar to

that in [3] shows that

f o @(u) = f/(0)d.u + (f'(0)D, + f/’z(!O)CI)f)u2 o+ Z %@il T

i1+...+i=d

This defines a linear action @ , on the fibres , x of Ji , with the matrix representa-
tion given by
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(I)l q)z (1)3 “e. (I)k
0 @ 00,
(4) 0o 0 @ .. ,

1
where
e ®; € Hom (SymCP,CP)is apxdim(SyrﬁCp)-mat_rix, theith degree component
of the map®d, which is represented by a maph)* — CP;
e @ ...®D; is the matrix of the map Sy~*!(CP) — SynlCP, which is repre-
sented by
D@, @ 0d  (C) -8 (CP) - (CP);
geS
e the (,m) block of Gy is 2,4 1i=m®i, - .- @i;. The entries in these boxes are
indexed by pairs( ) wheret e (pr_'f),p € (p;ﬁl) correspond to bases of
Sym'(CP) and Syni"(CP).
Example 2.1. For p = 2, k = 3 we get the followin® x 9 matrix for a general element
of G35, using the standard basis

le.qe.eg0:1<i<j<k<2)

of (J3.2)x-
(5)
@10 @1 @ 11 @02 a3p a2 12 @03
B Por P20 B Po2 B3o B21 P2 Pos
0 0 a?, 10001 aZ, 1020 Q10011 + Q01Q20  @10Q02 + @11Q01 0102
0 0 aoBi0 @10801+@01B10 @01Bo1r  @10B20 + @20810 P Q @01B02 + @o2B01
0 0 6% B10Bo1 B3 B10B20 B10B11+ 20801 Bo1Bi1 + Bo2B10 Bo1Boz
0 0 0 0 0 “?0 aioam amaﬁl aglz
0 0 0 0 0 rliﬁlo 10010801 @10201501 @018g,
0 o0 0 0 0 1083, 10810801 10801801 @0185,
o 0 0 0 0 Fo Blpor BroBgy By
where

P = @19811 + @11810 + @29801 + 201820 and Q= @p1B11 + @11801 + @02B10 + @10802-

This is a subgroup of the parabolicBs ¢ GL(9). The diagonal blocks are the repre-
sentationsSyniC? for i = 1, 2, 3, whereC? is the standard representation of ().

In general the linear grou@ , is generated along its firptrows; that is, the param-
eters in the firsp rows are independent, and all the remaining entries arepaolials
in these parameters. The assumption on the parameterd ih¢hdeterminant of the
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smallest diagongb x p block is nonzero; for the = 2, k = 3 example above this means
that

Bio Bor
The parameters in the (th) block are indexed by a basis of SYH{CP) x CP, so they
are of the formn!, wherey € (‘”’M) is anm-tuple and 1< | < p. An easy computation
shows that:

det( @10 o1 ) £ 0.

Proposition 2.2. The polynomial in thél, m) block and entry indexed by
r=([1l.....7l]) € (p vl . )

p+m-1
andv e ("™ ) is

(6) (Gk’p)‘r’y — Z a‘l’[l] T[2 . a;l;l[”

vi+...tv|=v

Note thatGy , is an extension of its unipotent radical BL(p); that is, we have an
exact sequence

1- Uk,p - GKP - GL(p) -1,

andGyp is the semi-direct produ(‘ﬁk,p »x GL(p). HereGy , has dimensiom x sym(p)
where sym¥(p) = dim(@<,SyniCP), and is a subgroup of the parabolic subgroup

.....

be the subgroup dfy , which is the semi-direct product
’k,p = Ukp » SUP)
(so thatG’k’p = Uy p Whenp = 1) fitting into the exact sequence
1 Uyp > G, > SL(p) - 1
The action of the maximal toru€{()® c GL(p) of the Levi subgroup of , is

i o f ) i i f Al f
(7) (A, ..., Ap) - f(')—(ﬂ'aI,...,A'll---ﬂgia—ip...a'pg—i
au; - --oug Up
We introduce th&reen-Grjfithsvector bundIeEESm — X, whose fibres are complex-
valued polynomial§Q(f’(0), f(0)/2.,..., f®(0)/k!) on the fibres ofl ,, having weighted

degree i, ..., m) with respect to the actroE](?) of()P. That is, forQ € Ek om

Q(Af'(0), A1”(0)/2, ..., Af®(Q)/K!) = AT--- ATQ(F*(0), £(0)/2!,. .., F¥(0)/K))
for all 1 € CP and (f/(0), f/(0)/2!,. .., f¥(0)/Kl) € Jepm.
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Definition 2.3. The generalized Demailly-Semple bundig,E — X over X has fi-
bre consisting of th@’k’p-invariant jet diferentials of order k and weighted degree
(m, ..., m); that is the complex-valued polynomial§fQ0), f/(0)/2!,..., f®(0)/k!) on
the fibres of J, which transform under any reparametrizatigre Gy , of (CP, 0) as

Q(f 0 ¢) = (3))"Q(f) 0 ¢,

where J = det®; denotes the Jacobian gfat 0. The generalized Demailly-Semple
bundle of algebras &, = ®mn-0Ekpmis the associated graded algebra(ﬁgfp-invariants,

whose fibre at x X is the generalized Demailly-Semple algeb}(eﬁJKp)x)G?,p.

The determination of a suitable generating set for the iamajet diferentials when
p = 1is important in the longstanding strategy to prove the &@effiths conjecture.
It has been suggested in a series of papers [13/5, 34,24 tha2Bhe Schur decompo-
sition of the Demailly-Semple algebra, together with gostineates of the higher Betti
numbers of the Schur bundles and an asymptotic estimatitimedEuler charactristic,
should result in a positive lower bound for the global sewtiof the Demailly-Semple
jet differential bundle.

3. GEOMETRIC INVARIANT THEORY

Suppose now that is a complex quasi-projective variety on which a linear btgec
groupG acts. For geometric invariant theory (GIT) we need a liresdion of the action;
that is, a line bundlé on Y and a lift £ of the action ofG to L. UsuallyL is ample,
and hence (as it makes naférence for GIT if we replack with L& for any integer
k > 0) we can assume that for some projective embeddiagP" the action ofG onY
extends to an action dP' given by a representatign: G — GL(n + 1), and take forL
the hyperplane line bundle @?.

For classical GIT developed by Mumfoid [27] we require thenptex algebraic group
G to be reductive. LeY be a projective complex variety with an action of a complex
reductive grougss and linearizatior with respect to an ample line bundlenY. Then
y € Y is semistabldor this linear action if there exists some> 0 andf € HO(Y, L®™)©
not vanishing ay, andy is stableif also the action ofs on the open subset

Yi :={xeY]| f(x) #0}

is closed with all stabilizers finiteY*s has a projective categorical quotiefft — Y//G,
which restricts on the set of stable points to a geometrigigoby® — Y5/G (see[[27]
Theorem 1.10). The morphisk?® — Y//G is surjective, and identifieg y € Y**if and
only if the closures of th&-orbits of x andy meet inY*S, There is an induced action of
G on the homogeneous coordinate ring

OuY) = EPHO(Y.L™)

k>0
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of Y. The subringd,(Y)® consisting of the elements @i, (Y) left invariant byG is
a finitely generated graded complex algebra bec&igereductive, and the GIT quo-
tient Y//G is the projective variety Prafl_(Y)®) [27]. The subset¥ssandYs of Y are
characterized by the following properties (se€ [27, Chaditer [28]).

Proposition 3.1. (Hilbert-Mumford criteria) (i) A point xe Y is semistable (respectively
stable) for the action of G on Y if and only if for evergds the point gx is semistable
(respectively stable) for the action of a fixed maximal tawiS.

(i) A point x € Y with homogeneous coordinatpg : ... : X,] in some coordinate
system orP" is semistable (respectively stable) for the action of a makitorus of G
acting diagonally orP" with weightsay, . . ., @y, if and only if the convex hull

Cona; : X # 0}
containsO (respectively contain8 in its interior).

Similarly if a complex reductive grou@ acts linearly on anféine varietyY then we

have a GIT quotient
Y//G = SpecO(Y)®)

which is the #ine variety associated to the finitely generated algepg)® of G-
invariant regular functions o¥. In this caseys® = Y and the inclusio®(Y)®¢ — O(Y)
induces a morphism offéne varietiesy — Y//G.

Now suppose that is any complex linear algebraic group, with unipotent ratlic
U < H (so thatR = H/U is reductive andH is isomorphic to the semi-direct product
U x R), acting linearly on a complex projective varietywith respect to an ample line
bundleL. Then ProjQ.(Y)") is not in general well-defined as a projective variety, sinc
the ring of invariants

éL(Y)H — @ HO(Y, L®k)H
k>0

is not necessarily finitely generated as a graded complesbedg However in some
cases it is known thad, (Y)Y is finitely generated, which implies that

H/U
O = (@ HO(Y, L@k)“]
k>0

is finitely generated and hence thveloping quotient the sense of [9]is given by the
associated projective variety

Y//H = ProjO.(Y)™.

Similarly if Y is affine andH acts linearly ony with O(Y)" finitely generated, then we
have the enveloping quotient

Y//H = SpecO(Y)").
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There is a morphism
g:Y*®— Y//H,
from an open subsextss of Y (whereY®® = Y whenY is afine), which restricts to a
geometric quotient
g:Y®— YS/H
for an open subseéft® c Y*. However in contrast with the reductive case, the morphism
g : Y®*® — Y//H is not in general surjective; indeed the imageja$ not in general a
subvariety ofY//H, but is only a constructible subset.
Suppose that) is a unipotent group with a one-parameter group of automsinh
A C* — Aut(U) such that the weights of the induc€d action on the Lie algebra of
U are all nonzero. Then we can form the semi-direct product

U=C"xU
given byC* x U with group multiplication
(z2. Ur).(2Z2, W) = (2122, (A(Z5™) (Un)) o).
Linear actions of such unipotent groupswhich extend to the semi-direct produdt
are studied in[[1], motivated by the actions of the groGs= Uy x C* and Gy =
Uyp x GL(p) on the fibres of the jet bundlek and Jp. In this paper we will use a

different approach from that cf/[1] to study the Demailly-Sengtgebras of invariant
jet differentialsEy andEy ) and prove

Theorem 3.2. The fibresO((J)x)™ = O((J)x x €)% (when k= 4) andO((Jp)y); <* =
O((Jk p)x % C)%» of the bundles Fand B ,are finitely generated graded complex alge-

bras whery is divisible by
k

Z i(dim Sym'CP).
i=1
Thus we have non-reductive GIT quotients

((J)x % C)//Gk = SpecO((J)x),*)
and

((Jk,p)x X C)//Gk,p = SpeCO((Jk,p)x)S}k’p)

and we would like to understand them geometrically. Theeedsucial diference here
from the case of reductive group actions, even though thariemts are finitely gen-
erated: wherH is a non-reductive group we cannot descriygH geometrically as
Y** modulo some equivalence relation. Instead our aim is to usthads inspired by
[3] to study these geometric invariant theoretic quotiemd the associated algebras of
invariants.

Here the crucial ingredient is to be able to find an open sulyset (J ,)x x C with
a geometric quotientV/Gy , embedded as an open subset of ina varietyZ such
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that the complement aV/Gy, in Z has (complex) codimension at least two, and the
complement ofV in (Ji p)x X C has codimension at least two. For then we have

O((Jp)x X C) = O(W)
and
O((Jkp)x X ©) = O(W)*» = O(W/Gip) = O(2),
and it follows thatO((Jq p)x x C)%r is finitely generated sincg is afine, and that

Z = SpecO(2)) = SpecO((Jp)x X C)**) = ((Jp)x X C)//Cicp-

Similarly if we can find a complex reductive gro@xcontainingGy , as a subgroup, and
an embedding 06/Gy, as an open subset of affine varietyZ with complement of
codimension at least two, thél{G)“« is finitely generated (that iS5y, is a Grosshans
subgroup ofG) and so ifY is any dfine variety on whiclG acts linearly then

O(Y)*» = (O(Y) ® O(G)**)°

is finitely generated.
We will use the ideas of [3] to find suitabléiae varietieZ as above, and in particular
to prove

Theorem 3.3.1f p = 1and k> 4, or if p > 1, thenGy, is a Grosshans subgroup of the
general linear group G(synt¢p) where

k
, - k+p-1
<K _ p _
syrrrp_igldlmSyrﬁC —( k—1 )

so that every linear action afy , which extends to a linear action of Gynp) has
finitely generated invariants.

Theoren 3.2 is an immediate consequence of this theorewe Hie action ofGy ,
on (Jkp)x extends to an action of the general linear gr@lgsymp), and the action of
Gik.p 0N (Jk p)x < C with weight£ onC extends to an action &L(synp) if ¢ is divisible
by Z!‘Zl i(dim Sym'CP) (which equalk(k + 1)/2 whenp = 1).

4. A DESCRIPTION VIA TEST CURVES

In [3] the action ofGy on jet bundles is studied using an idea coming from global
singularity theory. The construction goes as follows.

If u, vare positive integers, I (u, v) denote the vector spacelofets of holomorphic
maps C",0) — (CY,0) at the origin; that is, the set of equivalence classes gisma
f : (CY 0)— (C",0), wheref ~ gifand only if f(0) = g(0) forall j = 1,...,k.

With this notation, the fibres ol are isomorphic talc(1, n), and the groufGy is
simply J«(1, 1) with the composition action on itself.
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If we fix local coordinates,,...,z, at 0 € C" we can again identify thk_—jet of
f, using derivatives at the origin, wittf(0), ”(0)/2!,..., f®(0)/k!), where f()(0) €
Hom(SymcCY, CY). This way we get an identification

Jd(u,v) = &!_;Hom(Synic", C").

We can compose map-jets via substitution and eliminatiotewhs of degree greater
thank; this leads to the composition maps

8) Jk(v,w) x J(u,v) = J(u,w), (¥, ¥;) — ¥, o0 ¥;moduloterms of degree k .

Whenk = 1, J;(u, v) may be identified withu-by-v matrices, and_{8) reduces to multi-
plication of matrices.

Thek-jet of a curve C,0) — (C",0) is simply an element ad,(1, n). We call such a
curvegp regularif ¢’(0) # 0. Let us introduce the notatialf*(1, n) for the set of regular
curves:

UL n) = {y € J(L n);¥'(0) # O}.
Note that ifn > 1 then the complement &%(1, n) in J«(1, n) has codimension at least
two. LetN > n be any integer and define

Ty = {‘}’ € k(M,N): Iy e J¥(Ln):Yory= 0}

to be the set of thodejets which take at least one regular curve to zero. By dedimit
Tk is the image of the closed subvariety&tn, N) x J.*%1, n) defined by the algebraic
equationst o y = 0, under the projection to the first factor.#o y = 0, we cally atest
curveof V.

This term originally comes from global singularity theomhere this is called the test
curve model ofAc-singularities. In global singularity theory singulaesiof polynomial
mapsf : (C",0) — (C™ 0) are classified by their local algebras, and

Y= {f € J(nm): C[Xa,...,%]/{Fr,..., fm) = C[t]/tY)

is called a Morin singularity, oAc-singularity. The test curve model of Gaey [12]
tells us that

in Jx(n, m).

A basic but crucial observation is the following. +fis a test curve o € Ty, and
¢ € J:%(1,1) = Gy is a holomorphic reparametrization ©f theny o ¢ is, again, a test
curve of¥:

0% b 4

(9) c—?% .c cn cN

Yoy=0 = WYo(yog)=0.
In fact, we get all test curves & in this way from a singley if the following open
dense property holds: the linear part\®fhas 1-dimensional kernel. Before stating

this more precisely in Proposition 4.3 below, let us writevddhe equatio’W oy = 0
in coordinates in an illustrative case. Let= (y,y”,...,y%) € J7%1,n) and¥ =
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(P, 9”,..., W) € J(n, N) be thek-jets. Using the chain rule, the equati¥m y = 0
reads as follows fok = 4:
(10) Y(y)=0,
V) +¥ (YY) =0,
%1{;/(,)////) + %l{]ll(,yl,,yll) + IPN/()/,)/,)/) — 0,

%\Iﬂ(,yu//) + %l{]ll(,yl, )/N) + ﬁ\}lu(,yu,,yu) + %\I_//N(,y/, y/,,y//) + \I_n///(,y/, )/,,7,,7,) =0.
Definition 4.1. To simplify our formulas we introduce the following notatitor a par-
tition t = [iy...ij] of the integeli, + ... +i;:

e thelength || =1,

e thesum Yt =i1+...+1,

e the number of permutationperm() is the number of dferent sequences con-
sisting of the numbers, . .., i (e.g. perm([11, 1, 3]) = 4),

o y: = [y Y™ € Sym'C" and ¥(y,) = '), ...,yW) e CV.

Lemma 4.2. Lety = (¥, y”,...,¥®) € 371, n) and ¥ = (¥, ¥, ..., ¥W) € J(n,N)
be k-jets. Then the equatidiho y = 0 is equivalent to the following system of k linear
equations with values igN:

(11) > &mi@\y(y,):o, m=12...k
rell[m] ler ==
wherell[m] denotes the set of all partitions of m.
For a giveny € J°Y(1, n) let S, denote the set of solutions ¢f {11); that is,
S, = {¥ e J(nN);¥oy=0}.
The equationg(11) are linearih hence
S, € k(n,N)
is a linear subspace of codimensioN. Moreover, the following holds:

Proposition 4.3. ([3], Proposition 4.4)
(i) For y € J7%(1,n), the set of solutions, c J(n N) is a linear subspace of

codimension kN.

(i) Set

J2(n,N) = {¥ € J(n,N)|dimker@") = 1}.

For anyy € J,"(1, n), the subses, n J2(n, N) of S, is dense.

(i) If¥ € J2(n, N), then¥ belongs to at most one of the spa&s More precisely,

if y1,70 € J&eg(l, n), ¥YeJ(nN)and¥oy; =¥oy, =0,

then there existg € J (1, 1) such thaty; =y, o ¢.
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(iv) Givenys,y. € 3 %1, n), we haveS,, = S,, if and only if there is some €
J%(1,1) such thaty; =y, 0 ¢.
By the second part of Propositibn 4.3 we have a well-defineg ma
v J:Y1,n) - Grass(codim= kN, J(n,N)), y+— S,

to the Grassmannian of codimensikN-subspaces id¢(n, N). From the last part of
Propositio 4.8 it follows that:

Proposition 4.4. ([3]) v is G-invariant on the ,Tg(l, 1)-orbits, and the induced map on
the orbits

(12) v I Y1, n)/Gy — Grass(codim= kN, Ji(n, N))

is injective.

5. BMBEDDING INTO THE FLAG OF EQUATIONS

In this section we will recast the embeddi(lZ)JﬁF’(l, n)/Gy given by Proposition
4.4 into a more useful form, still following [3]. Let us rewgithe linear syster¥ o y =
0 associated tg € J %1,n) in a dual form. The system is based on the standard
composition map(8):
Jk(n? N) X Jk(l? n) - ‘Jk(l’ N)’
which, via the identificatiod(n, N) = Ji(n, 1) ® CN, is derived from the map
Jk(n, 1) x J(1,n) — J(1,1)

via tensoring withCN. Observing that composition is linear in its first argumeamt
passing to linear duals, we may rewrite this correspondenites form

(13) ¢ J(1,n) — Hom (J(1, 1), J(n, 1)%).
Ify=(,y",...,y9) € J(1,n) = (C")¥is thek-jet of a curve, we can pyt) € C"
into the jth column of am x k matrix, and
e identify J(1, n) with Hom (CX, C");
e identify Ji(n, 1) with Sym*C" = &l | Sym'C";
e identify J (1, 1)" with Ck.
Using these identifications, we can recast the ghap(13) as
(14) # . Hom (C*,C") — Hom (C¥, Syme<c"),
which may be written out explicitly as follows
ronm ronm ’ 1 i i i
o,y ,“.,y(k)),_> Y.,y +()/)2,..., Z m,}/(ll)y(lz).nﬂy(ls) )

. ) |
i1+io+...+ig=d
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The set of solutionss, is the linear subspace orthogonal to the imagef’, . . . y®)
tensored byCV; that is,
S, = im(¢i(y))* ®CY c J(n,N).
Consequently, it is straightforward to take= 1 and define
(15) S, = im(¢k(y)) € Grassk, Syni c").

Moreover, letBy, ¢ GL(k) denote the Borel subgroup consisting of upper triangular
matrices and let

Flag(C") = Hom (C¥, Sym¥C")/By = {0=Foc F; c---c F, c C", dimF, = I}

denote the full flag ok-dimensional subspaces of Syf@". In addition to [I5) we can
analogously define

(16) 7, = (im(s(H) Cim(g(y%) C ... Cim(s()) € Flag(SynC").
Using these definitions Propositibn 4.3 implies the theofeihg version of Proposi-
tion[4.4, which does not contain the paraméder

Proposition 5.1. The mapy in (14) is a Gy-invariant algebraic morphism
¢ 37%1,n) —» Hom (C, SynmicM),
which induces
e an injective map on th&-orbits to the Grassmannian:
¢®" 1 J°%(1, n)/Gy — Grassk, SynFC")
defined bys®'(y) = S,;
e an injective map on th&-orbits to the flag manifold:
¢™129 = 391, n) /Gy — Flag(SymC")
defined byF29(y) = F,.
In addition,
¢Gr — ¢Flag o 7y

whererny : Flagk, Sym“C") — Grasg(Syn<C") is the projection to the k-dimensional
subspace.

Composings®" with the Pliicker embedding
Grassk, SyntC") — P(AkSymekc")
we get an embedding
(17) o™ 1 391, n) /Gy — P(AK(SymFc™).

The image
¢°"(J°Y(L,n))/Ck c Grassk, SymsC")
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is aGL(n)-orbit in Grassk, Sym<C"), and therefore a nonsingular quasi-projective va-
riety. Its closure is, however, a highly singular subvariet Grassk, Sym“C"), which
whenk < nis a finite union oiGL(n) orbits, with a nice orbit structure. We will return
to describe the orbits in the next section.

Definition 5.2. We introduce the following notation
Xok = 67T YL ). You = 07 UYL ) < P(AK(SymC™).
Then
(18) Kok = Yok = P01, ) < P(AX(SynF+C™)

and

Xn,k - Yn,k - Xn,k C P(/\"(SymSkC”))

6. BoUNDARY COMPONENTS

In this section we study the boundary componentXqgfandY, as defined in Def-
inition 5.2 above. We will focus on the case wheg n first, and in§6.5 we will deal
with the situation wheik > n.

The main technical theorem which we are aiming to prove isofdém[6.5 below,
which tells us that the complement)X{y in its closure in a subsét, . of P(AX(SynkC))
has codimension at least two. Whenr= k this subsef\y is &fine, and as discussed at
the end of§3, this result will be crucial in proving our finite generaticesult Theorem
3.2.

Itis clear that]°"**{1, n) is an open subset df*%(1, n). If we identify the elements
of J(1,n) asn x k matrices whose columns are the derivatives of the map gérems
(f,..., ™) : C - C", thenJ'°"**{1, n) is the set of matrices of maximal raikand
J:%(1, n) consists of the matrices with nonzero first column.

Definition 6.1. Let g, ..., €, be the standard basis @; then
@iy ic=86,...6,:1<i;1<...<is<n1<s<k}
is a basis oBynC", and
&, Ao AE, g €Tlep)
is a basis ofP(A"(SynC")), where

O = {(i,02,...,0 11<i1<...<is<n1l<s<Kk.

.....

P(AX(SynmCM)) consist of the points whose projectiontt(C") is nonzero. This is the
subset where;x, ;i # 0forsomel <i; <...<ig<n.

.....



A GEOMETRIC CONSTRUCTION FOR INVARIANT JET DIFFERENTIALS n

Let us take a closer look at the space GrassymC"). This has an induced right
GL(n) action coming from th&L(n) action on SyrfC", andGL(n)/G,, has a lefiGL(n)
action induced by multiplication on the left. Singg is aGL(n)-equivariant embed-
ding, we conclude that

Lemma 6.3. (i) For k < n X, is the GL(n) orbit of
(19) z=¢"%ey,....8) = A (@) A... A( Z e,...e)l

in P(AX(SynmkC™)). For arbitrary g € GL(n) with column vectorsyy. . ., v, the
action is given by

g-2=¢"(g) = " va,... . V) = Vi A (2 @V AL AC DT VW]

i1+...+ig=

(i) For k < n Y, is the finite union of G(n) orbits.
(i) Fork > nthe images x and Y,k are GL(n)-invariant quasi-projective varieties,
but they have no dense @i) orbit.

Similar statements hold for the closure of the image in thes&mannian.

Lemma 6.4. Let k< n, then
(i) Ang is invariant under the G(n) action onP(AX(SynCn)).

(II) én’k C An,k; hOWGVGI’, \‘,k Q An,k-
(i) Xnk is the union of finitely many Gh)-orbits.

Proof. To prove the first part take a lift
72=7®7 e Hom (C", Syntc")
of z e Grassf, Synt<C"), where
Z' € Hom (C",C" andZ* € Hom (C", @, Sym'(C"))

Thenz € A, if and only if x;» _ ,(2) = det@) # 0, which is preserved by th@L(n)
action. For the second part note that fey, (.., ) € ijondeg(l, NViA...,AV # 00
by definitiong™ ™ i(vy, ..., ) € Ank. On the other hand

¢"e1,0,...,0)= e A A ... A € Yok \ Ank
The last part follows from the existense of a dense dpkn) orbit. O

The main technical theorem of this paper, which will allowtaiprove Theorenis 3.3
and3.2, is the following:
Theorem 6.5.Let k> 4. Then

(i) The boundary components afYc P(A"(Syn“C")) have codimension at least
two in Y.
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(i) The intersection with 4 of the boundary components of @have codimension
at least two inXpx = Y.

Remark 6.6. There is a codimension-one boundary componed,@for k = n. Thisis
the closure of the image of the singular matrices. This carepbis, however, outside
Anx, and the image of the singular matrices with 0 is in Yy, SO this is not a boundary
component ol .

Remark 6.7. In fact it is not hard to see that Theoréml6.5 is truekficr 2, but it fails
for k = 3 (see Example_7.5 below).

We devote the rest of this section to the proof of Thedrem\Wéstart with the proof
of the case whek < n, and in§6.3 we study the case whé&n> n.

The strategy of the proof is the following: first we noticetttfze dimension of the
stabilizer of any point irX,x is k+ n(n — k), and next we prove that the dimension of the
stabilizer of any point if¥, \ Yk and Kok \ Xnk) N Ank is at leask + n(n—Kk) + 2. The
result will then follow from Lemmas 613 and 6.4.

The first half of this strategy is clear: the stabilizezoh GL(n) is

(20) G, ={ ( %k GL(:_ k) ) 1

where the entries are arbitrary, and the stabilizer of any pointXpy is conjugate to
G,. In order to execute the second step, we need to identifydhedary components
of X,k andY,x. These boundary components are closurgSldh) orbits and fall into
two groups: the ones iA, and the rest, and the stabilizer subgroups are vdtgrent
in these two cases.

6.1. Orbit structure. As we indicated before, we assume from now on W&ib that
k < n. LetZ, c X, be the torus orbil - z ¢ P(A"(SynT*C")); thenZ,, is, by
definition, a toric variety.

Proposition 6.8. Assume that k n. Then every G(n)-orbit in X, intersectsZ. In
other words _ _
(GL(n) - 20 N Znx # 0 for all z € Xk

In particular, anyGL(n)-fixed points inX, sit in Z.

Proof. For the proof we make two observations; the first is a stréogiverd computa-
tion and the second is easy to check:

Lemma 6.9. Let (11,...,7x) € F C Z' be a fixed point of the T© GL(n) action on
By -z, andA(t) = (t%,...,t") ¢ T c GL(n) such thalim o A(t)-z = &, A... Ae,.
ThenA acts with positive weights on.A .., N P.

Lemma 6.10.Let S be a closed subset containing the origin of a vectorepaon
whichC* acts with all weights positive. Thegi - S is closed in V.
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Now we claim that
(22) G-z=G-(T-2),
whereG = GL(n); that is, X, c P(AK(Sym*C")) is the union ofG-orbits of the points
of Z,x, the closure of the torus orbit. This will imply PropositiéB. SinceG -z >

G - (T - 2) automatically holds, it is enough to prove tlatz ¢ G- (T - z), and this
follows from the property

(22) G- (T - 2) is closed inP(AX(SynrkC™)

To prove [22), leB, c GL(n) be the standard Borel subgroup®t.(n) consisting
of upper triangular matrices arigl,_; ¢ GL(n) (respectivelyU,.; c GL(n)) be the
standard Borel subgroup &L(n — 1) (respectively the standard maximal unipotent of

Bn_1) embedded a8 —
it is enough to prove that
(23) Un1 - (T - 2) is closed inP(A¥(Symic"))

Recall thaP(AK(Syn*CM)) is the union of the fline charts\,, . .., Where the coordi-
nate dual te,, A. .. A€, is nonzero. To prové&(23) itis enough to show tHat; - (T - 2)
contains all its limit points in each of theséfine charts. Indeed it is not necessary to
consider all of these charts; we need only a cove,qf LetF = Zlk be the set of fixed

points inZ,, under the action of the maximal torlisof GL(n) onP(AX(Synm<C"). Ele-
ments off are points of the forne,, A ... A e,, Whereg; € I1., defined as in Definition
6.1, and

(1) 2 ) SinceGL(n)/B, is projective andB, -z = U ;T - Z,

Zn,k - U Asll\.../\sk-

(&15..,6K)EF
If £(g;) > 1 for some 1< i < k, whereX(g) is the sum of the partitiog; defined as in
Definition[4.1, then the coordinate dualdg A ... A €, is zero for any point irB, - z.
Therefore for any4, ...7¢) € ¥ we haveX(g;) < i, and (q,...7x) liesin

P = {ze P(AX(SYm™*CM) : X, (2) # 0= I(g) <iforl<i <k
Let (r1,...7d) € F € P be a fixed point. There is a 1-parameter subgra(p =
(t,...,t") € T c GL(n) such thatlim,o A(t) -z = €, A...A€,. According to Lemma

(24) Uns = ) A®fu e Uns s full < A
teC*

where|| - || is any norm on Li&,_;. Indeed,A normalizedJ,_; and the induced conju-
gation action on Lig,_; has all weights- 0. Consequently,

U T-z=Clue U _1:ul<liT -z



20 GERGELY BERCZI AND FRANCES KIRWAN MATHEMATICAL INSTITUTE, OXFORD OX1 3BJ, UK

Since{u € U,_; : |lu]| < 1} is compact, the s&& = {u € U,_; : |Jul] < 1}T - zis closed.
Now the Proposition follows from Lemnia 6]10. O

Corollary 6.11. The boundary components ofare closures of orbits Gln) - z where
ze Zykis aboundary pointof & =T - z.

In order to identify the boundary points 8§ we use the following standard result:

Lemma 6.12.Let T be an algebraic torus acting on the projective varietpdd ze Z.
Then ye Tz if and only if there i € T and a one-parameter subgroup: C* —» T
such that ye A(C*)rz.

Apply LemmaG. IR WithiZ = Zy,z = z = ¢P%ey, ..., &) andT the maximal torus
of diagonal elements iGL(n). It is clear from Lemma 614 thaX,x is the union of
GL(n)-orbits. Choose a one-parameter subgroup:

th

At) =
th
Lett = (01,...,pn) € T. We aim to compute the limit points
2y =lim A(t)(r - 2) € Grassk. Synkch).
Notice that the lash — k coordlnates ofl are irrelevant for the action onsincez €

SynmkC". By Lemmd6.211 the closure of the orfik,; forms a boundary component of
Znk. Since

T-Z2=p181 A (028 ® P2E) A ... A ( @ Piy -+ Pi€y - - €)

I1+ +I5—

we have

ANz = [t"p1er A (oo @ PP AL A (Dt e, .8 =

i1+...+is=k
= [t s k(B A LA G + TR 025 p@l A ABA L. AB)F.. ).
The generic term of the last expression is
tlatleotdap o (€ A...AE), Z(g) =i
where
(25) A, = Z Ai; € = i€ pr = Hieepi if 7= (ig,...,1s) IS an ordered sequence
ier
Definition 6.13. Let
o My = MiNG,,. a)(Aey + g, + ... Ag),

(Sl) i
o mMy[i] = Mingy- A, for 1 <i <Kk,
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o Zi[i] = Xsecig=myi] €
Remark 6.14. We make three straightforward observations:

(l) L, = [Z/lgl+.../lgk:m(/l) Pey -+ P N A esk];
(i) zyy, = t2- 24, where

2y =M Az = [ Z e, AL Al = ARzl
- Agy +..dg =M(A)

so the boundary components &fy (respectivelyX,x) areT - z, (respectively
G - zy) for some one-parameter subgroups
(iii) zy e Ankifandonly if 2; + ... + A = m(Q).

From this we see that th&L(n)-orbits in the boundary oK,y correspond to the
combinatorial data in the description of the limit point.€elproof of Theorerh 615 now
consists of three steps:

¢ In the first step we describe the maximal boundary comporentdosures of
orbits of limit pointsz, for some 1-parameter subgroupg: : C* — T¢. There
arek — 1 maximal boundary componentsAq indexed by1” for 2 < o < K,
andk — 1 maximal boundary componentsigAk(Sym<“C™) \ A, indexed by
17, which are inY.

e The next step is to compute the limit [i8). ), of the stabilizer subgroups as we
move to the boundary component, and check that it has dimeksi n(k — n).

¢ Finally, we study the stabilizer group,, of the limit point, and find two extra
dimensions in addition to lir®,-¢), in order to complete the proof of Theorem
6.5.

6.2. The maximal boundary components. The open dense orhlil, is theGL(n)-orbit
of z = z5 in the Grassmannian, whezés defined in[(1B). Itis clear that the 1-parameter
subgroupl(t) = (t,t2,...,t% 1,..., 1) stabilizes, and therefore = z;.

Let O, denote th&L(k)-orbit of z,. ThenOy = O; by definition. If

A={1: A1 +...+ A =mA)}

is the set of one-parameter subgroups whgre ... + A is minimal among the sums
Agy, + A, + ... Ay, then the orbits i, are{O, : 1 € A}.

We need a more precise description of the orbit structureceSi; = i1, fori =
1,...,k, for 2 # 1 we have a smallest indexd o < k with Ay # O A1.

Definition 6.15. We callo- = Head1) the head oft = (44,..., 4,) if
A =idyfori <o andA, # oA;.

If 1, < o1, then we calll regular; otherwise we call degenerate
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We will often identify a one-parameter subgrotivith the orbitGL(n) - z, € Xnx
and say that is maximalif GL(K) - z, is a maximal boundary componentX{y, in the
sense that the orbit closu@L(K) - z, is contained inX, \ X« and is not contained in
the closure of any oth@BL(k)-orbit in Xnx \ Xnx.

7,...,up) be the following one-parameter subgroups of(GL

Definition 6.16. Fix 0 < ¢ << 1and2 < o < k. LetA” = (17,...,47) andu” =

i—|L]eforl<ic<k
26 A7 = T
(26) ! {Ofork<i§n;
ifori #o0,i <Kk,
(27) w =30 +efori=o,
Ofork<i<n.

HereL(lrJ denotes the largest integer m such thaﬁnﬁ‘;.

It is easy to see that Healf() = Head(:”) = o, andA” is regular, whereag” is
degenerate.

Definition 6.17. Let A be a 1-parameter subgroup. We call
#li: zi[i] = e}
the toral dimension ot, or of the limit pointz,.

We will see that the dimension of a maximal torus of the stadxilof z, in GL(n) is
equal to the toral dimension af and so if the toral dimension dfis at least three the
orbit of z; will have codimension at least two, and we have to focus osghavhose
toral dimensionis 1 or 2.

Lemma 6.18. (i) The maximal regular 1-parameter subgroups have toral dimen
sion at leas®. Those with toral dimensioRare 12, ... A¥; in other words for a
regular 1 with Headl) = o we haveD, c O,-. The regular boundary compo-
nents lie in Ag.

(i) The maximal degenerate 1-parameter subgroupsiére. . ¥; in other words
for a regularu with Headu) = o we haveD, c O,-. The degenerate boundary
components lie outside,Q

(i) z,- € Yok and therefore the degenerate boundary orbits arep ®nd they are
not boundary orbits.

Proof. Let A be a regular 1-parameter subgroup with Haad¢ o. Without loss of
generality we can assume that

Ai=ifori<oandl, =0 -¢.
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We will call d(i) = Lj;J the defect ofi and the defect ot = (iy,...,is) iIsd(r) =
d(ii) + ...+ di. Since

/l(j,g-,,,_,o-):j+m(a—s)forl£j§a—1,m20,
m

we have
(28) myi] <i—d()eforl<i<n.

If 15 < s—d(s)e for s> i andsis the smallest index with this property then[s] = As
andz,[s] = es, so the dimension of is at least 3. Indeed,

z)[1] = e, zy[o] = &, Z)[5] = &s.
So we can assume that> i — d(i)e for 1 < i <k, and therefore
myfi] =i—d(i)eforl<i<k
So
(29) e ¢ Zy[i]if d(7) > d(i).

On the other hand the distinguished 1-parameter subgi6up defined so that =
i —d(i)e, where O< € << 1, and therefore

(30) zelil= ), e
3(7)=i,d(r)=d(i)
Comparing[(Z2B) and_(30) we conclude
z)[i] c z-[i]forl <i<n

and the first part of Lemnia 6.118 follows. To prove the secomtlipgu be a degenerate
1-parameter subgroup with Headl(= o. Without loss of generality we can assume
again that

ui =ifori<oandu, =0 +e.

Since

el 1):iforlsisk
we have
(31) m,[i] <i.

Again, us < s cannot happen fos > o since in that case,[s] = e would hold and
the toral dimension would be at least 3. £0> s and thereforg:. > X(r) with strict
inequality ifo € 7. Therefore

(32) e ¢zlilifoer
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On the other hangd” satisfies equality if(31), and
(33) Zoli]= ) e
2(7)=i,o¢r
Comparing[(3R) and_(33) we get
zy[i] c z-[i]forl <i<k
and the second part of Lemiina 6.18 follows. m|

Remark 6.19. According to Lemma&6.18, the codimension-at-least-twprty has to
be proved only for the regular boundary components.

We summarize our information about the maximal boundarypmments in
Proposition 6.20. We havez,r = /\!‘:lzﬂg[i], wherez,[i] = ®s()=idr)=d(i €& andz, =
AKX Z0[i] wherez,o[i] = @s(r)=ioere:

Lemmd6.1B describes the boundary component gfin section§6.5 we will need
a bit more information about the boundary componentg,@f We prove the following

Proposition 6.21.Let k< n. The boundary orbits of.X lie in the closures of boundary
orbits in A.

Proof. Let z, be a boundary point corresponding to a 1-parameter subgroup
Case 1.If 4 > i1, for 1 <i < kthenmy[i] =i sincedy, 1) =i. Letl, = {i : 4 > i1y}

= L ¥ A =1 = IR ML — ' it iveri(d,..,

be the set of abundant indices; then
zil = ) e
INT=0
and therefore
Oifiel
lifiegl
showing that these orbits lie 1k, so they are not boundary orbits.

Case 2.If A, > o4, and4, < pA; with some 1< o, p < k, then we claim thaD, c 5;,
whered = (Aq,...dy_1,041, Ags1, . . ., ). INdeed,

zfil= ), e

A(m)=my[i]

and since we can replace in any partitiowhich containgr the partition 1= (1, ..., 1),
N—

9

2, = "6y €1, . .., 0k 6) Wheres; | = {

o

andA(t — o + 1) < A(7). So

mll] = A = min, A0,
Therefore
z)[i] czg[i]forl <i<n,
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andz, = limy_oA(t)z;. Repeating the same procedure, we can get rid of the indices
whered; > i1, andO, c O; wherel; <il;for1<i <k
Case 3.Finally, assume that; <i1; for 1 <i < k. Note that

A < m/l[|] Vi & Z, € An’k.
Assume that
(34) Ar > my[o],

ando is the smallest index with this property, and furthermores a partition with
m[o] = A,. Defined = (A4,..., 51, mﬁ[a],/l(,ﬂ,...,/lk).~ Thenz, # z; sincee, €
zi[o] bute, ¢ z,[o]. We show thatz;, = lim_ A(t)z;, andA has fewer indices with
property [34) tham has, and then by induction we can prove thats in the closure
of a maximal orbitO, in A,y. For by [34) in any partitionr which contains the index
o, we can replacer with the maximal partitioru such that Heag{) = o and then
At —o +pu) < A(r). So

Ml = ginAw) = min, ),
which implies

z)[i] c zz[i]for1 <i <Kk,

and therefore the result follows. O

6.3. The limit of the stabilizers. According to Remark 6.19, we have to prove that
the boundary components ¥ corresponding to the 1-parameter subgroifpsave
codimension at least 2 for2 o- < k.

Recall that the second step in the proof of Theorem 6.5 aouptd our strategy is
the study of the limits of the stabilizer groups, i.e. of By, and limG,-), for the
one-parameter subgroup$ andu” when 2< o < k.

In this subsection we prove

Proposition 6.22.G” = lim,o G-, € GL(n) is a k+ n(n — kK)-dimensional subgroup
of G

Zyo "

Proof. Consider the stabilize .. SinceGL(n) acts on the right on GragsSym=C"),
GJ“‘(t)z = /lg(t)_le/lU(t)-

. _ Gk *
Recall that (in shorthand, = { ( 0 GL(n-k ) } where
a1 a2 a3 ... (073
0 ozi 201 ... 201001+ ...
Gy={] O O a/f 3a%ak_2+... }
0O O .

0
d
. al
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and the polynomial in tha (j) entry is

pij(e) = Z Ao Xay - - - U,

+ap+..+a=j
Therefore, thei( j) entry of the stabilizer oft3(t)z is
(35) G2 =t pij(a).
If £is small enough then] < A7 < ... < 47, and we define the positive number
(36) n’ = max (47,;;—47), i=1....k
1<j<n-i+1

Note that by definitiom = O for all o
Lemma 6.23. Under the substitution
BT =t"af
we have

G/l”(t)Z(ﬁla cee ’ﬁk) € GL(C[ﬂl’ <o ’ﬁk][t])’

so the entries are polynomials in t with gbeients inC[gy, .. ., Bk].

Proof. Compute the substitution as follows:

A7
(37) Gur)ij =t Z Vo g, - - - Ay =
a+ap+...+a=]
(38) _ Z =4 tngl+ng2+"'+ngi,3a1,8a2 . Ba.
a+..a=j
By definition
(o o T (o a a . . (o o a
My = /li+a1—1 - A Ny, = /li+a1+3-2_2 - /li+a1—l’ Tt naj 2 /li+a1+...+a4'—i - /li+al+...+ai—l_(i—l)'

Adding up these inequilites and usiag+ ... + a = | we get an alternating sum on the
left cancelling up to
ng +...+ng =47 - 47,
Substituting this into[(37) we get
(39)  Grwdi= Y, tVICATENRE B By € ClBL . AN

+..a=j

This proves Lemma6.23. O
As a corollary we get the existence of
G = |tl_r)7£l) G/W(t)z(ﬁl, .. ,,Bk) S GL(C[ﬂl, ce ,ﬁk]).

To prove that dinG” = k + n(n — k) and complete the proof of Propositibn 6.22, for
1 <i < kchoose(i) such that

(40) Ny = Aggy+i-1 — Aag)
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holds. Then

(41) Peiy.a)+i-1 B1,---.BK) = Z tna1+-~-+na€(i)/3al ° 'ﬁae(i)
ap+...+ay)=0(i)+i-1

SO

(42) G oq.et)+i-1 = lim €% o pyi-1(B, - .. i) = Itigcl)(t”i",@i(‘)‘l +..) =

= ﬁi(l)_lﬁi + Qo(i).o)+i-1
where
Qoiy.e)+i-1 € ClB1, - ... Billt].
It follows that the eIementﬁA‘T(t(eﬁe.)l) € Lie(G”) are independent, whetge, +¢g) =
(t,0,...,0,t,0,...,0) with thet’s are in the 1st anth position ifi > 1 but interpreted
as (2,0,...,0)ifi = 1. This completes the proof of Proposition 8.22. O

6.4. Two extra dimensions in the stabilizer of the limit point. In order to prove The-
orem[6.5, it is now enough to prove its statements for the makorbits, i.e. to prove

Proposition 6.24.
dimG,, >k+n(n-k)+2if2<o <k

According to Propositio 6.22 and our strategy describethatend of§6.1, this
follows from

Proposition 6.25. There exists a 2-dimensional subgroup 8G,,, with G” N B” = 0.

Proof. First, note that the maximal torus of the princigak minor inG” is 1-dimensional,
and has the form diag(y?, ..., x*). HoweverG,, contains a 2-dimensional torus

(43) diagpi(x,9), . . ., pc(x. 9))
where
(44) Pi(y,0) =ay +bsif i =bo +a

Indeed, by Propositidn 6.20
Zi = Zyp[l] A ... A Zpo[K]

where

(45) zelil= ) e

e
=r{

e,

This means that if we give the weight to &, thenz,-[i] is homogeneous of degree
(7 =i —|_Js=a+blo-s),
g

wherei = bo + a. Therefore, the torus diagf, ..., ry) is in the stabilizer. If we weight
r; with y andr, with 6 then by the same argumen[i] is homogeneous of weight
ay + bs, and we get the torus i (43).
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It remains to find an extra one-dimensional unipotent sulngad the stabilizer which
is not inG7. It turns out that we have to distinguish three cases here.

Lemma 6.26. There exists a one-dimensional unipotent subgroupip GG” when
o =Kk.

Proof. Let T € GL(k) denote the transformation

Te)=efori#k-1; T(e1) = &1+ (&

Sincee_; does not occur just im-[k—1] in (45), we gefl € G,,,. ButT ¢ G7, because
T is not upper triangular. O

Lemma 6.27. There exists a one-dimensional unipotent subgroupip GA” when
o < kand k# -1 modo.

Proof. Let T be the transformation

(46) T(e)=efori=k; T(e) =&+ e,
Sinceg, occurs only inz,-[k], andz,-[o] = o (seel(45)), we have

@47) T-zpw =2p(er,...,6c1,&+€) =
= Z/ltr[l] A...A ZJ(T[O- - 1] AN eo— AN Z/pr[O' + l] A... A Z/ltr[k])‘i'
+¢-Zp[l] A A Zpe[o =2 AE A Zio[o+ L] A . A Ze[K= 1] A €, = 20,
soT € G,,.

It is slightly harder task to show that ¢ G” = limy_o Go,. First, we computey
fori = k- o. We claim that fon # —1 modo

(48) Mos1 = Ag — A0 = Ag_q — A7
Indeed,
Ajskeo1 = Aj = vvee SAT=AT=27 01— AT

This means that we can choa#{& — o- + 1) = o in (40) and substitute int@ (42)
(49) Gok =B Broi1 + Aok(B1s - - - k),
whereq,(B. . .., A is a polynomial, whose monomigs§: ... > satisfy
(50) iiby +...+i,b, =k
Moreover, we can also choo8&k — o + 1) = 1, by (48), and theni (42) gives us
(51) G")1k-c+1 = Breo+1-

Suppose now thdt € G7, that is
(52) T =G(B4,...,B« forsomeB, € C*,B,,..., bk e C.

Let (T);; denote thei( j) entry of T. Then
(Mox=¢, (M)j=0fori=j, (T)i=1
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Comparing the (11) and (1k — o + 1) entries ofT andG” we get

(53) B1=1Bs5-5s1=0.

Choos&(i) fori = 2,...,kas in [40) and le#(k — o + 1) = 0. Since all df-diagonal
entries ofT but the ¢, k) are zero,[(52) forces the following equations

(54) Bi + Quiiveqiy+i-r = 0fori #k—o + 1,

(55) Br-s+1+ Ok = {.

By (53), these ark — 1 polynomial equations ik — 2 variables, and the Jacobian at 0 is

the origin, so we have finitely many solutions near the originerefore, for somé, it
follows thatT is not inG”. O

Lemma 6.28. There exists a one-dimensional unipotent subgroupin GG” when
o <kandd=-1modo.

Proof. This case works very similarly to the previous one. Supposd > o, that is,
if k= ao- — 1 wherea > 2 (this holds becaude> o), the condition is thado — 2 > ¢.
This is true for alk > 3. Fork = 3,0 = 2 TheoreniL6)5 is not true.

Let T be the transformation

(56) T(e)=eforizkk-1;T(8c1) =61+ e ; T(&) = e+e,
First we check again thdt € G,,. By (45)

Zylo] = e, ;
Zylo+ 1] = €1 + €16, ;
k-1

ze[K = &+ ) e .
i=1

An easy computation shows that

(57) T-zw =2zp(e1,...,62 61+ (€, 6+ {€ry1) =
=Zp[1] Ao A Zpe[K= 2] A (Zac[K = 1] + £Zpe[0]) A (Zae[K] + {23 [0 + 1] =
= Z/lu'[l] VANPIRAAY Zﬂcr[k] = Z/lu'.

Now we prove thall ¢ G” in a similar way to the second case covered by Lemma
[6.27. Sinc&k — 1 # —1 modo we can substitutk — 1 instead ok in (48):

(58) Mo = Ag 1 — A0 = A, — A].
Moreover, we also get the extra equation

(59) Nk = /lﬁ- - A7

o+1°
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and similarly to[(4B8) and (31) it follows that

(60) (GNoket1 = B Bro + York1(Bis - - - BK);
(61) (G")o+1k = BLBr-o + Qrs1k(B1s - - - BK);
(62) (Go-)l,k—(r = ﬁk—o--

SinceT differs from the identity matrix only by the entries
(Mok-1=(MNesrk =4,

the equality
T=G"(B1,...,8
forcesBy_,» = 0,81 = 1 and the analogue df (b4) ,(55):
(63) Bi + Qogyeiy+i-r = 0 fori #k— o
(64) Bro + rk-1=¢
(65) Br-o + Aor1k = ¢
which are, agairk+ 1 nondegenerate polynomial equation& 1 variables, and there
iS no solution for somé. O

We have now proved Proposition 6125, which together withpBsition[6.22 com-
pletes the proof of Proposition 6124 and thus of Thedrem &&nk < n.
O

6.5. Boundary components fork > n. Whenk > nthe argument used §§6.1-6.4 to
prove Theorerf16]5 in the case whes n breaks down since the imag®°i(37°"**{1, n))
is not aGL(n) orbit, and therefore we cannot localize the boundary gdimthe same
way using 1-parameter subgroups. The embeddfifyis still GL(n)-invariant, but the
image is the union of infinitely mangL(n)-orbits. In fact, however, as we will see be-
low, Theorem 6.5 fok > n follows from Theoreni 6]5 fok < n which we have already
proved.

Letk > nandi = (i; < iy < ... <I,) be ann-element subset di, ... ., k}. Fix a basis
e, ...,e of CX and denote

CM'=Ce,®...®Cg, cC*

the coordinate subspace spanned by bases elements.fidefine the corresponding
subspace

A Sym=C!" ¢ A* Sym=kCk,
and letr; : AKSym=C* — Ak Sym=kC! denote the projection. Their direct sum
(66) 7= @ ymi - A* Sym=Ck @ Ak syms=kcn
ie(r)
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descends to a rational map

7 P(A*Sym*C) - —— > P @ A¥Sym=*c|,
ie(r)
which is well-defined onY,, c P(A*Sym=kC¥). In fact, it is well-defined orck A

Sym2CK A ... A Sym*Ck c Ak Sym=kCk, andY, sits in this subspace.
Now we have a well-defined map

7 : Y - P| €D A*sym=cr |
i<(%)

and

""" <)
defines an embedding. Moreovéf;%(1, n) c J,"(1, k) simply by adding thek — n) x k
zero matrix to get & x k matrix from ann x k matrix. The diagram

proj
J(1,K) — 3%, n) i Yiek © P(AX Sym=*Ck)
(67) = T
proj
329 Yoo — | A symcr

ie()
commutes by definition, s¥.,x c 7(Ykk), and therefore it extends to a surjective mor-
phism
7?: Vk,k - Vn,k-

Since dimffyx) = k(k — 1) and dim{f,,x) = k(n — 1), the generic fiber has dimension
k(k — n). Furthermore,

Yok \ Yok € 1(Yick \ Yk,
and by Proposition 6.21

7n,k \ Yn,k - U 7?(0/1)

Z,€Akk
Now, O, isi_rredu_cible, and thereforg(0,), too. We want to prove that for a generic
pointz e 7(0,) N Yok
dim@(2)) N O, > k(k — n)
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holds. The generizsits in7(0,), and therefore has the form
Z=n(z[1](V) A ... A Zi[K](V))

for somev € JY1,k). Letk : C — C! denote the projection to the subspace

.....

diagram[(6Y)
Z [k k(WD) A .. A Zi Kk H(x(V) € 7 H(2) N Oy
So we have a commutative diagram

@1].....z)[K)

J(1,K) Hom (C*, Sym=c¥)

(68) K P

Jk(i, n) r(Z/l[:l-]’ ceey Z/l[k])

.....

.....

Observation: LetV c W be complex vector spaces. Then
% : Hom (C*, W) —» Hom (CX, V)

is aGL(k)-equivariant projection, and the stabilizer of a pone Hom (Ck, W) is a
subroup of the stabilizer afp) € Hom (CX, V).

This implies that the dimension of (2) N O, ¢ Hom (C¥, Sym=xC*)/GL(K) is
greater or equal to the dimension of the fibrexpivhich isk(k — n). Combining this
with the codimension two property fé}, which has already been proved, we find that
dim(z(0,)) < dim(@0,) —k(k—n) <dimYcx—2-k(k—n) =kn—-k—-2=dimYpx - 2,

proving Theorem 615 fok > n.

7. (GEOMETRIC DESCRIPTION OF DEMAILLY-SEMPLE INVARIANTS

By using Theorerh 615 in the case whee k, we can now prove Theorem 8.3 in the
case wherp = 1.

Theorem 7.1.1f k > 4 thenGy is a Grosshans subgroup of the general linear group
GL(k), so that every linear action df, which extends to a linear action of @) has
finitely generated invariants.

Proof. We taken = kin Theorem 6.5 to obtain arffine variety)?n,n containingGL(K) /Gy
as a dense open subset with complement of codimension atieas O

In particular we have the special case of Thedrem 3.2 wheri.
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Theorem 7.2.1f k > 4 the fibreO((Jk)« Ek = O((J)x % C)° of the bundle Eis a finitely
generated graded complex algebra whes divisible by Kk + 1)/2.

Proof. If £is divisible byk(k+ 1)/2 then the action afi, on (Jk)x x C extends to a linear
action ofGL(K) (with GL(K) acting onC as multiplication by a power of the determinant)
and so Theorem 7.1 applies. O

Theoreni 6.6 also allows us to describe the subalg@td&)y)
Semple algebra. This is the invariant ring

O(JLeg(l, n))kauk(ku)/z — O(JLeg(l, n) x C)Gk,

U, -
k(s 1)2 Of the Demailly-

that is the ring of invariant polynomials in the entries of tRI6%(CX, C") under the linear
action on the right of the semi-direct produgt x puw.1)2 of Uk with the group of
k(k + 1)/2th roots of 1 inC, or equivalently the ring ofi-invariant polynomials in the
entries of Hom®9(Ck, C") x C.

In §85 we constructed an embedding

¢7 : 3°9(L, n) /Gy — P(AX(SymkC™)

of J*(1, n)/Gy in the projective spacB(AX(Syni“C") and in Theorer 615 we proved
that the boundary components of the closig of its imageYn,, = Im(¢°™) c
P(AX(SynkC")) have codimension at least two. Equivalently this cortdiom gives us
an embedding o8, >%(1, n)/(Ux x pxs1y/2) in the dfine space\(SymsC") such that the
boundary components of the closure of its image (which isfifiiee cone oveY,,, have
codimension at least two. Lé(1) be the tautological line bundle @fAk(Symc")).
The global sections @x(1) pull back toUy » k. 1),2-invariant polynomials of weighted
degree ¥ 2+...+k = k(k+1)/2 onJ %1, n), and since the complement df°(1, n) in
Jkn has codimension at least two, these polynomials all ext@ig & 1. 1)2-invariant
polynomials of weighted degree+2+. . .+k = k(k+1)/2 onJy,. Moreover the fact that
the boundary components of the closured§f(1, n)/(Ux x wuxr1)2) in the dfine space
/\"(SyrrF"C”) have codimension at least two tells us that evégys. uk.1)2-invariant
polynomial onJy, is the pullback of a polynomial in the global sections®f(1) (or
equivalently in the Plucker coordinates on the Grassmﬂnﬁ:iras§k+1)/2(8yrrFkC”)).
Thus we obtain the following corollary of Theorém16.5:

Theorem 7.3. () If k > 4 the subalgebra
O((I)igieryz = O, M) Paen = O(IFY(L, n) x )

of the Demailly-Semple algebra spanned bylhenvariant polynomials which
are homogeneous of degree divisible Il k 1)/2 is generated by the Plucker
coordinates orP(AK(Sym“C")). These can be expressed as
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wherei; denotes a multi-index corresponding to basis elemeryof“C", and
Ai,._i. is the corresponding minor @f(f’ ..., ™) € Hom (C", Sym“C").

(i) A polynomial p inO((Jk)x) which is homogeneous of degree h with respect to the
Cr-action isUg-invariant (or equivalently lies in the Demailly-Semplgeaibra)
if and only if g&+1/2 lies in the subaIgebra{)((Jk))()E(T(+l)/2 generated by the
Plucker coordinates$A, . : s<n}.

----- Is

Example 7.4.n = k = 2. Although our codimension-two property has been proveg onl
for k > 4, we get all the invariants as Pluicker coordinates in thise#o. Now

I7AL2) = ((F], f3, £/, £5) € (C?)% (1, £3) # (0, 0)),
and fixing a basige;, e} of C? and the induced bas{s;, &, €, e;&,, €5} of C?*® Sym?4C?,
the mapy : J»(1, 2) = Hom (C?, C?) — Hom (C?, Sym=2C?) of (I4)is given by
f] f, 0 0 0
AET ()7 G ()
The2 x 2 minors of this2 x 5 matrix are(f;)3, (f,)*f;, f/(f,)% (f;)* and
Apg = fi 1) — 1]
These give generators of the subalgeb)é(\]k)x)gJz of the Demailly-Semple algebra
O((J)x)"™2. In fact the Demailly-Semple algebra itself is generated byf, and A 2.

Example 7.5.n = k = 3. Recall that Theorein 6.5 requires>xk4, and in fact it fails
for k = 3 as indeed happens in this example, though nonetheless thaibeSemple
algebraO((J)x)"« is finitely generated in this case as proved by Rousseé@dh We
have

L, 3) = {(f], T3, f5, £, 5/, £, £17, 157, £57) € (C°)3; (f{, f3, f4) # (0,0,0)},
and if we fix a basige;, &, e;} of C? and the induced basis
{er, &, 63, €], 816, 6, €163, 63, 65, €5, €6y, ..., €3}

of C2® Sym2C3 @ Sym3C?3, the mapp : Hom (C3, C%) — Hom (C3, Sym=3C?) in (14)
sends

(fi, B2, 11, 1) =

A Y YA YV YR YV YV YA V1)
(fl’fZ’f3’fl’f2’f3’fl ’f2 ’f3 )

to a3 x 19 matrix, whose firs® columns (corresponding t8ym=2C?) are

f] f fy 0 0 0 0 0 0
% f:lltlll % fIZ,/,I % fél’/ (t]t)/zl ’ I/f]t f2, 77 £/ (té)lzl ’ /If£ f3’ I ¥4 ’ /Ifz, f?: £ (1/:3,)12/ ’
TR R PR AR ) FAE ) P ol A PO 7 PAN R EO ol F P PO EUE B ER R
and the remainind.0 columns (corresponding t8ym3C?3) are
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
(f)° ()21, f(5)2 (1) fi(f)7 (1))%65 (§)°15 (12 (f)° f1f;1;
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The3x3 minors of this matrix in the ring of polynomialsig, ff;, f3, f’, £, £/, £, £, £”
localized with respect to] fgenerate the invariants with weight (for tiig-action) divis-
ible by 6. The necessity to localize with respect todiresponds to the fact that,Y¥has

a boundary component of codimensibim this case (so that Theordm 6.5 fails here);
this boundary component is described as the closure of theetu

(Vi AVo A (V3@ Vo) : Vp, Vo, V3 € C3, (1, Vo, V) € GLg} € P(A3 Sym=3C3).
Example 7.6.n = 2,k = 4. In this case
JPAL2) = {(f], £, f7, £ £/, £ 177, £57) € (CP)* (11, 15) # (0, 0)),
and fixing a basise;, &} of C? and
(e, &, €, e, 6.6,....e6,6)
of Sym=4C? the mapp : J4(1,2) — Hom (C* Sym*C?) in (14) sends
(f], £, £, & £, &7 £, £

to a4 x 15matrix, whose firsb columns (corresponding t8ym=2C?) are

T 0 0 0
% f:/i,’, % fé/// (1:{)/2/ ’ Nf]i f2’ X7 (1:2/)/2/ P
? f:ll/// ? f%// 2 £/ ///fl fll m2 2 ’ /(//fl f2 /j/- 1;1 f2)1 1§17 2 £/ ///fz le AYA
af” Aty SN+ a5 (7 + 7))+ 5817 50857+ 55(1))

and next four columns (corresponding 8ym3C?) are

0 0 0 0
0 0 0 0
(f)° (f)*f; f1(f3)* 5 I

B2 2((F)* ) + 28 85,1) 2((f,)%f) + 2f,1/1,)  2((f,)?f,)
and the remaining five columns (correspondinggm3C3) are

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

(f)* (1% (F)2(1)? f(f)° (f)*
Then the weight + 2+ 3+4 = 10pieceO((Js)« Ifg of the invariant algebrad((Js),)"
is generated by thé x 4 minors of this4 x 15 matrix.

7.1. Construction of the bi-invariants. In this section we deal with the problem of
finding a decomposition of the Demailly-Semple bunBlg, (whose fibre atx € X
consists of théJ-invariant jet diferentials of ordek and weightm) into a direct sum
of irreducible Schur bundles

R |n)T)*(
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withl; > 1, > ... > |, wheren = dimX. According to the strategy of Merker [24] a
suitable description of these basic bricks of the Dem&iymple bundle should lead to
cohomology computations, as follows. Knowing the (asyrpf&uler characteristic of
the Schur bundleg(+2--WTx "and upper bounds for the higher Betti numbers gives us a
lower bound forh®(I+!2--WT+) and thereford®(X, Exm). The existence of global sec-
tions of Ey , forces diterential equations to be satisfied by all entire holomorphiwes
in X, which is the basis of Demailly’s strategy for solving theld&@yashi conjecture. In
[24] Merker carries out this strategy for small valuekaindn.

On the fibre®m-o&; , = O((Ki)x)"* of ®m=0Exm at x there is aGL(n) action, where
n = dimX. To describe this action recall that the fibre is identifiethv@(J(1, n))S
consisting of polynomial®(f’, f”, ... f®) invariant under the unipotent reparametriza-
tion groupG; = Uy. Heref € Ji(1, n) can be identified with an x k matrix M¢; that
is, an element of Hont{¥, C"), as in§5, by putting the components df’ in theith
column. The matrixv = (w;;) € GL(n) acts onJ,(1, n) by multiplication on the right

w-f =M;:;w.

In more detail, the action oft! is given by

n n
A A A
= (O Wi > W),
=1 =1

Moreover, this action commutes with the actiondf

According to elementary representation theory, the iiijreof the Demailly-Semple
bundle Ey, then decomposes into a direct sum of irreduciBlgn)-representations.
General reasons ensure that this decomposition of the fbeads to a global decom-
position of Exm, which is the Schur decomposition. So the task is to find tigbdst
weights of theGL(n)-representatio®n.o&y ,, = O((J)x) .

GL(n) has a natural action on Sy#t", and therefore on Hoff8(Ck, Sym*C"). This
induces an action on Grags8ynm“C"), and¢"™ is GL(n)-equivariant.

The description of the highest weight minors in HE#CK, Sym¥C") goes as fol-
lows. Recall that SyﬁlfC” has a basis indexed by serie= (iq,...,ig) with 1 <i; <

. < ig < nfor somes < k. Let < be the lexicographic partial order on the set of
indices, that is,i(,...,is) <ex (j1,..., ) if and only if s = t andi, < j, for the first
index| with i, # j;. We call a set of indiceA descendent

icA=i"eAforalli <i.

Theorem 7.7. (i) Ai,..i.Is a highest weight if and only {fs, . .., is} is descendent.

(i) The Kk + 1)/2th graded piece of the ring of bi- |nvarlan?é(”)O((Jk)X)k(k+l) o
generated by

{Ai,..i. {i1,...,Is} descendent
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Example 7.8.n = k = 2. We have three descendent sets of indiges namely(i4, i) =
((2), (2)), (i1,i2) = ((1),(1,1)) and(i1,i2) = ((1,1),(1,2)). The corresponding minors
are

Ay = Mz Away = (7)° Az =0,
so the weighB piece®-?0((J,)x)3? of the bi-invariant algebr&"@0((J,))"2 is gen-
erated byAp o and (f,)3, and the remaining minoréf;)?f;, f;(f,)?, and(f;)? are not
bi-invariants.

Example 7.9.n = 2, k = 4. We list some of the descendent sets of indigesi, < i3 <

i4) in the following table:

i i i is
1) () L1) (12
(1) 2 | (L1 | (112
(1) 2 (1111|1112
L1 | 12 | @11 | 1,12
(L1 | (L2 [(1,111)](1112)
(L,1,1)](1L12)|(1,111)|(1,112)
(1) (1,1) 1,2) (2,2)
1) |(111)] 1L12) | (1,22
(L1,1)|(L1L2)| (L22) | (2272)

According to[6} [34,/24] the bi-invariant algebra is generated Byindependent invari-
ants:

_ 7. 3 _ _ frEnm 1. 5_r113 ¢£71- 7 _r115 ¢1- 8_['5’|3]
=1 P=Apy =t 1% P=[1°1] 1"=[1°1] 1°= s
1

It can be checked that the weigh®-pieceO((J4)x Ifg of the bi-invariant algebra is in-
deed generated by all the descendent minors ofithd.5 matrix in Examplé_7]6.

I 1

8. GENERALIZED DEMAILLY-SEMPLE JET BUNDLES

The aim of this section is to extend the earlier construetimn p = 1 to generalized
Demailly-Semple invariant jet fferentials whemp > 1.

Let X be a compact, complex manifold of dimensiorWe fix a parameter £ p < n,
and study the mapSP — X. Recall that as before we fix the degieef the map, and
introduce the bundlé,, — X of k-jets of mapsCP — X, so that the fibre ovex € X is
the set of equivalence classes of germs of holomorphic rhag€P, 0) — (X, x), with
the equivalence relatioh ~ g if and only if all derivativesf ()(0) = g’ (0) are equal for
0 < j < k. Recall also thaGy, is the group ok-jets of germs of biholomorphisms of
(CP,0), which has a natural fibrewise right action &, with the matrix representation
given by
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(I)l q)z q)3 (I)k
0 @ DD,
(69) Gp=| 0 0 @ .., ,
@]

where®; € Hom (Sym'CP,CP) and detb; # 0, and thatGy, is generated along its
first p rows, in the sense that the parameters in the firedbw are independent, and
all the remaining entries are polynomials in these pararset€he parameters in the
(1, m) block are indexed by a basis of SYHTP) x CP, so they are of the form!, where

Ve (p;[”) is anm-tuple and 1< | < p, and the polynomial in thd,(m) block and entry
indexed byr = (z[1].....[l]) € (%';) andv € (*™.) is given by

(70) Giplev = | oMo ol

vit...+V|=
Recall also thaGy, = Uk, x GL, is an extension of its unipotent radidaj , by GL,,
and that the generalized Demailly-Semple jet burtellg,, — X of invariant jet difer-
entials of ordek and weighted degree(. .., m) consists of the jet diierentials which
transform under any reparametrizatipre Gy, of (CP, 0) as

Q(f 0 ¢) = (Jp)"Q(f) 0 ¢,
whereJ, = det®d; denotes the Jacobian #f so thatE,, = &m-0Ekpm iS the graded
algebra ofU, p-invariants.

8.1. Geometric description for p > 1. As in the case whep = 1 our goal is to give
a geometric description of the invariants by finding a suéadvojective embedding of
the quotient,)/ Gy p.

Remark 8.1. In [32] Pacienza and Rousseau generalize the inductiveepsogiven
in [5] of constructing a smooth compactification of the Deligebemple jet bundles.
Using the concept of a directed manifold, they define a buKgle— X with smooth fi-
bres, and theféective locuszy , ¢ X p, and a holomorphic embeddi g/ka — Zp

which identifies], /Gy p with Z*) = X.*)nZ,,, and therefor&y , is a relative compact-
ification of JKp/GKp We choose a diierent approach, generalizing the test curve model,
resulting in a holomorphic embeddirly /Gy into a partial flag manifold and a dif-
ferent compactification, which is a singular subvarietyhef patial flag manifold, such
that the invariant jet dierentials of degree divisible by syfip are given by polynomial

expressions in the Plucker coordinates.

Fix x € X and an identification of X with C"; then letJ(p, n) = Jcpx as defined in
§2. Let
J-%(p,n) = {y € k(p,n) : I'1 is non-degenerate
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wherey is represented by
U y(u) = Tu + Dou? + ...+ Tuk
with T; € Hom (SymCP, CP). LetN > n be any integer and define
Tip = {¥ € J(n,N) : Ty € J¥(p.n) : Yoy =0}.
Remark 8.2. The global singularity theory description ®f , is
Tip = {P=(Pr..... Pn) € K(N) : Clzi. ...z (Pr. ... Pa) = C[X Y /(71 ... z)*Y.

Note, again, as in thp = 1 case, that ity € J,"(p,n) is a test surface o € Ty,
andy € Gy is a holomorphic reparametrization©¥, theny o ¢ is, again, a test surface
of ¥:

(71) cP 4 ¥

cP o cN
Yoy=0 = Yo(yoep)=0
Example 8.3. k=2, p= 2
Let¥(z) = ¥’z + P”z% for ze C", and
¥(U1, Up) = y10U1 + Yo1Uz + Y20UT + y11UsUz + yo2U3, ¥ij € C".
Then¥ o y = 0 has the form
(72) ¥ (y10) = 0; ¥ (y01) =0
W(y20) + ¥ (10, 710) = 0, ; ¥'(y11) + 29" (y10, Y01) = O, ; W' (yo1) + ¥ (Y01, v01) = O,

L

We introduce
S, ={YeXk(nN):Yoy=0}
and the following analogue af(1, n):
Je(n,N) = {¥ € J(n,N) : dimker¥ = p}.

The proof of the following proposition is analogous to thBPooposition 4.7 in[[3], and
we omit the details. We use the notation

k
sym(p) = dim(SymcP); sym™(p) = dim(CP & Syn?C’&...® SyntCP) = Z symip.
i=1

Proposition 8.4. (i) If y € 3 %p,n) thenS, c J(n,N) is a linear subspace of
codimension Nym=<(p).
(i) Foranyy € J,(p,n), the subses, n J°(n, N) of S, is dense.
(i) If¥ € J2(n, N), then¥ belongs to at most one of the spa&s More precisely,
if
y1,y2 € 34 p,n), ¥ e I(nN)and¥oy; =Poy, =0,
then there existg € J,_(p, p) such thaty; =y, o ¢.
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(iv) Givenys,y. € 3 %1, n), we haveS,, = S,, if and only if there is some €
J&eg(l, 1) such thaty; = y, o ¢.
With the notation
we deduce from Propositién 8.4 the following

Corollary 8.5. 1)) is a dense subset afy,, and 1} | has a fibration over the orbit
space fUp,n)/ 3 p, p) = J;-(p, n)/Gkp with linear fibres.

Remark 8.6. In fact, Propositioh 814 says a bit more, namely th%g is fibrewise dense
in Ty p over J:%(p, n)/Gy p, but we will not use this stronger statement.

By the first part of Proposition 8.4 the assignment S, defines a map
v I Ap.n) — GrasskN, J(n, N))
which, by the fourth part, descends to the quotient
(73) v I Ap.n)/Gyp — GrasskN, J(n, N))

(cf. Propositiori4.4). Next, we want to rewrite this embexygin terms of the identifi-
cations introduced i§5. So we

o identify J(p, n) with Hom (C¥™Pe. . @C¥™P,C") = Hom (C¥™ P, C") where

sym/p = dim SymCP and symi*(p) = 3'_; symip;

o identify J¢(n, 1) with Sym¥*C" = @, Sym'C".
We think of an element of Hom (CY™ ), C") as amn x syn=¥(p) matrix, with column
vectors inC". These columns correspond to basis elemen®&6iP & ... @ CY™P, and
the columns in théth component are indexed Ijuples 1<t; <t, < ... <t < p, or
equivalently by

(e, +e,+...+8) ezl

wheree; = (0,...,1,...,0) with 1 in thejth place, giving us

V= (V1g,..0, V010 - - - » Vo..0k) € HOM (Csynrﬁk(p), c".

The elements of (p, n) correspond to matrices whose fifstcolumns are linearly

independent. When > sym(p) there is a smaller dense open sub&8t"*{p,n) c
J%(p, n) consisting of then x sym(p) matrices of rank symf(p).
Define the following map, whose components correspond teqoeations in[(72):

(74) ¢ : Hom C¥™®,C" — Hom (C¥™®), Syne*C")
(V10,0 Vo105 - - -» Vo) = (.- -, Zsl+sz+...+sj:s Vg, Vs, - - - Vg5 - )

where on the right hand sides Z7,.
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Example 8.7.1f k = p = 2theng is given by
d(V10, Voi, V2o, V11, Vo2) = (V10, Vou, Voo + Vag, Vi1 + 2V1oVo, Voo + V3y).-
Let Py p € GLsymev(p) denote the parabolic subgroup with Levi subgroup
GL(symp) x ... x GL(syntp),

where synp = dim SymiCP and symi*(p) = 3._; symip. Then [73) has the following
reformulation, analogous to Proposition|5.1.

Proposition 8.8. The mapp in (74) is a Gy ,-invariant algebraic morphism
¢ 1 I3°%p,n) » Hom (CY™P, Synikcn)
which induces an injective mag¥@Son theGy ,-orbits:
¢®'25: 3%9(p, n) /G p — Grasgymep (Sym+c"
and
¢F9: JLeg(p, n)/Gyp <= Flagsynﬂ(p),._.,synk(p)(SYmSKCn) < Hom (CY"®), symc")/ P p-
Composition with the Plicker embedding gives
¢""° = Plucko ¢%%: J*Y(p, n)/Gy p — P(AY™ PSymcn),
As in the case whep = 1, we introduce the following notation
Xokp = 07ITAR. M), Yakp = 67U, ) € P(AS™ (SymFkC™).
9. BOUNDARY COMPONENTS FOR P > 1
In this section we study the boundary component&qf, and Yy p.

Definition 9.1. Let n > syneX(p) = symi(p) + ... + synt(p). Then the open subset of
P(ASY™ () (SymC")) where the projection ta Y™ (PC" is nonzero is denoted by, 4.

Since¢®ssand¢™ ™ areGL(n)-equivariant, and fon > synt*(p) the action ofGL(n)
is transitive on HonfAodeqCsy™ M c"), we have

Lemma9.2. (i) If n > syn™(p) then X, is the GL(n) orbit of
(75) Z= ¢Proj(ela e eSymSk(p)) = [Aj]_+...+jp§k Z al s as]

i1t Hs=(j1,. ] p)
in P(ASY™ () (Synkcn)).
(i) If n > sym(p) then X, and Vi, are finite unions of G(n) orbits.
(i) For k> nthe images X, and Y,y , are GL(n)-invariant quasi-projective vari-
eties, though they have no dense(@lorbit.

Similar statements hold for the closure of the image in thes&mannian RS Sy g« (Sym=C")
(or equivalently in the projective spaBéAsy™ X (Symcn))).
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Lemma 9.3. Let n> synt¥(C"); then
(i) Ankp is invariant under the G{n) action onP(AY™ kP (Synkcn));

(“) En,k,p C An,k,p, although \4,k,p ,(Z An,k,p;
(iii) Xnkp is the union of finitely many Gh)-orbits.

The image of],"(p, n)/Gxp is contained i ,, and the goal is to prove the follow-
ing generalization of Theorem 6.5:

Theorem 9.4. (i) Assumethat p 1and n> sym(p) wheresyni(p) = dim Synt*CP.
Then the intersection withA, of the boundary components of % have codi-
mension at least two.

(i) The boundary components ofy, C P(AY™ (P (Syn“C")) have codimension
at least two.

Note that forp > 1 the condition thak > 4 is not necessary. The proof follows the
ideas of the case whem= 1 and therefore we do not give all the details. The strategy
of the proof is the same: first we notice that the dimensiomefstabilizer of any point
in Xnkp is p - sym¥(p), and then we prove that the dimension of the stabilizer gf an
pointin Yoy p \ Yokp and Knkp \ Xnkp) N Ankp is at leastp - syni™(p) + 2. The first part
is clear from the observation that the stabilizer of any pmirX, , is conjugate to (in
shorthand)

_ Gip *
GZ‘{( 0 GL(n—syrrﬁk(p»)}'
9.1. Orbit structure and maximal boundary orbits. Let
Zop = Tz B(AY™P(Sym=(C")

be the torus orbit. Propositidn 6.8, Corolldry 6.11 and LeatBrl2 remain valid for
p > 1, allowing us to identify the boundary components usingfiameter subgroups
of T. Note that the stabilizer af contains g + (n — sym=*(p)-dimensional torus inside
T, which is the maximal torus iGL(p) x GL(n — syn¥*(p)) c G,.

Take a one-parameter subgroupf the maximal torus il L(n) given by

th
Alt) =
i

and note that the action aft) onz does not depend on the last syms<(p) coordinates
of A.

Definition 9.5. We will often index the first sysf(p) coordinates oft by orderedp-
tuples (3, ....ip) withiy + ... +i, <k, and

sym¥(p) = symt(p) U synf(p) U - - - U synt(p)
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will denote the set of thesgtuples. We will use the following notation:
o fori = (ig,....ip) € syni(p) let my[i] = min,,, s 4. for 1 < i < k, where
gj € syme(p). o
o Z)[i] = Xsemig=myi] & Wheree, =€, ... €.
Then
(i) the boundary components @, (respectivelyXyp) areT -z, (respectively
G - z)) for some one-parameter subgroupsvherez, = /\islynﬁk(p)zﬂ[i];
(1) z; € Ankp if and only if 4, = my[i] for all i € syn™(p).
Let O, denote theGL(n)-orbit of z,, and recall that syhp) = dim SymCP where
sym¥(p) = dim Syrrf"CP. The stabilizerG, contains the maximal torus® of GL,,
embedded as diafj( : T € syntX(p)) c GL,, where
Ao..1..00=Aifort=(0,...,1,...,0) € sym(p)
and
(76) Aiy,.ipy = 111 + ...+ ipdpfor v = (ig, ..., ip) € sym**+e(p).

The lastn — syn™(p) coordinates are irrelevant far so we can define them to be 0.
Now we define the 1-parameter subgroups which not@the maximal boundary
components.

Definition 9.6. Choose a positive << 1 ando € syn?(p) U symi(p) U ... U synt(p).
For 7 € sym%(p) we denote by (z, c) = 7/o the quotient of the two p-tuples, i.e. the
greatest integer such that

T=L(r,0)0 + &
for somet € synt¥(p). LetA” andu” be the one-parameter subgroups of the maximal
torus T of GI(p) x GL(n — synt*(p)) such that

o [A—L(z.0)eif T € synF(p)
T |0if T ¢ symF(p)

A if T # o andr € synF¥(p)
u =3, ifr=0
0if 7 ¢ syneX(p).

A short computation shows that
Z/lv[O'] = €
wherez,-[o] is defined as in Definition 9l5. Fan, 1, € syneX(p) let r, < 7, if either
2(r1) < X(r2) or £(r1) = X(72) andry is smaller with respect to the lexicographic order.
We callo = Head@) the head oft = (1, : 7 € synt¥(p)) if 4 = A fori < o, but
A, # A, If A, < A, then we calll regular, otherwise degenerate.
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Using Definitior 6.17, we can see just as foe 1 that the dimension of the maximal
torus in the stabilizer ok, is equal to the toral dimension af and again, we have
to focus on thosa whose toral dimension is 1 or 2. The following descriptiorttué
maximal boundary components Xf , can be proved similarly to Lemnia 6]18:

Lemma 9.7. (i) The maximal regular 1-parameter subgroups have toral dsien
at least2. Those with toral dimensiod are 1“ such thato € W(p) U...U

synf(p); in other words for a regulard with Head1) = o O, ¢ Oy The
regular boundary components lie in, g,.
(i) The maximal degenerate 1-parameter subgroupg@amuch that- € %F(p)u

..U W(p); in other words for a regulay with Headu) = o we haveO, c

0,-. The degenerate boundary components lie outsjgg.A
(i) z,- € Ynkp and therefore the degenerate boundary orbits sit iR,y and they
are not boundary orbits.

According to Lemma 9]7, the codimension-at-least-two prgphas to be proved
only for the regular boundary components. The followinglegae of Proposition 6.21
(with the same proof) identifies the boundary orbit&ef ..

Proposition 9.8. Let n> syni¥(p). The boundary orbits of X, lie in the closures of
boundary orbits in Ay p.

9.2. The limit of the stabilizers. The next step is to prove

Proposition 9.9. G” = lim_, G+, € GL(n) is a subgroup of G, with dimension
dimG; = p(sym*(p)) + n(n — sym(p)).

Proof. The (, v) entry of the stabilizer oft3(t)z is

(77) Grpz)ey =t pry().

To determine the limit as — 0 we study the Lie algebrg = Lie(G,). We are only
interested in the upper left sy#fp) x syms(p) minor, which isgy , = Lie(Gy ). This
is generated along the firptrows, and the entries in the other rows are linear forms in
thesep - syms%(p) variables. For a parametaret E, denote the set of those entries of
ak.p Wherea occurs with nonzero cdicient, and define

Ng = max A7 — A,

(r,v)eEa

Note that by definitiom{ = 0 for all . Then the following analogue of Lemrha 623
holds:

Lemma 9.10. (i) Under the substitution

o _ +—N o
Ba =1 "ay
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we have

G/l"(t)z(ﬂl,l, ce ,,Bp,symik(p)) €eG L(C[ﬁl,la ce ,ﬁp,synﬁk(p)][t],
so the entries are polynomials in t with geients inC[B11, . . ., Bpsynrk(p)] -
(i) A7 =lim_oG o, has dimension psynt(p) + n(n — synt(p)).

O

9.3. Two extra dimensions in the stabilizer of the limit. Finally, we prove the ana-
logue of Proposition 6.25 in this more general situation famd two extra dimensions
in the stabilizer.

Proposition 9.11. There exists a 2-dimensional subgroup8G,,, with G N B” = 0.

Proof. One can easily check that-[o] = e, implies that there is ap + 1-dimensional
torus in the upper left syRi(p) x syn=%(p) minor — which we call temporarily the main
minor — of G,. Indeed, giving the weight] to e,, z;-[7] is homogeneous of degree
A7 =2 — L(r,0)e.

T

Therefore, theo-dimensional torus diag( : = € syn(p)) is in the stabilizer.
This implies that the weights

Ado.a..0=A,1=1...,pt- =x
induce a 1-parameter subgroup sitting in the stabilzer:
A: = A, + L(z, o)y for T € synt?(p).

This is thep + 1-dimensional torus in the main minor@f,, , and it can be easily shown
that there is no higher dimensional torus in the main minor.

It remains to find an extra dimension in the unipotent radodab,,.. We will see
that here there are only two cases, corresponding to LemP@safid Lemm&a 6.27; we
do not have to study the situation in Lemma 6.28 separatelythis reason, we do not
need the conditiok > 4 which was required whep = 1.

Lemma 9.12. There exists a one-dimensional unipotent subgroup,in\@&m_,o G-,
wheno € synt(p).

Proof. Fix § € synt~1(p). Let T € GL(n) denote the transformation
T(e)=eforr#6; T(e) =65 +7Ce,
For the same reason as in the case wiienl this is inG;,, \ limo G ). O

Lemma 9.13. There exists a one-dimensional unipotent subgroup,in\&im;_o G-y
wheno € sym(p) withi <k, p> 1.
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Proof. For ¢ € synt(p) let Ts be the transformation
(78) T(e)=efort#6; T(e) =65+ e,.
Sincezy-[o] = &, itis clear thafl; € G,,, forall § € W(p). We show that there is
somes € synt(p) such thafls ¢ lim_o G ;-
Case LIf o = (0,iy...,ip) Withiy,...,i, > O thens = (k,0...,0) is a good choice. In-
deed, in this caseayf),s = 0, and therefore (lim,o Gr)z)os = 0, SOTs & liMi_0 G (p)2-
The same reasoning works for ammwith at least one 0 coordinate.
Case 2.1f o = (iy,. .., 1p) with positive entries, led be ap-tuple in%ﬁ(p) such that
L(6, o) = 6/0 is maximal. We will prove that for this choiCE ¢ lim¢_o G (.-

We haves = L(6, o)o + £ for somez € symt~H2)i(p), and therefore

A7 = A7 = s — Ay — (L(6, ) — L)e.
The @, 0)-entry ofg, is a linear form in the parametess, such that 1< i < pand

7 € synt¥(p), namely fors = (iy, .. .,ip) according to Propositidi 2.24),s contains a
monomial term of the forn€ - o, for someC # 0. The key observation is that all the
parameters appear in one of the entries

{82,500 1<s<pTE€e synt(p)}

and if a parametet,, appears with nonzero cfiient in @) q, ..o, then by the
definition ofé andA®
A = A3 < A, xs..0)— A7
SO
(|t|_r)T(1) g/l"(t)z)a',é

is either O or a linear form in the parameters which appear msother entries of
lim_o g,-)z- But the ¢, §) entry of Li€T; is independent of the remaining entries, so

L|ET5 € |tIrT(]) g/l"'(t)Z'

Propositio 9.111 and Theordm B.4 are now provedfarsynt(p).

Theoreni 9.4 for the case wharx syn©¥(p) can now be proved in exactly the same
way as forp = 1. Namely, the projectiogsy™ ® — C"inducesr : ASY™ (P Symkcsym™® _,
AP Sym=kC", and a rational map

(AP symFCHTO) —— s p( (B AY™® symkey)

{ synrf]k(p) ]

which restricts to a morphism

72 Ysymek(prkp = Ynkp-
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If ze n(0,) is a generic point of the boundary ¥fy , thenO, is a maximal boundary
orbit of Yoymek(p) i p SItiNG iN Agy ek i pr @Nd

dim(z(2) N 0,) > dim Yeyrexpykp — AiM Yo p.

Since the codimension @, is at least two il gy« p» the same holds for the bound-
ary component containing |

It now follows just as in§7 for the case whep = 1 that

Theorem 9.14.1f p > 1, thenGy, is a Grosshans subgroup of the general linear group
GL(syn<p) where

k
: - k+p-1
<Kk~ _ p _
syrrrp_zl:dlmSyMC _( ko1 )
i=

so that every linear action afy , which extends to a linear action of Gymp) has
finitely generated invariants.

In particular we have

Theorem 9.15.When p> 1 the fibresO((Jk,,D)X)?'k’p = O((Jp)x X C)%» of the bundle
Eg, are finitely generated graded complex algebras whendivisible by

k
sk, p) = ) i(dim SymicP),

Moreover just as i§7 we have generators of the subalgebra

G!
O((Jk, p)x) s(kkpp)

of the generalized Demailly-Semple aIgeh[Dé(Jk,p)x)G'Kp spanned by homogeneous
G;(’p-invariant polynomials of weight divisible bg(k, p) (where the weight is with re-
spect to the central 1-parameter subgraupf GL(p) < Uy, x GL(p) = Gy p) given by
the Plucker coordinates on the Grassmannian

Grass,mek(p (Sym™*C") ¢ P(AY™ P (Symc™)
as in Theorerh 94.
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