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Abstract

We study numerical invariants of 2-blocks with minimal nonabelian defect groups. These groups were classi-
fied by Rédei (see [41]). If the defect group is also metacyclic, then the block invariants are known (see [43]).
In the remaining cases there are only two (infinite) families of “interesting” defect groups. In all other cases
the blocks are nilpotent. We prove Brauer’s k(B)-conjecture and the Olsson-conjecture for all 2-blocks with
minimal nonabelian defect groups. For one of the two families we also show that Alperin’s weight conjecture
and Dade’s conjecture is satisfied. This paper is a part of the author’s PhD thesis.
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1 Introduction

Let R be a discrete complete valuation ring with quotient field K of characteristic 0. Moreover, let (π) be the
maximal ideal of R and F := R/(π). We assume that F is algebraically closed of characteristic 2. We fix a finite
group G, and assume that K contains all |G|-th roots of unity. Let B be a block of RG with defect group D. We
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denote the number of irreducible ordinary characters of B by k(B). These characters split in ki(B) characters
of height i ∈ N0. Similarly, let ki(B) be the number of characters of defect i ∈ N0. Finally, let l(B) be the
number of irreducible Brauer characters of B. The defect group D is called minimal nonabelian if every proper
subgroup of D is abelian, but not D itself. Rédei has shown that D is isomorphic to one of the following groups
(see [41]):

(i) 〈x, y | x2
r

= y2
s

= 1, xyx−1 = y1+2s−1

〉, where r ≥ 1 and s ≥ 2,

(ii) 〈x, y | x2
r

= y2
s

= [x, y]2 = [x, x, y] = [y, x, y] = 1〉, where r ≥ s ≥ 1, [x, y] := xyx−1y−1 and [x, x, y] :=
[x, [x, y]],

(iii) Q8.

In the first and last case D is also metacyclic. In this case B is well understood (see [43]). Thus, we may assume
that D has the form (ii).

2 Fusion systems

To analyse the possible fusion systems on D we start with a group theoretical lemma.

Lemma 2.1. Let z := [x, y]. Then the following hold:

(i) |D| = 2r+s+1.

(ii) Φ(D) = Z(D) = 〈x2, y2, z〉 ∼= C2r−1 × C2s−1 × C2.

(iii) D′ = 〈z〉 ∼= C2.

(iv) | Irr(D)| = 5 · 2r+s−2.

(v) If r = s = 1, then D ∼= D8. For r ≥ 2 the maximal subgroups of D are given by

〈x2, y, z〉 ∼= C2r−1 × C2s × C2,

〈x, y2, z〉 ∼= C2r × C2s−1 × C2,

〈xy, x2, z〉 ∼= C2r × C2s−1 × C2.

We omit the (elementary) proof of this lemma. However, notice that |P ′| = 2 and |P : Φ(P )| = |P : Z(P )| = p2

hold for every minimal nonabelian p-group P . Rédei has also shown that for different pairs (r, s) one gets
nonisomorphic groups. This gives precisely

[
n−1
2

]
isomorphism classes of these groups of order 2n. For r 6= 1

(that is |D| ≥ 16) the structure of the maximal subgroups shows that all these groups are nonmetacyclic.

Now we investigate the automorphism groups.

Lemma 2.2. The automorphism group Aut(D) is a 2-group, if and only if r 6= s or r = s = 1.

Proof. If r 6= s or r = s = 1, then there exists a characteristic maximal subgroup of D by Lemma 2.1(v). In
these cases Aut(D) must be a 2-group. Thus, we may assume r = s ≥ 2. Then one can show that the map
x 7→ y, y 7→ x−1y−1 is an automorphism of order 3.

Lemma 2.3. Let P ∼= C2n1 × . . .× C2nk with n1, . . . , nk, k ∈ N. Then Aut(P ) is a 2-group, if and only if the
ni are pairwise distinct.

Proof. See for example Lemma 2.7 in [34].

Now we are able to decide, when a fusion system on D is nilpotent.

Theorem 2.4. Let F be a fusion system on D. Then F is nilpotent or s = 1 or r = s. If r = s ≥ 2, then F is
controlled by D.
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Proof. We assume s 6= 1. Let Q < D be an F -essential subgroup. Since Q is also F -centric, we get CP (Q) = Q.
This shows that Q is a maximal subgroup of D. By Lemma 2.1(v) and Lemma 2.3, one of the following holds:

(i) r = 2 (= s) and Q ∈ {〈x2, y, z〉, 〈x, y2, z〉, 〈xy, x2, z〉},

(ii) r > s = 2 and Q ∈
{
〈x, y2, z〉, 〈xy, x2, z〉

}
,

(iii) r = s+ 1 and Q = 〈x2, y, z〉.

In all cases Ω(Q) ⊆ Z(P ). Let us consider the action of AutF (Q) on Ω(Q). The subgroup 1 6= P/Q =
NP (Q)/CP (Q) ∼= AutP (Q) ≤ AutF (Q) acts trivially on Ω(Q). On the other hand every nontrivial automor-
phism of odd order acts nontrivially on Ω(Q) (see for example 8.4.3 in [19]). Hence, the kernel of this action is a
nontrivial normal 2-subgroup of AutF (Q). In particular O2(AutF(Q)) 6= 1. But then AutF(Q) cannot contain
a strongly 2-embedded subgroup.

This shows that there are no F -essential subgroups. Now the claim follows from Lemma 2.2 and Alperin’s fusion
theorem.

Now we consider a kind of converse. If r = s = 1, then there are nonnilpotent fusion systems on D. In the case
r = s ≥ 2 one can construct a nonnilpotent fusion system with a suitable semidirect product (see Lemma 2.2).
We show that there is also a nonnilpotent fusion system in the case r > s = 1.

Proposition 2.5. If s = 1, then there exists a nonnilpotent fusion system on D.

Proof. We may assume r ≥ 2. Let A4 be the alternating group of degree 4, and let H := 〈x̃〉 ∼= C2r . Moreover,
let ϕ : H → Aut(A4) ∼= S4 such that ϕx̃ ∈ Aut(A4) has order 4. Write ỹ := (12)(34) ∈ A4 and choose ϕ
such that ϕx̃(ỹ) := (13)(24). Finally, let G := A4 ⋊ϕ H . Since all 4-cycles in S4 are conjugate, G is uniquely
determined up to isomorphism. Because [x̃, ỹ] = (13)(24)(12)(34) = (14)(23), we get 〈x̃, ỹ〉 ∼= D. The fusion
system FG(D) is nonnilpotent, since A4 (and therefore G) is not 2-nilpotent.

3 The case r > s = 1

Now we concentrate on the case r > s = 1, i.e.

D := 〈x, y | x2
r

= y2 = [x, y]2 = [x, x, y] = [y, x, y] = 1〉

with r ≥ 2. As before z := [x, y]. We also assume that B is a nonnilpotent block. By Lemma 2.2, Aut(D) is a
2-group, and the inertial index t(B) of B equals 1.

3.1 The B-subsections

Olsson has already obtained the conjugacy classes of so called B-subsections (see [34]). However, his results
contain errors. For example he missed the necessary relations [x, x, y] and [y, x, y] in the definition of D.

In the next lemma we denote by Bl(RH) the set of blocks of a finite group H . If H ≤ G and b ∈ Bl(RH), then
bG is the Brauer correspondent of b (if exists). Moreover, we use the notion of subpairs and subsections (see
[36]).

Lemma 3.1. Let b ∈ Bl(RDCG(D)) be a Brauer correspondent of B. For Q ≤ D let bQ ∈ Bl(RQCG(Q)) such
that (Q, bQ) ≤ (D, b). Set T := Z(D) ∪ {xiyj : i, j ∈ Z, i odd}. Then

⋃

a∈T

{(
a, b

CG(a)
CD(a)

)}

is a system of representatives for the conjugacy classes of B-subsections. Moreover, |T | = 2r+1.

Proof. If r = 2, then the claim follows from Proposition 2.14 in [34]. For r ≥ 3 the same argument works.
However, Olsson refers wrongly to Proposition 2.11 (the origin of this mistake already lies in Lemma 2.8).
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From now on we write ba := b
CG(a)
CD(a) for a ∈ T .

Lemma 3.2. Let P ∼= C2s × C2
2 with s ∈ N, and let α be an automorphism of P of order 3. Then CP (α) :=

{b ∈ P : α(b) = b} ∼= C2s .

Proof. We write P = 〈a〉 × 〈b〉 × 〈c〉 with |〈a〉| = 2s. It is well known that the kernel of the restriction map
Aut(P ) → Aut(P/Φ(P )) is a 2-group. Since |Aut(P/Φ(P ))| = |GL(3, 2)| = 168 = 23 · 3 · 7, it follows that
|Aut(P )| is divisible by 3 only once. In particular every automorphism of P of order 3 is conjugate to α or α−1.
Thus, we may assume α(a) = a, α(b) = c and α(c) = bc. Then CP (α) = 〈a〉 ∼= C2s .

3.2 The numbers k(B), ki(B) and l(B)

The next step is to determine the numbers l(ba). The case r = 2 needs special attention, because in this case D
contains an elementary abelian maximal subgroup of order 8. We denote the inertial group of a block b ∈ Bl(RH)
with H EG by TG(b).

Lemma 3.3. There is an element c ∈ Z(D) of order 2r−1 such that l(ba) = 1 for all a ∈ T \ 〈c〉.

Proof.
Case 1: a ∈ Z(D).
Then ba = b

CG(a)
D is a block with defect group D and Brauer correspondent bD ∈ Bl(RDCCG(a)(D)). Let

M := 〈x2, y, z〉 ∼= C2r−1 × C2
2 . Since B is nonnilpotent, there exists an element α ∈ TNG(M)(bM ) such that

αCG(M) ∈ TNG(M)(bM )/CG(M) has order q ∈ {3, 7}. We will exclude the case q = 7. In this case r = 2 and
TNG(M)(bM )/CG(M) is isomorphic to a subgroup of Aut(M) ∼= GL(3, 2). Since

(M, dbM ) = d(M, bM ) ≤ d(D, bD) = (D, bD)

for all d ∈ D, we have D ⊆ TNG(M)(bM ). This implies TNG(M)(bM )/CG(M) ∼= GL(3, 2), because GL(3, 2) is
simple. By Satz 1 in [2], this contradicts the fact that TNG(M)(bM )/CG(M) contains a strongly 2-embedded
subgroup (of course this can be shown “by hand” without invoking [2]). Thus, we have shown q = 3. Now

TNG(M)(bM )/CG(M) ∼= S3

follows easily. By Lemma 3.2 there is an element c := x2iyjzk ∈ CM (α) (i, j, k ∈ Z) of order 2r−1. Let us assume
that j is odd. Since xαx ≡ xαx−1 ≡ α−1 (mod CG(M)) we get

α(x2iyjzk+1)α−1 = αx(x2iyjzk)x−1α−1 = xα−1(x2iyjzk)αx−1

= x(x2iyjzk)x−1 = x2iyjzk+1.

But this contradicts Lemma 3.2. Hence, we have proved that j is even. In particular c ∈ Z(D). For a /∈ 〈c〉 we
have α /∈ CG(a) and l(ba) = 1. While in the case a ∈ 〈c〉 we get α ∈ CG(a), and ba is nonnilpotent. Thus, in
this case l(ba) remains unknown.

Case 2: a /∈ Z(D).
Let CD(a) = 〈Z(D), a〉 =: M . Since (M, bM ) is a Brauer subpair, bM has defect group M . It follows from
(M, bM ) E (D, bD) that also ba has defect group M and Brauer correspondent bM . In case M ∼= C2r × C2 we
get l(ba) = 1. Now let us assume M ∼= C2r−1 × C2

2 . As in the first case, we choose α ∈ TNG(M)(bM ) such that
αCG(M) ∈ TNG(M)(bM )/CG(M) has order 3. Since a /∈ Z(D), we derive α /∈ CG(a) and t(ba) = l(ba) = 1.

We denote by IBr(bu) := {ϕu} for u ∈ T \ 〈c〉 the irreducible Brauer character of bu. Then the generalized
decomposition numbers duχϕu

for χ ∈ Irr(B) form a column d(u). Let 2k be the order of u, and let ζ := ζ2k be a
primitive 2k-th root of unity. Then the entries of d(u) lie in the ring of integers Z[ζ]. Hence, there exist integers
aui (χ) ∈ Z such that

duχϕu
=

2k−1−1∑

i=0

aui (χ)ζ
i.
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We expand this by
aui+2k−1 := −aui

for all i ∈ Z.

Let |G| = 2am where 2 ∤ m. We may assume Q(ζ|G|) ⊆ K. Then Q(ζ|G|)|Q(ζm) is a Galois extension, and we
denote the corresponding Galois group by

G := Gal(Q(ζ|G|)|Q(ζm)).

Restriction gives an isomorphism
G ∼= Gal(Q(ζ2a)|Q).

In particular |G| = 2a−1. For every γ ∈ G there is a number γ̃ ∈ N such that gcd(γ̃, |G|) = 1, γ̃ ≡ 1 (mod m),
and γ(ζ|G|) = ζ γ̃|G| hold. Then G acts on the set of subsections by

γ(u, b) := (uγ̃ , b).

For every γ ∈ G we get
d(uγ̃) =

∑

s∈S

aus ζ
sγ̃
2k

for every system S of representatives of the cosets of 2k−1Z in Z. It follows that

aus = 21−a
∑

γ∈G

d
(
uγ̃
)
ζ−γ̃s
2k

(1)

for s ∈ S.

Now let u ∈ T \ Z(D) and M := CD(u). Then bu and b
TNG(M)(bM )∩NG(〈u〉)

M have M as defect group, because
D * NG(〈u〉). By (6B) in [6] it follows that the 2r−1 distinct B-subsections of the form γ(u, bu) with γ ∈ G are
pairwise nonconjugate. The same holds for u ∈ Z(D)\{1}. Using this and equation (1) we can adapt Lemma 3.9
in [33]:

Lemma 3.4. Let c ∈ Z(D) as in Lemma 3.3, and let u, v ∈ T \ 〈c〉 with |〈u〉| = 2k and |〈v〉| = 2l. Moreover, let
i ∈ {0, 1, . . . , 2k−1 − 1} and j ∈ {0, 1, . . . , 2l−1 − 1}. If there exist γ ∈ G and g ∈ G such that g(u, bu) =

γ(v, bv),
then

(aui , a
v
j ) =





2d(B)−k+1 if u ∈ Z(D) and jγ̃ − i ≡ 0 (mod 2k)

−2d(B)−k+1 if u ∈ Z(D) and jγ̃ − i ≡ 2k−1 (mod 2k)

2d(B)−k if u /∈ Z(D) and jγ̃ − i ≡ 0 (mod 2k)

−2d(B)−k if u /∈ Z(D) and jγ̃ − i ≡ 2k−1 (mod 2k)

0 otherwise

.

Otherwise (aui , a
v
j ) = 0. In particular (aui , a

v
j ) = 0 if k 6= l.

Using the theory of contributions we can also carry over Lemma (6.E) in [20]:

Lemma 3.5. Let u ∈ Z(D) with l(bu) = 1. If u has order 2k, then for every χ ∈ Irr(B) holds:

(i) 2h(χ) | aui (χ) for i = 0, . . . , 2k−1 − 1,

(ii)
2k−1−1∑
i=0

aui (χ) ≡ 2h(χ) (mod 2h(χ)+1).

By Lemma 1.1 in [39] we have

k(B) ≤

∞∑

i=0

22iki(B) ≤ |D|. (2)

In particular Brauer’s k(B)-conjecture holds. Olsson’s conjecture

k0(B) ≤ |D : D′| = 2r+1 (3)

follows by Theorem 3.1 in [39]. Now we are able to calculate the numbers k(B), ki(B) and l(B).
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Theorem 3.6. We have

k(B) = 5 · 2r−1 = | Irr(D)|, k0(B) = 2r+1 = |D : D′|, k1(B) = 2r−1, l(B) = 2.

Proof. We argue by induction on r. Let r = 2, and let c ∈ Z(D) as in Lemma 3.3. By way of contradiction we
assume c = z. If α and M are defined as in the proof of Lemma 3.3, then α acts nontrivially on M/〈z〉 ∼= C2

2 .
On the other hand x acts trivially on M/〈z〉. This contradicts xαx−1α ∈ CG(M).

This shows c ∈ {x2, x2z} and D/〈c〉 ∼= D8. Thus, we can apply Theorem 2 in [8]. For this let

M1 :=

{
〈x, z〉 if c = x2

〈xy, z〉 if c = x2z
.

ThenM 6=M1
∼= C4×C2 andM :=M/〈c〉 ∼= C2

2
∼=M1/〈c〉 =:M1. Let β be the block ofRCG(c) := R[CG(c)/〈c〉]

which is dominated by bc. By Theorem 1.5 in [33] we have

3 | |TN
CG(c)

(M)(βM )/CCG(c)(M)|

and
3 ∤ |TN

CG(c)
(M1)

(βM1
)/CCG(c)(M1)|,

where (M,βM ) and (M1, βM1
) are β-subpairs. This shows that case (ab) in Theorem 2 in [8] occurs. Hence,

l(bc) = l(β) = 2. Now Lemma 3.3 yields

k(B) ≥ 1 + k(B)− l(B) = 9.

It is well known that k0(B) is divisible by 4. Thus, the equations (2) and (3) imply k0(B) = 8. Moreover,

dzχϕz
= az0(χ) = ±1

holds for every χ ∈ Irr(B) with h(χ) = 0. This shows 4k1(B) ≤ |D|−k0(B) = 8. It follows that k1(B) = l(B) = 2.

Now we consider the case r ≥ 3. Since z is not a square in D, we have z /∈ 〈c〉. Let a ∈ 〈c〉 such that |〈a〉| = 2k.
If k = r− 1, then l(ba) = 2 as before. Now let k < r− 1. Then D/〈a〉 has the same isomorphism type as D, but
one has to replace r by r − k. By induction we get l(ba) = 2 for k ≥ 1. This shows

k(B) ≥ 1 + k(B)− l(B) = 2r+1 + 2r−1 − 1.

Equation (2) yields

2r+2 − 4 = 2r+1 + 4(2r−1 − 1) ≤ k0(B) + 4(k(B)− k0(B))

≤

∞∑

i=0

22iki(B) ≤ |D| = 2r+2.

Now the conclusion follows easily.

As a consequence, Brauer’s height zero conjecture and the Alperin-McKay-conjecture hold for B.

3.3 Generalized decomposition numbers

Now we will determine some of the generalized decomposition numbers. Again let c ∈ Z(D) as in Lemma 3.3,
and let u ∈ Z(D)\〈c〉 with |〈u〉| = 2k. Then (aui , a

u
i ) = 2r+3−k and 2 | aui (χ) for h(χ) = 1 and i = 0, . . . , 2k−1−1.

This gives
|{χ ∈ Irr(B) : aui (χ) 6= 0}| ≤ 2r+3−k − 3|{χ ∈ Irr(B) : h(χ) = 1, aui (χ) 6= 0}|.
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Moreover, for every character χ ∈ Irr(B) there exists i ∈ {0, . . . , 2k−1 − 1} such that aui (χ) 6= 0. Hence,

k(B) ≤

2k−1−1∑

i=0

∑

χ∈Irr(B),
aui (χ) 6=0

1 ≤

2k−1−1∑

i=0

(
2r+3−k − 3

∑

χ∈Irr(B),
h(χ)=1,
aui (χ) 6=0

1

)
= |D| − 3

2k−1−1∑

i=0

∑

χ∈Irr(B),
h(χ)=1,
aui (χ) 6=0

1

≤ |D| − 3k1(B) = k(B).

This shows that for every χ ∈ Irr(B) there exists i(χ) ∈ {0, . . . , 2k−1 − 1} such that

duχϕu
=

{
±ζ

i(χ)

2k
if h(χ) = 0

±2ζ
i(χ)

2k
if h(χ) = 1

.

In particular

duχϕu
= au0 (χ) =

{
±1 if h(χ) = 0

±2 if h(χ) = 1

for k = 1.

By Lemma 3.4 we have (aui , a
u
i ) = 4 for u ∈ T \ Z(D) and i = 0, . . . , 2r−1 − 1. If aui has only one nonvanishing

entry, then aui would not be orthogonal to az0. Hence, aui has up to ordering the form

(±1,±1,±1,±1, 0, . . . , 0)T,

where the signs are independent of each other. The proof of Theorem 3.1 in [39] gives

|duχϕu
| = 1

for u ∈ T \ Z(D) and χ ∈ Irr(B) with h(χ) = 0. In particular duχϕu
= 0 for characters χ ∈ Irr(B) of height 1.

By suitable ordering we get

aui (χj) =

{
±1 if j − 4i ∈ {1, . . . , 4}

0 otherwise
and duχjϕu

=

{
±ζ

[ j−1
4 ]

2r if 1 ≤ j ≤ k0(B)

0 if k0(B) < j ≤ k(B)

for i = 0, . . . , 2r−1 − 1, where χ1, . . . , χk0(B) are the characters of height 0.

Now let IBr(bc) := {ϕ1, ϕ2}. We determine the numbers dcχϕ1
, dcχϕ2

∈ Z[ζ2r−1 ]. By (4C) in [6] we have dcχϕ1
6= 0

or dcχϕ2
6= 0 for all χ ∈ Irr(B). As in the proof of Theorem 3.6, bc dominates a block bc ∈ Bl(R[CG(c)/〈c〉]) with

defect group D8. The table at the end of [14] shows that the Cartan matrix of bc has the form
(
8 4
4 3

)
or
(
4 2
2 3

)
.

We label these possibilities as the “first” and the “second” case. The Cartan matrix of bc is

2r−1

(
8 4
4 3

)
or 2r−1

(
4 2
2 3

)

respectively. The inverses of these matrices are

2−r−2

(
3 −4
−4 8

)
and 2−r−2

(
3 −2
−2 4

)
.

Let m(c,bc)
χψ be the contribution of χ, ψ ∈ Irr(B) with respect to the subsection (c, bc) (see [6]). Then we have

|D|m
(c,bc)
χψ = 3dcχϕ1

dcψϕ1
− 4(dcχϕ1

dcψϕ2
+ dcχϕ2

dcψϕ1
) + 8dcχϕ2

dcψϕ2

or

|D|m
(c,bc)
χψ = 3dcχϕ1

dcψϕ1
− 2(dcχϕ1

dcψϕ2
+ dcχϕ2

dcψϕ1
) + 4dcχϕ2

dcψϕ2
(4)

7



respectively. For a character χ ∈ Irr(B) with height 0 we get

0 = h(χ) = ν
(
|D|m(c,bc)

χχ

)
= ν(3dcχϕ1

dcχϕ1
) = ν(dcχϕ1

)

by (5H) in [6]. In particular dcχϕ1
6= 0. We define cji ∈ Zk(B) by

dcχϕj
=

2r−2−1∑

i=0

cji (χ)ζ
i
2r−1

for j = 1, 2. Then

(c1i , c
1
j) =

{
δij16 first case
δij8 second case

, (c1i , c
2
j) =

{
δij8 first case
δij4 second case

, (c2i , c
2
j) = δij6

as in Lemma 3.4. (Since the 2r−2 B-subsections of the form γ(c, bc) for γ ∈ G are pairwise nonconjugate, one
can argue like in Lemma 3.4.) Hence, in the second case

dcχiϕ1
=

{
±ζ

[ i−1
8 ]

2r−1 if 1 ≤ i ≤ k0(B)

0 if k0(B) < i ≤ k(B)
(second case)

holds for a suitable arrangement. Again χ1, . . . , χk0(B) are the characters of height 0. In the first case

1 = h(ψ) = ν
(
|D|m

(c,bc)
χψ

)
= ν(3dcχϕ1

dcψϕ1
) = ν(dcψϕ1

)

by (5G) in [6] for h(ψ) = 1 and h(χ) = 0. As in Lemma 3.5 we also have 2 | c1i (ψ) for h(ψ) = 1 and
i = 0, . . . , 2r−2 − 1. Analogously as in the case u ∈ Z(D) \ 〈c〉 we conclude

dcχϕ1
=

{
±ζ

i(χ)
2r−1 if h(χ) = 0

±2ζ
i(χ)
2r−1 if h(χ) = 1

(first case) (5)

for suitable indices i(χ) ∈ {0, . . . , 2r−2 − 1}. Since (c2i , c
2
j) = δij6, in both cases c2i has the form

(±1,±1,±1,±1,±1,±1, 0, . . . , 0)T or (±2,±1,±1, 0, . . . , 0)T.

We show that the latter possibility does not occur. In the second case for every character χ ∈ Irr(B) with height
1 there exists i ∈ {0, . . . , 2r−2 − 1} such that c2i (χ) 6= 0. In this case we get

dcχiϕ2
=






±ζ
[ i−1

4 ]

2r−1 if 1 ≤ i ≤ 2r

0 if 2r < i ≤ k0(B)

±ζ
[
i−k0(B)−1

2 ]

2r−1 if k0(B) < i ≤ k(B)

(second case),

where χ1, . . . , χk0(B) are again the characters of height 0. Now let us consider the first case. Since (c1i , c
2
j) = δij8,

the value ±2 must occur in every column c1i for i = 0, . . . , 2r−2− 1 at least twice. Obviously exactly two entries
have to be ±2. Thus, one can improve equation (5) to

dcχiϕ1
=




±ζ

[ i−1
8 ]

2r−1 if 1 ≤ i ≤ k0(B)

±2ζ
[
i−k0(B)−1

2 ]

2r−1 if k0(B) < i ≤ k(B)
(first case).

It follows

dcχiϕ2
=





±ζ
[ i−1

4 ]

2r−1 if 1 ≤ i ≤ 2r

0 if 2r < i ≤ k0(B)

±ζ
[
i−k0(B)−1

2 ]

2r−1 if k0(B) < i ≤ k(B)

(first case).

Hence, the numbers dcχϕ2
are independent of the case. Of course, one gets similar results for duχϕi

with 〈u〉 = 〈c〉.
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3.4 The Cartan matrix

Now we investigate the Cartan matrix of B.

Lemma 3.7. The elementary divisors of the Cartan matrix of B are 2r−1 and |D|.

Proof. Let C be the Cartan matrix of B. Since l(B) = 2, it suffices to show that 2r−1 occurs as elementary
divisor of C at least once. In order to proof this, we use the notion of lower defect groups (see [35]). Let (u, b)
be a B-subsection with |〈u〉| = 2r−1 and l(b) = 2. Let b1 := bNG(〈u〉). Then b1 has also defect group D, and
l(b1) = 2 holds. Moreover, u2

r−2

∈ Z(NG(〈u〉)). Let b1 ∈ Bl(R[NG(u)/〈u
2r−2

〉]) be the block which is covered
by b1. Then b1 has defect group D/〈u2

r−2

〉. We argue by induction on r. Thus, let r = 2. Then b = b1 and
D/〈u2

r−2

〉 = D/〈u〉 ∼= D8. By Proposition (5G) in [8] the Cartan matrix of b has the elementary divisors 1 and
8. Hence, 2 = 2r−1 and 16 = |D| are the elementary divisors of the Cartan matrix of b. Hence, the claim follows
from Theorem 7.2 in [35].

Now assume that the claim already holds for r − 1 ≥ 2. By induction the elementary divisors of the Cartan
matrix of b1 are 2r−2 and |D|/2. The claim follows easily as before.

Now we are in a position to calculate the Cartan matrix C up to equivalence of quadratic forms. Here we call
two matrices M1,M2 ∈ Zl×l equivalent if there exists a matrix S ∈ GL(l,Z) such that A = SBST, where ST

denotes the transpose of S.

By Lemma 3.7 all entries of C are divisible by 2r−1. Thus, we can consider C̃ := 21−rC ∈ Z2×2. Then det C̃ = 8
and the elementary divisors of C̃ are 1 and 8. If we write

C̃ =

(
c1 c2
c2 c3

)
,

then C̃ corresponds to the positive definite binary quadratic form q(x1, x2) := c1x
2
1+2c2x1x2+ c3x

2
2. Obviously

gcd(c1, c2, c3) = 1. If one reduces the entries of C̃ modulo 2, then one gets a matrix of rank 1 (this is just the
multiplicity of the elementary divisor 1). This shows that c1 or c3 must be odd. Hence, gcd(c1, 2c2, c3) = 1, i. e.
q is primitive (see [10] for example). Moreover, ∆ := −4 det C̃ = −32 is the discriminant of q. Now it is easy to
see that q (and C̃) is equivalent to exactly one of the following matrices (see page 20 in [10]):

(
1 0
0 8

)
or
(
3 1
1 3

)
.

The Cartan matrices for the block bc with defect group D8 (used before) satisfy

(
1 −1
0 1

)(
8 4
4 3

)(
1 −1
0 1

)T

=

(
0 1
−1 1

)(
4 2
2 3

)(
0 1
−1 1

)T

=

(
3 1
1 3

)
.

Hence, only the second matrix occurs up to equivalence. We show that this holds also for the block B.

Theorem 3.8. The Cartan matrix of B is equivalent to

2r−1

(
3 1
1 3

)
.

Proof. We argue by induction on r. The smallest case was already considered by bc (this would correspond to
r = 1). Thus, we may assume r ≥ 2 (as usual). First, we determine the generalized decomposition numbers
duχϕ for u ∈ 〈c〉 \ {1} with |〈u〉| = 2k < 2r−1. As in the proof of Theorem 3.6, the group D/〈u〉 has the same
isomorphism type as D, but one has to replace r by r − k. Hence, by induction we may assume that bu has a
Cartan matrix which is equivalent to the matrix given in the statement of the theorem. Let Cu be the Cartan
matrix of bu, and let Su ∈ GL(2,Z) such that

Cu = 2r−1ST

u

(
4 2
2 3

)
Su,

9



i. e. with the notations of the previous section, we assume that the “second case” occurs. (This is allowed, since
we can only compute the generalized decomposition numbers up to multiplication with Su anyway.) As before
we write IBr(bu) = {ϕ1, ϕ2}, Du := (duχϕi

) and (d̃uχϕi
) := DuS

−1
u . The consideration in the previous section

carries over, and one gets

d̃uχϕ1
=

{
±ζ

[ i−1

2r+2−k ]

2k
if 1 ≤ i ≤ k0(B)

0 if k0(B) < i ≤ k(B)

and

d̃uχϕ2
=





±ζ
[ i−1

2r−k+1 ]

2k
if 1 ≤ i ≤ 2r

0 if 2r < i ≤ k0(B)

±ζ
[
i−k0(B)−1

2r−k
]

2k
if k0(B) < i ≤ k(B)

,

where χ1, . . . , χk0(B) are the characters of height 0. But notice that the ordering of those characters for ϕ1 and
ϕ2 is different.

Now assume that there is a matrix S ∈ GL(2,Z) such that

C = 2r−1ST

(
1 0
0 8

)
S.

If Q denotes the decomposition matrix of B, we set (d̃χϕi
) := QS−1 for IBr(B) = {ϕ1, ϕ2}. Then we have

|D|m
(1,B)
χψ = 8d̃χϕ1 d̃ψϕ1 + d̃χϕ2 d̃ψϕ2 for χ, ψ ∈ Irr(B).

In particular |D|m
(1,B)
χχ ≡ 1 (mod 4) for a character χ ∈ Irr(B) of height 0. For u ∈ T \ Z(D) we have

|D|m
(u,bu)
χχ = 2, and for u ∈ Z(D) \ 〈c〉 we have |D|m

(u,bu)
χχ = 1. Let u ∈ 〈c〉 \ {1}. Equation (4) and the

considerations above imply |D|m
(u,bu)
χχ ≡ 3 (mod 4). Now (5B) in [6] reveals the contradiction

|D| =
∑

u∈T

|D|m(u,bu)
χχ ≡ |D|m(1,B)

χχ + 2r+1 + 2r−1 + 3 · (2r−1 − 1) ≡ 2 (mod 4).

With the proof of the last theorem we can also obtain the ordinary decomposition numbers (up to multiplication
with an invertible matrix):

dχϕ1 =

{
±1 if h(χ) = 0

0 if h(χ) = 1
, dχiϕ2 =





±1 if 0 ≤ i ≤ 2r

0 if 2r < i ≤ k0(B)

±1 if k0(B) < i ≤ k(B)

.

Again χ1, . . . , χk0(B) are the characters of height 0.

Since we know how G acts on the B-subsections, we can investigate the action of G on Irr(B).

Theorem 3.9. The irreducible characters of height 0 of B split in 2(r + 1) families of 2-conjugate characters.
These families have sizes 1, 1, 1, 1, 2, 2, 4, 4, . . . , 2r−1, 2r−1 respectively. The characters of height 1 split in r
families with sizes 1, 1, 2, 4, . . . , 2r−2 respectively. In particular there are exactly six 2-rational characters in
Irr(B).

Proof. We start by determining the number of orbits of the action of G on the columns of the generalized
decomposition matrix. The columns {duχϕu

: χ ∈ Irr(B)} with u ∈ T \Z(D) split in two orbits of length 2r−1. For
i = 1, 2 the columns {duχϕi

: χ ∈ Irr(B)} with u ∈ 〈c〉 split in r orbits of lengths 1, 1, 2, 4, . . . , 2r−2 respectively.
Finally, the columns {duχϕu

: χ ∈ Irr(B)} with u ∈ Z(D) \ 〈c〉 consist of r orbits of lengths 1, 1, 2, 4, . . . , 2r−2

respectively. This gives 3r+2 orbits altogether. By Theorem 11 in [3] there also exist exactly 3r+2 families of
2-conjugate characters. (Since G is noncyclic, one cannot conclude a priori that also the lengths of the orbits of
these two actions coincide.)

By considering the column {dxχϕx
: χ ∈ Irr(B)}, we see that the irreducible characters of height 0 split in at most

2(r+1) orbits of lengths 1, 1, 1, 1, 2, 2, 4, 4, . . . , 2r−1, 2r−1 respectively. Similarly the column {dcχϕ2
: χ ∈ Irr(B)}

shows that there are at most r orbits of lengths 1, 1, 2, 4, . . . , 2r−2 of characters of height 1. Since 2(r+1)+ r =
3r + 2, these orbits do not merge further, and the claim is proved.
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Let M = 〈x2, y, z〉 as in Lemma 3.3. Then D ⊆ TNG(M)(bM ). Since e(B) = 1, Alperin’s fusion theorem implies
that TNG(M)(bM ) controls the fusion of B-subpairs. By Lemma 3.3 we also have TNG(M)(bM ) ⊆ CG(c) for a
c ∈ Z(D). This shows that B is a so called “centrally controlled block” (see [22]). In [22] it was shown that then
the centers of the blocks B and bc (regarded as blocks of FG) are isomorphic.

3.5 Dade’s conjecture

In this section we will verify Dade’s (ordinary) conjecture for the block B (see [12]). First, we need a lemma.

Lemma 3.10. Let B̃ be a block of RG with defect group D̃ ∼= C2s × C2
2 (s ∈ N0) and inertial index 3. Then

k(B̃) = k0(B̃) = |D̃| = 2s+2 and l(B̃) = 3 hold.

Proof. Let α be an automorphism of D̃ of order 3 which is induced by the inertial group. By Lemma 3.2 we
have CD̃(α)

∼= C2s . We choose a system of representatives x1, . . . , xk for the orbits of D̃ \CD̃(α) under α. Then
k = 2s. If bi ∈ Bl(RCG(xi)) for i = 1, . . . , k and bu ∈ Bl(RCG(u)) for u ∈ CD̃(α) are Brauer correspondents of
B̃, then

k⋃

i=1

{
(xi, bi)

}
∪

⋃

u∈C
D̃
(α)

{
(u, bu)

}

is a system of representatives for the conjugacy classes of B̃-subsections. Since α /∈ CG(xi), we have l(bi) = 1

for i = 1, . . . , k. In particular k(B̃) ≤ 2s+2 holds. Now we show the opposite inequality by induction on s.

For s = 0 the claim is well known. Let s ≥ 1. By induction l(bu) = 3 for u ∈ CD̃(α) \ {1}. This shows
k(B̃)− l(B̃) = k+(2s−1)3 = 2s+2−3 and l(B̃) ≤ 3. An inspection of the numbers dx1

χϕ implies k(B̃) = k0(B̃) =

2s+2 = |D̃| and l(B̃) = 3. (This would also follow from Theorem 1 in [46].)

Now assume O2(G) = 1 (this is a hypothesis of Dade’s conjecture). In order to prove Dade’s conjecture it suffices
to consider chains

σ : P1 < P2 < . . . < Pn

of nontrivial elementary abelian 2-subgroups of G (see [12]). (Note that also the empty chain is allowed.) In
particular PiEPn and PnENG(σ) for i = 1, . . . , n. Hence, for a block b ∈ Bl(RNG(σ)) with bG = B and defect
group Q we have Pn ≤ Q. Moreover, there exists a g ∈ G such that gQ ≤ D. Thus, by conjugation with g we
may assume Pn ≤ Q ≤ D (see also Lemma 6.9 in [12]). This shows n ≤ 3.

In the case |Pn| = 8 we have Pn = 〈x2
r−1

, y, z〉 =: E, because this is the only elementary abelian subgroup of
order 8 in D. Let b ∈ Bl(RNG(σ)) with bG = B. We choose a defect group Q of B̃ := bNG(E). Since Ω(Q) = Pn,
we get NG(Q) ≤ NG(E). Then Brauer’s first main theorem implies Q = D. Hence, B̃ is the unique Brauer
correspondent of B in RNG(E). For M := 〈x2, y, z〉 ≤ D we also have NG(M) ≤ NG(Ω(M)) = NG(E). Hence,
B̃ is nonnilpotent. Now consider the chain

σ̃ :





∅ if n = 1

P1 if n = 2

P1 < P2 if n = 3

for the group G̃ := NG(E). Then NG(σ) = NG̃(σ̃) and

∑

b∈Bl(RNG(σ)),

bG=B

ki(b) =
∑

b∈Bl(RN
G̃
(σ̃)),

bG̃=B̃

ki(b).

The chains σ and σ̃ account for all possible chains of G. Moreover, the lengths of σ and σ̃ have opposite parity.
Thus, it seems plausible that the contributions of σ and σ̃ in the alternating sum cancel out each other (this
would imply Dade’s conjecture). The question which remains is: Can we replace (G̃, B̃, σ̃) by (G,B, σ̃)? We
make this more precise in the following lemma.
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Lemma 3.11. Let Q be a system of representatives for the G-conjugacy classes of pairs (σ, b), where σ is a

chain (of G) of length n with Pn < E and b ∈ Bl(RNG(σ)) is a Brauer correspondent of B. Similarly, let Q̃

be a system of representatives for the G̃-conjugacy classes of pairs (σ̃, b̃), where σ̃ is a chain (of G̃) of length n

with Pn < E and b̃ ∈ Bl(RNG̃(σ̃)) is a Brauer correspondent of B̃. Then there exists a bijection between Q and

Q̃ which preserves the numbers ki(b).

Proof. Let bD ∈ Bl(RNG(D)) be a Brauer correspondent of B. We consider chains of B-subpairs

σ : (P1, b1) < (P2, b2) < . . . < (Pn, bn) < (D, bD),

where the Pi are nontrivial elementary abelian 2-subgroups such that Pn < E. Then σ is uniquely determined
by these subgroups P1, . . . , Pn (see Theorem 1.7 in [36]). Moreover, the empty chain is also allowed. Let U be a
system of representatives for G-conjugacy classes of such chains. For every chain σ ∈ U we define

σ̃ : (P1, b̃1) < (P2, b̃2) < . . . < (Pn, b̃n) < (D, bD)

with b̃i ∈ Bl(RCG̃(Pi)) for i = 1, . . . , n. Finally we set Ũ := {σ̃ : σ ∈ U}. By Alperin’s fusion theorem Ũ is a
system of representatives for the G̃-conjugacy classes of corresponding chains for the group B̃. Hence, it suffices
to show the existence of bijections f (resp. f̃) between U (resp. Ũ) and Q (resp. Q̃) such that the following
property is satisfied: If f(σ) = (τ, b) and f̃(σ̃) = (τ̃ , b̃), then ki(b) = ki(̃b) for all i ∈ N0.

Let σ ∈ U . Then we define the chain τ by only considering the subgroups of σ, i. e. τ : P1 < . . . < Pn. This gives
CG(Pn) ⊆ NG(τ), and we can define

f : U → Q, σ 7→
(
τ, bNG(τ)

n

)
.

Now let (σ, b) ∈ Q arbitrary. We write σ : P1 < . . . < Pn. By Theorem 5.5.15 in [29] there exists a Brauer
correspondent βn ∈ Bl(RCG(Pn)) of b. Since (Pn, βn) is a B-subpair, we may assume (Pn, βn) < (D, bD) after
a suitable conjugation. Then there are uniquely determined blocks βi ∈ Bl(RCG(Pi)) for i = 1, . . . , n− 1 such
that

(P1, β1) < (P2, β2) < . . . < (Pn, βn) < (D, bD).

This shows that f is surjective.

Now let σ1, σ2 ∈ U be given. We write

σi : (P
i
1 , β

i
1) < . . . < (P in, β

i
n)

for i = 1, 2. Let us assume that f(σ1) = (τ1, b1) and f(σ2) = (τ2, b2) are conjugate in G, i. e. there is a g ∈ G
such that (

τ2, (
gβ1
n)

NG(τ2)
)
= g(τ1, b1) = (τ2, b2) =

(
τ2, (β

2
n)

NG(τ2)
)
.

Since gβ1
n ∈ Bl(RCG(P

2
n)) and β2

n are covered by b2, there is h ∈ NG(τ2) with hgβ1
n = β2

n. Then

hg(P 1
n , β

1
n) = (P 2

n , β
2
n).

Since the blocks βij for i = 1, 2 and j = 1, . . . , n−1 are uniquely determined by P ij , we also have ghσ1 = σ2 = σ1.
This proves the injectivity of f . Analogously, we define the map f̃ .

It remains to show that f and f̃ satisfy the property given above. For this let σ ∈ U with σ : (P1, b1) <

. . . < (Pn, bn), σ̃ : (P1, b̃1) < . . . < (Pn, b̃n), f(σ) =
(
τ, b

NG(τ)
n

)
and f̃(σ̃) =

(
τ, b̃n

N
G̃
(τ))

. We have to prove

ki
(
b
NG(τ)
n

)
= ki

(
b̃n

N
G̃
(τ))

for i ∈ N0.

Let Q be a defect group of bNG(τ)
n . Then QCG(Q) ⊆ NG(τ), and there is a Brauer correspondent βn ∈

Bl(RQCG(Q)) of bNG(τ)
n . In particular (Q, βn) is a B-Brauer subpair. As in Lemma 3.1 we may assume Q ∈

{D,M, 〈x, z〉, 〈xy, z〉}. The same considerations also work for the defect group Q̃ of b̃n
N

G̃
(τ)

. Since bDCG(Pn)
n =

b
DCG(Pn)
D = b̃n

DCG(Pn)
, we get:

Q = D ⇐⇒ D ⊆ NG(τ) ⇐⇒ D ⊆ NG̃(τ) ⇐⇒ Q̃ = D.
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Let us consider the case Q = D (= Q̃). Let bM ∈ Bl(RCG(M)) such that (M, bM ) ≤ (D, bD) and α ∈

TNG(M)(bM ) \DCG(M) ⊆ NG(M) ⊆ G̃. Then:

bNG(τ)
n is nilpotent ⇐⇒ α /∈ NG(τ) ⇐⇒ α /∈ NG̃(τ) ⇐⇒ b̃n

N
G̃
(τ)

is nilpotent.

Thus, the claim holds in this case. Now let Q < D (and Q̃ < D). Then we have QCG(Q) = CG(Q) ⊆ CG(Pn).
Since βCG(Pn)

n is also a Brauer correspondent of bNG(τ)
n , the blocks βCG(Pn)

n and bn are conjugate. In particular

bn (and b̃n) has defect group Q. Hence, we obtain Q = Q̃. If Q ∈ {〈x, z〉, 〈xy, z〉}, then b
NG(τ)
n and b̃n

N
G̃
(τ)

are
nilpotent, and the claim holds. Thus, we may assume Q =M . Then as before:

bNG(τ)
n is nilpotent ⇐⇒ α /∈ NG(τ) ⇐⇒ α /∈ NG̃(τ) ⇐⇒ b̃n

N
G̃
(τ)

is nilpotent.

We may assume that the nonnilpotent case occurs. Then t
(
b
NG(τ)
n

)
= t
(
b̃n

N
G̃
(τ))

= 3, and the claim follows
from Lemma 3.10.

As explained in the beginning of the section, the Dade conjecture follows.

Theorem 3.12. The Dade conjecture holds for B.

3.6 Alperin’s weight conjecture

In this section we prove Alperin’s weight conjecture for B. Let (P, β) be a weight for B, i. e. P is a 2-subgroup
of G and β is a block of R[NG(P )/P ] with defect 0. Moreover, β is dominated by a Brauer correspondent
b ∈ Bl(RNG(P )) of B. As usual, one can assume P ≤ D. If Aut(P ) is a 2-group, then NG(P )/CG(P ) is also a
2-group. Then P is a defect group of b, since β has defect 0. Moreover, β is uniquely determined by b. By Brauer’s
first main theorem we have P = D. Thus, in this case there is exactly one weight for B up to conjugation.

Now let us assume that Aut(P ) is not a 2-group (in particular P < D). As usual, β covers a block β1 ∈
Bl(R[CG(P )/P ]). By the Fong-Reynolds theorem (see [29] for example) also β1 has defect 0. Hence, β1 is
dominated by exactly one block b1 ∈ Bl(RCG(P )) with defect group P . Since ββ1 6= 0, we also have bb1 6= 0,
i. e. b covers b1. Thus, the situation is as follows:

β ∈ Bl(R[NG(P )/P ]) oo //
OO

��

b ∈ Bl(RNG(P ))OO

��
β1 ∈ Bl(R[CG(P )/P ]) oo // b1 ∈ Bl(RCG(P ))

By Theorem 5.5.15 in [29] we have bNG(P )
1 = b and bG1 = B. This shows that (P, b1) is a B-Brauer subpair. Then

P =M (=〈x2, y, z〉) follows. By Brauer’s first main theorem b is uniquely determined (independent of β). Now
we prove that also β is uniquely determined by b.

In order to do so it suffices to show that β is the only block with defect 0 which covers β1. By the Fong-Reynolds
theorem it suffices to show that β1 is covered by only one block of RTNG(M)/M (β1) = R[TNG(M)(b1)/M ] with
defect 0. For convenience we write CG(M) := CG(M)/M , NG(M) := NG(M)/M and T := TNG(M)(b1)/M . Let

χ ∈ Irr(β1). The irreducible constituents of IndT
CG(M)

(χ) belong to blocks which covers β1 (where Ind denote

induction). Conversely, every block of RT which covers β1 arises in this way (see Lemma 5.5.7 in [29]). Let

IndT
CG(M)

(χ) =
t∑

i=1

eiψi

with ψi ∈ Irr(T) and ei ∈ N for i = 1, . . . , t. Then

t∑

i=1

e2i = |T : CG(M)| = |TNG(M)(b1) : CG(M)| = 6
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(see page 84 in [17]). Thus, there is some i ∈ {1, . . . , t} with ei = 1, i. e. χ is extendible to T. We may assume
e1 = 1. By Corollary 6.17 in [17] it follows that t = | Irr(T/CG(M))| = | Irr(S3)| = 3 and

{ψ1, ψ2, ψ3} =
{
ψ1τ : τ ∈ Irr(T/CG(M))

}
,

where the characters in Irr(T/CG(M)) were identified with their inflations in Irr(T). Thus, we may assume
e2 = 1 and e3 = 2. Then it is easy to see that ψ1 and ψ2 belong to blocks with defect at least 1. Hence, only
the block with contains ψ3 is allowed. This shows uniqueness.

Finally we show that there is in fact a weight of the form (M,β). For this we choose b, b1, β1, χ and ψi as above.
Then χ vanishs on all nontrivial 2-elements. Moreover, ψ1 is an extension of χ. Let τ ∈ Irr(T/CG(M)) be the
character of degree 2. Then τ vanishs on all nontrivial 2-elements of T/CG(M). Hence, ψ3 = ψ1τ vanishs on
all nontrivial 2-elements of T. This shows that ψ3 belongs in fact to a block β̃ ∈ Bl(RT) with defect 0. Then(
M, β̃ NG(M)

)
is the desired weight for B.

Hence, we have shown that there are exactly two weights for B up to conjugation. Since l(B) = 2, Alperin’s
weight conjecture is satisfied.

Theorem 3.13. Alperin’s weight conjecture holds for B.

3.7 The gluing problem

Finally we show that the gluing problem (see Conjecture 4.2 in [26]) for the block B has a unique solution.
We will not recall the very technical statement of the gluing problem. Instead we refer to [37] for most of the
notations. Observe that the field F is denoted by k in [37].

Theorem 3.14. The gluing problem for B has a unique solution.

Proof. As in [37] we denote the fusion system induced by B with F . Then the F -centric subgroups of D are given
by M1 := 〈x2, y, z〉, M2 := 〈x, z〉, M3 := 〈xy, z〉 and D. We have seen so far that AutF(M1) ∼= OutF (M1) ∼= S3,
AutF (Mi) ∼= D/Mi

∼= C2 for i = 2, 3 and AutF(D) ∼= D/Z(D) ∼= C2
2 (see proof of Lemma 3.3). Using this, we

get Hi(AutF (σ), F
×) = 0 for i = 1, 2 and every chain σ of F -centric subgroups (see proof of Corollary 2.2 in

[37]). Hence, H0([S(Fc)],A2
F ) = H1([S(Fc)],A1

F ) = 0. Now the claim follows from Theorem 1.1 in [37].

4 The case r = s > 1

In the section we assume that B is a nonnilpotent block of RG with defect group

D := 〈x, y | x2
r

= y2
r

= [x, y]2 = [x, x, y] = [y, x, y] = 1〉

for r ≥ 2. As before we define z := [x, y]. Since |D/Φ(D)| = 4, 2 and 3 are the only prime divisors of |Aut(D)|.
In particular t(B) ∈ {1, 3}. If t(B) = 1, then B would be nilpotent by Theorem 2.4. Thus, we have t(B) = 3.

4.1 The B-subsections

We investigate the automorphism group of D.

Lemma 4.1. Let α ∈ Aut(D) be an automorphism of order 3. Then z is the only nontrivial fixed-point of Z(D)
under α.

Proof. Since D′ = 〈z〉, z remains fixed under all automorphisms of D. Moreover, α(x) ∈ y Z(D) ∪ xy Z(D),
because α acts nontrivially on D/Z(D). In both cases we have α(x2) 6= x2. This shows that α|Z(D) ∈ Aut(Z(D))
is also an automorphism of order 3. Obviously α induces an automorphism of order 3 on Z(D)/〈z〉 ∼= C2

2r−1 .
But this automorphism is fixed-point-free (see Lemma 1 in [27]). The claim follows.
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Using this, we can find a system of representatives for the conjugacy classes of B-subsections.

Lemma 4.2. Let b ∈ Bl(RDCG(D)) be a Brauer correspondent of B, and for Q ≤ D let bQ be the unique block
of RQCG(Q) with (Q, bQ) ≤ (D, b). We choose a system S ⊆ Z(D) of representatives for the orbits of Z(D)
under the action of TNG(D)(b). We set T := S ∪ {yix2j : i, j ∈ Z, i odd}. Then

⋃

a∈T

{(
a, b

CG(a)
CD(a)

)}

is a system of representatives for the conjugacy classes of B-subsections. Moreover,

|T | =
5 · 22(r−1) + 4

3
.

Proof. Proposition 2.12.(ii) in [34] states the desired system wrongly. More precisely the claim ID = Z(D) in
the proof is false. Indeed Lemma 4.1 shows ID = S. Now the claim follows easily.

From now on we write ba := b
CG(a)
CD(a) for a ∈ T . We are able to determine the difference k(B)− l(B).

Proposition 4.3. We have

k(B)− l(B) =
5 · 22(r−1) + 7

3
.

Proof. Consider l(ba) for 1 6= a ∈ T .

Case 1: a ∈ Z(D).
Then ba is a block with defect group D. Moreover, ba and B have a common Brauer correspondent in
Bl(RDCCG(a)(D)) = Bl(RDCG(D)). In case a 6= z we have t(ba) = 1 by Lemma 4.1. Hence, ba is nilpo-
tent and l(ba) = 1. Now let a = z. Then there exists a block bz of CG(z)/〈z〉 with defect group D/〈z〉 ∼= C2

2r

and l(bz) = l(bz). By Theorem 1.5(iv) in [33], t(bz) = t(bz) = 3 holds. Thus, Theorem 2 in [43] implies
l(bz) = l(bz) = 3.

Case 2: a /∈ Z(D).
Then bCP (a) = bM is a block with defect group M := 〈x2, y, z〉. Since bDCG(M)

M = b
DCG(M)
D , also bCG(a)

M = ba
has defect group M . For every automorphism α ∈ Aut(D) of order 3 we have α(M) 6=M . Since D controls the
fusion of B-subpairs, we get t(ba) = l(ba) = 1.

Now the conclusion follows from k(B) =
∑

a∈T l(ba).

The next result concerns the Cartan matrix of B.

Lemma 4.4. The elementary divisors of the Cartan matrix of B are contained in {1, 2, |D|}. The elementary
divisor 2 occurs twice and |D| occurs once (as usual). In particular l(B) ≥ 3.

Proof. Let C be the Cartan matrix of B. As in Lemma 3.7 we use the notion of lower defect groups. For this let
P < D such that |P | ≥ 4, and let b ∈ Bl(RNG(P )) be a Brauer correspondent of B with defect group Q ≤ D.
Brauer’s first main theorem implies P < Q. By Proposition 1.3 in [33] there exists a block β ∈ Bl(RCG(P ))
with βNG(P ) = b such that at most l(β) lower defect groups of b contain a conjugate of P . Let S ≤ Q be a
defect group of β. First, we consider the case S = D. Then P ⊆ Z(D). By Lemma 4.1 we have l(β) = 1, since
|P | ≥ 4. It follows that m1

b(P ) = mb(P ) = 0, because P is contained in the (lower) defect group Q of b.

Now assume S < D. In particular S is abelian. If S is even metacyclic, then l(β) = 1 and m1
b(P ) = 0, since

P ⊆ Z(CG(P )). Thus, let us assume that S is nonmetacyclic. By (3C) in [5], x2 ∈ Z(D) is conjugate to an
element of Z(S). This shows S ∼= C2k ×C2l ×C2 with k ∈ {r, r− 1} and 1 ≤ l ≤ r. If 1, k, l are pairwise distinct,
then l(β) = 1 and m1

b(P ) = 0 follow from Lemma 2.3. Let k = l. Then every automorphism of S of order 3 has
only one nontrivial fixed-point. Since |P | ≥ 4, it follows again that l(β) = 1 and m1

b(P ) = 0.

Now let S ∼= C2k × C2
2 with 2 ≤ k ∈ {r − 1, r}. Assume first that P is noncyclic. Then S/P is metacyclic. If

S/P is not a product of two isomorphic cyclic groups, then l(β) = 1 and m1
b(P ) = 0. Hence, we may assume
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S/P ∼= C2
2 . It is easy to see that there exists a subgroup P1 ≤ P with S/P1

∼= C4 × C2. We get l(β) = 1 and
m1
b(P ) = 0 also in this case.

Finally, let P = 〈u〉 be cyclic. Then (u, β) is a B-subsection. Since |P | ≥ 4, u is not conjugate to z. As in the
proof of Proposition 4.3 we have l(β) = 1 and m1

b(P ) = 0. This shows m1
B(P ) = 0. Since P was arbitrary, the

multiplicity of |P | as an elementary divisor of C is 0.

It remains to consider the case |P | = 2. We write P = 〈u〉 ≤ D. As before let b ∈ Bl(RNG(P )) be a Brauer
correspondent of B. Then (u, b) is a B-subsection. If (u, b) is not conjugate to (z, bz), then l(b) = 1 and
m1
b(P ) = 0 as in the proof of Proposition 4.3. Since we can replace P by a conjugate, we may assume P = 〈z〉

and (u, b) = (z, bz). Then l(b) = 3 and D is a defect group of b. Now let b ∈ Bl(R[NG(P )/P ]) be the block
which is dominated by b. By Corollary 1 in [16] the elementary divisors of the Cartan matrix of b are 1, 1, |D|/2.
Hence, the elementary divisors of the Cartan matrix of b are 2, 2, |D|. This shows

2 =
∑

Q∈P(NG(P )),
|Q|=2

m1
b(Q),

where P(NG(P )) is a system of representatives for the conjugacy classes of p-subgroups of NG(P ). The same
arguments applied to b instead of B imply m1

b(Q) = 0 for P 6= Q ≤ NG(P ) with |Q| = 2. Hence, 2 = m1
b(P ) =

m1
B(P ), and 2 occurs as elementary divisors of C twice.

As in Section 3 we write IBr(bu) = {ϕu} for u ∈ T \ 〈z〉. In a similar manner we define the integers aui . If
u ∈ T \ 〈z〉 with |〈u〉| = 2k > 2, then the 2k−1 distinct subsections of the form γ(u, bu) for γ ∈ G are pairwise
nonconjugate (same argument as in the case r > s = 2). Hence, Lemma 3.4 carries over in a corresponding
form. Apart from that we can also carry over Lemma (6.B) in [20]:

Lemma 4.5. Let χ ∈ Irr(B) and u ∈ T \ Z(D). Then χ has height 0 if and only if the sum

2r−1−1∑

i=0

aui (χ)

is odd.

Proof. If χ has height 0, the sum is odd by Proposition 1 in [9]. The other implication follows easily from (5G)
in [6].

The next lemma is the analogon to Lemma 3.5.

Lemma 4.6. Let u ∈ Z(D) \ 〈z〉 of order 2k. Then for all χ ∈ Irr(B) we have:

(i) 2h(χ) | aui (χ) for i = 0, . . . , 2k−1 − 1,

(ii)
2k−1−1∑
i=0

aui (χ) ≡ 2h(χ) (mod 2h(χ)+1).

As in the case r > s = 1, Lemma 1.1 in [39] implies

k(B) ≤
∞∑

i=0

22iki(B) ≤ |D|. (6)

In particular Brauer’s k(B)-conjecture holds. Moreover, Theorem 3.1 in [39] gives k0(B) ≤ |D|/2 = |D : D′|,
i. e. Olsson’s conjecture is satisfied. Using this, we can improve the inequality (6) to

|D| ≥ k0(B) + 4(k(B)− k0(B)) = 4k(B)− 3k0(B) ≥ 4k(B)−
3|D|

2

and
5 · 22(r−1) + 16

3
≤ k(B)− l(B) + l(B) = k(B) ≤

5|D|

8
= 5 · 22(r−1).
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We will improve this further. Let bz be the block of Bl(RCG(z)/〈z〉) which is dominated by bz. Then bz has
defect group D/〈z〉 ∼= C2

2r . Using the existence of a perfect isometry (see [44, 45, 38]), one can show that the
Cartan matrix of bz is equivalent to

C :=
1

3



22r + 2 22r − 1 22r − 1

22r − 1 22r + 2 22r − 1

22r − 1 22r − 1 22r + 2


 .

Hence, the Cartan matrix of bz is equivalent to 2C. Now inequality (∗∗) in [24] yields

k(B) ≤ 2
22r + 8

3
=

|D|+ 16

3
.

(Notice that the proof of Theorem A in [24] also works for bz instead of B, since the generalized decomposition
numbers corresponding to (z, bz) are integral. See also Lemma 3 in [42].)

In addition we have
ki(B) = 0 for i ≥ 4

by Corollary (6D) in [7]. This means that the heights of the characters in Irr(B) are bounded independently of
r. We remark also that Alperin’s weight conjecture is equivalent to

l(B) = l(b)

for the Brauer correspondent b ∈ Bl(RNG(D)) of B (see Consequence 5 in [1]). Since z ∈ Z(NG(D)), l(B) =
l(b) = 3 and k(B) = (5 · 22(r−1) + 16)/3 would follow in this case (see proof of Proposition 4.3).

4.2 The gluing problem

As in section 3.7 we use the notations of [37].

Theorem 4.7. The gluing problem for B has a unique solution.

Proof. Let F be the fusion system induced by B. Then the F -centric subgroups of D are given by M :=
〈x2, y, z〉 and D (up to conjugation in F). We have AutF (M) ∼= D/M ∼= C2 and AutF(D) ∼= A4. This shows
H2(AutF(σ), F

×) = 0 for every chain σ of F -centric subgroups. Consequently, H0([S(Fc)],A2
F ) = 0. On the

other hand, we have H1(AutF(D), F×) ∼= H1(C3, F
×) ∼= C3 and H1(AutF(σ), F

×) = 0 for all chains σ 6= D.
Hence, the situation is as in Case 3 of the proof of Theorem 1.2 in [37]. However, the proof in [37] is pretty
short. For the convenience of the reader, we give a more complete argument.

Since [S(Fc)] is partially orderd by taking subchains, one can view [S(Fc)] as a category, where the morphisms
are given by the pairs of ordered chains. In particular [S(Fc)] has exactly five morphisms. With the notations
of [47] the functor A1

F is a representation of [S(Fc)] over Z. Hence, we can view A1
F as a module M over the

incidence algebra of [S(Fc)]. More precisely, we have

M :=
⊕

a∈Ob[S(Fc)]

A1
F (a) = A1

F (D) ∼= C3.

Now we can determine H1([S(Fc)],A1
F ) using Lemma 6.2(2) in [47]. For this let d : Hom[S(Fc)] → M a

derivation. Then we have d(α) = 0 for all α ∈ Hom[S(Fc)] with α 6= (D,D) =: α1. However,

d(α1) = d(α1α1) = (A1
F (α1))(d(α1)) + d(α1) = 2d(α1) = 0.

Hence, H1([S(Fc)],A1
F ) = 0.
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4.3 Special cases

Since the general methods do not suffice to compute the invariants of B, we restrict ourself to certain special
situations.

Proposition 4.8. If O2(G) 6= 1, then

k(B) =
5 · 22(r−1) + 16

3
, k0(B) ≥

22r + 8

3
, l(B) = 3.

Proof. Let 1 6= Q := O2(G). Then Q ⊆ D. In the case Q = D′ we have CG(z) = NG(Q) = G and B = bz. Then
the assertions on k(B) and l(B) are clear. Moreover, bz dominates a block bz ∈ Bl(RCG(z)/〈z〉) with defect
group C2

2r . By Theorem 2 in [43] we have

k0(B) ≥ k0(bz) = k(bz) =
22r + 8

3
.

Hence, we may assume Q 6= D′. With the same argument we may also assume Q < D. In particular Q is abelian.
We consider a B-subpair (Q, bQ). Then D or M is a defect group of bQ (see proof of Lemma 4.2). If D is a
defect group of bQ, then D ⊆ CG(Q) and Q ⊆ Z(D). By Lemma 4.1 it follows that bQ is nilpotent.

Now let us assume that M is a defect group of bQ. Since D controls the fusions of B-subpairs, we have t(bQ) = 1
(see Case 2 in the proof of Proposition 4.3). Hence, again bQ is nilpotent. Thus, in both cases B is an extension
of a nilpotent block of Bl(RCG(Q)). In this situation the Külshammer-Puig theorem applies. In particular we
can replace B by a block with normal defect group (see [23]). Hence, B = bz, and the claim follows as before.

Since NG(D) ⊆ CG(z), B is a “centrally controlled block” (see [22]). In [22] it was shown that then an epimor-
phism Z(B) → Z(bz) exists, where one has to regard B (resp. bz) as blocks of FG (resp. F CG(z)). Moreover,
we conjecture that the blocks B and bz are Morita-equivalent. For the similar defect group Q8 this holds in fact
(see [18]). In this context the work [11] is also interesting. There is was shown that there is a perfect isometry
between any two blocks with the same quaternion group as defect group and the same fusion of subpairs. Thus,
it would be also possible that there is a perfect isometry between B and bz.

Proposition 4.9. In order to determine k(B) (and thus also l(B)), we may assume that O2(G) is trivial and
O2′(G) = Z(G) = F(G) is cyclic. Moreover, we can assume that G is an extension of a solvable group by a
quasisimple group. In particular G has only one nonabelian composition factor.

Proof. By Proposition 4.8 we may assume O2(G) = 1. Now we consider O(G) := O2′(G). Using Clifford theory
we may assume that O(G) is central and cyclic (see e. g. Theorem X.1.2 in [15]). Since O2(G) = 1, we get
O(G) = Z(G). Let E(G) be the normal subgroup of G generated by the components. As usual, B covers a block
b of E(G). By Fong-Reynolds we can assume that b is stable in G. Then d := D ∩ E(G) is a defect group of
b. By the Külshammer-Puig result we may assume that b is nonnilpotent. In particular d has rank at least 2.
Let C1, . . . , Cn be the components of G. Then E(G) is the central product of C1, . . . , Cn. Since [Ci, Cj ] = 1 for
i 6= j, b covers exactly one block βi of RCi for i = 1, . . . , n. Then b is dominated by the block β1 ⊗ . . .⊗ βn of
R[C1 × . . .× Cn]. Since Z(C1) is abelian and subnormal in G, it must have odd order. Hence, we may identify
b with β1 ⊗ . . .⊗ βn (see Proposition 1.5 in [13]). In particular d = δ1 × . . .× δn, where δi := d ∩Ci is a defect
group of βi for i = 1, . . . , n. Assume that δ1 is cyclic. Then β1 is nilpotent and isomorphic to (Rδ1)

m×m for
some m ∈ N by Puig. Let {C1, . . . , Ck} be the orbit of C1 under the conjugation action of G (k ≤ n). Then
β1⊗ . . .⊗βk ∼= (Rδ1)

m1×m1 (for some m1 ∈ N) is a block of R[C1 . . . Ck] with l(β1⊗ . . .⊗βk) = 1. Lemma 2.1(v)
implies k ≤ 2 or k = 3 and |δ1| = 2. In the first case Theorem 2 in [43] shows that β1⊗ . . .⊗βk is nilpotent. This
also holds in the second case by [25]. Since C1 . . . Ck E G, B is an extension of a nilpotent block. This shows
that we can assume that the groups δi are noncyclic for i = 1, . . . , n. By Lemma 2.1(v), d has rank at most 3.
Hence, n = 1 and E(G) = C1.

That means in order to determine the invariants of the block B we may assume that G contains only one
component. Let F(G) (resp. F∗(G)) be the Fitting subgroup (resp. generalized Fitting subgroup) of G. Since
F(G) = Z(G), we have CG(E(G)) = CG(F

∗(G)) ≤ F(G). Hence, CG(E(G)) is nilpotent. On the other hand, the
quotient G/CG(E(G)) is isomorphic to a subgroup of the automorphism group of the quasisimple group E(G).
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Consider the canonical map f : Aut(E(G)) → Aut(E(G)/Z(E(G))). Let α ∈ ker f . Then α(g)g−1 ∈ Z(E(G)) for
all g ∈ E(G). Hence, we get a map β : E(G) → Z(E(G)), g 7→ α(g)g−1. Moreover, it is easy to see that β is a ho-
momorphism. Since E(G) is perfect, we get β = 1 and thus α = 1. This shows Aut(E(G)) ≤ Aut(E(G)/Z(E(G))).
By Schreier’s conjecture (which can be proven using the classification) Aut(E(G)/Z(E(G))) is an extension of
the solvable group Out(E(G)/Z(E(G))) by the simple group Inn(E(G)/Z(E(G))) ∼= E(G)/Z(E(G)). Taking
these facts together, we see that G has only one nonabelian composition factor. In particular G is an extension
of a solvable group by a quasisimple group.

Now we consider blocks of maximal defect, i. e. D is a Sylow 2-subgroup of G. These include principal blocks.

Proposition 4.10. If B has maximal defect, then G is solvable. In particular Alperin’s weight conjecture is
satisfied, and we have

k(B) =
5 · 22(r−1) + 16

3
,

k0(B) =
22r + 8

3
,

k1(B) =
22(r−1) + 8

3
,

l(B) = 3.

Proof. By Feit-Thompson we may assume O2′(G) = 1 in order to show that G is solvable. We apply the Z∗-
theorem. For this let g ∈ G such that gz ∈ D. Since all involutions of D are central (in D), we get gz ∈ Z(D).
By Burnside’s fusion theorem there exists h ∈ NG(D) such that hz = gz. (For principal blocks this would also
follow from the fact that D controls fusion.) Since D′ = 〈z〉, we have gz = z. Now the Z∗-theorem implies
z ∈ Z(G). Then D/〈z〉 ∼= C2

2r is a Sylow 2-subgroup of G/〈z〉. By Theorem 1 in [4], G/〈z〉 is solvable. Hence,
also G is solvable. Since Alperin’s weight conjecture holds for solvable groups, we obtain the numbers k(B) and
l(B).

It is also known that the Alperin-McKay-conjecture holds for solvable groups (see [32]). Thus, in order to
determine k0(B) we may assume DEG. Then we can apply the results of [21]. For this let L := D⋊C3. Then
B ∼= (RL)n×n for some n ∈ N. Hence, k0(B) is just the number of irreducible characters of L with odd degree.
By Clifford, every irreducible character of L is an extension or an induction of a character of D. Thus, it suffices
to count the characters of L which arise from linear characters of D. These linear characters of D are just the
inflations of Irr(D/D′). They spilt into the trivial character and orbits of length 3 under the action of L by
Brauer’s permutation lemma. The three inflations of Irr(L/D) are the extensions of the trivial character of D.
The other linear characters of D remain irreducible after induction. Characters in the same orbit amount to the
same character of L. This shows

k0(B) = 3 +
|D/D′| − 1

3
=

22r + 8

3
.

By Theorem 1.4 in [28] we have ki(B) = 0 for i ≥ 2. We conclude

k1(B) = k(B)− k0(B) =
5 · 22(r−1) + 16

3
−

22r + 8

3
=

22(r−1) + 8

3
.

The last result implies that Brauer’s height zero conjecture is also satisfied for blocks of maximal defect.
Moreover, the Dade-conjecture holds for solvable groups (see [40]).

Finally we consider the case r = 2 (i. e. |D| = 32) for arbitrary groups G.

Proposition 4.11. If r = 2, we have

k(B) = 12, k0(B) = 8, k1(B) = 4, l(B) = 3.

There are two pairs of 2-conjugate characters of height 0. The remaining characters are 2-rational. Moreover,
the Cartan matrix of B is equivalent to 


4 2 2
2 4 2
2 2 12


 .
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Proof. The proof is somewhat lengthy and consists entirely of technical calculations. For this reason we will
only outline the argumenation. Since k0(B) is divisible by 4, inequality (6) implies k0(B) ≥ 8. Since there
are exactly two pairs of 2-conjugate B-subsections, Brauer’s permutation lemma implies that we also have
two pairs of 2-conjugate characters. Hence, the column ay1 contains at most four nonvanishing entries. Since
(ay1 , a

y
1) = 8, there are just two nonvanishing entries, both are ±2. Now Lemma 4.5 implies k0(B) = 8. This

shows (k(B), k1(B), l(B)) ∈ {(12, 4, 3), (14, 6, 5)}.

By way of contradiction, we assume k(B) = 14. Then one can determine the numbers duχϕ for u 6= 1 with the
help of the contributions. However, there are many possibilities. The ordinary decomposition matrix Q can be
computed as the orthogonal space of the other columns of the generalized decomposition matrix. Finally we
obtain the Cartan matrix of B as C = QTQ. In all cases is turns out that C has the wrong determinant (see
Lemma 4.4). This shows k(B) = 12, k1(B) = 4 and l(B) = 3.

Again we can determine the numbers duχϕ for u 6= 1. This yields the heights of the 2-conjugate characters.
We also obtain some informations about the Cartan invariants in this way. We regard the Cartan matrix C
as a quadratic form. Using the tables [31, 30] we conclude that C has the form given in the statement of the
proposition.
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