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ISOTOPES OF HURWITZ ALGEBRAS

ERIK DARPÖ

Abstract. We study algebras that are isotopic to Hurwitz algebras. Isomorphism classes of
such algebras are shown to correspond to orbits of a certain group action. An explicit, geomet-
rically intutive description of the category of isotopes of Hamilton’s quaternions is given. As an
application, some known results concerning the classification of finite-dimensional composition
algebras are deduced.

1. Introduction

Let k be a field, and V a vector space over k. We shall say that a quadratic form q : V → k
is non-degenerate if the associated bilinear form 〈x, y〉 = q(x+ y)− q(x)− q(y) is non-degenerate
(i.e., 〈x, V 〉 = 0 only if x = 0). A composition algebra is a non-zero (not necessarily associative)
algebra A over a field k, equipped with a non-degenerate quadratic form n : A → k such that
n(ab) = n(a)n(b) for all a, b ∈ A. The form n is usually called the norm of A. If A possesses an
identity element, it is called a Hurwitz algebra. Every Hurwitz algebra has dimension one, two,
four or eight (thus, in particular, it is finite dimensional), and can be constructed via an iterative
method known as the Cayley-Dickson process.1 The facts about Hurwitz algebras referred in this
section are described in detail in [12], Chapter VIII.

Two algebras A and B over a field k are said to be isotopic if there exist invertible linear maps
α, β, γ : A → B such that γ(ab) = α(x)β(y). Clearly, isotopy is an equivalence relation among
k-algebras. If A and B are isotopic then there exist α, β ∈ GL(A) such that the algebra (A, ◦),
with multiplication x◦y = α(x)β(y), is isomorphic to B. The algebra (A, ◦) is called the principal
isotope of A determined by α and β, and is denoted by Aα,β .

Several important classes of non-associative algebras can be constructed by isotopy from the
Hurwitz algebras. Examples include:

(1) All finite-dimensional composition algebras [11, p. 957]. This includes in particular all
finite-dimensional absolute valued algebras, which are precisely the finite-dimensional com-
position algebras over R whose norm is anisotropic (i.e., n(x) = 0 only if x = 0). However,
there exist infinite-dimensional composition algebras that are not isotopic to any Hurwitz
algebra; see e.g. [2, 5].

(2) All division algebras of dimension two over a field of characteristic different from two [14].
(3) All eight-dimensional division algebras A with the following property: for all non-zero

a ∈ A there exists a b ∈ A such that b(ax) = x for all x ∈ A.

The purpose of the present article is to give a uniform description of isotopes of Hurwitz algebras.
Generalising ideas that have earlier been used in more specialised situations (for example in [14, 1]),
we give a general description of all algebras isotopic to a Hurwitz algebra, encompassing also the
case of characteristic two. As a consequence of our study we get a comprehensive picture of all
isotopes of Hamilton’s quaternion algebra H – a class of real division algebras that has not been
studied before.

In Section 2, a general description is given of the category of isotopes of a Hurwitz algebra A. A
more elaborate study of the case where (A, n) is a Euclidean space is given in Section 3, bringing
about the promised description of isotopes of H. Finally, Section 4 treats composition algebras,
showing how a description of these can be deduced from the results in Section 2.

1Some authors use a weaker notion of non-degeneracy for the norm n, requiring that n(x + y) = n(y) for all y
implies x = 0. This definition gives rise to additional unital composition algebras over fields k of characteristic two,
in form of purely inseparable field extensions of k [11]. If char k 6= 2, the two definitions are equivalent.
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From here on, let k denote a field. All algebras are, unless otherwise stated, assumed to be
finite dimensional over k. Every element a of an algebra A determines linear endomorphisms La
and Ra of A, defined by La(x) = ax and Ra(x) = xa. An algebra A is said to be a division algebra

if dimA > 0 and La and Ra are bijective for all non-zero a ∈ A. Moreover, A is alternative if the
identities x2y = x(xy) and xy2 = (xy)y hold for all x, y ∈ A.

Any element x in a Hurwitz algebra A = (A, n) satisfies x2 = 〈x, 1〉x− n(x). Hence, the norm
n is uniquely determined by the algebra structure of A, and every algebra morphism of Hurwitz
algebras that respects the identity element also preserves the norm. Every Hurwitz algebra has
unique non-trivial involution2 κ : A → A, x 7→ x̄ satisfying x + x̄ ∈ k1 and xx̄ = x̄x = n(x)1
for all x ∈ A. Moreover, two Hurwitz algebras are isomorphic if and only if their respective
norms are equivalent (this was first proved in [9] in characteristic different from two). Quadratic
forms occurring as norms of Hurwitz algebras are precisely the m-fold Pfister forms over k, m ∈
{0, 1, 2, 3}. If A is a Hurwitz algebra and a ∈ A, then La and Ra are invertible if and only if
n(a) 6= 0. This is also equivalent to the existence of an inverse a−1 of a in A: since aā = āa = n(a)1,
we have a−1 = n(a)−1ā if n(a) 6= 0. Moreover, L−1

a = La−1 and R−1
a = Ra−1 in this case. The

invertible elements of any alternative algebra A form a Moufang loop under multiplication (the
concept was introduced by Moufang in [13] under the name quasi-group), denoted by A∗. In case
A is associative, A∗ is a group.

Two-dimensional Hurwitz algebras are quadratic étale algebras, i.e., either separable field ex-
tensions of k or isomorphic to k × k. The Hurwitz algebras of dimension four are all quaternion
algebras, that is all four-dimensional central simple associative algebras. Eight-dimensional Hur-
witz algebras are precisely the central simple alternative algebras that are not associative [18] (these
are called octonion algebras). A Hurwitz algebra A is commutative if and only if dimA 6 2, and
associative if and only if dimA 6 4.

For any algebra A, the nucleus is defined as N(A) = {a ∈ A | (xy)z = x(yz) for a ∈ {x, y, z}}.
The nucleus is an associative subalgebra of A. If A is a Hurwitz algebra, then a ∈ N(A) if and
only if (xa)y = x(ay) for all x, y ∈ A. If dimA 6 4 then A is associative and thus N(A) = A; the
nucleus of an eight-dimensional Hurwitz algebra is k1.

A similitude of a non-zero quadratic space V = (V, q) is an invertible linear map ϕ : V → V
such that q(ϕ(x)) = µ(ϕ)q(x) for all x ∈ V , where µ(ϕ) ∈ k is a scalar independent of x. The
element µ(ϕ) is called the multiplier of ϕ. If l = dimV is even, then det(ϕ) = ±µ(ϕ)l/2 [12, 12A].
If chark 6= 2, a similitude ϕ satisfying det(ϕ) = µ(ϕ)l/2 are said to be proper. In the characteristic
two case, a similitude ϕ : V → V is proper if its Dickson invariant (see [12, 12.12]) is zero. The
group of all similitudes of V is denoted by GO(V, q), or GO(V ) for short. The proper similitudes
form a normal subgroup GO+(V ) ⊂ GO(V ) of index two. Elements in GO(V )rGO+(V ) are called
improper similitudes. The map µ : GO(V ) → k∗, ϕ 7→ µ(ϕ) is a group homomorphism, the kernel
of which is the orthogonal group O(V ). We write O+(V ) = O(V )∩GO+(V ), or SO(V ) = O+(V )
in case (V, q) is a Euclidean space.

Let A = (A, n) be a Hurwitz algebra. The set of ϕ ∈ GO(A) for which there exist ϕ1, ϕ2 ∈
GO(A) such that ϕ(xy) = ϕ1(x)ϕ2(x) for all x, y ∈ A is GO+(A) if dimA > 4 and GO(A) if
dimA 6 2. This is known as the principle of triality for Hurwitz algebras [16, 3.2]. We call ϕ1 and
ϕ2 triality components of ϕ. It is not difficult to see that any other pair of triality components of
ϕ is of the form (R−1

w ϕ1,Lw ϕ2) for some w ∈ N(A)∗, and that ϕ1 = R−1
ϕ2(1)

ϕ and ϕ2 = L−1
ϕ1(1)

ϕ.

If A is associative, then ϕ(xy) = ϕ1(x)ϕ2(y) = (ϕ(x)ϕ2(1)
−1)(ϕ1(1)

−1ϕ(y)) = ϕ(x)ϕ(1)−1ϕ(y).
Moreover, ϕ1, ϕ2 ∈ GO+(A) if ϕ ∈ GO+(A), and (ϕ−1)i = (ϕi)

−1, i = 1, 2.
A groupoid is a category in which every morphism is an isomorphism. Every G-set X (G being

some group), defines a groupoid with object class X , and morphisms x→ y being the set of group
elements g ∈ G satisfying g · x = y. We call this the groupoid of the G-action on X . Given a
vector space V over k, and a quadratic form q : V → k, set PGL(V ) = GL(V )/(k∗I), PGO(V, q) =
GO(V, q)/(k∗I) and PGO+(V, q) = GO+(V, q)/(k∗I). Generally, no notational distinction shall be
made between elements in a group/set and cosets or orbits (of some subgroup respecively group
action) represented by such elements; for example, any α ∈ GL(A) may also be viewed as an

2By an involution is meant a self-inverse isomorphism A → Aop.
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element in PGL(A), depending on the context. If V is a Euclidean space then Pds(V ) denotes
the set of positive definite symmetric endomorphisms of V . The set of isomorphisms from an
object A to an object B in a category C is denoted by Iso(A,B) = IsoC (A,B). Throughout, C2

denotes the cyclic group of order two, generated by the canonical involution in a Hurwitz algebra:
C2 = 〈κ〉 = {I, κ}.

2. General description

Lemma 1. Let A be any algebra, and α, β ∈ GL(A). The isotope Aα,β is unital if and only if

α = R−1
a , β = L−1

b for some a, b ∈ A∗. The identity element in AR−1
a ,L−1

b
is ba.

Proof. The isotope Aα,β = (A, ◦) is unital if and only if there exists an element e ∈ A such that

L◦
e = R◦

e = IA. Now e ◦ x = α(e)β(x), that is, L◦
e = Lα(e) β, so L◦

e = IA if and only if β = L−1
α(e).

Similarly, R◦
e = Rβ(e) α equals the identity map if and only if α = R−1

β(e).

It readily verified that (ba) ◦ x = x = x ◦ (ba) in AR−1
a ,L−1

b
. �

In particular, if A is alternative then Aα,β is unital if and only α = Rc, β = Ld for some
c, d ∈ A∗, in which case the identity element in Aα,β is (cd)−1.

Proposition 2. Let A be a Hurwitz algebra. Any isotope B of A that has unity is again a Hurwitz

algebra, isomorphic to A, and nB = nA(1B)
−1nA.

Proof. By Lemma 1, any principal isotope B = (A, ◦) of A that is unital has the form B = ARc,Ld
.

Defining nB(x) = nA(cd)nA(x) for all x ∈ B, we have

nB(x ◦ y) = nB((xc)(dy)) = nA(cd)nA((xc)(dy))

= nA(cd)nA(x)nA(cd)nA(y) = nB(x)nB(y)

so B is a Hurwitz algebra. Moreover, Lcd : (B, nB) → (A, nA) is an isometry. Being isometric
as quadratic spaces, A and B are isomorphic algebras. Since 1B = (cd)−1, it is clear that nB =
nA(cd)nA = nA(1B)

−1nA. �

Corollary 3. Let A be a Hurwitz algebra, and α, β, γ, δ ∈ GL(A). Any isomorphism ϕ : Aα,β →
Aγ,δ is a similitude of (A, nA) with multiplier nA(ϕ(1)).

Proof. Let ϕ : Aα,β → Aγ,δ be an isomorphism. It is straightforward to verify that ϕ is also an
isomorphism A → B, where B = Aγϕα−1ϕ−1,δϕβ−1ϕ−1 . Thus, in particular, ϕ is an orthogonal
map (A, nA) → (B, nB). By Proposition 2, nB = nA(1B)

−1nA, so nA(ϕ(x)) = nA(1B)nB(ϕ(x)) =
nA(1B)nA(x). �

As mentioned in the introduction, the triality principle holds for all similitudes if A is a Hur-
witz algebra of dimension two, but only for elements in GO+(A) if dimA > 4. This difference
(which comes from the fact that if dimA 6 2 then A is commutative and thus κ ∈ Aut(A)), has
implications for the theory of isotopes of A. Set

G(A) =

{

GO(A) if dimA 6 2 ,

GO+(A) if dimA > 4 ,

and PG(A) = G(A)/(k∗I).

Proposition 4. Let A = (A, n) be a Hurwitz algebra. If ϕ ∈ G(A) and α, β ∈ GL(A), then

ϕ ∈ Iso(Aα,β , Aγ,δ) where
{

γ = ϕ1αϕ
−1 = R−1

ϕ2(1)
ϕαϕ−1

δ = ϕ2βϕ
−1 = L−1

ϕ1(1)
ϕβϕ−1

and ϕ1, ϕ2 ∈ G are triality components of ϕ. Moreover, Iso(Aα,β , Aγ,δ) ⊂ G(A) for all α, β, γ, δ ∈
GL(A).
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Proof. It is straightforward to verify that ϕ ∈ G(A) is an isomorphism Aα,β → Aγ,δ if γ = ϕ1αϕ
−1

and δ = ϕ2βϕ
−1. Inserting ϕ1 = R−1

ϕ2(1)
ϕ and ϕ2 = lt−1

ϕ1(1)
ϕ gives γ = R−1

ϕ2(1)
ϕαϕ−1 and

δ = L−1
ϕ1(1)

ϕβϕ−1, respectively.

Suppose ϕ : Aα,β → Aγ,δ is an isomorphism. By Corollary 3, ϕ is a similitude with mul-
tiplier n(ϕ(1)). Assume dimA > 4. If ϕ is an improper similitude then ϕ = ψκ, where
ψ ∈ GO+(A, n). By the first statement of the proposition, ψ−1 ∈ GO+(A, n) is an isomorphism
Aγ,δ → Aψ−1

1
γψ,ψ−1

2
δψ , so κ = ψ−1ϕ ∈ Iso(Aα,β , Aψ−1

1
γψ,ψ−1

2
δψ). This implies κ ∈ Iso(A,Aγ′,δ′),

where (γ′, δ′) = (ψ−1
1 γψκα−1κ, ψ−1

2 δψκβ−1κ). Lemma 1 gives (γ′, δ′) = (Rc,Ld) for some
c, d ∈ Ar {0}.

Now κ ∈ Iso(A,ARc,Ld
) means that

(1) ȳx̄ = xy = (x̄c)(dȳ) for all x, y ∈ A.

Inserting y = 1 yields x̄ = (x̄c)d for all x ∈ A, that is, Rd Rc = IA and hence c = d−1. Next,
setting x = d̄ in (1) gives ȳd = dȳ for all y ∈ A, implying d ∈ k1. But then (1) becomes ȳx̄ = x̄ȳ,
contradicting the non-commutativity of A. �

We record the following observations for future use. The first statement is a consequence of the
fact, referred in the introduction, that x ∈ N(A) if and only if (ax)b = a(xb) for all a, b ∈ A; the
second follows from Proposition 4.

Lemma 5. Let A be a Hurwitz algebra, α, β, γ, δ ∈ GL(A) and ρ ∈ k∗.

(1) Aα,β = Aγ,δ if and only if α = R−1
w γ, β = Lw δ for some w ∈ N(A)∗.

(2) The homothety hρ(x) = ρx on A defines an isomorphism AρI,I → A.

By Lemma 5, isotopes Aα,β of A are parametrised by orbits of the group action

(2) N(A)∗ ×GL(A)2 → GL(A)2 , (w, (α, β)) 7→ w · (α, β) = (R−1
w α,Lw β) .

Moreover, Aα,β ≃ Aγ,δ if (α, β) and (γ, δ) represent the same element in PGL(A)2.
Denote by XA = PGL(A)2/N(A)∗ the orbit set of the action

(3) w · (α, β) = (R−1
w α,Lw β)

of N(A)∗ on PGL(A)2. The group PG(A) acts on XA as follows:

(4) ϕ · (α, β) = (ϕ1αϕ
−1, ϕ2βϕ

−1)

where ϕ1 and ϕ2 are triality components of ϕ. Note that for any other choice (ϕ′
1, ϕ

′
2) =

(R−1
w ϕ1,Lw ϕ2), w ∈ N(A)∗ of triality components of ϕ,

(ϕ′
1αϕ

−1, ϕ′
2βϕ

−1) = (R−1
w ϕ1αϕ

−1,Lw ϕ2βϕ
−1) = w · (ϕ1αϕ

−1, ϕ2βϕ
−1)

with respect to (3), hence the action (4) on XA = PGL(A)2/N(A)∗ is well defined.
Let X (A) = PG(A)XA be the groupoid of the action (4). For any Hurwitz algebra A, let I (A)

denote the category of principal isotopes of A, and Ǐ (A) the category obtained from I (A) by
removing all non-isomorphisms between the objects. Note that if A is a division algebra then so
are all its isotopes, and thus any non-zero morphism in I (A) is an isomorphism.

The essence of our findings so far is summarised in the following theorem.

Theorem 6. For any Hurwitz algebra A, the categories Ǐ (A) and X (A) are equivalent. An

equivalence FA : Ǐ (A) → X (A) is given by FA(Aα,β) = (α, β) and FA(ϕ) = ϕ.

Proof. Let (α, β), (γ, δ) ∈ GL(A)2. If Aα,β = Aγ,δ then (α, β), (γ, δ) are in the same orbit of the
action (2), and hence represent the same object in XA. Proposition 4 guarantees that ϕ · (α, β) =
(γ, δ) whenever ϕ ∈ Iso(Aα,β , Aγ,δ). This shows that FA is well defined. Clearly, FA is surjective
on objects, hence dense as a functor.

If ϕ, ψ ∈ Iso(Aα,β , Aγ,δ) and FA(ϕ) = FA(ψ), then ϕ = ρψ for some ρ ∈ k∗, so ρIA = ϕψ−1 ∈
Aut(Aα,β). This implies ρ = 1 and ϕ = ψ ; hence FA is faithful. Fullness is clear from the
construction. �



ISOTOPES OF HURWITZ ALGEBRAS 5

Remark 7. (1) If k is a Euclidean field3 (e.g. k = R), then the group PGO(A, n) is canon-
ically isomorphic to O(A, n)/(±I), via composition of inclusion and quotient projection:
O(A, n)/(±I) ⊂ GO(A, n)/(±I) ։ GO(A, n)/k∗ = PGO(A, n). This induces an iso-
morphism O+(A, n)/(±I) → PGO+(A, n).

(2) If dimA = 8, since N(A) = k1, we have XA = PGL(A)2.

If A is associative, then its similitudes have a particularly nice form. Let LA∗ = {La | a ∈ A∗}.

Proposition 8. If A is an associative Hurwitz algebra then LA∗ is a normal subgroup of G(A),
and G(A) = LA∗ ⋊Aut(A).

Proof. Clearly, LA∗ is a subgroup of G(A). It is normal, since for all a ∈ A∗ and ϕ ∈ G(A),

ϕLa ϕ
−1 = Lϕ1(a) ϕ2ϕ

−1 = Lϕ1(a) L
−1
ϕ1(1)

= Lϕ1(a)ϕ1(1)−1

where ϕ1, ϕ2 ∈ G(A) are triality components of ϕ. Moreover, La ∈ Aut(A) if and only if a = 1,
so LA∗ ∩Aut(A) = {I}. The inclusion Aut(A) ⊂ G(A) is obvious.

If ϕ ∈ G(A) then ϕ(xy) = ϕ(x)ϕ(1)−1ϕ(y). Hence L−1
ϕ(1) ϕ(xy) = L−1

ϕ(1) ϕ(x) L
−1
ϕ(1) ϕ(y), so

L−1
ϕ(1) ϕ ∈ Aut(A). This implies G(A) = LA∗ Aut(A), which concludes the proof of the proposition.

�

Note that if dimA = 2 then Aut(A) = C2. If A is a quaterion algebra then it is central
simple, and the Skolem-Noether Theorem gives [10, p. 222], Aut(A) = {LaR

−1
a | a ∈ A∗}. Hence

every ϕ ∈ GO+(A) can be written as ϕ = La LbR
−1
b = LabRb−1 . It is also easy to see that

LaRb = I if and only if b−1 = a ∈ k1. Hence we have the following result. It has been proved by
Stampfli-Rollier [17, 3.5. Hilfsatz] for ortogonal maps under the assumption chark 6= 2.

Corollary 9. Every proper similitude of a quaterion algebra A has the form LaRb for some

a, b ∈ A∗. The kernel of the group epimorphism A∗ × (A∗)op → GO+(A), (a, b) 7→ LaRb is

{(ρ, ρ−1) | ρ ∈ k∗} ⊂ A∗ × (A∗)op.

WheneverA is an associative Hurwitz algebra, the action (4) of an element La ψ ∈ LA∗ ⋊Aut(A)
= G(A) on XA can be written as

(5) La ψ · (α, β) = (La ψαψ
−1 L−1

a , ψβψ−1 L−1
a ) .

For dimA = 2, this description of the groupoid X (A) is equivalent to the isomorphism criterion
1.12 in [14], applied to isotopes of quadratic étale algebras.

We conclude this section by introducing a numerical, easily computed isomorphism invariant.
Let k∗l = {ρl ∈ k∗ | ρ ∈ k∗} ⊂ k∗.

Proposition 10. Let A be a Hurwitz algebra of dimension l > 2, not isomorphic to k × k, and

α, β ∈ GL(A). Then the pair (det(α), det(β)) ∈
(

k∗/k∗l
)2

is an isomorphism invariant for Aα,β.

Proof. If ϕ : Aα,β → Aγ,δ is an isomorphism then ϕLα(x) βϕ
−1 = Lγϕ(x) δ, hence det(Lα(x)) det(β)

= det(Lγϕ(x)) det(δ). It is easy to show that La and Ra are proper similitudes with multiplier

nA(a)
2 for any a ∈ A∗ (this, however, is not true for A ≃ k×k). Consequently, nA(α(x))

l det(β) =
nA(γϕ(x))

l det(δ), so det(β) det(δ)−1 ∈ kl. Similarly, the identity ϕRβ(y) αϕ
−1 = Rδϕ(y) γ implies

det(α) det(γ)−1 ∈ k∗l. �

Let A and l ba as in Proposition 10. For i, j ∈ k∗/k∗l, setting

X (A)i,j =
{

(α, β) ∈ X (A) | (det(α), det(β)) = (i, j) in
(

k∗/k∗l
)2
}

⊂ X (A) ,

the groupoid X (A) can be written as a coproduct

(6) X (A) =
∐

i,j∈ k∗/k∗l

X (A)i,j .

Hence, any subcategory A ⊂ X (A) can be classified by classifying each of the subcategories
Ai,j = A ∩ X (A)i,j ⊂ X (A)i,j .

3A field k is called Euclidean if k∗2 forms and an ordering of k.
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As for the real ground field, [R∗ : R∗l] = 2 for any even number l, the two cosets being represen-
ted by 1 and −1, and the quotient projection R∗ → R∗/R∗l is given by ρ 7→ sign(ρ). If A is either
C, H or O, α, β ∈ GL(A) and Aα,β = (A, ◦), then det(L◦

x) = det(Lα(x)) det(β). Since det(Lα(x)) =

n(α(x))dimA > 0 for any x 6= 0, it follows that sign(det(L◦
x)) = sign(det(β)), and similarly

sign(det(Rx)) = sign(det(α)). This means that the decomposition X (A) =
∐

i,j∈{−1,1} X (A)i,j
here coincides with the “double sign” decomposition for real division algebras, introduced in [3].

3. The Euclidean case

The aim of this section is to give a more detailed account for isotopes of real Hurwitz algebras
whose underlying quadratic space is Euclidean. Such a Hurwitz algebra is isomorphic to either
R, C, H, or O, and the isotopes are precisely the real division algebras that are isotopic to a
Hurwitz algebra. The isotopes of C are all the two-dimensional real division algebras, and their
classification has been described in [8, 4]. We therefore focus on the higher-dimensional cases, and
let A be either H or O. Our main tool will be polar decomposition of linear maps.

Any α ∈ GL(A) can be written as α = α′λ, where det(α′) = | det(α)| > 0 and λ ∈ C2 = {I, κ}.
Polar decomposition now yields α′ = ζδ, with ζ ∈ SO(A) and δ ∈ Pds(A). Hence α = ζδλ, and
this decomposition is unique [7, §14].

Passing to the projective setting, the above implies that every α ∈ PGL(A) factorises uniquely
as α = ζδλ with ζ ∈ SO(A)/(±I), δ ∈ SPds(A) = Pds(A)∩SL(A), λ ∈ C2. As noted in Remark 7,
SO(A)/(±I) ≃ PGO+(A), and ζ can indeed be viewed as an element in PGO+(A) instead of
SO(A)/(±I). The cyclic group C2 acts on PGO+(A) by ϕλ = λϕλ (λ ∈ C2, ϕ ∈ PGO+(A)). Note

that Lκa = Rā = R−1
a and Rκa = Lā = L−1

a in PGO+(A). We write ϕ−λ for
(

ϕ−1
)λ

=
(

ϕλ
)−1

.

Let α, β ∈ PGL(A), α = ζδλ and β = ηǫµ, where ζ, η ∈ PGO+(A), δ, ǫ ∈ SPds(A) and
λ, µ ∈ C2. The action (4) of ϕ ∈ PGO+(A) on (α, β) ∈ XA is given by

ϕ · (α, β) = (ϕ1ζδλϕ
−1 , ϕ2ηǫµϕ

−1) = (ϕ1ζϕ
−λ(ϕλδϕ−λ)λ , ϕ2ηϕ

−µ(ϕµǫϕ−µ)µ) ,

and ϕ1ζϕ
−λ, ϕ2ηϕ

−µ ∈ PGO+(A) , ϕλδϕ−λ, ϕµǫϕ−µ ∈ SPds(A).
The group N(A)∗ acts on PGO+(A)2 by w · (ζ, η) = (R−1

w ζ , Lw η), and we denote the orbit set
of this action by PGO+(A)2/N(A)∗. The argument in the preceding paragraph shows that the
PGO+(A)-action on PGO+(A)2/N(A)∗ × SPds(A)2 × C2

2 by

(7) ϕ · ((ζ, η), (δ, ǫ), (λ, µ)) =
(

(ϕ1ζϕ
−λ, ϕ2ηϕ

−µ), (ϕλδϕ−λ, ϕµǫϕ−µ), (λ, µ)
)

is equivalent to the PGO+(A)-action (4) on XA via the map

m : PGO+(A)2/N(A)∗ × SPds(A)2 × C2
2 → XA , ((ζ, η), (δ, ǫ), (λ, µ)) 7→ (ζδλ, ηǫµ)

(i.e., ϕm = mϕ for all ϕ ∈ PGO+(A)). This means, in particular, that the groupoid Y (A) =

PGO+(A)

(

PGO+(A)2/N(A)∗ × SPds(A)2 × C2
2

)

of the action (7) is isomorphic to X (A):

Proposition 11. The functor GA : Y (A) → X (A) defined by GA(y) = m(y) for y ∈ Y (A), and
GA(ϕ) = ϕ for morphisms ϕ ∈ PGO+(A), is an isomorphism of categories.

From here on we focus exclusively on the four-dimensional case, in which A ≃ H. Corollary 9
implies that every element ζ ∈ PGO+(H) has the form ζ = LaRb for some a, b ∈ H∗. Since H

is associative, it follows that if ϕ = LaRb then ϕ1 = La, ϕ2 = Rb are triality components of ϕ.
Moreover, since [La,Rb] = 0 for all a, b ∈ H, we have

(LaRb,Lc Rd) = c−1 · (LaRb,Lc Rd) = (Rc LaRb,Rd) = (LaRbc,Rd)

in PGO+(H)2/N(H)∗ = PGO+(H)2/H∗. Hence every element (ζ, η) ∈ PGO+(H)2/H∗ can be
written on the form (ζ, η) = (LaRb,Rc), with a, b, c ∈ H

∗. Now the action of ϕ = Ls Rt ∈
PGO+(H) (s, t ∈ H∗) on ((ζ, η), (δ, ǫ), (λ, µ)) ∈ Y (H) is given by

(8) ϕ·((ζ, η), (δ, ǫ), (λ, µ)) =
((

Ls LaRb L
−λ
s R−λ

t ,RtRc L
−µ
s R−µ

t

)

,
(

ϕλδϕ−λ, ϕµǫϕ−µ
)

, (λ, µ)
)

.
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For (i, j) ∈ {−1, 1}2, set Y (H)i,j = G
−1
A (X (H)i,j) ⊂ Y (H). Note that ((ζ, η), (δ, ǫ), (κi, κj)) ∈

Y (H)(−1)i,(−1)j . This gives the decomposition

Y (H) =
∐

i,j∈{−1,1}

Y (H)i,j ,

and the action of ϕ = LsRt on each of the cofactors Y (H)i,j can be studied separately.
For ((ζ, η), (δ, ǫ), (I, I)) ∈ X (H)1,1, we have

ϕ · ((ζ, η), (δ, ǫ), (I, I)) =
((

Ls LaRb L
−1
s R−1

t ,RtRc L
−1
s R−1

t

)

,
(

ϕδϕ−1, ϕǫϕ−1
)

, (I, I)
)

=
((

R−1
s Rb R

−1
t Ls La L

−1
s ,RtRc R

−1
t

)

,
(

ϕδϕ−1, ϕǫϕ−1
)

, (I, I)
)

.

In particular, if s = 1, t = b, so that ϕ = Rb, then

ϕ · ((ζ, η), (δ, ǫ), (I, I)) =
(

(La,Rbcb−1) ,
(

Rb δR
−1
b ,Rb ǫR

−1
b

)

, (I, I)
)

.

Hence every orbit in Y (H)1,1 contains an element of the form ((La,Rb), (δ, ǫ), (I, I)). Moreover,
the action of ϕ = Ls Rt on such an element is given by

ϕ · ((La,Rb), (δ, ǫ), (I, I)) =
((

Ls La L
−1
s R−1

t ,RtRb L
−1
s R−1

t

)

, (ϕδϕ−1, ϕǫϕ−1), (I, I)
)

=
((

R(st)−1 Lsas−1 ,Rt−1bt

)

, (ϕδϕ−1, ϕǫϕ−1), (I, I)
)(9)

which has the form ((Lc,Rd), (δ, ǫ), (I, I)) if and only if t = s−1, that is, ϕ = LsR
−1
s .

Next, consider ((ζ, η), (δ, ǫ), (κ, I)) ∈ Y (H)−1,1. In this case,

ϕ · ((ζ, η), (δ, ǫ), (κ, I)) =
((

Ls LaRb L
−κ
s R−κ

t ,RtRc L
−1
s R−1

t

)

,
(

ϕκδϕ−κ, ϕǫϕ−1
)

, (κ, I)
)

=
((

Ls La LtR
−1
s Rb Rs,RtRc R

−1
t

)

,
(

ϕκδϕ−κ, ϕǫϕ−1
)

, (κ, I)
)

Again, setting s = 1 and t = a−1 gives ϕ = R−1
a and

R−1
a ·((ζ, η), (δ, ǫ), (κ, I)) =

(

(Rb,Raca−1) ,
(

La δ L
−1
a ,R−1

a ǫRa
)

, (κ, I)
)

so the orbit of ((ζ, η), (δ, ǫ), (κ, I)) contains an element of the form ((ζ, η) = (Ra,Rb), (δ
′, ǫ′), (κ, I)).

Similarly to the previous case with Y (H)1,1, the group elements ϕ ∈ PGO+(H) stabilising this
form, so that ϕ · ((Ra,Rb), (δ, ǫ), (κ, I)) = ((Rc,Rd), (δ

′, ǫ′), (κ, I)) for some c, d ∈ H, are precisely
those of the form ϕ = LsR

−1
s , s ∈ H

∗. Note that if ϕ = LsR
−1
s then ϕκ = ϕ, hence

ϕ · ((Ra,Rb), (δ, ǫ), (κ, I)) =
(

(Rsas−1 ,Rsbs−1 ), (ϕδϕ−1, ϕǫϕ−1), (κ, I)
)

.

Similar computations can be made for Y (H)1,−1 and Y (H)−1,−1. The results are summarised
in Proposition 12 below.

For a ∈ H∗, set ca = LaR
−1
a ∈ PGO+(H). Note that the kernel of the morphism H∗ →

PGO+(H), a 7→ ca is R∗1.

Proposition 12. Let (i, j) ∈ {−1, 1}2. Each of the subcategories Y (H)i,j of Y (H) is equivalent

to the groupoid Z = H∗/R∗

(

(H∗/R∗)2 × SPds(H)2
)

of the action

s · ((a, b), (δ, ǫ)) = ((sas−1, sbs−1), (csδc
−1
s , csǫc

−1
s )) .

An equivalence Hi,j : Z → Y (H)i,j is given by Hi,j(s) = cs for morphisms s ∈ H∗/R∗ and

H1,1((a, b), (δ, ǫ)) = ((La,Rb), (δ, ǫ), (I, I)) , H−1,1((a, b), (δ, ǫ)) = ((Ra,Rb), (δ, ǫ), (κ, I)) ,

H1,−1((a, b), (δ, ǫ)) = ((La,Lb), (δ, ǫ), (I, κ)) , H−1,−1((a, b), (δ, ǫ)) = ((La,Rb), (δ, ǫ), (κ, κ)) .

Remark 13. Proposition 12 shows, in particular, that X (H)i,j ≃ X (H)i′,j′ for all (i, j), (i
′, j′) ∈

{−1, 1}2.

The image of the group monomorphism H∗/R∗ → PGO+(H), s 7→ cs is {ϕ ∈ PGO+(H) |
ϕ(R∗1) = R∗1}, which can be identified with SO1(H) = {ϕ ∈ SO(H) | ϕ(1) = 1} ≃ SO(1⊥).
Thus the map f : H∗/R∗ → SO1(H), s 7→ cs is an isomorphism, inducing an action of SO1(H) on
the object set (H∗/R∗)2 × SPds(H)2 of Z , given by ϕ · ((a, b), (δ, ǫ)) = f−1(ϕ) · ((a, b), (δ, ǫ)) =
((ϕ(a), ϕ(b)), (ϕδϕ−1 , ϕǫϕ−1)).

This allows for the following geometric interpretation of the category Z . Elements in H∗/R∗

are viewed as lines through the origin in H (that is, elements in the real projective space P(H)),
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and δ ∈ SPds(A) is identified with the three-dimensional hyper-ellipsoid Eδ = {x ∈ H | 〈x, δ(x)〉 =
1} ⊂ H. The set E = {Eδ | δ ∈ SPds(H)} consists of all hyper-ellipsoids centered in the origin
and satisfying λ1λ2λ3λ4 = 1, where λi ∈ R>0, i = 1, 2, 3, 4 are the lengths of the principal axes.
Moreover, H is identified with R

4 in the natural way, and 1⊥
H

with V = span{e2, e3, e4} ⊂ R
4.

Now objects in Z can be viewed as configurations in R4 consisting of two lines a, b ∈ P(H), and
two hyper-ellipsoids Eδ, Eǫ ∈ E . A morphism (a, b, Eδ, Eǫ) → (a′, b′, Eδ′ , Eǫ′) between two such
configurations is an element ϕ ∈ SO(V ) ⊂ SO(R4) transforming one configuration to the other:
(ϕ(a), ϕ(b), ϕ(Eδ), ϕ(Eǫ)) = (a′, b′, Eδ′ , Eǫ′).

4. Composition algebras

Lemma 14. Let A = (A, nA) be a Hurwitz algebra, and α, β ∈ GL(A). The isotope Aα,β is a

composition algebra if and only if α, β ∈ GO(A, nA).

Proof. If α, β are similitudes, then Aα,β is a composition algebra with respect to the norm n =
µ(α)µ(β)nA. Conversely, suppose Aα,β is a composition algebra with norm n. Then, by standard
arguments (see e.g. [11, p. 957]), there exists a Hurwitz algebra B isotopic to Aα,β , with norm
nB = n. Since B is an isotope of Aα,β , it is also isotopic to A, and thus, by Proposition 2, n = ρnA
for some ρ ∈ k∗. Hence

nA(α(x))nA(β(y)) = nA(α(x)β(y)) = nA(x ◦ y) = ρ−1n(x ◦ y) = ρ−1n(x)n(y) = ρnA(x)nA(y)

for all x, y ∈ A, from which follows that α and β are similitudes with respect to nA. �

Given a Hurwitz algebraA, let X c(A) ⊂ X (A) be the full subcategory formed by all (α, β) such
that FA(α, β) is a composition algebra. Lemma 14 implies that X c(A) = PGO(A, nA)

2/N(A)∗ ⊂
PGL(A, nA)

2/N(A)∗ = X (A).
For dimA > 2, the property of being a proper respectively improper similitude is retained by

the factors α, β of (α, β) ∈ X c(A) under the action of PGO+(A) (respectively PGO(A) in the
two-dimensional case). This means that for each (i, j) ∈ {−1, 1}2, the subset

X
c(i,j)(A) =

(

PGOi(A) × PGOj(A)
)

/N(A)∗ ⊂ X
c(A)

(where we use the notational convention PGO±1(A) = PGO±(A)) is invariant under this action,
and the category X c(A) decomposes as

X
c(A) =

∐

i,j∈{−1,1}

X
c(i,j)(A) .

This refines the decomposition (6) for A 6≃ k× k : X c(i,j)(A) ⊂ X c(A)i,j for all i, j ∈ {−1, 1}. If

−1 6∈ kl, l = dimA, then X c(i,j)(A) = X c(A)i,j , but whereas the four sets X c(i,j)(A) are always
distinct, X c(A)i,j = X c(A) for all i, j ∈ {−1, 1} in case −1 ∈ kl.

If (A, nA) is a Euclidean space, the groups PGO(A) and PGO+(A) are canonically identified
with O(A)/(±IA) and SO(A)/(±IA) respectively. This, together with Theorem 6, gives a descrip-
tion of all finite-dimensional absolute valued algebras equivalent to Theorem 4.3 in [1].

We proceed to describe all composition algebras isotopic to a fixed quaternion algebra A =
(A, n) over k. Every (α, β) ∈ X c(A) can be written as (α, β) = (ζλ, ηµ) with ζ, η ∈ GO+(A) and
λ, µ ∈ C2. Corollary 9 now gives ζ = LaRb, η = Lc Rd for some a, b, c, d ∈ A∗, and sinceN(A) = A,
(α, β) = (LaRb λ,LcRd µ) = (LaRbc λ,Rd) in XA = PGL(A)2/N(A)∗. Thus, analogously with
the Euclidean case treated in Section 3, (α, β) can be written as (α, β) = (LaRb λ,Rc µ). Moreover,
one reads off that (α, β) ∈ X c(det(λ),det(µ))(A).

Let (α, β) = (LaRb,Rc) ∈ X c(1,1)(A). Now Rb ·(α, β) = (La,Rb−1cb), so every PGO+(A)-orbit
in X c(1,1)(A) contains an element of the form (Lb,Rb). Similarly, every orbit in X c(−1,1)(A)
contains an element of the form (Ra κ,Rb), every orbit in X c(1,−1)(A) contains some (La,Lb κ),
and every orbit in X c(−1,−1)(A) contains an element of the form (La κ,Rb κ). By computations
similar to (9), one proves that ϕ ∈ PGO+(A) stabilises each of these forms if and only if ϕ = cs
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for some s ∈ A∗, and that

cs · (La,Rb) = (Ls La L
−1
s ,R−1

s RbRs) = (Lsas−1 ,Rsbs−1 ) ,

cs · (Ra κ,Rb) = (R−1
s RaRs κ,R

−1
s RbRs) = (Rsas−1 κ,Rsbs−1) ,

cs · (La,Lb κ) = (Ls La L
−1
s ,Ls Lb L

−1
s κ) = (Lsas−1 ,Lsbs−1 κ) ,

cs · (La κ,Rb κ) = (Ls La L
−1
s κ,R−1

s RbRs κ) = (Lsas−1 κ,Rsbs−1 κ) .

This proves the following result, which gives an isomorphism criterion for all composition algebras
isotopic to A.

Proposition 15. Each of the categories X c(i,j)(A) is equivalent to the groupoid Z c(A) =

A∗/k∗ (A
∗/k∗)

2
of the action s · (a, b) = (sas−1, sbs−1). Equivalences H c

i,j : Z c(A) → X c(A)i,j
are given by H c

i,j(s) = cs for morphisms, and

H
c
1,1(a, b) = (La,Rb) , H

c
−1,1(a, b) = (Ra,Rb) ,

H
c
1,−1(a, b) = (La,Lb) , H

c
−1,−1(a, b) = (La,Rb) .

A characterisation of all four-dimensional composition algebras over k, similar to Proposition 15,
is given by Stampfli-Rollier in Section 3–4 of [17]. Her exposition also contains explicit isomorphism
criteria in terms of the parameters a, b. The Euclidean case, comprising all composition algebras
isotopic to H, that is, all four-dimensional absolute valued algebras, has also been described by
Ramı́rez Álvarez [15]. Forsberg, in his master thesis [6], refined that description to give an explicit
cross-section for the isomorphism classes of these algebras.
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