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Abstract

Associating to each pre-order on the indices 1, ..., n the corresponding
structural matrix ring, or incidence algebra, embeds the lattice of n-element
pre-orders into the lattice of n × n matrix rings. Rings within the order-
convex hull of the embedding, i.e. matrix rings that contain the ring of diag-
onal matrices, can be viewed as incidence algebras of ideal-valued, generalized
pre-order relations. Certain conjugates of the upper or lower triangular ma-
trix rings correspond to the various linear orderings of the indices, and the
incidence algebras of partial orderings arise as intersections of such conjugate
matrix rings.

Keywords: structural matrix ring, incidence algebra, pre-order, quasi-
order, triangular matrix, conjugation, semiring, ideal lattice, subring lattice

1 Conjugate subrings

Rings are understood to be possibly non-commutative, and to have a unit
(multiplicatively neutral) element, which is assumed to be distinct from the
zero (null) element and is denoted by 1 or I or a similar symbol. Subrings
are understood to contain the unit element. An n× n matrix is viewed as a
map defined on the set n2 = {1, ..., n}2 . (Here n ≥ 1 is assumed.) The ring
of n× n matrices over a ring R is denoted by Mn(R).
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A pre-order, also called quasi-order, is a reflexive and transitive binary
relation . on a set S, an order (or partial order) is an anti-symmetric pre-
order, and a linear ( or total) order is an order in which any two elements
are comparable. Instead of the generic notation ., specific pre-orders may
be denoted by other symbols such as θ. Given a ring R and a pre-order .

on n, the structural matrix ring Mn(., R) over R is defined by

Mn(., R) = { A ∈ Mn(R) : ∀i, j A(i, j) = 0 unless i . j }

The full matrix ring Mn(R), the subrings of all upper triangular (respectively
lower triangular), and of all diagonal matrices, are examples of structural
matrix rings. Structural matrix rings are essentially the same as incidence
algebras of finite pre-ordered sets, although the latter term is sometimes used
under the assumption that the base ring R is a field [F] or that the pre-order
in question is an order, possibly on an infinite set, as in [R]. Ring-theoretical
properties of incidence algebras most relevant to the present context were
studied in [DW, F, MSW, W1, W2].

The set of all pre-orders defined on any given set constitutes a lattice
whose minimum is the equality relation.

Proposition 1 For any ring R, the map associating to each pre-order .

on n the corresponding structural matrix ring Mn(., R) provides an embed-
ding of the lattice of pre-orders on n into the lattice of subrings of the matrix
ring Mn(R). The embedding preserves also infinite greatest lower and least
upper bounds.

Proof Preservation of greatest lower bounds is obvious. The preservation
of upper bounds is a consequence of the description of the least upper bound
of a family of pre-orders as the transitive closure of the least binary relation
that is implied by the pre-orders in the family. �

The lattice embedding described in the proposition above is generally
not surjective, and for n ≥ 2 its range is order-convex if and only if R is a
division ring. Section 2 will provide a description of the order-convex hull of
the embedding’s range.

Subrings S and T of Mn(R) are said to be permutation conjugates if there
is a permutation matrix P such that

S =
{

PAP−1 : A ∈ T
}
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Such subrings are obviously isomorphic under the automorphismA 7→ PAP−1

of Mn(R).
All the n! linear orders on the finite set n are isomorphic, and the iso-

morphisms among them are precisely the self-bijections of the underlying set
n. Consequently we have:

Proposition 2 For any pre-order . on n and any ring R, the following
conditions are equivalent :

(i) . is a linear order,
(ii) Mn(., R) is a permutation conjugate of the ring of upper triangular

matrices,
(iii) Mn(., R) is a permutation conjugate of the ring of lower triangular

matrices. �

The well-known fact that every partial order is the intersection of its
linear extensions yields:

Proposition 3 For any pre-order . on n and any ring R, the following
conditions are equivalent :

(i) . is an order,
(ii) Mn(., R) is the intersection of some permutation conjugates of the

ring of upper triangular matrices,
(iii) Mn(. R) is the intersection of some permutation conjugates of the

ring of lower triangular matrices. �

These considerations were first developed, in the context of fields, in
[FM1]. They were related to a ring property concerning one-sided and two-
sided inverses in [FSW], addressing questions originating in [C] and [SW].

2 Matrices with ideal entries

The order-convex hull of the embedding provided by Proposition 1 con-
sists obviously of those matrix rings that contain the ring of diagonal matri-
ces. We now show that these rings can be viewed as generalized incidence
algebras, corresponding to generalized relations that are the analogues of
pre-order relations in a reticulated semiring-valued framework.
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By a semiring we understand a set endowed with a binary operation called
sum (denoted additively) and a binary operation called product (denoted
multiplicatively) such that:

(i) the sum operation defines a commutative semigroup,
(ii) the product operation defines a semigroup,
(iii) both distributivity laws a(b + c) = ab + ac and (b + c)a = ba + ca

hold for all members a, b, c of the underlying set.

The set I(R) of (bilateral) ideals of any ring R is a semiring under ideal
sum and product of ideals. This semiring is lattice-ordered by inclusion.
The set Mn(I(R)) of n× n matrices with entries in I(R) is again a semiring
under the obvious sum and product operations, also lattice-ordered by entry-
wise inclusion: lattice join coincides with semiring sum, denoted +, while the
lattice meet operation ∧ is entry-wise intersection. The lattice Mn(I(R)) is
complete, it is isomorphic to the n2-th Cartesian power of the complete lattice
I(R). The matrix I, with the improper ideal (1) = R in diagonal positions
and the trivial ideal (0) in off-diagonal positions, is multiplicatively neutral
in the semiring Mn(I(R)).

For every matrix U with ideal entries, U ∈ Mn(I(R)), consider the set
of matrices

G = {A ∈ Mn(R) : ∀i, j A(i, j) ∈ U(i, j)}

This set is always an additive subgroup of Mn(R), and it is a subring if and
only if U2 + I ≤ U in the ordered semiring of n × n matrices with ideal
entries. In that case, we say that the subring G is defined by U.

There is a natural lattice embedding from the lattice of all pre-orders on
n into the lattice Mn(I(R)), namely the map θ 7→ U where U(i, j) is the
improper or trivial ideal of R according to whether the relation iθj holds
or not. The matrix U so obtained always satisfies U2 + I ≤ U, and the
subring of Mn(R) defined by it coincides with the structural matrix ring
Mn(θ, R). For this reason we denote by Mn(R,U) the matrix ring defined by
any U ∈ Mn(I(R)) satisfying U2 + I ≤ U. Any U ∈ Mn(I(R)) is viewed as
an I(R)-valued relation on the n−element set n, the inequality U2 + I ≤ U

generalizes transitivity and reflexivity of relations, and Mn(R,U) may then
be thought of as the incidence algebra of the generalized pre-order U.

Matrices with ideal entries U ∈ Mn(I(R)) satisfying the generalized tran-
sitivity condition U2 ≤ U only were used by van Wyk [W1], and recently
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again by Meyer, Szigeti and van Wyk [MSW], in the description of ideals of
stuctural matrix rings .

Any matrix with ideal entries U ∈ Mn(I(R)) satisfying U2 + I ≤ U is
said to be reflexive-transitive. If R is a division ring, then the range of the
map θ 7→ U described above, embedding the pre-order lattice into Mn(I(R)),
is exactly the set of reflexive-transitive matrices.

For any ring R, the set of reflexive-transitive matrices with ideal entries
constitutes a complete lattice under the ordering of Mn(I(R)) (but not a
sublattice of Mn(I(R)) in general).

Proposition 4 For any ring R, the map U 7→Mn(R,U) establishes a
lattice isomorphism between:

(i) the lattice {U ∈ Mn(I(R)) : U2 + I ≤ U} of n×n reflexive-transitive
matrices with ideal entries,

(ii) the lattice of subrings of Mn(R) containing all diagonal matrices.

Proof Obviously if U2 + I ≤ U then Mn(R,U) contains all diagonal
matrices, and if U ⊆ V then Mn(R,U) ⊆ Mn(R,V).

Conversely, let N ⊆ Mn(R) be any matrix ring including all diagonal
matrices. For every 1 ≤ i, j ≤ n the set Uij = {A(i, j) : A ∈ N} is an ideal of
R, the matrix U = (Uij) with ideal entries can be seen to satisfy U2+I ≤ U,

and Mn(R,U) = N. �

The proof above is presented in [FM2] in somewhat greater detail, to-
gether with some consequences. For division rings, where there is only the
trivial and the improper ideal, the structure of the lattice of subrings of
Mn(R) containing all diagonal matrices is independent of the choice of the
particular division ring R. In the general case, it is the ideal lattice structure
of R that determines the structure of this upper section of the subring lattice
of Mn(R).
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