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ON NOISE LIMITED CELLULAR NETWORKS

L. DECREUSEFOND, P. MARTINS, AND T .T. VU

Abstract. This paper introduces a general theoretical framework to
analyze noise limited networks. More precisely, we consider two ho-
mogenous Poisson point processes of base stations and users. General
model of radio signal propagation and effect of fading are also consid-
ered. The main difference of our model with respect to other existing
models is that a user connects to his best servers but not necessarily
the closest one. We provide general formula for the outage probability.
We study functionals related to the SNR as well as the sum of these
functionals over all users per cell. For the latter, the expectation and
bounds on the variance are obtained.

1. Introduction

1.1. Motivation. Cellular network is a kind of radio network consisting of
a number of fixed access points known as base stations and a large number
of users (or mobiles). Each base station covers a geometrical region known
as a cell and serve all users in this cell. Interference and noise are two
factors annoying communications in cellular wireless networks. Noise is
unavoidable and comes from natural sources. Interferences come from users
and base stations. The use of recent technologies such as SDMA (spatial
division multiple access) and MIMO (multiple input multiple output) can
reduce significantly interferences so that we can hope that in a near future
the impact of interferences will be negligible and noise will become the only
factor harming the network. The best case is when interferences from other
cells are perfectly canceled, the network is then said to be in noise limited
regime. In this paper, we consider and introduce a framework to study this
kind of network.

In existing literature, base stations (BS) locations are usually modeled as
an ideal regular hexagonal lattice. In reality, base stations are irregularly
located, especially in an urban area, and the cell radius is not the same for
each BS. In this paper, we model the base station locations as an homoge-
nous Poisson point process ΠB of intensity λB . Such a model comes from
stochastic geometry. It is sufficently versatile by changing λB to cover a
wide number of real situations and it is mathematically tractable. For an
introduction to the usage of stochastic geometry for wireless networks per-
formances, we refer to [8]. Theory and number of pertinent examples can
be found in [1] and [2]. For all theoretical details, we refer the first opus.

To model cellular network cells, Voronoi tessellations are frequently used.
It is based on the assumption that each user is served by the closest BS.
Unfortunately, this is not always very accurate since in real life, a mobile
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connects to the best BS it can have, i.e., the BS which offers it the best
Signal over Noise Ratio. The best BS is not always the closest because of
the fading environment. In this paper, we analyze the impact of fading
by considering that users are served by the base station providing the best
signal power. The location of users in the plane are modeled as another
homogenous Poisson point process ΠM of intensity λM .

While ancient cellular networks such as GSM and GPRS provided only
voice service and low data transmission rate, recent and emergent wireless
cellular networks such as WIMAX or LTE offer higher data rate and other
services requiring high throughput such as video calls. Each service requires
a different level of signal to noise ratio (SNR). If the SNR does not reach
a required threshold due to the radio condition, the service can not be es-
tablished or may be interrupted. Such calls are said to be in outage. The
outage probability is one of key measurement of the network performance.
One of the aims of this paper is to determine the outage probability of noise
limited network, or equivalently the distribution of SNR, which turns out to
be equivalent to determine the distribution of the smallest path loss fading.
In fact, there have been some works dealing with the outage probability
of noise limited wireless network, but almost all of them consider the ex-
ponent path loss model. This paper provides a general formula for outage
probability taking into account a more general model of path loss.

Once the distribution of SNR of a user is determined, the distribution
of functionals related to SNR can be easily derived. In some situations,
we have to study the distribution of the sum of a functional for all users
in a cell. For example, in an OFDMA noise limited cellular system, the
number of sub channels required for a user demanding a particular service
depends on its SNR. If the total number of sub channels of all users in a
cell excesses the number of available sub channels in this cell then at least
one user is blocked. The probability of that to happen, sometimes called
infeasibility probability, contains extremely important information on the
performance of the network. Since it is often impossible to find the explicit
probability distribution of additive functionals, we calculate the expectation,
and bounds on the variance of such random variables.

This paper is organized as follows. In Section 2, we describe the model.
In Section 3, we show that the path loss fading can be viewed as a Poisson
point process on the real line and we provide a general formula for the outage
probability. In Section 4, we calculate average capacity of a user and of a
cell. We also compute upper and lower bounds for their variance as closed
form expressions seem untractable. Section 5 illustrates the results obtained
for some particular situations.

2. Model

2.1. System model. Consider a BS (base station) located at y with trans-
mission power P and a mobile located at x. The mobile’s received signal
has average power L(y− x)P where L is the path loss function. We assume
that L is measurable function on R2. The most used path loss function is
the so-called path loss exponent model

L(z) = K|z|−γ ,
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where |z| refers to the Euclidean norm of z. This function gives raise to
nice closed formulas but is rather unrealistic: Close to the BS, the signal is
infinitely amplified. A more realistic model is the modified path loss model
given by:

L(z) = Kmin{R−γ
0 , |z|−γ}

where R0 is a reference distance and K a constant depending on the envi-
ronment. In addition to this deterministic large scale effect, we consider the
fading effect, which is by essence random. The received signal power from
a BS located at y to a mobile unit (MU for short) located at x is given by

Pyx = hy, xL(y − x)P,

where {hy, x}x,y∈R2 are independent copies of a random variable H. Most
used fading random models are log-normal shadowing and Rayleigh fading.
The log-normal shadowing is such that H is a log-normal random variable
and we can write H ∼ 10G/10 where G ∼ N (0, σ2). The Rayleigh fading
is such that H is an exponential random variable of parameter µ. We can
also consider the Rayleigh-Lognormal composite fading, in this case the
fading is the product of the log-normal shadowing factor and the Rayleigh
fading factor. It is worth noting that the log-normal shadowing usually
improves the network performance while Rayleigh fading usually degrades
performances.

We assume that once in the network, a mobile is attached to the BS that
provides it the best signal strength. If the power received at this point is
greater than some threshold T , we say that x is covered. If x is not covered
by any BS then a MU at x can not establish a communication and thus is
said to be in outage. In the case of path loss exponent model with no fading
(H = constant), the best BS for given mobile is always its nearest BS.

We assume that the point process of BSs ΠB = {y0, y1, ...} is an ho-
mogenous Poisson point process of intensity λB on R2 and that users are
distributed in the plane as a Poisson point process ΠM = {x0, x1, ...} of
intensity λM .

To avoid any technical difficulty, from now on, we make the following
assumptions:

Assumption 1. Assume that:

(1) All random variables hyx (x, y ∈ R2) are independent.
(2) H admits a probability density function pH . Its complementary cu-

mulative distributive function is denoted by FH , i.e.,

FH(β) = P (H ≥ β) =

∫ ∞

β
pH(t) dt > 0.

(3) Define B(β) =
∫
R2 FH((L(z)β)−1) dz. Then, we have 0 < B(β) <

∞ for all β > 0.

3. Poisson point process of path loss fading

In this section, similarly to [7], we show that the path loss fading process
is a Poisson point process on the positive half of the real line.

For each location x on R2, consider the path loss fading process Shx =
{sxi }

∞
i=0 where sxi = (hyixL(y − x))−1.
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Figure 1. Triangles represent BS, plus represent MU. Dot-
ted polygons are Voronoi cells induced by BS. A line between
a BS and an MU means that the BS serves the MU. A mobile
may be not served by the BS closest to it, due to fading.

Proposition 1. For any x, Shx is a Poisson point process on R+ with
intensity density dΛ(t) = λBB

′(t)dt. In addition, B(0) = 0 and B(∞) = ∞.

Proof. Define the marked point process Πx
B = {yi, hyix}

∞
i=0. It is a Poisson

point process of intensity λBdy⊗fH(t)dt because the marks are independent
and identically distributed. Considering the probability kernel p((z, t), A) =
1{(L(z)t)−1∈A} for all Borel A ⊂ R+ and applying the displacement theorem
([1], theorem 1.3.9), we obtain that the point process Shx is a Poisson point
process of intensity

Λ(A) = λB

∫

R2

∫

R
1({L(z)t)−1∈A}pH(t) dz dt·

We now show that Λ([0, β]) = λBB(β). Indeed,

Λ([0, β]) = λB

∫

R2

∫

R
1{t≥(βL(z))−1}pH(t) dz dt

= λB

∫

R2

FH((βL(z))−1) dz

= λBB(β)·
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It is easy to see that B(0) = 0 and B(∞) = ∞. Finally B(β) admits the
derivative:

B′(β) = β−2

∫

R2

1

L(z)
pH((βL(z))−1) dz·

This concludes the proof. �

For any point x, we can reorder the points of Shx. We denote ordered
atoms of Shx by 0 ≤ ξx0 < ξx1 < . . .. The CDF and PDF of ξxm are easily
derived according to the property of Poisson point processes:

Corollary 1. The complementary cumulative distribution function of ξxm is
given by:

P (ξxm > t) = e−λBB(t)
m∑

i=0

(λBB(t))i

i!
,

and its probability density function is given by

(1) pξxm(t) =
λm+1
B B′(t)(B(t))m

m!
e−λBB(t)·

Proof. The event (ξxm > t) is equivalent to the event (in the interval [0, t],
there are at most m points) and the number of points in this interval follows
a Poisson distribution of mean λBB(t). Thus, we have:

P (ξxm > t) = e−λBB(t)
m∑

i=0

(λBB(t))i

i!
·

The PDF is thus given by

pξxm(t) = −
∂

∂t
P (ξxm > t)

= −λBB
′(t)e−λBB(t)

+
m∑

1

λBB
′(t)e−λBB(t)

(
(λBB(t))i−1

(i− 1)!
−

(λBB(t))i

i!

)

=
λm+1
B B′(t)(B(t))m

m!
e−λBB(t)·

The proof is thus complete. �

Corollary 2. If L(z) = K|z|−γ then:

B(β) = C.β
2
γ ,

where C = πK
2
γE(H

2
γ ).
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Proof. The path loss function depends only on the distance from the BS to
the user. By the change of variable r = |z| and by integration by substitu-
tion, we have:

B(β) = 2π

∫ ∞

0

∫ ∞

0
r1{tKβ≥rγ}pH(t) dr dt

= 2π

∫ ∞

0
pH(t) dt

∫ (tKβ)1/γ

0
r dr

= π(K)
2
γ β

2
γ

∫ ∞

0
pH(t)t

2
γ dt

= π(K)
2
γE(H

2
γ )β

2
γ ·

Hence the result. �

Remark that this result can also be derived from [7]. We observe that the

distribution of the point process Shx does depend only on E(H
2
γ ) but not

on the distribution of fading H itself. This phenomenon can be explained
as in [9](page 159). If the fading is log-normal shadowing, i.e H ∼ 10G/10

where G ∼ N (0, σ2) then E(H
2
γ ) = e

2σ2
1

γ2 where σ1 = ln(10)σ
10 . If the fading

is Rayleigh fading, i.e H ∼ exp(µ) then E(H
2
γ ) = Γ( 2γ + 1, 0)µ− 2

γ where

Γ(a, b) =
∫∞
b ta−1e−t dt is the upper incomplete gamma function.

Similarly to the distance to m-th nearest BS (which can be found in [11]),
the distribution of m-th less strong path loss fading ξxm can be characterized
as follows:

Corollary 3. If L(z) = K|z|−γ , ξxm is distributed according to the general-
ized Gamma distribution:

pξxm(t) =
2

γ
(λBC)m+1t

2
γ
(m+1) e

−λBCt
2
γ

m!
·

Proof. This is a consequence of Proposition 1 and Lemma 2. �

We can also investigate more general and realistic path loss model.

Corollary 4. If L(z) = Kmin{R−γ
0 , |z|−γ} then:

(2) B(β) = C1β
2
γ

∫ ∞

R
γ
0

βK

t
2
γ pH(t) dt,

where C1 = πK
2
γ . In addition, we have:

(3) B′(β) =
2

γ
β−1B(β) + πR2

0pH

(
R

γ
0

Kβ

)
·

If the fading is lognormal shadowing H ∼ 10G/10 where G ∼ N (0, σ2) then
we have:

B(β) = C1β
2
γ e

(
2σ1
γ

)2
Q

(
− ln β − ln(KR

−γ
0 )

σ1
−

2σ1
γ

)
,
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where Q(a) = 1√
2π

∫∞
a e−u2/2 du is the Q-function and σ1 = σ ln 10

10 . If the

fading is Rayleigh H ∼ exp(µ) then

B(β) = C1

(
β

µ

) 2
γ

Γ

(
1 +

2

γ
,
µR

γ
0

Kβ

)
.

Proof. Similarly to the path loss exponent model case, we have:

B(β) = 2π

∫ ∞

0
rFH((max{R0, r})

−γ(Kβ)−1) dr

= 2π

∫ R0

0
rFH(R−γ

0 (Kβ)−1) dr + 2π

∫ ∞

R0

rFH(R−γ
0 (Kβ)−1) dr

= πR2
0FH(Rγ

0(Kβ)−1) + 2π

∫ ∞

R
γ
0

βK

pH(t) dt

∫ (tKβ)1/γ

R0

r dr

= C1β
2
γ

∫ ∞

R
γ
0

Kβ

t
2
γ pH(t) dt·

We then obtain Equation (2). Now differentiate the two sides of that equa-
tion to get:

B′(β) =
2

γ
C1β

2
γ
−1
∫ ∞

R
γ
0

βK

t
2
γ pH(t) dt+

C1R
2
0

K
2
γ

pH

(
R

γ
0

Kβ

)

=
2

γ
β−1B(β) + πR2

0pH

(
R

γ
0

Kβ

)
.

That yields Equation (3). In the case of lognormal shadowing we have:

B(β) = C1β
2
γ

∫ ∞

R
γ
0

Kβ

1√
2πσ2

1t
t
2
γ e

− (ln t)2

2σ2
1 dt

= C1β
2
γ

∫ ∞

ln
R
γ
0

Kβ

1√
2πσ2

1

e
2u
γ e

− u2

2σ2
1 du

= C1β
2
γ e

(
2σ1
γ

)2
∫ ∞

ln
R
γ
0

Kβ

1√
2πσ2

1

e
−

(u−
2σ2

1
γ )2

2σ2
1 du

= C1β
2
γ e

(
2σ1
γ

)2
Q

(
− ln β − ln(KR

−γ
0 )

σ1
−

2σ1
γ

)
·

In the case of Rayleigh fading we have:

B(β) = C1β
2
γ

∫ ∞

R
γ
0

Kβ

t
2
γ µe−µt dt

= C1

(
β

µ

) 2
γ

Γ

(
1 +

2

γ
,
µR

γ
0

Kβ

)
,

by a change of variables. Hence the results. �

Corollary 5. The number of BS covering a point x is distributed according
to the Poisson distribution of parameter λBB(T ). In particular, the outage
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Figure 2. Comparison of outage probability between prop-
agation models. For lognormal shadowing σ = 4(dB), for
Rayleigh fading µ = 1; K = 10−2, γ = 2.8.

probability given a threshold T is

P (ξx0 > T ) = e−λBB(T ).

Proof. The path loss fading Shx is a Poisson point process onR+ with inten-
sity λBB

′(t) dt, so the number of point on the interval (0, T ) is distributed
according to Poisson distribution of parameter λBB(T ). �

Figure 2 represents the outage probability for different models of fading.
This shows that the curves of modified path loss exponent model is generally
higher than those of path loss exponent model but they are very close in the
low outage region.

4. Capacity

In this section, we calculate the mean of any capacity function of a user.
Remark that since the system is spatially stationary the statistic of the
path loss fading and the capacity of a user does not depend on his position.
Since the PDF and the CDF of the path loss fading ξx0 have been already
calculated in Proposition 1, the mean of a capacity function of a user follows
immediately. In particular:

Theorem 2. The average capacity per user is

(4) E(f(ξx0 )) = λB

∫ ∞

0
B′(β)e−λBB(β)f(β) dβ·

In the case of path loss exponent model L(z) = K|z|−γ , we have:

(5) E(f(ξx0 )) = L
f̃
(λBC)

where Lg(s) =
∫∞
0 e−stg(t) dt is the Laplace transform of the capacity func-

tion g and f̃(t) = f(t
γ
2 ).
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Proof. Equation (4) comes from Proposition 1. If the path loss exponent
model is considered, then we have:

E(f(ξx0 )) = λB

∫ ∞

0

2C

γ
β

2
γ
−1

e−λBCβ
2
γ
f(β) dβ

=

∫ ∞

0
e−λBCβ1f(β

γ
2
1 ) dβ1

by the change of variable β1 = β
γ
2 . �

The statistic of the cell capacity So(f) is more difficult to analyze. In this
section, we calculate its mean m(f) and lower bound and upper bound of
its variance v(f). We state the following lemma, which is straightforward
due to Assumption 1 but still useful:

Lemma 3. Given a fixed configuration ΠB of BSs, the Poisson point pro-
cesses of path loss fading Shx and Shy are independent for any two different
points x, y.

Lemma 4. Let z = y − x. The PDF of syx is given by

psyx(t) =
1

l(z)t2
pH

(
1

L(z)t

)
.

Proof. We have

P (syx < t) = P (hyx >
1

L(z)t
)

= FH

(
1

L(z)t

)
.

The density probability function is then

psyx(t) =
1

L(z)t2
pH

(
1

L(z)t

)
.

�

Theorem 5. The expectation of the cell capacity of the typical BS is

(6) m(f) = λM

∫ ∞

0
B′(β)e−λBB(β)f(β) dβ·

In the case of path loss exponent model L(z) = K|z|−γ , we have:

(7) m(f) =
λM

λB
L
f̃
(λBC)·

Proof. Given a fixed configuration of BSs ΠB , the random variables 1(sox <

ξx0 )f(sox) obtained from all x ∈ R2 are independent. Thus, the marked

point process Π̃M = (xi, 1(soxi < ξxi
0 )f(soxi)) is a Poisson point process.

Using the Campbell theorem we have:

E(So(f) | ΠB) = λM

∫

R2

E (1(sox < ξx0 )f(sox) | ΠB) dx·
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As a consequence,

E(So(f)) = E

(
λM

∫

R2

E(1(sox < ξx0 )f(sox) | ΠB) dx

)

= λM

∫

R2

E (1(sox < ξx0 )f(sox)) dx·

In virtue of Lemma 4, Proposition 1 and Collary 1, we have:

E(So(f)) = λM

∫

R2

E(1(sox < ξx0 )f(sox)) dx

= λM

∫

R2

∫ ∞

0
psox(t)P (t < ξx0 )f(t) dt dx

= λM

∫ ∞

0
f(t)e−λBB(t) dt

∫

R2

∂FH

∂t

(
1

L(x)t

)
dx

= λM

∫ ∞

0
f(t)e−λBB(t) dt

∂

∂t

(∫

R2

F (
1

L(x)t
) dx

)

= λM

∫ ∞

0
f(t)e−λBB(t)B′(t) dt·

For the case of path loss exponent model, Equation 7 follows easily. This
completes the proof. �

Equation (6) has the following interpretation: the mean cell capacity is
the product of the mean number of users per cell and the mean capacity per
user.

Theorem 6. Given two capacity functions f, g we have :

(8) cov(So(f), So(g)) ≥ m(f.g)·

In particular,

var(So(f)) ≥ m(f2).

Proof. For simplicity, let βx = sox1(sox < ξx0 ) and f(0) = 0, g(0) = 0, we
have :

cov(So(f)So(g)) = E(cov(So(f), So(g) | ΠB))

+ E(E(So(f) | ΠB)E(So(g) | ΠB))− E(So(f))E(So(g))

= T1 + T2 − T3·

It is clear that

T3 = m(f)m(g)·

Consider the first term. Remind that we have assumed that all random
fading {hyx}y,x∈R2 are independent, so given a fixed configuration ΠB of
BSs, the random variables {βx}x∈R2 are independent. Hence by Campbell
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formula we have:

T1 = λME

∫

R2

E(f(βx)g(βx) | ΠB) dx

= λM

∫

R2

E(E(f(βx)g(βx) | ΠB)) dx

= λM

∫

R2

E(f(βx)g(βx)) dx

= m(f.g)·

Now consider the second term

T2 = λ2
ME

(∫

R2

E(f(βx) | ΠB) dx

∫

R2

E(g(βx) | ΠB) dx

)

= λ2
ME

(∫

R2

∫

R2

E(f(βx) | ΠB)E(g(βy) | ΠB) dx dy

)

= λ2
M

∫

R2

∫

R2

E (E(f(βx) | ΠB)E(g(βy) | ΠB)) dx dy

= λ2
M

∫

R2

∫

R2

E(f(βx))E(g(βy)) dx dy

= λ2
M

∫

R2

∫

R2

∫ ∞

0

∫ ∞

0
P (sox < ξx0 , soy < ξ

y
0 | sox = t1, soy = t2)×

× f(t1)g(t2)psox(t1)psoy(t2) dt1 dt2 dx dy·

by remarking that βx and βy are independent if x 6= y (Lemma 3). We will
prove that if x 6= y:

P (sox < ξx0 , soy < ξ
y
0 | sox = t1, soy = t2) ≥

P (sox < ξx0 | sox = t1)P (soy < ξ
y
0 | soy = t2)

Consider the marked point process Πx,y
B = {yi, hyix, hyiy)}. Since the marks

are independent, it is a Poisson point process on R4 with intensity

mx,u1,u2
a ( dy, du1, du2) = λM dy ⊗ pH(u1)du1 ⊗ pH(u2)du2·

Consider two sets

A1 = {(y, u1, u2) : L(y)u1 ≥ t−1
1 }

and

A2 = {(y, u1, u2) : L(y)u2 ≥ t−1
2 },

we have:

P (sox < ξx0 , soy < ξ
y
0 | sox = t1, soy = t2) = P (Πx,y

B (A1 ∪A2) = ∅)

= e−mx,y
a (A1∪A2)

≥ e−mx,y
a (A1)−mx,y

a (A2)

= P (Πx,y
B (A1) = ∅)P (Πx,y

B (A2) = ∅)

= P (sox < ξx0 | sox = t1)P (soy < ξ
y
0 | soy = t2)·
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Thus,

T2 ≥ λ2
M

∫

R2

∫

R2

∫ ∞

0

∫ ∞

0
P (sox < ξx0 | sox = t1)P (soy < ξ

y
0 | soy = t2)×

× f(t1)g(t2)psox(t1)psoy(t2) dt1 dt2 dx dy

= m(f)m(g)·

The result follows. �

Theorem 7. For f and g two capacity functions, we have:

cov(So(f), So(g)) ≤ m(f.g) +m(f)n(g)−m(f)m(g)

where

(9) n(f) = λM

∫ ∞

0
B′(t)f(t) dt·

Proof. We continue the proof of Theorem 6, we have to prove that

T2 ≤ m(f)n(g)·

Indeed,

P (sox < ξx0 , soy < ξ
y
0 | sox = t1, soy = t2) ≤ P (sox < ξx0 | sox = t1),

thus,

T2 ≤ λ2
M

∫

R2

∫

R2

∫ ∞

0

∫ ∞

0
P (sox < ξx0 | sox = t1)×

× f(t1)g(t2)psox(t1)psoy(t2) dt1 dt2 dx dy

≤ m(f)

∫ ∞

0
g(t2)

∫

R2

∂FH

∂t
(

1

L(x)t
) dx dt2

= m(f)n(g)·

Hence the result. �

5. Examples

5.1. Number of users in a cell. For f0(t) = 1, the random variable
no := S(f0) =

∑∞
i=0 1(xi ∈ Co) represents the number of users who view o

as the best server, and thus will be served by o.

E(no) = λM

∫ ∞

0
B′(β)e−λBB(β)dβ

=
λM

λB
·

The mean number of users served by a BS is λM
λB

which is easily interpreted.

We rewrite the formula (6) by

E(So(f)) =
λM

λB
E(f(ξx0 )).

Again this is easily interpreted. The average sum rate is the product of the
average user per cell and the average per user.

Now apply Theorem 6, we get that

var(no) ≥ m(1) =
λM

λB
·
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Figure 3. Histogram of no

We can not apply Theorem 7 because n(f0) = λM

∫∞
0 B′(t) dt = ∞.

5.2. Number of users in outage in a cell. Consider f1(t) = 1(t > T ),
then So(f1) is the number of users in outage in the typical cell. We have

m(f1) = λM

∫ ∞

T
B′(β)e−λBB(β)dβ

=
λM

λB
e−λBB(T ),

and

v(f1) ≥
λM

λB
e−λBB(T )·

Note that again, we can not apply Theorem 7 as n(f1) = λM

∫∞
T B′(t) dt is

infinite.

5.3. Number of covered users in a cell. Consider f2(t) = 1(t ≤ T ),
then S(f2) represents the number of covered users in the typical cell. We
have:

m(f2) = λM

∫ T

0
B′(β)e−λBB(β)dβ

=
λM

λB

(
1− e−λBB(T )

)
,

v(f2) ≥
λM

λB

(
1− e−λBB(T )

)
,

and

v(f2) ≤
λM

λB
e−λBB(T ) +

λ2
M

λ2
B

e−λBB(T )
(
λBB(T )− 1 + e−λBB(T )

)
·
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Figure 4. Tail distribution of So(f3)

5.4. Total bit rate of a cell. We now consider the piecewise constant
function f3(t) =

∑n
1 1(Ti ≤ t < Ti+1)ci with 0 < T1 < T2 < ... < Tn < Tn+1

and Tn+1 can be infinite. If f3 is the function that represents the actual bit
rate then So(f3) represents the total bit rates of all users in the cell. We
have:

m(f3) = λM

∫ ∞

0
B′(β)e−λBB(β)

n∑

1

1(Ti ≤ β < Ti+1)cidβ

= λM

n∑

i=1

ci

(
e−λBB(Ti) − e−λBB(Ti+1)

)
·

v(f3) ≥ λM

n∑

i=1

c2i

(
e−λBB(Ti) − e−λBB(Ti+1)

)
·

v(f3) ≤ λM

n∑

i=1

c2i

(
e−λBB(Ti) − e−λBB(Ti+1)

)
+

+

(
λM

λB

)2 n∑

i=1

(
e−λBB(Ti) − e−λBB(Ti+1)

)
×

×
n∑

i=1

(
λBB(Ti+1)− λBB(Ti)− e−λBB(Ti) + e−λBB(Ti+1)

)
·



ON NOISE LIMITED CELLULAR NETWORKS 15

−20 0 20 40 60 80 100 120 140 160
0

500

1000

1500

2000

2500

Figure 5. A typical histogram of So(f3)

5.5. Discussion on the distribution of So(f). The distribution of So(f)
does not behave like a Gaussian distribution even in the limit regimes. Take,
for example, the histogram of no = So(f0) and that of So(f3) which are
shown in figures 3 and 5 respectively. For the case of no fading, H =
constant, in [6] the author found some approximative but not reliable bounds
of the distribution of So(f) for equivariant functions f but no approximation
or bounds is found for general capacity functions. In addition, no closed
expression is found for the Laplace transform of functional So(f). In our
case where the fading is considered, this is expected to be more challenging.

We can find an upper bound for the tail distribution by Chebyshev’s
inequality:

P (So(f) > m(f) + t) ≤
v(f)

v(f) + t2

≤
m(f2) +m(f)n(f)− (m(f))2

m(f2) +m(f)n(f)− (m(f))2 + t2

The above inequality provides a robust upper bound for the tail distribution
and valid for all capacity function f . However the gap is large (Figure
4). It is well known that other types of concentration inequality based
on Chernoff bound can give better bound. In this direction, [10], [5] and
[12] provide concentration inequalities that apply for functional related to
one PPP. These inequalities can not be directly applied in our case because
our target is a functional related to two independent PPPs. Actually we can
combine the two independent PPPs into one united PPP by the independent
marking theorem. Unfortunately the functional So(f) of the united PPP
does not satisfy the required conditions for the concentration inequalities
neither on [10], [12] nor on [5]. But we believe that similar techniques used
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in these references can be used to derive a upper bound the tail distribution
of So(f).

6. Conclusion

In this paper we introduce a general model to evaluate the outage prob-
ability and the capacity of wireless noise limited network. It is in fact an
extension of models introduced in series of papers [4], [3], [6]. The main
difference is that we take into account the effect of fading, and that we as-
sume that a user connects to the BS with strongest signal rather than the
closest one. We first show that for a particular user, the path loss fading
process from all BSs seen from this user is a Poisson point process in the
positive half line. We find explicit expression for the outage probability, the
expectation of capacity of a user, and the expectation of the cell capacity
of the typical BS So(f). We find the lower bound and upper bound for the
variance of the cell capacity. We consider general model for path loss and
fading. The results presented in this paper actually generalizes the results
on [6]. Possible further research is to find a way to compute the distribution
of So(f).
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