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Abstract

A group G is a vGBS group if it admits a decomposition as a fi-

nite graph of groups with all edge and vertex groups finitely generated

and free abelian. We construct the JSJ decomposition of a vGBS group

over abelian groups. We prove that this decomposition is explicitly com-

putable, and may be obtained by local changes on the initial graph of

groups.

1 Introduction

The theory of JSJ decomposition starts with the work of Jaco-Shalen and Jo-
hansson on orientable irreducible closed 3-manifolds giving a canonical family
of 2-dimensional tori. Kropholler first introduced the notion into group theory
giving a JSJ decomposition for some Poincaré duality groups [6]. Then Sela
gave a construction for torsion-free hyperbolic groups [8]. This notion has been
more generally developed by Rips and Sela [7], Dunwoody and Sageev [2], Fu-
jiwara and Papasoglu [4] for various classes of groups. In [5], Guirardel and
Levitt generalize the object by introducing the definition of JSJ deformation
space, proving the existence of this space for finitely presented groups.

In this paper we consider the following class of groups.
Let Γ be a finite graph of groups with all vertex groups finitely generated

free abelian. Let G be the fundamental group of Γ. If the rank of all edge and
vertex groups is equal to a fixed integer n, we call such a group a GBSn group,
standing for Generalized Baumslag-Solitar groups of rank n. When the rank
is variable, we call such a group a vGBS group. The goal of this paper is to
describe the JSJ decomposition of G over abelian groups and to give a way to
construct it.

A decomposition of a group G is a graph of groups with fundamental group
G. To define what a JSJ decomposition is, we need the notion of universally
elliptic subgroups. Given a group G and a decomposition Γ of G, a subgroup
H is elliptic if the group H is conjugate to a subgroup of a vertex group of Γ.
Given a class of subgroups A of G, a subgroup H ⊂ G is universally elliptic, if
H is elliptic in every decomposition of G as a graph of groups with edge groups
in A. A decomposition is universally elliptic if all edge groups are universally
elliptic.

A decomposition Γ dominates another decomposition Γ′, if every elliptic
group of Γ is elliptic in Γ′. A decomposition is a JSJ decomposition if it is uni-
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versally elliptic, and it dominates every other universally elliptic decomposition.
Then given a vertex v in a JSJ decomposition, either Gv, the vertex group of v,
is universally elliptic, we say v is rigid, or Gv is not then we say v is flexible.

For instance, looking at the JSJ decomposition of a torsion-free hyperbolic
group over cyclic groups described by Sela in [8] and Bowditch [1], the flexible
vertex groups are exactly the surface groups.

The defining decomposition Γ of a vGBS group G is a good approximation
of the JSJ. For example, for a GBSn group, the graph of groups Γ is a JSJ
decomposition whenever the associated Bass-Serre tree T (which is locally finite
in this case) is not a line ([3],[5]) or equivalently whenever G is not polycyclic.

In the general case three kinds of local changes may be needed to obtain the
JSJ from Γ.

• When the quotient of a vertex group Gv of the decomposition Γ by the
group G̃v generated by all adjacent edge groups is virtually cyclic, then
the vertex is blown into a loop (see figure 1 for the simplest example).

Zn

Zn+2 Zp

v

Zn+2

Zn
ZnZn

=⇒

if p = n+ 1

Figure 1: Expansion of the vertex v

To be more specific, in figure 1, if p = n, then the edge group has finite
index in the vertex group of v and v is rigid. If p = n + 1, there exists
a unique non-trivial splitting of v which leaves the Zn part elliptic. The
vertex must be blown into a loop as in the figure, and the new vertex is
then rigid. If p ≥ n+ 2 then v is flexible.

• Conversely some loops must be collapsed.

A loop l based at a vertex v is called a 1 − 1 loop if both inclusion maps
of its edge group into Gv are bijections. The fundamental group of the
subgraph of groups composed of v and l is a semi-direct product Zn⋊ϕZ.
Some of the 1 − 1 loops are collapsed, depending on ϕ and on the other
edges adjacent to v.

For example, in figure 2, the loop must be collapsed if and only if k < n :
if k < n, there are many decompositions of Zn+1 = Zn ⋊id Z as an HNN
extension leaving Zk in the vertex group. If k = n, there is exactly one,
and its edge group is universally elliptic.

• A similar phenomenon occurs for edges which are not loops and whose
group has index 2 in each adjacent vertex group (see figure 3). We call an
edge of this type a 2− 2 edge.

Given an edge e of Γ, call Γe the subgraph consisting of the single edge e
(and its vertices) and Πe its fundamental group.
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Zn k < n

=⇒

id

id

Figure 2: Collapse of a 1− 1 loop

=⇒

Z2 = 〈c, d〉
b

b

Z2 = 〈a, b〉

b

a2 = c2

〈a, c〉 × 〈b〉

〈b4〉

〈b3〉

〈b3〉

〈b4〉
〈d2〉

〈d7〉

〈d3〉

〈d2〉

〈d7〉

〈d3〉

b = d

Figure 3: The group 〈a, c〉 is a Klein bottle group with trivial intersection with
the adjacent edge groups.

To obtain the JSJ decomposition of a vGBS group over abelian groups, we
show that it suffices to expand vertex groups Gv such that Gv/G̃v is virtually
cyclic as in figure 1, and collapse edges which are not universally elliptic. These
edges have polycyclic groups, and so are 1−1 loops and 2−2 edges as in figures
2 and 3.

Theorem 1.1. Let G = π1(Λ) be a vGBS group. For v a vertex, let G̃v be the
subgroup of Gv generated by groups of edges adjacent to v. A JSJ decomposition
of G over abelian groups can be obtained by

• expanding the groups Gv such that Gv/G̃v is virtually cyclic,

• collapsing 2− 2 edges and 1− 1 loops e which are not universally elliptic.

As for hyperbolic groups, in a JSJ of a vGBS group, the rigid vertices are
also easily identifiable. A vertex is rigid if and only if its vertex group is abelian
and virtually generated by the adjacent edge groups.

In order to make theorem 1.1 more explicit, we shall now describe the edges
which are not universally elliptic.

We first describe the edges e for which Πe has a trivial JSJ decomposition.
This is the same as giving the JSJ decomposition of polycyclic GBSn groups.
As (reduced) decompositions of polycyclic groups must have a line (or a point)
as Bass-Serre tree, these decompositions have at most one edge, which may be
of two types.

The first are the 2− 2 edges, that is, non-loop edges whose group is of index
2 in the groups of the two adjacent vertices. Then Πe is isomorphic to a direct
product of a Zn by either the Klein bottle group 〈a, b|a2 = b2〉, or the twisted
Klein bottle group 〈a, b|a2b = ba2, ab2 = b2a〉.
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The second are 1− 1 loops (whose inclusion maps into the vertex group are
bijections), and their groups can be seen as semi-direct product Zn ⋊ϕ Z:

Theorem 1.2. 1. If e is an edge of type 2 − 2 then Πe has a trivial JSJ
decomposition over abelian groups.

2. Let us take ϕ in Aut(Zn) ≃ GLn(Z).

The group Gϕ = Z
n
⋊ϕ Z has a trivial JSJ decomposition if and only

if ϕ can be written in a well-chosen basis (x, h1, . . . , hn−1) in one of the
following ways:

(a)

(

1 0
p M

)

with M an (n− 1)× (n− 1) matrix of finite order and p

in Zn−1,

(b)

(

−1 0
p Idn−1

)

with p in Zn−1.

In every other case the semi-direct product Zn⋊ϕZ is a JSJ decomposition.

This theorem is proved in section 4 and 5.
By [5, lemma 4.10], we know that the edges e which are not universally ellip-

tic are those for which Πe has a trivial JSJ decomposition relative to adjacent
edge groups. We therefore have to understand how Πe is embedded in the whole
group. More precisely, we look at the way the adjacent edge groups inject into
Πe. We obtain the following theorem which makes theorem 1.1 explicit.

Define a hyperplane of Zn as the kernel of a morphism from Zn to Z.

Theorem 1.3. Let G = π1(Γ) be a vGBS group. For v a vertex, let G̃v be the
subgroup of Gv generated by groups of edges adjacent to v. A JSJ decomposition
of G over abelian groups can be obtained by

• expanding the groups Gv such that Gv/G̃v is virtually cyclic,

• collapsing 1−1 edges e such that Πe may be decomposed as in theorem 1.2
with all adjacent edge groups included in the hyperplane 〈h1, . . . , hn−1〉.

• collapsing 2 − 2 edges e with vertices v and v′, such that there is a hy-
perplane H of Ge which is also a hyperplane of Gv and Gv′ and which
contains all groups of adjacent edges, Ge excepted.

We prove this proposition in sections 6 and 7. We prove in section 8 that
the construction of the JSJ is algorithmic.

From theorem 1.3, we obtain the JSJ decomposition of vGBS groups over
abelian groups with bounded rank:

Theorem 1.4. Let G = π1(Γ) a vGBS group, and n ∈ N. Suppose that Γ is
a JSJ decomposition over free abelian groups. Then a JSJ decomposition over
free abelian groups of rank ≤ n may be obtained by collapsing every edge of Γ
with group of rank > n.
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2 Preliminaries

Let G be a finitely generated group. We denote by T the Bass-Serre tree asso-
ciated to a finite graph of groups decomposition Γ of G. For a vertex v (resp.
an edge e) of Γ, we denote Gv(Γ) (resp Ge(Γ)) its stabilizer. Most of the time
Γ will be omitted.

For e an (unoriented) edge of T with vertices v and v′, we call the type of e
the couple m− n of potentially infinite numbers with m ≤ n such that Ge is of
index m in Gv and n in Gv′ . For example, an edge whose stabilizer equals the
stabilizer of its vertices, is of type 1− 1. This type only depends on the orbit of
the edge, so we define the type of an edge of the graph of groups as the type of
an edge in T representing it. We say that an edge e of T is a loop if its vertices
are in the same orbit under the action of G. A graph of groups is reduced if all
edges of type 1−n are loops in the graph. Every decomposition may be reduced
by contracting successively the edges of type 1− n which are not loops.

Given a Bass-Serre tree T , an element g ∈ G is elliptic if it fixes a vertex.
Otherwise g is said to be hyperbolic. The characteristic space of g is the minimal
subtree of T containing the vertices v such that the distance between v and g ·v
is minimal (seeing T as a metric space with all edges of lenght 1). When g is
elliptic, it is the set of all fixed edges and vertices. When g is hyperbolic this is
the only line on which g acts by a translation. In this case we call it the axis
of g. A subgroup H of G is elliptic if it fixes a vertex or equivalently when
H is finitely generated if all of its elements are elliptic. In the case of finitely
generated abelian groups, the ellipticity of a generating set implies the ellipticity
of the whole group.

From now on and for the rest of the paper, the decompositions we consider
will be over free abelian groups, meaning that every edge stabilizer is finitely
generated free abelian.

An element or a subgroup of G is universally elliptic if it is elliptic in the
Bass-Serre trees of all graph of groups decompositions. An edge is universally
elliptic if it carry a universally elliptic group. A decomposition is universally
elliptic if all edge are universally elliptic. A graph of group decomposition Γ
dominates an other decomposition Γ′ if every elliptic subgroups of Γ is elliptic in
Γ′. A JSJ decomposition is a universally elliptic decomposition which dominates
every other universally elliptic decomposition ([5]).

If e is an edge of a Bass Serre tree, with vertices v1 and v2, of type 1 − 1
representing a loop l in the graph of groups, let t be a hyperbolic element such
that t · v1 = v2. We call modulus of l the linear map ϕ ∈ Aut(Gv1) such that
for all x in Gv1 we have ϕ(x) = txt−1. As Gv ≃ Gl ≃ Zn, we can see ϕ as an
element of GLn(Z). Up to conjugacy, the modulus does not depend neither on
the choice of t nor on the choice of e representing l but is switched to its inverse
if we change the orientation of l.

3 Universally elliptic edges

Proposition 3.1. Let G = π1(Γ) be a graph of groups and T its Bass-Serre
tree. Let x be a hyperbolic element of G. Then the centralizer CG(x) of x in G
is a semi-direct product E⋊H with E a subgroup of an edge stabilizer of T and
H a cyclic subgroup of G generated by a hyperbolic element.
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When all edge groups of Γ are finitely generated free abelian, the centralizer
of a hyperbolic element is a polycyclic group Zn ⋊ Z.

Proof. The group CG(x) acts on the axis of x by translation. This action defines
a morphism from CG(x) to Z. The kernel of this morphism fixes the axis
pointwise and so belongs to the stabilizer of the axis.

The centralizers of hyperbolic elements have a very specific structure, which
is not the case for elliptic ones. This forces most of edge groups of vGBS group
to be universally elliptic:

Corollary 3.2. Let G = π1(Γ) be a vGBS group with Γ reduced. Let e be an
edge of Γ.

1. If e is not a loop of Γ and is not a 2−2 edge then Ge is universally elliptic.

2. If e is a loop of Γ but is not 1− 1 then Ge is universally elliptic.

Proof. Call ẽ a representative of e in the Bass-Serre tree. An abelian group
generated by finitely many elliptic elements is elliptic. We just have to show
that each element of the edge group Gẽ is universally elliptic.

Let ṽ and ṽ′ be the endpoints of ẽ. Then Gṽ ∗Gẽ
Gṽ′ is contained in the

centralizer of Gẽ. If Gẽ is not of index ≤ 2 in both ṽ and ṽ′, the amalgam
contains a free group. So the centralizer of Gẽ cannot be a polycyclic group.
By proposition 3.1, every element of the edge stabilizer Gẽ is elliptic and Ge is
universally elliptic.

There remain two cases: when e is a 2− 2 loop, and when e is a 1− k loop
with k > 1. In both cases, let t ∈ G be such that t · ṽ = ṽ′.

If e is a 2−2 loop, let α be a square in Gẽ. Then the centralizer of α contains
Gṽ, tGṽt

−1 and t−1Gṽt and so the group tGṽt
−1 ∗Gẽ

(Gṽ ∗t−1Gẽt t
−1Gṽt). But

this amalgamated product is of 2−∞ type, the same argument as before works.
And so α is universally elliptic. Every element of Gẽ has a universally elliptic
square, and Ge is universally elliptic.

If e is a 1 − k loop with k > 1, then for all n > 0, the group Gẽ is a
subgroup of tnGṽt

−n which is abelian. So its centralizer contains
⋃

n>0 t
nGṽt

−n,
a strictly increasing union of groups. The centralizer contains a non-finitely
generated group and cannot be polycyclic, contradicting proposition 3.1. So Ge

is universally elliptic.

Graphs of groups consisting of an HNN-extension of type 1− 1 or an amal-
gamation of type 2 − 2 are exactly the reduced ones whose Bass-Serre trees
are lines. They are the polycyclic vGBS groups. The goal of the next two
paragraphs is to study the different decompositions of these groups in order to
determine their JSJ.

4 Edges of type 2− 2

In this part, one shows that, for a given n, there are exactly two vGBS groups
whose graphs of groups have two vertices with vertex group Zn linked by an
edge of type 2−2, and that these two groups can be seen as semi-direct products
of Zn by Z. So these groups have both an action by translation and a dihedral
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action on R. We shall prove in next section that they both have a trivial JSJ
decomposition.

The first one is the direct product of the Klein bottle groupK = 〈b0, b1| b
2
0 =

b21〉 by E = Zn−1. One will call K the untwisted Klein bottle group.
The second one is a twisted version of the first, it can be described as the

product of F = Zn−2 and the group K ′ with presentation

〈b0, b1| b
2
0b1 = b1b

2
0, b

2
1b0 = b0b

2
1〉.

One will call K ′ the twisted Klein bottle group.
Graph of groups decompositions of K and K ′ are as in figure 4.

〈b0〉 〈b1〉 〈b0, b
2
1〉 〈b20, b1〉

Figure 4

The two sets of groups K×E and K ′×F will be called extended (untwisted
or twisted) Klein bottle groups. Like K and K ′, they have a decomposition in a
amalgam of type 2− 2.

Proposition 4.1. Let G be a vGBS group and n ∈ N. The following are
equivalent:

i) The group G is an extended Klein bottle group K × Zn−1 or K ′ × Zn−2.

ii) The group G is a semi-direct product Zn ⋊ϕ Z with ϕ =

(

−1 0
p Idn−1

)

in a suitable basis of Zn.

iii) The group G admits a graph of group decomposition with two vertices
carrying groups Z

n and an edge of type 2− 2.

We shall prove successively i) ⇔ ii) and iii) ⇔ i)

Lemma 4.2. The group K can be seen as a semi-direct product Z⋊−Id Z, and

K ′ as Z2 ⋊ϕ Z with ϕ =

(

−1 0
1 1

)

.

Proof. The proof consists in giving for K and K ′ a change of presentation, such
that the second one is a semi-direct product.

In the case of K, the change of presentation is well known:

ψ : 〈b0, b1|b
2
0 = b21〉

∼
−→ 〈t, a0|tat

−1 = a−1〉
b0 7−→ t

b0b
−1
1 7−→ a

.

In the second case, the presentation

P = 〈b0, b1|b
2
0b1 = b1b

2
0, b

2
1b0 = b0b

2
1〉

of K ′ can be changed to

P ′ = 〈t, a1, a2|ta2t
−1 = a2, ta1t

−1 = a−1
1 a2, [a1, a2] = 1〉

7



via the map
ψ : P

∼
−→ P ′

b0 7−→ t
b0b

−1
1 7−→ a1

b20b
−2
1 7−→ a2

.

Corollary 4.3. Each group K × E and K ′ × F can be identified with a semi-

direct product Zn ⋊ϕ Z where ϕ ∈ Aut(Zn) has matrix

(

−1 0
p Idn−1

)

in a

well-chosen basis (x, h1, . . . hn−1) .
Moreover, with this identification:

• x = b0b
−1
1 ,

• for all h in 〈h1, . . . hn−1〉, the element xh is hyperbolic in the decomposition
in amalgam of type 2− 2,

• 〈h1, . . . hn−1〉 = E in the case of K × E,

• 〈h1, . . . hn−1〉 = 〈F, b20b
−2
1 〉 in the case of K ′ × F .

In particular, in the semi-direct product decomposition, seen as an HNN
extension, the groups E, F and the element b20b

−2
1 stay elliptic, the element

b0b
−1
1 is elliptic too. On the opposite b0 and b1 are hyperbolic.

One can notice that, in the case of untwisted Klein bottle groups, the element
b20b

−2
1 is trivial.

Proof. The changes of presentation described in the previous proof can be ex-
tended toK×E orK ′×F by noticing that (Zp⋊ϕZ)×Zq ≃ (Zp×Zq)⋊(ϕ×Idq)Z.
The four points are easy to check.

This proves i) ⇒ ii) in proposition 4.1.

The automorphism ϕ =

(

−1 0
p Idn−1

)

is conjugate to

(

−1 0
0 Idn−1

)

if all

coordinates of p are even, to





−1 0 0
1 1 0
0 0 Idn−2



 if one is odd. So the semi-

direct product Zn ⋊ϕ Z is isomorphic to one of K ×E or K ′ × F . This implies
the ii) ⇒ i) part.

i) ⇒ iii) has already been done.
Let us prove iii) ⇒ i).
Let A and B be two copies of Zn generated by the sets {a1, . . . , an} and

{b1, . . . , bn} respectively. By assumption, G has a presentation

〈A,B| a21 = ϕ(a21), aj = ϕ(aj), 2 ≤ j ≤ n〉

where ϕ is an isomorphism between 〈a21, a2, . . . , an〉 and 〈b21, b2, . . . , bn〉.
If ϕ−1(b21) is a square in A, let c be its square root. Let us take the family

{

c, ϕ−1(bi), i > 1
}

as a basis of A. The presentation of G is then changed to

〈b1, b2, . . . , bn, c | bibj = bjbi, c
2 = b21, cbj = bjc for j 6= 1, 〉
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which is a presentation of an extended Klein bottle group.
If ϕ−1(b21) is not a square in A, then ϕ−1(b21) may be written

∏n

i=1 a
νi
i , and

there exists r > 1 for which νr is odd. We may assume r = 2. The element
ã2 = a1−ν2

2 ϕ−1(b21) is such that its image by ϕ is a square b̃22 in B with b̃2 out
of the image of ϕ. As a2 can be written a2 = ã2 ·

∏n

i=1,i6=2 a
−νi
i , the family

{ã2, ai, i 6= 2} is a basis of A. Taking as generators for B the elements c2 = b̃2,
c1 = ϕ(a21) and ci = ϕ(ai) for i > 2, the group G admits as presentation

〈ai, ci|aiaj = ajai, cicj = cjci, a
2
1 = c1, a2 = c22, ai = ci, i > 2〉.

And G is isomorphic to K ′ × Zn−2.

5 Loops of type 1− 1

The groups we consider here are semi-direct products of Zn by Z. The goal of
the section is to determine their JSJ decompositions.

For ϕ an element of Gln(Z) we write Gϕ the group Zn ⋊ϕ Z. We will call
hyperplane of Zn the kernel of a linear map f : Zn

։ Z.

Proposition 5.1. If ϕ cannot be written (up to conjugation) in one of the
following ways:

1.

(

1 0
p M

)

with M an (n − 1) × (n − 1) matrix of finite order and p in

Zn−1,

2.

(

−1 0
p Idn−1

)

with p in Zn−1.

then the group Gϕ = Z
n
⋊ϕZ has a unique non-trivial (reduced) graph of groups

decomposition.
Its JSJ decomposition is the HNN-extension Zn∗ϕ.

Lemma 5.2. Let x be an element of the Z
n part of Gϕ. Assume that there

exists a graph of groups decomposition Λ of Gϕ for which x is hyperbolic. Then
there exists a hyperplane H ⊂ Zn elliptic in the decomposition Λ, stable under
the action of ϕ, and such that ϕ|H has finite order. Moreover, the set of elliptic
elements of Zn in Λ is exactly H, and if ϕ(x)x−1 does not belong to H then
ϕ|H = Id. In particular ϕ can be written in one of the forms described in
proposition 5.1.

Proof. The group Gϕ is polycyclic, so the Bass-Serre tree T associated to Λ
is a line. The set of elliptic elements of Zn in Λ is the kernel of a non trivial
homomorphism from Zn onto Z. It is therefore a hyperplane H in Zn not
containing x. Elements of H act as the identity on T . Moreover ϕ(H) = tHt−1

is also an elliptic subgroup of Zn in Λ. We obtain the inclusion ϕ(H) ⊂ H , and
so ϕ stabilizes H .

If ϕ|H = Id, then the lemma holds. Let us assume ϕ|H 6= Id and let us show
that ϕ|H has finite order and that ϕ(x)x−1 belongs to H .

Write Gϕ = Zn⋊ϕ 〈t〉. If the stable letter t is elliptic in Λ, then it commutes
with H and so ϕ|H = Id. The letter t must therefore be hyperbolic. There

exist two non-zero integers h and k such that xhtk is elliptic. Then xhtk must

9



commute with H , but x also commutes with H , so tk commutes with H . One
has ϕk

|H = IdH .

There exists an element g ∈ H for which txt−1 = ϕ(x) = xpg with p = ±1.
But t and x act by translation implying that p = +1 and that ϕ(x)x−1 belongs
to H .

Proof of proposition 5.1. By lemma 5.2, when ϕ is not as in 1. and 2. the vertex
group of Gϕ (seen as an HNN extension) is universally elliptic. By [5, lemma
4.6], the JSJ decomposition of Gϕ is the HNN extension Zn∗ϕ.

Every other group Gϕ has at least one other action:

Lemma 5.3. Let (x, h1, . . . , hn−1) be a basis of Zn in which ϕ can be written
as in 1. or 2. of proposition 5.1. Then the semi-direct product Gϕ = Zn ⋊ϕ 〈t〉
can be decomposed as a graph of groups in which H = 〈h1, . . . , hn−1〉 is elliptic
and xh is hyperbolic for all h in H.

Proof. The second case has already been done (see proposition 4.1 and corollary
4.3). It remains the first case.

We produce another decomposition of Gϕ as a semi-direct product. Call k
the order of M .

Define f : Gϕ → Z by f(t) = 1, f(x) = −k, and f(g) = 0 for all g ∈ H . As
tHt−1 = H and txt−1 = xh with h in H , this is well defined.

Let Gϕ act on the line by translations via f . The kernel of the action
is generated by H and xtk which commute. It is therefore an abelian group
Zn.

Proposition 5.4. If ϕ can be written in one of the following ways

1.

(

1 0
p M

)

with M an (n − 1) × (n − 1) matrix of finite order and p in

Zn−1,

2.

(

−1 0
p Idn−1

)

with p in Zn−1

then the group Gϕ has trivial JSJ decomposition.

Proof. Let x, H and t be as in lemma 5.3. Following lemma 5.3, no element of
xH is universally elliptic. In every JSJ decomposition each of these elements is
hyperbolic or fixes a unique vertex of the Bass-Serre tree T of this decomposition.

Assume every element of xH is elliptic. Since E = 〈x,H〉 is abelian, they all
fix the same vertex. So the group E is elliptic and fixes a unique vertex v ∈ T .
But E is normal, so the decomposition is trivial.

Let us now assume that there exists a hyperbolic element y ∈ xH . Either t
is elliptic and t2 fixes the whole tree, or t is hyperbolic and acts by a translation.
In particular, there exist p in Z and q in Z∗ such that yptq is elliptic and belongs
to an edge stabilizer. This element, hyperbolic in the initial graph of groups, is
not universally elliptic, which is a contradiction.
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6 Interactions between subgraphs

For e an edge of a graph of group Γ, call Γe the subgraph consisting of the single
edge e (and its vertices) and Πe its fundamental group.

Until now, we have shown that the non-universally elliptic edges must be
1 − 1 loops or 2 − 2 edges (Corollary 3.2). In this section, we characterize
the non-universally elliptic edges e. We show that necessarily Πe has trivial
JSJ decomposition, and that adjacent edge groups are included in a specific
hyperplane of Ge.

We first prove that two adjacent edges cannot be both non-universally ellip-
tic.

Lemma 6.1. Let G = π1(Γ) be a vGBS group and T its Bass-Serre tree. Let
v be a vertex of Γ. Let e and f be loops of type 1 − 1 or edges of type 2 − 2,
distinct and adjacent to v. Then Ge and Gf are universally elliptic.

Proof. Let ẽ, f̃ and ṽ be preimages in T of e, f and v respectively such that
ẽ and f̃ have ṽ as common vertex. We call w̃1 and w̃2 the second vertices of ẽ
and f̃ respectively. There are three cases to handle.

1. The edges ẽ and f̃ are of type 1− 1.

Let t and t′ such that t · ṽ = w̃1 and t′ · ṽ = w̃2 Take y ∈ Gṽ = Gẽ = Gf̃

and suppose y is not universally elliptic. Let Γ′ be a graph of groups in
which y is hyperbolic. As y, tyt−1 and t′yt′−1 commute, the elements t
and t′ must stabilize the axis of y. So there exist p, q, r and s integers
such that q 6= 0, s 6= 0, and yptq and yrt′s are elliptic with characteristic
spaces containing the axis of y. So yptq and yrt′s must commute. Yet
their projections in the (topological) fundamental group of the graph Γ
generate a free group of rank 2, which is a contradiction.

2. The edges ẽ and f̃ are of type 2− 2.

We show that every y ∈ Gẽ is universally elliptic. Replacing y by y2 we
may assume that y ∈ Gf̃ . Let us fix x1 ∈ Gw̃1 \ Gẽ, x2 ∈ Gw̃2 \ Gf̃ and
z ∈ Gṽ \ (Gẽ ∪ Gf̃ ). So x1z and x2z are in the centralizer of y, since x1,
x2 and z are in it. Yet those are hyperbolic elements with distinct axis
crossing precisely in ṽ, they generate a free group. Applying proposition
3.1 y is universally elliptic.

3. The edge ẽ is of type 1− 1 and f̃ of type 2− 2.

Let t be as in the first case. Let us fix x ∈ Gw̃2 \Gf̃ and z ∈ Gṽ\Gf̃ . In the

same way as last case, the elements xz and txzt−1 are in the centralizer
of G2

ẽ (the set of squares of Gẽ) and generate a free group.

Proposition 6.2. Let G = π1(Γ) be a vGBS group. Let e be a 1− 1 loop based
at a vertex v and ϕ ∈ Aut(Gv) the modulus of e. Let G̃v ⊂ Gv be the group
generated by the groups of adjacent edges, e excepted. Then Ge is universally
elliptic if and only if there is no decomposition Gv = 〈x〉 ×H such that

1. G̃v ⊂ H,
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2. ϕ stabilize H

3. - either ϕ(x)x−1 ∈ H and ϕ act on H with finite order,
- or ϕ(x)x ∈ H and ϕ|H = Id.

Proof. Assume Ge is not universally elliptic, and let Γ′ be a decomposition in
which Ge is not elliptic. From lemma 5.2, there exist a decomposition Gv =
〈x〉 ×H satisfying 2 and 3 such that H is exactly the set of all elliptic elements
of Gv in the decomposition Γ′. By corollary 3.2 and lemma 6.1 , the group G̃v

is universally elliptic, so G̃v is included in H .
Conversely, suppose such a decomposition 〈x〉 ×H exists.
Let t be a stable letter of e. Take (h1, . . . , hn−1) as basis of H , completing

it by x to make a basis (x, h1, . . . , hn−1) of Gv. Then t act on Gv by a linear

map

(

ε 0
p M

)

with ε = ±1 , M a finite order matrix and M = Id if ε = −1.

We can apply lemma 5.3, and so there is a graph of groups Λ of 〈Gv, t〉 in which
x is hyperbolic and H is elliptic. Call v′ an vertex of Λ with H ⊂ Gv′ . We
can construct a new graph of group decomposition Γ′ of G as follows. The
underlying graph is obtained by removing e from Γ and gluing Λ by adding an
edge between v ∈ Γ and v′ ∈ Λ. We define the vertex groups in the following
way:

• for every vertex w of Γ′ coming from a vertex of Γ\{v}, we define Gw(Γ
′) =

Gw(Γ),
• for every edge f of Γ′ coming from an edge of Γ not adjacent to v, we define
Gf (Γ

′) = Gf (Γ) with the natural inclusions in the adjacent vertices,
• Gv(Γ

′) = H ,
• for every edge f of Γ′ coming from an edge of Γ adjacent to v, we define
Gf (Γ

′) = Gf (Γ), with the inclusion Gf (Γ
′) →֒ Gv(Γ

′) coming from the
inclusions Gf (Γ) ⊂ H coming from the assumption 1,

• for every vertex w of Γ′ coming from a vertex of Λ including v′, we define
Gw(Γ

′) = Gw(Λ),
• for every edge f of Γ′ coming from an edge of Λ, we define Gf (Γ

′) = Gf (Λ)
with the natural inclusions in the adjacent vertices,

• for f the edge between Γ and Λ, we define Gf = H , with natural inclusions

Gf = H
Id
−→ Gv(Γ

′) = H and Gf →֒ Gv′(Γ′) coming from H ⊂ Gv′(Λ).

Using the isomorphism Gv′ ≃ Gv′ ∗H H , we easily check that π1(Γ
′) = G In

particular Γ′ is a decomposition of G in which x is hyperbolic. The element x
is not universally elliptic.

The case of a type 2− 2 edge is similar.

Proposition 6.3. Let G = π1(Γ) be a vGBS group. Let e be an edge of type
2 − 2 with vertices v and v′. We identify Ge with its images into Gv and Gv′ .
Then Ge is universally elliptic if and only if there is no hyperplane H of Ge

such that H is also a hyperplane of Gv and Gv′ , and H contains all groups of
adjacent edges, Ge excepted.

If Ge is not universally elliptic, a decomposition Γ′ in which Ge is not elliptic
may be obtain from Γ by replacing e by a 1 − 1 loop whose stabilizer is not
universally elliptic (see figure 5).
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Example. Let G1 and G2 be two vGBS groups with defining graphs Γ1 and
Γ2and v ∈ Γ1, v

′ ∈ Γ2 two vertices with groups Zn. We construct a new
vGBS group with graph of groups Γ as the union of Γ1 and Γ2 and a new edge e
between v and v′. We define Gv(Γ) = Gv(Γ1)× 〈a〉 and Gv′(Γ) = Gv(Γ2)× 〈b〉.
We then define the edge group Ge to be Zn × 〈c〉 identifying c with a2 in Gv(Γ)
and with b2 in Gv′(Γ) and the Zn part with Gv(Γ1) and Gv′(Γ2).

The group π1(Γ) has an other decomposition Γ′, with underlying graph ob-
tained gluing Γ1 and Γ2 by identifying v and v′ together, and adding a loop l
over the new vertex. Define Gv(Γ

′) = Zn × 〈d〉. The loop carries the HNN
extension with sable letter t define by tdt−1 = d−1 and tht−1 = h for all h in
Z
n. To obtain the isomorphism between Πl and Πe, it suffices to identify t with

a, d with ab−1, and the Zn parts together.
In Γ the group K̃ = Πe = Gv(Γ)∗Ge

Gv′(Γ) is a extended Klein bottle group.
The Z

n part of Ge(Γ) plays the role of H in proposition 6.3.

v′

G′b

v = v′

G′G
b

v
G b

Figure 5: The left graph represent Γ, the right one Γ′.

Proof. We call K̃ the group Gv ∗Ge
Gv′ . By proposition 4.1 K̃ is an extended

Klein bottle group, so we have K̃ = 〈λ, µ | R〉×L with L a free abelian subgroup,
λ ∈ Gv \Ge, µ ∈ Gv′ \Ge and R the relators of the -twisted or not- Klein bottle
group. We have Ge = 〈λ2, µ2〉 × L with λ2 = µ2 in the case of the untwisted
Klein bottle group.

First, assume there exists a hyperplane H of Ge which is also a hyperplane
of Gv and Gv′ and contains all groups of adjacent edges, Ge excepted. Let us
prove Ge is not universally elliptic.

We can fix xv and xv′ two elements such that Gv = 〈xv, H〉 and Gv′ =
〈xv′ , H〉. As Ge has index 2 in both Gv and Gv′ , and H is included in Ge,
we must have Ge = 〈x2v, H〉 = 〈x2v′ , H〉. So there exists h ∈ H such that
K̃ = 〈xv, xv′ , H |x2v = x±2

v′ h, [H,xv] = [H,xv′ ] = 1〉. Up to taking the inverse of
xv′ , one may assume x2v = x2v′h.

If h is a square of an element h′, replacing xv′ by xv′h′, the group K̃ may
have the presentation K̃ = 〈xv, xv′ |x2v = x2v′〉 ×H . By lemma 4.3, the group K̃
admit a decomposition in semi-direct product (i. e. a graph of groups with one
vertex and one edge) in which H and xvx

−1
v′ are elliptic and xv is hyperbolic.

By collapsing e, we obtain a new vertex v′ carrying the group K̃. Since the
groups of edges adjacent to Gv et Gv′ are included in H , we can expand v′ in a
1− 1 loop with H and xvx

−1
v′ elliptic and xv hyperbolic. So the subgroup Ge is
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not universally elliptic, and the edge e may be replace by a loop of type 1 − 1
which is not universally elliptic.

If h is not a square, up to modifying h and xv′ by a square ofH we can assume
h is primitive. Let H ′ such that H = 〈h〉 ×H ′. By the Tietze transformation
consisting of replacing h by x−2

v′ x2v, the relations of commutation xvh = hxv
and xv′h = hxv′ become xvx

2
v′ = x2v′xv and x2vxv′ = xv′x2v. So the group K̃

admits a presentation K̃ = 〈xv, xv′ |x2vxv′ = xv′x2v, xvx
2
v′ = x2v′xv〉 × H ′. The

lemma 4.3 assure us to have a decomposition of K̃ in graph of groups with one
vertex and one loop in which H ′, x2vx

−2
v′ = h and xvx

−1
v′ are elliptic and xv is

hyperbolic. Then H = 〈h,H ′〉 is elliptic, the same argument permits to extend
the construction to the whole group.

In both cases, the 2−2 edge can be removed and replaced by a 1−1 loop with
the element xvx

−1
v′ belonging to the edge group. This edge cannot be universally

elliptic.
Conversely, if e is not universally elliptic, let α ∈ Ge be a non universally

elliptic element and Γ′ a graph of groups in which α is hyperbolic with axis A.
The set of the elliptics of Ge in Γ′ is exactly a hyperplane H . It remains to
show that H has the properties we want.

We first claim that H is exactly the set of elements of K̃ elliptic in both Γ
and Γ′.

Let β be an element of Ge, as λ belongs to Gv \Ge and µ to Gv′ \Ge, the
elements λβ and µλβµ−1 do not commute. However they both commute with
α so their characteristic spaces contain the axis A in the Bass-Serre tree of Γ′.
Necessarily λβ is hyperbolic: since the edge groups are abelian, if λβ is elliptic
in Γ′, the elements λβ and µλβµ−1 should commute. And so each element of
λGe is hyperbolic. The same argument works to show that every element in
µGe is hyperbolic in Γ′.

Yet every elliptic element of K̃ for the decomposition Γ is conjugated to an
element of Gv or Gv′ , and so is conjugate to an element of

Ge ∪ λGe ∪ µGe.

The elements of K̃ elliptic in both Γ and Γ′ belongs to Ge, hence to H . This
prove the claim.

By the claim H contains every elliptic element of Gv and Gv′ for the de-
composition Γ′. As H is a subgroup of rank n − 1 in both Gv and Gv′ , it is a
hyperplane in both Gv and Gv′ . Moreover, by corollary 3.2 and lemma 6.1, the
group of every edge adjacent to e is universally elliptic. So each of these edge
groups must be include in H .

7 JSJ decomposition of vGBS group

Let G = π1(Γ) be a vGBS group and v a vertex of Γ. Let G̃v ⊂ Gv the group
generated by the groups of edges adjacent to v. If Gv/G̃v is infinite, then there
exists a hyperplane H of Gv containing G̃v. Then one can replace the vertex v
by an HNN extension with vertex and edge groups equal to H and the modulus
of the edge equal to the identity. Call v′ and e the new vertex and the new
edge. We have the equality Gv′ = Ge = H , and so e is of type 1 − 1. We call
this construction the expansion of Gv over H (see figure 6).
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〈a, b〉 〈c, d〉

v

〈a, b〉 〈c〉

v′
〈c〉

e

〈b〉 = 〈c〉
〈b〉 = 〈c〉

Figure 6: Expansion of the right vertex over 〈c〉.

Lemma 7.1. Let G = π1(Γ) be a vGBS group. Let v be vertex,if Gv/G̃v is vir-
tually cyclic, then there is a unique expansion of Gv and it creates a universally
elliptic edge.

Proof. Let H be the unique hyperplane of Gv containing G̃v.Let Γ
′ be the graph

of groups obtained by expansion of Gv over H . From lemma 6.1, the adjacent
edges are universally elliptic. Moreover, the group G̃v generated by all those
groups has finite index in Gv′ = H = Ge, so the edge e is universally elliptic.

Lemma 7.2. Let G = π1(Γ) be a vGBS group. Let e be a non-universally
elliptic edge, and v the vertex obtained by collapsing e. Let G̃v ⊂ Gv be the
group generated by groups of edges adjacent to v. Denote 〈〈G̃v〉〉 the normal
closure of G̃v in Gv. Then Gv/〈〈G̃v〉〉 is not virtually cyclic.

Proof. By proposition 6.3, we may assume that e is a loop of type 1 − 1. The
group Gv is a semi-direct product Zn ⋊ϕ Z. By proposition 6.2, the subgroup

G̃v is included in a hyperplane H of Zn stabilized under the action of ϕ. In
particular H is normal in Gv and 〈〈G̃v〉〉 ⊂ H . So there exists a projection from
Gv/〈〈G̃v〉〉 onto Gv/H ≃ Z ⋊ Z which is virtually Z2. The group Gv/〈〈G̃v〉〉 is
not virtually cyclic.

Theorem 7.3. Let G = π1(Γ) a vGBS group. For v a vertex, let G̃v be the
group generated by groups of edges adjacent to v. A JSJ decomposition of G can
be obtained from Γ by collapsing the edges carrying a non-universally elliptic
group and expanding the groups Gv such that Gv/G̃v is virtually cyclic.

By lemmas 7.1 and 7.2, the two operations of collapsing and expanding do
not interact, so the construction is well define.

Proof. Let Λ be the obtained graph of groups. According to lemmas 7.1 and
7.2, this graph does not contain neither vertex v such that Gv/G̃v is virtually
cyclic nor edges carrying a non-universally elliptic group. In particular Λ is
universally elliptic.

It remains to prove the maximality of Λ.
Let Λ′ be another decomposition in which all edge groups are universally

elliptic. We have to show that every elliptic element in Λ is elliptic in Λ′. Then
by [5, lemma 3.6] the decomposition Λ is a JSJ decomposition of G.

Suppose there exists an element x, elliptic in Λ and hyperbolic in Λ′. We
will show there exists an edge group of Λ′ containing a non-universally elliptic
element, a contradiction.

There are two cases to consider:
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1. If x belongs to a vertex group of Λ carrying an abelian group.

Let v be a vertex stabilized by x in the Bass-Serre tree of Λ. Then no
power of x belongs to G̃v which is universally elliptic. As Gv is abelian
but not elliptic in Λ′, it acts non trivially on the axis of x via an map
ϕ : Gv → Z with G̃v ⊂ kerϕ.

We shall find a decomposition Gv = 〈y〉 ×H such that G̃v ⊂ H and y ∈
kerϕ. Then expanding Gv over H in Λ, the element y will be hyperbolic,
contradicting the universal ellipticity of Λ′.

Let Ḡv be the set of elements of kerϕ with a power in G̃v. As Gv/G̃v is
infinite and not virtually cyclic, the set kerϕ \ Ḡv is non-empty. Take y a
primitive element in kerϕ\Ḡv. Taking any hyperplaneH of Gv containing
G̃v such that Gv = 〈y〉 ×H , we obtain the decomposition.

2. If x belongs to a vertex group of Λ carrying a non-abelian group.

From proposition 6.3, we may assume that all non-universally elliptic edges
of Γ are loops with type 1− 1. Then x belongs to a group Πl for l a non-
universally elliptic loop of Γ. Call w the vertex and t a stable letter of l.
Let h be an element of Gw non universally elliptic. As Πl is polycyclic,
it acts on the axis of x in Λ′. If h is elliptic in Λ′, then h2 fixes the axis
and so Λ′ is not universally elliptic. If h is hyperbolic , there exists two
integers p and q 6= 0 such that h′ = hptq is elliptic in Λ′ (the integer p
may be equal to 0 if t is already elliptic in Λ′). Up to take the square of
h′, we may assume it fixes the axis pointwise. As q is different from 0,
the element h′ is hyperbolic in Γ. There exists an edge of Λ′ which is not
universally elliptic.

Theorem 7.4. Let G = π1(Γ) a vGBS group, and n ∈ N. Suppose that Γ is
a JSJ decomposition over free abelian groups. Then a JSJ decomposition over
free abelian groups of rank ≤ n may be obtained by collapsing every edge of Γ
with group of rank > n.

We will use the notation n-JSJ decomposition and n-universally elliptic for
decomposition over group of rank ≤ n and ∞-JSJ decompositions and ∞-
universally elliptic for decomposition over all free abelian groups.

Proof. By [5, Proposition 7.1], we know that an n-JSJ decomposition may be
obtained by refining an ∞-JSJ decomposition, and then collapsing all edges
carrying a group of rank > n. So it suffices to show that if a vertex of Γ
can be decomposed over a group of rank ≤ n, then this decomposition is not
n-universally elliptic.

Let v be a vertex of Γ. Its vertex group is a semi-direct product Gv = Zp⋊Z

(the product may be direct). The only non-trivial reduced decompositions of
Gv are as 1− 1 loop or a 2− 2 edge with edge group Zp.

Call Λ a decomposition of G refining Γ and an n-JSJ decomposition ∆, and
Λv the subgraph of Λ whose projection on Γ is v. Assume Λv has a minimal
number of edges over decomposition refining Γ and ∆. If Λv contains a non-
reduced edge then after collapsing all edges with groups of rank > n in Λ the
edge stays unreduced (if an edge having same group as one of its endpoint v is
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not collapsed then rank(Gv) ≤ n and no edge adjacent to v is collapsed). As
Λv has a minimal number of edges, it is reduced.

If Λv is not a trivial decomposition of Gv, as Gv cannot be decomposed over
groups of rank > p, if Λ is n-universally elliptic then Λ is ∞-universally elliptic.
This is a contradiction with the fact that Γ is a ∞-JSJ decomposition.

8 Contruction of the JSJ decomposition

We now describe an algorithm which gives the abelian JSJ decomposition of a
vGBS group.

We assume that a vGBS group is given under the form of a vGBS decom-
position, that is, given by the description of the vertex groups, edge groups, and
the inclusion maps of the edge groups into the vertex groups. Given an edge e
and an endpoint v of e, we may decide if Ge is of finite index in Gv and if so,
compute this index. In particular, we may detect 1− 1 loops and 2− 2 edges.

Theorem 8.1. The construction of a JSJ decomposition of a vGBS group is
algorithmic.

Let Γ be a vGBS decomposition and l be a 1 − 1 loop with base point v

and modulus ϕ of finite order which is not conjugate to

(

−1 0
p Idn−1

)

with

p ∈ Zn−1. Call n the rank of Gv. Call G̃v the subgroup of Gv generated by
groups of edges adjacent to v excepting l. Call E(ϕ) ⊂ Gv ⊗ C the subspace
generated by all eigenspaces of ϕ associated to eigenvalues different from 1. As
ϕ is of finite order, thus diagonalizable, the dimension of E(ϕ) is equal to n
minus the dimension of E1(ϕ), the eigenspace associated to 1. Define Ḡv as the
smallest ϕ-invariant subgroup of Gv containing G̃v and E(ϕ) ∩Gv.

Lemma 8.2. With the previous notations, the loop l is universally elliptic if
and only if Ḡv is of rank n.

Proof. First assume l is not universally elliptic. By proposition 6.2, as ϕ is not

conjugate to

(

−1 0
p Id

)

, in a well-chosen basis (x, h1 . . . , hn−1) the modulus

ϕ is of the form

(

1 0
p M

)

with M of finite order and G̃v contained in H =

〈h1 . . . , hn−1〉. Moreover, as the action of ϕ onGv/H is trivial, every eigenvector
in Gv ⊗ C with eigenvalue 6= 1 must belong to H ⊗ C. Thus the rank of Ḡv

must be at most n− 1.
Conversely, if the rank of Ḡv is < n, then we may construct a group L of

rank n − 1, containing Ḡv and stable under the action of ϕ, by adding to Ḡv

eigenvectors associated to 1. This is possible since dim(E(ϕ)⊕E1(ϕ)) = n. Call
H the hyperplane containing L, and x ∈ Gv such that Gv = 〈x〉 × H . Then
the matrix of ϕ in a basis (x, h1, . . . , hn−1) where H = 〈h1, . . . , hn−1〉, is of the

form

(

1 0
p M

)

. By proposition 6.2, the loop l is not universally elliptic.

We may now describe the algorithm.
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Proof of theorem 8.1. By theorem 1.1, there are three different algorithms to
construct. The first blows up certain vertices into a loop, and the other two
decide when a 1− 1 loop and a 2− 2 edge is universally elliptic. Recall that we
must collapse non universally elliptic edges.

• The first algorithm is very simple. Given a vertex v, it computes the group
G̃v generated by adjacent edge groups. If rank(G̃v) 6= rank(Gv) − 1,
then it leaves v unchanged. If the rank of G̃v is equal to the rank of Gv

minus one, it finds a primitive element a such that no power is in G̃v (the
algorithm of the Smith normal form works for example), and changes v to
a new vertex v′ and a loop l with Gl = Gv′ equal to the set of elements of
Gv with a power in G̃v, and a the stable letter.

• The second algorithm has to decide whether a 2− 2 edge e is universally
elliptic or not.

Call v and v′ the two endpoints of e. By proposition 6.3, if the adjacent
edge groups are not all contained in Ge, then e is universally elliptic.
Otherwise, call G̃e the subgroup of Ge generated by all these groups, and
Ḡe the set of elements of Ge with a power in G̃e. Then e is universally
elliptic if and only if Gv/Ḡe or Gv′/Ḡe has torsion. This is decidable by
looking at the Smith normal form of Ḡe in Gv and Gv′ .

• The third algorithm decides whether a 1 − 1 loop l is universally elliptic
or not.

Call v the base point of l, call ϕ the modulus of l and n the rank of Gv.
One first computes the group G̃v generated by adjacent edge groups, Gl

excepted. If l is not universally elliptic, necessarily by proposition 6.2 the
modulus ϕ acts on a hyperplane of Gv with finite order. As we have a
minoration for Euler’s phi function φ given by φ(p) ≥

√

p
2 , the modulus ϕ

acts on a hyperplane with finite order if and only if ϕ(2m2)! acts trivially on
a hyperplane. We therefore consider the eigenspace E of ϕ(2m2)! associated
to the eigenvalue 1.

There are three cases.

– either E has rank less than n− 1,

– or E has rank n− 1.

– or E = Gv.

In the first case, the loop l is universally elliptic.

In the second case E is a ϕ-invariant hyperplane. As the only hyperplane
on which ϕ acts with finite order is E, it suffices to check if G̃v is included
in E, and if ϕ acts trivially on Gv/E. By proposition 6.2, the loop l is not
universally elliptic if and only if those two properties hold.

In the third case, we have to decide if there exists a hyperplane H con-
taining G̃v with properties as in proposition 6.2.

We first decide if ϕ is conjugate to

(

−1 0
p Id

)

for some p in Zn−1. This

is decidable because matrices conjugate to a matrix of the previous form
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are exactly the ones with determinant −1 and an eigenspace associated to
eigenvalue 1 of dimension n− 1.

If ϕ is conjugate to

(

−1 0
p Id

)

, then l is not universally elliptic if and

only if ϕ act trivially on G̃v.

If ϕ is not conjugate to

(

−1 0
p Id

)

, call P (X) the polynomial X(2m2)!−1
X−1 ,

and compute the subgroup F = 〈ker(P (ϕ)), G̃v〉. As rank(ϕ
k(F )) is first

strictly increasing, and then stationary, the group M = ϕn(F ) is the
smallest ϕ-invariant subgroup containing F . We compute m the rank of
M . By lemma 8.2, the edge l is universally elliptic if and only if m = n.
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