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THE GRAPH ISOMORPHISM PROBLEM
AND APPROXIMATE CATEGORIES

HARM DERKSEN

Abstract. It is unknown whether two graphs can be tested for isomorphism in polyno-
mial time. A classical approach to the Graph Isomorphism Problem is the d-dimensional
Weisfeiler-Lehman algorithm. The d-dimensional WL-algorithm can distinguish many pairs
of graphs, but the pairs of non-isomorphic graphs constructed by Cai, Fürer and Immerman
it cannot distinguish. If d is fixed, then the WL-algorithm runs in polynomial time. We will
formulate the Graph Isomorphism Problem as an Orbit Problem: Given a representation V

of an algebraic group G and two elements v1, v2 ∈ V , decide whether v1 and v2 lie in the
same G-orbit. Then we attack the Orbit Problem by constructing certain approximate cat-
egories Cd(V ), d ∈ N = {1, 2, 3, . . .} whose objects include the elements of V . We show that
v1 and v2 are not in the same orbit by showing that they are not isomorphic in the category
Cd(V ) for some d ∈ N. For every d this gives us an algorithm for isomorphism testing. We
will show that the WL-algorithms reduce to our algorithms, but that our algorithms cannot
be reduced to the WL-algorithms. Unlike the Weisfeiler-Lehman algorithm, our algorithm
can distinguish the Cai-Fürer-Immerman graphs in polynomial time.

1. Introduction and Main Results

1.1. The Graph Isomorphism Problem. Suppose that Γ1 and Γ2 are two graphs on n
vertices. The Graph Isomorphism Problem asks whether they are isomorphic or not. In
Computational Complexity Theory, the Graph Isomorphism Problem plays an important
role, because it lies in the complexity class NP, but it is not known whether it lies in P
or NP-complete. See [15] for more details. Based on Valiant’s algebraic version of the
P versus NP problem ([25]), Mulmuley and Sohoni reformulated Valiant’s P versus NP
problem into a question about orbits of algebraic groups in [20, 21]. In this paper, we will
study the Graph Isomorphism in terms of orbits of algebraic groups, but our approach is not
closely related to the work of Mulmuley and Sohoni.

For special families of graphs there are polynomial time algorithms for the graph isomor-
phism problem. Polynomial time algorithms were found for trees (Edmonds’ algorithm, see
[2, p.196]), planar graphs ([13, 14]) and more generally for graphs of bounded genus ([8, 19]),
for graphs with bounded degree ([17]), for graphs with bounded eigenvalue multiplicity ([1]),
and for graphs with bounded color class size ([18]).

A general approach to the Graph Isomorphism Problem was developed by Weisfeiler and
Lehman in the 1960’s. The d-dimensional Weisfeiler-Lehman algorithm WLd systemati-
cally colors e-tuples of vertices (e ≤ d) until a stable coloring is obtained (see [27, 26]).
The d-dimensional WL-algorithm terminates with a proof that the two graphs are iso-
morphic, or it terminates with an inconclusive result. If d ≥ n, then the d-dimensional
Weisfeiler-Lehman algorithm will distinguish all non-isomorphic graphs with n vertices. For
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fixed d, the Weisfeiler-Lehman algorithm runs in polynomial time. The higher dimensional
Weisfeiler-Lehman algorithm can distinguish graphs in many families of graphs. However,
Cai, Fürer and Immerman showed in [4] that for every d, there exists a pair of non-isomorphic
graphs with degree 3 and O(d) vertices which cannot be distinguished by the d-dimensional
Weisfeiler-Lehman algorithm. The set of Weisfeiler-Lehman algorithms WL = {WLd}d∈N
is an example of what we will call a family of GI-algorithms:

Definition 1.1. A family of GI-algorithms is a collection of algorithms A = {Ad}d∈N such
that

(1) The input of Ad consists of two graphs with the same number of vertices. The
value of the output is either “nonisomorphic” or “inconclusive”. If the output
is “nonisomorphic” then the graphs are not isomorphic and we say that Ad distin-
guishes the two graphs.

(2) If the graphs are not isomorphic, then Ad distinguishes them some d.
(3) For fixed d, Ad runs in polynomial time.

Besides the Weisfeiler-Lehman algorithm, there are other families of polynomial time al-
gorithms for the graph isomorphism problem. In order to compare various algorithms, we
make the following definition (see also [6, §6]):

Definition 1.2. For two families of GI-algorithms A = {Ad}d∈N and B = {Bd}d∈N we say
that A is reducible to B if there exists a function f from the N → N such that for every d
and every pair of graphs which Ad distinguishes, the graphs can be distinguished by Bf(d).
We say that A and B are equivalent if A is reducible to B and B is reducible to A.

The Weisfeiler-Lehman algorithm is combinatorial in nature. There are also more algebraic
approaches to the graph isomorphism problem. The 2-dimensional Weisfeiler-Lehman algo-
rithm can be formulated in terms of cellular algebras (see [26]).1 These algebras were intro-
duced by Weisfeiler and Lehman, and independently by D. Higman under the name coherent
algebras (see [12]). In [6], Evdokimov, Karpinski and Ponomarenko introduced the d-closure
of a cellular algebra. One may view the d-closed cellular algebras as higher-dimensional
analogs of the cellular algebras. The algorithm based on this d-closure will be denote by
CAd. In [6] it was shown that the algorithm CAd distinguishes any two graphs which can
be distinguished by WLd. In [7, Theorem 1.4] it was shown that WL3d can distinguish
any two graphs which can be distinguished by CAd. So the approach with cellular algebras
CA = {CAd}d∈N is equivalent to the Weisfeiler-Lehman algorithm WL = {WLd}d∈N.

In this paper we will define a family of GI-algorithmsACd = {ACd}d≥0 using approximate
categories. We will show that WL reduces to AC and that AC does not reduce to WL.

1.2. Finite variable logic. Pairs of non-isomorphic graphs that can be distinguished with
the Weisfeiler-Lehman algorithm can be characterized in terms of finite variable logic.

A graph is a pair Γ = 〈X,R〉 whereX is a finite set, andR ⊆ X×X is a symmetric relation.
We assume that there are no loops. We will write xRy if (x, y) ∈ R. We also consider
graphs with colored vertices. A graph with m colors is a tuple 〈X,R,X1, X2, . . . , Xm〉 where
〈X,R〉 is a graph, and X is the disjoint union of X1, . . . , Xm. Two colored graphs Γ =
〈X,R,X1, . . . , Xm〉 and Γ′ = 〈X ′, R′, X ′

1, . . . , X
′
m〉 are isomorphic if there is a bijection φ :

1 These cellular algebras should not be confused with a different, seemingly unrelated notion of cellular
algebras introduced in [10].
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X → X ′ such that x ∈ Xi ⇔ φ(x) ∈ X ′
i for all x ∈ X and all i, and xRy ⇔ φ(x)R′φ(y) for

all x, y ∈ X .
We will view a graph with m colors as a structure with 1 binary relation and m unitary

relations. To such a structure one can associate a first order language L . If ϕ is a closed
formula in L , then we will write Γ |= ϕ if the formula ϕ is true for Γ.

Let Ld be the d-variable first order language. Formulas in Ld involve at most d variables,
although variables may be re-used. For example

ϕ(x1, x2) = ∃x3 (∃x2 (x1Rx2 ∧ x2Rx3) ∧ x3Rx2)

is a formula in L3 which expresses that there exists a path of length 3 from x1 to x2. Note
that in this formula, we re-use the variable x2.

A more expressive language is Cd, the d-variable first order language with counting. In
this language we allow quantifiers such as ∃d. A formula ∃dxϕ(x) is true if there are exactly
d elements x ∈ X for which ϕ(x) is true.

Definition 1.3. We say that the language Cd distinguishes the colored graphs Γ and Γ′ if
there exists a closed formula ϕ in Cd such that Γ |= ϕ and Γ′ |= ¬ϕ.

Theorem 1.4 (§5 of [4]). The language Cd distinguishes the colored graphs Γ and Γ′ if and
only if the (d− 1)-dimensional Weisfeiler-Lehman algorithm distinguishes the two graphs.

1.3. Orbit problems. Fix a field k, and let k be its algebraic closure. Suppose that G is
an algebraic group defined over k, and V is a representation of G (over k). Let G(k) be the
set of k-rational points of G.

Orbit Problem: Given v1, v2 ∈ V , determine whether v1 and v2 lie in the same G(k)-orbit.

Many isomorphism problems can be translated to orbit problems. The graph isomorphism
problem is one example of this. Let G = Σn be the group of n×n permutation matrices, and
V = Matn,n(k) be the set of n×n matrices. Then V is a representation of Σn where Σn acts
by conjugation. To a graph Γ with vertex set {1, 2, . . . , n} we can associate its adjacency
matrix AΓ defined by

(AΓ)i,j =

{
1 if there is an edge between i and j;
0 otherwise.

The following lemma is obvious:

Lemma 1.5. Two graphs Γ1 and Γ2 are isomorphic if and only if their adjacency matrices
AΓ1 and AΓ2 lie in the same Σn-orbit.

By replacing V by a slightly different representation of Σn, one can generalize Lemma 1.5
to colored graphs, and even to finite structures. In Section 4 we will also translate the module
isomorphism problem to an orbit problem.

1.4. Main results. In this paper we attack the orbit problem as follows. Suppose that V is
a representation of G. Let Aff(V ) denote the set of affine subspaces of V . So Aff(V ) contains
the empty set and all subsets of V of the form v+Z, where v ∈ V and Z ⊆ V is a subspace.
We may view V as a subset of Aff(V ) by identifying v ∈ V with the subset {v} ⊆ V . The
group G acts on Aff(V ). We also may view Aff(V ) as a subset of Aff(V ⊗k k) by identifying
v+Z ∈ Aff(V ) with v⊗1+Z⊗k ∈ Aff(V ⊗k k) for every v ∈ V and every subspace Z ⊆ V .
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For every d we construct a category Cd(V ). For X1, X2 ∈ Aff(V ), we will write X1
∼=d X2

if X1 and X2 are isomorphic in Cd(V ). The categories Cd(V ) have the following properties:
with the following properties:

(1) The set of objects of Cd(V ) is Aff(V ). In particular, elements of V are objects in
Cd(V ).

(2) Cd(V ) is a k-category, i.e., for every two objects X1, X2 the set Homd(X1, X2) is a
k-vector space, and if X3 is another object, then the composition map

Homd(X1, X2)×Homd(X2, X3) → Homd(X1, X3)

is bilinear.
(3) For X1, X2 ∈ Aff(V ) we have X1

∼=d+1 X2 ⇒ X1
∼=d X2.

(4) Two affine subspaces X1, X2 ∈ Aff(V ) lie in the same G(k)-orbit if and only if
X1

∼=d X2 for all d.

An equivariant f : V → V ′ is a polynomial map between two representations which is G-
equivariant. An equivariant f : V → V ′ for which V ′ is an irreducible representation is called
a covariant. If k is algebraically closed, then f being equivariant means that f(g ·v) = g ·f(v)
for all v ∈ V and all g ∈ G. In the case where k is not algebraically closed, equivariance is
defined in Definition 2.10. We say that an equivariant f : V → V ′ distinguishes two elements
v1, v2 ∈ V if either f(v1) = 0 and f(v2) 6= 0, or, f(v1) 6= 0 and f(v2) = 0. It is well known
that if v1, v2 ∈ V are not in the same G(k)-orbit, then they can be distinguished by some
equivariant.

For a representation V , E (V ) denotes the class of all equivariants f : V → V ′, where V ′

is any representation. For every positive integer d, we will define in Section 3.2 a subset
Ed(V ) ⊆ E (V ). Elements of Ed(V ) are called d-constructible equivariants. We have

E1(V ) ⊆ E2(V ) ⊆ E3(V ) ⊆ · · ·

and
⋃∞

d=1 Ed(V ) = E (V ).
For a representation V and a positive integer d we will define in Section 3.4 a class Fd(V )

of functors F : Cd(V ) → Cd(V ′) where V ′ is some representation. Elements of Fd(V ) are
called d-constructible functors. We have

F1(V ) ⊆ F2(V ) ⊆ F3(V ) ⊆ · · · .

The constructible functors are more general than the constructible equivariants in the fol-
lowing sense: If f : V → V ′ is a d-constructible equivariant, then there exists a con-
structible functor F : Cd(V ) → Cd(V ′) such that F({v}) = {f(v)} for all v ∈ V (see
Lemma 3.20). We will say that a functor F : Cd(V ) → Cd(V ′) distinguishes X1, X2 ∈ Aff(V )
if dimF(X1) 6= dimF(X2). Here, we use the convention dim(∅) = −∞.

Theorem 1.6. Suppose that X1, X2 ∈ Aff(V ). We have the following implications:

(i) the d-constructible functors distinguish X1 and X2

⇓
(ii) X1 6∼=d X2

⇓
(iii) X1 and X2 lie in distinct G(k)-orbits
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Theorem 1.7. Suppose that v1, v2 ∈ V . We have the following implications:

(i) the d-constructible equivariants distinguish v1 and v2
⇓

(ii) the d-constructible functors distinguish v1 and v2
⇓

(iii) v1 6∼=d v2
⇓

(iv) v1 and v2 lie in distinct G(k)-orbits

The following proposition follows from Proposition 4.8 and shows that the implication
(i)⇒(ii) in Theorem 1.7 cannot be reversed.

Proposition 1.8. For every d there exist examples, where v1 and v2 can be distinguished by
3-constructible functors, but not by d-constructible equivariants.

If we reformulate the Graph Isomorphism Problem as an Orbit Problem as in Section 1.3
we get the following results.

Theorem 1.9. Suppose that k is a field of characteristic 0 or characteristic p with p > n.
Suppose that Γ1,Γ2 are graphs on n-vertices, or more generally, structures on sets with n
elements. We have the following implications:

(i) the language Ld distinguishes Γ1 and Γ2

⇓
(ii) the language Cd distinguishes Γ1 and Γ2

m
(iii) the (d− 1)-dim. Weisfeiler-Lehman algorithm distinguishes Γ1 and Γ2

⇓
(iv) the (2d)-constructible equivariants distinguish AΓ1 and AΓ2

⇓
(v) the (2d)-constructible functors distinguish AΓ1 and AΓ2

⇓
(vi) AΓ1 6∼=2d AΓ2

⇓
(vii) AΓ1 and AΓ2 do not lie in the same Σn-orbit

m
(viii) Γ1 6∼= Γ2

Theorem 1.10. Suppose that V = Matn,n(Fp) is a representation of Σn over Fp as in Section
1.3, where p = p(n) is a prime for all n and log p(n) grows polynomially. Then one can check
whether two objects in Cd(V ) are isomorphic in polynomial time.

The proofs of Theorem 1.6, 1.7, 1.9 and 1.10 are in Section 4.2.
Because of Proposition 1.8 and Theorem 1.9 one might believe that constructible functors

are more powerful in distinguishing graphs than the Weisfeiler-Lehman algorithm. The
following theorem shows that this is the case when working over the field F2:

Theorem 1.11. If k = F2 and Γ1,Γ2 are nonisomorphic (colored) graphs constructed fol-
lowing the Cai-Fürer-Immerman method, then there exists a 3-constructible functor which
distinguishes AΓ1 and AΓ2. In particular AΓ1 and AΓ2 are not isomorphic in C3(V ).
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The proof of Theorem 1.11 is in Section 5.

Algorithm 1.12 (The algorithm ACd). To check whether two graphs Γ1 and Γ2 on n
vertices are isomorphic, we can determine whether AΓ1 and AΓ2 are isomorphic in Cd(V ),
where we work over the field Fp and p runs over all primes ≤ 2n.

Note that there exists a prime between n and 2n by Bertrand’s postulate (see [23]). By
Theorem 1.10, WL reduces to AC, because AC2d+2 distinguishes any two graphs that are
distinguished byWLd. On the other hand, for every d, Cai-Fürer and Immerman constructed
pairs of graphs that cannot be distinguished by WLd. By Theorem 1.11, these graphs are
distinguished by AC3. This shows that AC cannot be reduced to WL.

2. The construction of the approximate categories

2.1. Truncated ideals. To define the approximate categories, we will need the notion of
a truncated ideal. Suppose that k is a field, and R is a finitely generated k-algebra with a
filtration

R0 ⊆ R1 ⊆ R2 ⊆ · · ·

such that R0 = k and Ri is a finite-dimensional vector space for all i.

Definition 2.1. If S ⊆ Rd then we define

(S)d =
d∑

e=0

(S ∩ Re)Rd−e.

Definition 2.2. A subset S ⊆ Rd is called a d-truncated ideal if (S)d = S.

We have a chain
(S)d ⊆ ((S)d)d ⊆ (((S)d)d)d ⊆ · · · .

Since Rd is finite dimensional, this chain stabilizes to a subspace of Rd which we will denote
by ((S))d. It is clear that ((S))d is the smallest d-truncated ideal containing S. We will call
it the d-truncated ideal generated by S.

Example 2.3. Consider the polynomial ring k[x, y] in two variables with the usual grading.
We have

y − x2 = −x(x− y2)− y(xy − 1) ∈ (x− y2, xy − 1),

but y − x2 6∈ ((x− y2, xy − 1))2.

Remark 2.4. Much of the theory of Gröbner basis generalizes to truncated ideals. Suppose
that R = k[x1, . . . , xn] is the polynomial ring. In a polynomial ring we can choose a monomial
ordering which is compatible with the grading: if one monomial has higher degree than
another monomial, then it is larger in the monomial ordering. A subset G of a d-truncated
ideal J is a truncated Gröbner bases if the ideal generated by the leading monomials of
elements of J is the same as the ideal generated by the leading monomials of elements of G .
There is also an analog of Buchberger’s algorithm. Starting with a set of generators of J ,
one obtains a truncated Gröbner bases by reducing S-polynomials whose total degree is ≤ d.
Since Rd is a finite dimensional vector space, computations with truncated ideals can be
done by just using linear algebra. However, using truncated Gröbner bases exploits the ring
structure and may speed up the computations. For complexity bounds, the linear algebra
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approach will be good enough, so we will not explore the truncated Gröbner bases in detail
here.

Proposition 2.5. Suppose that Re = Re
1 for all e ≥ 1, i.e., Re is spanned by all products

f1f2 · · ·fe with f1, . . . , fe ∈ R1. There exists a constant C(d) (depending on d, R and the
filtration) such that ((S))e = (S) ∩ Re for all e ≥ C(d) and all S ⊆ Rd.

Proof. Define a ring homomorphism

γ : k[x1, . . . , xn] → R.

such that γ(x1), . . . , γ(xn) span R1. Suppose that h1, . . . , hr ∈ k[x1, . . . , xn] generate the
kernel of γ, and let l be the maximum of the degrees of h1, . . . , hr. Assume that S ⊆ Rd

is a subspace spanned by f1, . . . , fs. For all i, choose f̃i ∈ k[x1, . . . , xn] of degree ≤ d with

γ(f̃i) = fi. Let J be the ideal generated by the set G = {f̃1, . . . , f̃s, h1, . . . , hr}. Then we
have γ(J) = (S). We can apply Buchberger’s algorithm to the generator set G to obtain a
Gröbner basis for the ideal J . It was shown in [28] that there exists a universal bound C(d),
(depending only on d, n, and l) such that all polynomials in the reduced Gröbner basis,
and all polynomials appearing in intermediate steps of Buchberger’s algorithm have degree
≤ C(d). Following the Buchberger algorithm, it is easy to see that γ(h) ∈ ((S))C(d) for all
elements h in the Gröbner basis of J . Suppose that f ∈ (S) ∩Re and e ≥ C(d). We can lift

f to an element f̃ such that deg(f̃) ≤ e and γ(f̃) = f . We can write f̃ =
∑t

i=1 aiui where
u1, . . . , ut are elements of the Gröbner basis, and deg(aiui) ≤ e for all i. From this follows
that

f = γ(f̃) =

t∑

i=1

γ(ai)γ(ui) ∈
∑

Re−j

(
((S))e ∩ Rj

)
= (((S))e)e = ((S))e.

�

2.2. Coalgebras associated to algebraic groups. Suppose that G is a linear algebraic
group over k. Let R := k[G] be the coordinate ring of G. The identity element e ∈ G is
defined over the field k. The multiplication G×G→ G corresponds to a homomorphism of
k-algebras

∆ : R → R ⊗R,

where ⊗ denotes the tensor product as k-vector spaces. The ring R is a Hopf algebra with
co-multiplication ∆, and counit σe : R → k, where σe is evaluation at e ∈ G. The inverse
function G→ G defined by g 7→ g−1 defines a antipode map ι : R → R.

Suppose for the moment that k is algebraically closed. The group G acts on itself by left
multiplication and it acts on the right by right multiplication. These actions correspond to a
left and right action of G on R. If g ∈ G, then g acts on R on the right as the automorphism

(σg ⊗ id) ◦∆ : R→ R

where σg : R → k is evaluation at g. The element g acts on the left by the automorphism

(id⊗σg) ◦∆ : R → R.

A subspace W ⊆ R is stable under the right action if

∆(W ) ⊆ R⊗W
7



and stable under the left action if

∆(W ) ⊆W ⊗R.

It is stable under both actions if

∆(W ) ⊆W ⊗W.

Let k again be an arbitrary field, and suppose that W ⊆ R is a subspace such that

(1) W contains k;
(2) W generates R;
(3) ∆(W ) ⊆W ⊗W ;
(4) ι(W ) ⊆W .

We will call such a subspace W a stable generating subspace. We define a filtration on R by
R0 := k and Rd := W d for d > 0. We have ∆(Rd) ⊆ Rd ⊗ Rd and ι(Rd) ⊆ Rd, so Rd is a
co-associative co-algebra. The dual R⋆

d of Rd is an associative algebra.

Example 2.6. Suppose that G = Ga = (k,+) is the additive group. Then k[Ga] is isomor-
phic to k[t], the polynomial ring in one variable. The identity element is e = 0 ∈ k. So the
co-unit is σ0, which is defined by:

σ0(f(t)) = f(0).

The co-multiplication

∆ : k[t] → k[t]⊗ k[t]

is defined by

∆(f(t)) = f(t⊗ 1 + 1⊗ t).

and the ι : k[t] → k[t] is defined by

ι(f(t)) = f(−t).

We can take W = k⊕ k · t ⊆ k[t]. Then we have k ⊆W , W generates k[t], ∆(W ) ⊆W ⊗W
and ι(W ) ⊆ W . Now W d ⊆ k[t] consists of all polynomials of degree ≤ d. This is a natural
filtration on the ring k[t].

Example 2.7. Suppose that G = Gm = (k⋆, ·) is the multiplicative group. Then k[Gm] is
isomorphic to the ring k[t, t−1] of Laurent polynomials. The identity element is e = 1 ∈ Gm.
So the co-unit is

σ1 : k[t, t
−1] → k

defined by

σ1(f(t)) = f(1).

The co-multiplication ∆ : k[t, t−1] → k[t, t−1]⊗ k[t, t−1] is defined by

∆(f(t)) = f(t⊗ t)

and ι : k[t, t−1] → k[t, t−1] is defined by

ι(f(t)) = f(t−1).
8



Define W ⊆ k[t, t−1] by W = kt−1 ⊕ k ⊕ kt. Then we have k ⊆ W , W generates k[t, t−1],
∆(W ) ⊆ W ⊗W and ι(W ) ⊆ W . The space W d is the space of all Laurent polynomials of
the form

d∑

i=−d

ait
i

where a−d, a1−d, . . . , ad ∈ k.

Lemma 2.8. Suppose that A,B,C are subspaces of Rd with

∆(A) ⊆ B ⊗ Rd +Rd ⊗ C.

Then we have

(1) ∆((A)d) ⊆ (B)d ⊗ Rd +Rd ⊗ (C)d

and

(2) ∆(((A))d) ⊆ ((B))d ⊗Rd +Rd ⊗ ((C))d.

Proof. The space

Re/(B ∩ Re)⊗Re/(C ∩ Re) = (Re ⊗ Re)/((B ∩ Re)⊗Re +Re ⊗ (C ∩Re))

is a subspace of

Rd/B ⊗Rd/C = (Rd ⊗Rd)/(B ⊗ Rd +Rd ⊗ C).

It follows that

∆(A ∩Re) ⊆ ∆(A) ∩∆(Re) ⊆ (B ⊗ Rd +Rd ⊗ C) ∩ (Re ⊗ Re) =

= (B ∩Re)⊗ Re +Re ⊗ (C ∩ Re).

Therefore we have

∆((A ∩ Re)Rd−e) ⊆ ∆(A ∩Re)∆(Rd−e) =

= ((B ∩ Re)⊗ Re +Re ⊗ (C ∩ Re))(Rd−e ⊗ Rd−e) ⊆

⊆ ((B ∩ Re)Rd−e)⊗ Rd +Rd ⊗ ((C ∩ Re)Rd−e).

This shows (1). Now (2) follows by iteration. �

2.3. The complexity of a representation. Let G be a linear algebraic group over k and
fix a stable generating subspace W .

Definition 2.9. A rational representation of G is a finite dimensional vector space V with
a k-linear map

µ : V → V ⊗ R

such that the diagram

V
µ

//

µ

��

V ⊗ R

µ⊗id
��

V ⊗R
id⊗∆

// V ⊗R⊗ R

commutes, and (id⊗σe) ◦ µ = id.
9



If k is algebraically closed, then we define

g · w = (id⊗σg) ◦ µ(w)

for all g ∈ G and w ∈ V . We have the following commutative diagram

V
µ

//

µ

��

V ⊗ R
id⊗σh

//

µ⊗id
��

V

µ

��

V ⊗ R
id⊗∆

//

id⊗σgh
))SSSSSSSSSSSSSSSSS

V ⊗ R⊗R
id⊗ id⊗σh

//

id⊗σg⊗σh

��

V ⊗ R

id⊗σg

uukkkkkkkkkkkkkkkkk

V

.

This shows that

(gh) · v = (id⊗σgh) ◦ µ(v) = (id⊗σg) ◦ µ ◦ (id⊗σh) ◦ µ(v) = g · (h · v).

Definition 2.10. Suppose that V and V ′ are rational representations of G given by µ :
V → V ⊗ R and µ′ : V ′ → V ′ ⊗ R. A linear map f : V → V ′ is called G-equivariant if the
following diagram commutes:

V
µ

//

f

��

V ⊗ R

f⊗id
��

V ′
µ′

// V ′ ⊗R

.

If k is algebraically closed, v ∈ V and g ∈ G then we have

f(g · v) = f ◦ (id⊗σg) ◦ µ(v) = (id⊗σg) ◦ (f ⊗ id) ◦ µ = (id⊗σg) ◦ µ ◦ f(v) = g · f(v).

Assume that ℓW (V ) is the smallest nonnegative integer such that

µ(V ) ⊆ RℓW (V ) ⊗ V.

The number ℓW (V ) depends on the choice of W , but we will often drop the subscript and
just write ℓ(V ) if W is fixed. We can think of ℓ(V ) as a measure of the complexity of the
representation V .

Lemma 2.11.

(1) ℓ(V ⊕ V ′) = max{ℓ(V ), ℓ(V ′)};
(2) ℓ(V ⊗ V ′) ≤ ℓ(V ) + ℓ(V ′);
(3) ℓ(V ) = ℓ(V ⋆).

Proof.
(1) This is straightforward.
(2) The representation V and V ′ are given by µ : V → V ⊗ R and µ′ : V ′ → V ′ ⊗ R. We
have µ(V ) ⊆ V ⊗Rℓ(V ) and µ

′(V ′) ⊆ V ′ ⊗Rℓ(V ′). The representation V ⊗ V ′ is given by the
composition µ′′ defined by:

V ⊗ V ′
µ⊗µ′

// V ⊗ R⊗ V ′ ⊗R
∼=

// V ⊗ V ′ ⊗ R⊗R
id⊗ id⊗m

// V ⊗ V ′ ⊗R.

where m : R⊗R → R is the usual multiplication given by
∑

i ai ⊗ bi 7→
∑

i aibi. We have

µ⊗ µ′(V ⊗ V ′) ⊆ V ⊗Rℓ(V ) ⊗ V ′ ⊗ Rℓ(V ′),
10



so

µ′′(V⊗V ′) ⊆ (id⊗ id⊗m)(V⊗V ′⊗Rℓ(V )⊗Rℓ(V ′)) ⊆ V⊗V ′⊗Rℓ(V )Rℓ(V ′) ⊆ V⊗V ′⊗Rℓ(V )+ℓ(V ′).

(3) Let µ⋆ : V ⋆ → V ⋆ ⊗ R be the dual representation of µ : V → V ⊗R. We have

(f ⊗ ι) ◦ µ(v) = (v ⊗ id) ◦ µ⋆(f)

where v ∈ V = V ⋆⋆ and f ∈ V ⋆. If ℓ(V ) = d, then µ(v) ∈ V ⊗Rd, and

(v ⊗ id) ◦ µ⋆(f) = (f ⊗ ι)(µ(v)) ∈ (f ⊗ ι)(V ⊗ Rd) ⊆ ι(Rd) ⊆ Rd.

It follows that µ⋆(f) ⊆ V ⋆ ⊗ Rd. This shows that ℓ(V ⋆) ≤ ℓ(V ) ≤ d. Similarly, we have
ℓ(V ) = ℓ(V ⋆⋆) ≤ ℓ(V ⋆). �

Example 2.12. Suppose we are in the context of Example 2.6. Assume that k is a field
of characteristic 0. Let Vd be the (d + 1)-dimensional indecomposable representation of Ga

(d ≥ 0). We can choose a basis x0, x1, . . . , xd of Vd such that the action µd : Vd → Vd ⊗ R is
given by:

µd(xi) = xi ⊗ 1 + xi−1 ⊗ t+ xi−2 ⊗
t2

2!
+ · · ·+ x0 ⊗

ti

i!
.

It follows that µ(Vd) ⊆ Vd ⊗ Rd and µd(Vd) 6⊆ Vd ⊗ Rd−1. We conclude that ℓ(Vd) = d. If V
is any representation, then V is of the form

V = Vd1 ⊕ · · · ⊕ Vdr

and

ℓ(V ) = max{d1, . . . , dr}.

Example 2.13. . Suppose that we are in the setup of Example 2.7. For d ∈ Z, let Vd ∼= k
be the irreducible 1-dimensional representation of Gm defined by µd : Vd → Vd ⊗ R, where
µd is given by

µd(1) = 1⊗ td.

Then we clearly have ℓ(Vd) = |d|. Since Vd, d ∈ Z are all irreducible representations, any
representation V can be written as

V = Vd1 ⊕ · · · ⊕ Vdr .

Then we have

ℓ(V ) = max{|d1|, |d2|, . . . , |dr|}.

2.4. Definition of the approximate categories. For a subspace Z ⊆ V we define Z⊥ =
{f ∈ V ⋆ | ∀v ∈ V f(v) = 0}.

Suppose that X1, X2 ∈ Aff(V ). If k is algebraically closed, then the equation g ·X1 ⊆ X2

(g ∈ G) yields a system of polynomial equations in k[G]. If X1 and X2 are nonempty then
we can write X1 = v1 +Z1 and X2 = v2 +Z2. Let V

⋆ be the dual of V and Z⊥
2 be the space

of all f ∈ V ⋆ which vanish on Z2. For every function f ∈ Z⊥
2 ⊆ V ⋆ on V vanishing on Z2,

and every w ∈ X1 we have the equation f(g · w) = f(v2). In other words,

(f ⊗ id) ◦ µ(w)− f(v2)⊗ 1 = 0.

The latter equation makes sense, even if k is not algebraically closed.
11



Definition 2.14. Let S(X1, X2) be the span of all

(f ⊗ id) ◦ µ(w)− f(v2)⊗ 1 = (f ⊗ id)(µ(w)− f(v2)⊗ 1)

with f ∈ Z⊥
2 and w ∈ X1. We define S(∅, X) = {0} for X ∈ Aff(V ) and S(X, ∅) = {1} if

X ∈ Aff(V ) \ {∅}.

Lemma 2.15. If X1, X2, X3 ∈ Aff(V ), then we have

∆(S(X1, X3)) ⊆ S(X2, X3)⊗ Rℓ(V ) +Rℓ(V ) ⊗ S(X1, X2).

Proof. Suppose that Xi = vi + Zi for i = 1, 2, 3. We have

µ(v2)− v3 ⊗ 1 ∈ V ⊗ S(X2, X3) + Z3 ⊗Rℓ(V ),

and
µ(Z2) ⊆ V ⊗ S(X2, X3) + Z3 ⊗ Rℓ(V ).

It follows that

(id⊗∆)(µ(v1)− v3 ⊗ 1) = (id⊗∆) ◦ µ(v1)− v3 ⊗ 1⊗ 1 =

= (µ⊗ id) ◦ µ(v1)− v3 ⊗ 1⊗ 1 = (µ⊗ id) ◦ (µ(v1)− v2 ⊗ 1) + (µ(v2)− v3 ⊗ 1)⊗ 1 ∈

∈ (µ⊗ id)(V ⊗ S(X1, X2) + Z2 ⊗Rℓ(V )) + V ⊗ S(X2, X3)⊗ Rℓ(V ) + Z3 ⊗ Rℓ(V ) ⊗Rℓ(V ) ⊆

⊆ V ⊗ Rℓ(V ) ⊗ S(X1, X2) + V ⊗ S(X2, X3)⊗Rℓ(V ) + Z3 ⊗Rℓ(V ) ⊗ Rℓ(V ).

If f ∈ Z⊥
3 , then we have

∆
(
(f ⊗ id)(µ(v1)− v3 ⊗ 1)

)
= (f ⊗ id⊗ id)

(
id⊗∆(µ(v1)− v3 ⊗ 1)

)
⊆

⊆ (f ⊗ id⊗ id)(V ⊗ Rℓ(V ) ⊗ S(X1, X2) + V ⊗ S(X2, X3)⊗Rℓ(V ) + Z3 ⊗Rℓ(V ) ⊗ Rℓ(V )) ⊆

⊆ S(X2, X3)⊗ Rℓ(V ) +Rℓ(V ) ⊗ S(X1, X2).

�

For X1, X2 ∈ Aff(V ), define

Id(X1, X2) = ((S(X1, X2)))d

for all d ≥ ℓ(V ). We also define

I∞(X1, X2) = (S(X1, X2)) ⊆ R.

For d ≥ ℓ(V ) we have
Id(X1, X2) ⊆ Id+1(X1, X2) ⊆ · · · ,

where I∞(X1, X2) =
⋃

j≥d Ij(X1, X2). For d ≥ ℓ(V ) we have a natural linear map ψd :

Rd/Id(X1, X2) → Rd+1/Id+1(X1, X2). This gives us a chain of linear maps

(3) Rd/Id(X1, X2) → Rd+1/Id+1(X2, X3) → Rd+2/Id+2(X1, X2) → · · ·

There also is a natural linear map γd : Rd/Id(X1, X2) → R/I∞(X1, X2) for all d. We have
γd+1 ◦ ψd = γd for all d. By Proposition 2.5, there exists a constant C = C(ℓ(V )) such that
γd is injective for large d ≥ C. This implies that ψd is injective for large d. This shows that
R/I∞(X1, X2) is the direct limit the diagram (3):

Corollary 2.16. For X1, X2, X3 ∈ Aff(V ) we have

∆(Id(X1, X3)) ⊆ Id(X2, X3)⊗ Rd +Rd ⊗ Id(X1, X2).

12



Proof. This follows from Lemma 2.8 and Lemma 2.15. �

For X1, X2 ∈ Aff(V ) and d ≥ ℓ(V ), define

Homd(X1, X2) = (Rd/Id(X1, X2))
⋆.

We also define
Hom∞(X1, X2) = (R/I(X1, X2))

⋆

It follows from the definitions and Hilbert’s Nullstellensatz that

Hom∞(X1, X2) 6= 0 ⇔ I∞(X1, X2) 6= R ⇔ ∃g ∈ G(k) g ·X1 ⊆ X2.

Now Hom∞(X1, X2) is the inverse limit of the diagram

· · · → Homd+2(X1, X2) → Homd+1(X1, X2) → Homd(X1, X2).

The map γ⋆d : Hom∞(X1, X2) → Homd(X1, X2) is onto for d ≥ C large enough, where
C = C(ℓ(V )) is a constant depending on ℓ(V ).

Corollary 2.17. There exists a constant C such that for all X1, X2 ∈ Aff(V ) and d ≥ C,
we have

Homd(X1, X2) 6= 0 ⇔ ∃g ∈ G(k) g ·X1 ⊆ X2.

and
X1, X2 isomorphic in Cd(V )

m
Homd(X1, X2) 6= 0 and Homd(X2, X1) 6= 0

m
X1, X2 are in the same G(k)-orbit

.

We can view Homd(X1, X2) as a subspace of R⋆
d. From Corollary 2.16 follows that ∆

induces a linear map

∆ : Rd/Id(X1, X3) → Rd/Id(X2, X3)⊗Rd/Id(X1, X2).

Dualizing gives a linear map

Homd(X1, X2)⊗Homd(X2, X3) → Homd(X1, X3)

which corresponds to a bilinear multiplication

Homd(X1, X2)× Homd(X2, X3) → Homd(X1, X3).

This multiplication is associative, because R⋆
d is associative.

Definition 2.18. For d ≥ ℓ(V ), the category Cd(V ) is the category where the objects are
elements of Aff(V ) and for X1, X2 ∈ V , Homd(X1, X2) is the set of morphisms from X1 to
X2.

Example 2.19. Consider the group G = Gm as in Example 2.7 and 2.13. Let V = V3 ⊕ V5.
We have ℓ(V ) = 5. Let v1 = (1, 1), v2 = (2, 1) ∈ V . We will compute Hom5(v1, v2). The
equation t · v1 = v2 gives us the equations

t3 − 2, t5 − 1

So S(v1, v2) is spanned by these two polynomials. We have

2t2 − 1 = (t5 − 1)− t2 · (t3 − 2) ∈ (S(v1, v2))5,
13



t− 4 = 2(t3 − 2)− t(2t2 − 1) ∈ ((S(v1, v2))5)5 ⊆ I5(v1, v2)

31 = (2t2 − 1)− 2(t+ 4)(t− 4) ∈ I(v1, v2)5
Let us assume that 31 is invertible in k. Then we have 1 ∈ I(v1, v2)5, so I(v1, v2)5 = R5 and
Hom5(v1, v2) = 0.

Suppose that X1 = {v1} and X2 = {(x, x) | x ∈ k} ⊆ V . We will compute Hom5(X1, X2).
The subspace X2 is defined by x2 − x1 = 0, and t · v1 = (t3, t5), so S(X1, X2) is spanned by
the polynomial t5 − t3. We have t2 − 1 = t−3(t5 − t3) ∈ (S(X1, X2))5. We have that

S(X1, X2))5 = I(X1, X2)5

is the space spanned by

t3(t2 − 1), t2(t2 − 1), . . . , t−5(t2 − 1).

The space R5/I(X1, X2)5 is 2 dimensional and spanned by 1+ I5(X1, X2), t+ I5(X1, X2). So
Hom5(X1, X2) is 2-dimensional as well.

Remark 2.20. Let G = Ga as in Example 2.6 and 2.12. Suppose that V is a representation
with ℓ(V ) ≤ d, and X1, X2 ∈ Aff(V ). Then S(X1, X2) is spanned by polynomials of degree ≤
d. From the Euclidean algorithm in k[Ga] ∼= k[t] follows that (S(X1, X2))∩Rd = Id(X1, X2).
So we have

Homd(X1, X2) 6= 0 ⇔ ∃t ∈ k t ·X1 ⊆ X2.

In particular, X1 and X2 are in the same G(k) orbit if and only if X1
∼=d X2.

The same result holds for G = Gm, because k[Gm] = k[t, t−1] is also an Euclidean domain.
For other groups G, it is possible that X1

∼=d X2 for X1, X2 ∈ Aff(V ) with ℓ(V ) = d, but
X1, X2 are not in the same G(k)-orbit. But we know that if X1, X2 are not in the same
G(k)-orbit, then X1 6∼=e X2 for some e≫ 0.

3. Properties of the approximate categories

3.1. Some elementary properties. If Z is a representation with ℓ(Z) ≤ d, then the
homomorphism µ : Z → Z ⊗ R restricts to

µ : Z → Z ⊗ Rd.

If f ∈ R⋆
d, then (id⊗f)◦µ is an endomorphism of Z. One can verify that Z has the structure

of an R⋆
d-module, where the multiplication is defined by

f · w := (id⊗f) ◦ µ(w).

For any X1, X2 ∈ Aff(V ), Homd(X1, X2) is a subspace of R⋆
d, so Homd(X1, X2) acts on any

representation Z with ℓ(Z) ≤ d.

Lemma 3.1. Suppose that X1 = v1 + Z1 and X2 = v2 + Z2. If f ∈ Homd(X1, X2) then
f ·X1 ⊆ f(1)v2 + Z2.

Proof. For w ∈ X1 and h ∈ Z⊥
2 we have

(h⊗ id) ◦ µ(w) = h(v2)⊗ 1

If we apply f , we have

h(f · w) = h ◦ (id⊗f) ◦ µ(w) = f ◦ (h⊗ id) ◦ µ(w) = f(h(v2)⊗ 1) = f(1)h(v2).

Therefore, h(f · w − f(1)v2) = 0, so we get that f · w ∈ f(1)v2 + Z2.
14
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Corollary 3.2. If X1
∼=d X2 then dimX1 = dimX2.

Lemma 3.3. Suppose that 0 ∈ X1 and 0 6∈ X2. Then Homd(X1, X2) = 0.

Proof. Write X2 = v2 + Z2, and choose f ∈ Z⊥
2 with f(v2) 6= 0. then

(f ⊗ id) ◦ µ(0)− f(v2)⊗ 1 = −f(v2)⊗ 1

is a nonzero multiple of 1 ∈ Rℓ(V ). It follows that Id(X1, X2) = Rd and Homd(X1, X2) =
0. �

3.2. Constructible equivariants.

Definition 3.4. Suppose that d is a positive integer. We inductively define the notion of a
d-constructible equivariant:

(1) If f : V → V ′ is G-equivariant and linear, and ℓ(V ), ℓ(V ′) ≤ d, then f is d-
constructible;

(2) if f1, f2 : V → V ′ are d-constructible, and λ1, λ2 ∈ k, then λ1f1 + λ2f2 is d-
constructible;

(3) if ℓ(V1) + ℓ(V2) ≤ d, then the bilinear map V1 ⊕ V2 → V1 ⊗ V2 defined by (v1, v2) 7→
v1 ⊗ v2 is d-constructible;

(4) if f1 : V1 → V2 and f2 : V2 → V3 are d-constructible, then the composition f2 ◦ f1 is
d-constructible.

We will denote the class of d-constructible equivariants by Ed(V ).

Proposition 3.5. Suppose that f : V → V ′ is a d-constructible equivariant with f(v1) = 0
and f(v2) 6= 0. Then we have Homd(v1, v2). In particular, v1 and v2 are not isomorphic in
Cd(V ).

The proof will be given after Lemma 3.20

3.3. E2d(V ) is at least as powerful as Cd. Let X be a set with n elements. Consider the
symmetric group G = Σ(X) ∼= Σn. and let U ∼= kn be the vector space with basis X . The
action of G on U gives us a natural inclusion τ : G →֒ End(U). Let W ⊆ k[G] be the vector
space spanned by the restrictions of linear and constant functions End(U) to G. Since τ is
injective, W generates k[G]. It is clear that W is stable under the left and right action of G.
For g ∈ Σn the inverse is just the transpose matrix. From this follows that ι(W ) ⊆W .

We will write U⊗m for

U ⊗ · · · ⊗ U︸ ︷︷ ︸
m

.

To a subset Y ⊆ Xm, we can associate a tensor tensor(Y ) ∈ U⊗m defined by

tensor(Y ) =
∑

(x1,...,xm)∈Y m

x1 ⊗ · · · ⊗ xm.

We can define a bilinear multiplication ⋆ : U⊗m ⊕ U⊗m → U⊗m by

(x1 ⊗ · · · ⊗ xm) ⋆ (y1 ⊗ · · · ⊗ ym) =

{
x1 ⊗ · · · ⊗ xm if (x1, . . . , xm) = (y1, . . . , ym);
0 otherwise
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Define 1 =
∑

x∈X x. For every i, we define the linear projection pri : U
⊗d → U⊗d by

pri(x1 ⊗ · · · ⊗ xd) = x1 ⊗ · · · ⊗ xi−1 ⊗ 1⊗ xi+1 ⊗ · · · ⊗ xm.

For m ≤ d, the equivariant maps ⋆ and pri defined above lie in E2d(U
⊗d).

Suppose that m1, . . . , ms are positive integers. Define

V = U⊗m1 ⊕ · · · ⊕ U⊗ms ⊕ k.

Define 1d : V → U⊗d by
1d(v1, . . . , vs, a) = a(1⊗ · · · ⊗ 1).

Then 1d lies in E2d(V ).
If Yi ⊆ Xmi for i = 1, 2, . . . , s, then Γ = 〈X, Y1, . . . , Ys〉 is a structure with s relational sym-

bols. Let Ld = Ld(m1, . . . , ms) be the d variable first order language for this structure, and
let Cd = Cd(m1, . . . , ms) be the d-variable language with counting. For Γ = 〈X, Y1, . . . , Ys〉,
define

AΓ := (tensor(Y1), . . . , tensor(Ys), 1) ∈ V.

Definition 3.6. Suppose that ϕ(x1, . . . , xd) is a formula in Cd, and

f : V → U⊗d.

We say that f represents ϕ, if

f(AΓ) =
∑

Γ|=ϕ(x1,...,xd)

x1 ⊗ · · · ⊗ xd.

for all Y1, . . . , Ys.

Theorem 3.7. Suppose that k is a field of characteristic 0 or p > n. Then every formula
ϕ(x1, . . . , xd) in Cd is represented by an equivariant f ∈ E2d(V ).

Proof. For y1, . . . , ymi
∈ {x1, . . . , xd}, the formula Yi(x1, . . . , xmi

) is represented by an equi-
variant linear map

V → U⊗d.

The formula xi = xj is represented by an equivariant linear map.
Suppose that ϕ1(x1, . . . , xd) and ϕ2(x1, . . . , xd) are represented by the covariants f1, f2 ∈

E2d(V ) respectively. Then f1 ⋆ f2 represents the formula ϕ1 ∧ ϕ2, and f1 ⋆ f2 ∈ E2d(V ).
If ϕ(x1, . . . , xd) is represented by f ∈ E2d(V ), then ¬ϕ(x1, . . . , xd) is represented by 1d−f .
Suppose that q(t) is a polynomial in t. Define an equivariant [q(t)] : U⊗d → U⊗d by

[q(t)]
( ∑

x1,...,xd∈X

a(x1, x2, . . . , xd)x1 ⊗ · · · ⊗ xd
)
=

∑

x1,...,xd∈X

q(a(x1, . . . , xd))x1 ⊗ · · · ⊗ xd.

If we write q(t) = tu(t) + a then we have

[q(t)](v) = [u(t)](v) ⋆ v + av

It follows by induction on the degree of q(t) that [q(t)] lies in E2d(U
⊗d) for all polynomials

q(t).
Suppose that ϕ(x1, . . . , xd) is represented by an equivariant f . There exists a polynomial

q(t) ∈ k[t] with q(b) = 1 and q(i) = 0 for i 6= b. The formula

∃bxi ϕ(x1, . . . , xd)

is represented by the covariant [q(t)] ◦ pri ◦f . �
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Corollary 3.8. Suppose that k is a field of characteristic 0 or p > n. Suppose that Γ =
〈X, Y1, . . . , Ys〉,Γ′ = 〈X, Y ′

1 , . . . , Y
′
s〉 are two structures (for example graphs) and

f(AΓ) = 0 ⇔ f(AΓ′) = 0

for every f ∈ E2d(V ). Then we have

Γ |= ϕ⇔ Γ′ |= ϕ′

for every closed formula ϕ in Cd.

3.4. Constructible functors. For the following definition, the reader should bear in mind
that Homd(X1, X2) is a subspace of R⋆

d for every representation V with ℓ(V ) ≤ d and every
two objects X1, X2 of Cd(V ).

Definition 3.9. We will call a covariant functor F : Cd(V ) → Cd(V ′) very faithful if F(φ) = φ
for every morphism. A contravariant functor F : Cd(V ) → Cd(V

′) is called very faithful if
F(φ) = φ ◦ ι for every morphism φ.

Note that a very faithful function F : Cd(V ) → Cd(V ′) is uniquely determined by how it
acts on objects.

Lemma 3.10. Suppose that ℓ(V ), ℓ(V ′) ≤ d. There exist very faithful covariant functors
F ,G,H : Cd(V ) → Cd(V ′) such that F(X) = ∅,G(X) = {0},H(X) = V ′ for all X ∈ Aff(V ).
Also, for every λ ∈ k there exists a very faithful functor I : Cd(V ) → Cd(k) such that
I(X) = {λ} ∈ Aff(k) for all X ∈ Aff(V ).

Proof. This is clear because

Homd(∅, ∅) = Homd({0}, {0}) = Homd(V2, V2) = R⋆
d

and for {λ} ∈ Aff(k), we have Homd({λ}, {λ}) = R⋆
d as well. �

Lemma 3.11. Suppose that ℓ(V ), ℓ(V ′) ≤ d and f : V → V ′ is G-equivariant and linear.
Then there exists a very faithful covariant functor F : Cd(V ) → Cd(V ′) such that F(X) =
f(X) for all X ∈ Aff(V ).

Proof. Suppose that X1 = v1 + Z1, X2 = v2 + Z2 lie in Cd(V ). Because f is equivariant, we
have a commutative diagram

V
µ

//

f

��

V ⊗Rd

f⊗id
��

V ′
µ

// V ′ ⊗ Rd

.

We can write f(X1) = f(v1)+f(Z1) and f(X2) = f(v2)+f(Z2). The space S(f(X1), f(X2))
is spanned by elements of the form

(g ⊗ id) ◦ µ(f(w))− g(f(v2))⊗ 1

where g ∈ f(Z2)
⊥ and w ∈ X1. Define h = g ◦ f ∈ Z⊥

2 . We have

(g ⊗ id) ◦ µ(f(w))− g(f(v2))⊗ 1 = (g ⊗ id) ◦ (f ⊗ id) ◦ µ(w)− g(f(v2))⊗ 1 =

= (h⊗ id) ◦ µ(w)− h(v2)⊗ 1 ∈ Sd(X1, X2).

This shows that S(f(X1), f(X2)) ⊆ S(X1, X2). Following the definitions, it is easy to see
that this implies Homd(X1, X2) ⊆ Homd(φ(X1), φ(X2)). �
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Lemma 3.12. Suppose that ℓ(V ), ℓ(V ′), ℓ(V ′′) ≤ d, and F ′ : Cd(V ) → Cd(V ′) and F ′′ :
Cd(V ) → Cd(V ′′) are very faithful covariant (resp. contravariant) functors. Then there exists
a very faithful covariant (resp. contravariant) functor F : Cd(V ) → Cd(V ′ ⊕ V ′′) such that
F(X) = F ′(X)⊕ F ′′(X) for all X ∈ Aff(V ).

Proof. Suppose thatX1, X2 ∈ Aff(V ), and letX ′
1 = F ′(X1), X

′
2 = F ′(X2), X

′′
1 = F ′′(X1), X

′′
2 =

F ′′(X2). It is straightforward to verify that

S(X ′
1 ⊕X ′′

1 , X
′
2 ⊕X ′′

2 ) = S(X ′
1, X

′
2) + S(X ′′

1 , X
′′
2 ).

We have

S(X ′
1, X

′
2) ⊆ ((S(X1, X2)))d.

Similarly, we have

S(X ′′
1 , X

′′
2 ) ⊆ ((S(X1, X2)))d,

so

((S(X ′
1 ⊕X ′′

1 , X
′
2 ⊕X ′′

2 )))d ⊆ ((S(X1, X2)))d.

This implies that

Homd(X1, X2) ⊆ Homd(X
′
1 ⊕X ′′

1 , X
′
2 ⊕X ′′

2 ) = Homd(F(X1),F(X2)).

�

Definition 3.13. Suppose that X ⊆ V , X ′ ⊆ V ′ are affine subspace. We define X ⊗X ′ ⊆
V ⊗ V ′ as the affine subspace spanned by all x ⊗ x′ with x ∈ X and x′ ∈ X ′. Suppose we
write X = v +Z and X ′ = v′ +Z ′ where v ∈ V , v′ ∈ V ′ and Z ⊆ X,Z ′ ⊆ X ′ are subspaces.
then we have

X ′ ⊗X ′ = v ⊗ v′ + Z ⊗ Z ′ + kv ⊗ Z ′ + Z ⊗ kv′.

Lemma 3.14. Suppose that ℓ(V ), ℓ(V ′) + ℓ(V ′′) ≤ d, and F ′ : Cd(V ) → Cd(V ′) and
F ′′ : Cd(V ) → Cd(V

′′) are very faithful functors. Assume that both are covariant (resp.
contravariant). Then there exists a very faithful covariant (respectively contravariant) func-
tor F : Cd(V ) → Cd(V ′ ⊗ V ′′) such that F(X) = F ′(X)⊗F ′′(X) for all X ∈ Aff(V ).

Proof. Let e = ℓ(V ′). One can verify that

S(X ′
1 ⊗X ′′

1 , X
′
2 ⊗X ′′

2 ) ⊆ S(X ′
1, X

′
2)Rd−e +ReS(X

′′
1 , X

′′
2 ) ⊆

⊆ ((S(X1, X2)))eRd−e +Re((S(X1, X2))d−e ⊆ ((S(X1, X2))d.

It follows that

((S(X ′
1 ⊗X ′′

1 , X
′
2 ⊗X ′′

2 )))d ⊆ ((S(X1, X2)))d

and therefore

Homd(X1, X2) ⊆ Homd(X
′
1 ⊗X ′′

1 , X
′
2 ⊗X ′′

2 ) = Homd(F(X1),F(X2))

�

Definition 3.15. If X ⊆ V is an affine subspace, then we define

X+ = {f ∈ V ⋆ | f(x) = 1 for all x ∈ X}.

If 0 ∈ X , then X+ = ∅. If 0 6∈ X , then X++ = X .
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Lemma 3.16. Suppose that ℓ(V ) ≤ d. There exists a very faithful contravariant functor
D : Cd(V ) → Cd(V ⋆) such that

D(X) = X+

for all X ∈ Aff(V ).

Proof. Suppose that X1, X2 ∈ Aff(V ). The action of G on V is given by

µ : V → V ⊗ Rd.

The action of G on V ⋆ is given by

µ⋆ : V ⋆ → V ⋆ ⊗Rd

Such that
(h⊗ ι) ◦ µ(v) = (v ⊗ id) ◦ µ⋆(h)

for all h ∈ V ⋆, v ∈ V = V ⋆⋆. Suppose that X1 = v1 + Z1, X2 = v2 + Z2 ∈ Aff(V ). The case
0 ∈ X2 is clear, because then D(X2) = ∅ and Homd(D(X2),D(X1)) = R⋆

d. The case where
0 ∈ X2 and 0 6∈ X1 is also clear, because we have Homd(X1, X2) = 0. So we may assume
that 0 6∈ X1 and 0 6∈ X2. Choose u1, u2 ∈ V ⋆ with u1(X1) = {1}, and u2(X2) = {1}. Then
we have D(X1) = u1 + Y1 and D(X2) = u2 + Y2, where Yi = (kvi + Zi)

⊥ for i = 1, 2. The
space S(D(X2),D(X1)) is spanned by elements of the form

(4) (f ⊗ id) ◦ µ⋆(w)− f(u1)⊗ 1 = (w ⊗ ι) ◦ µ(f)− f(u1)⊗ 1

with f ∈ Y ⊥
1 = kv1 + Z1, and w ∈ u2 + Y2 ⊆ Z⊥

2 . In fact we only need those f for which
f ∈ X1 = v1 + Z1. Then (4) is equal to

(f ⊗ id) ◦ µ⋆(w)− 1 = (w ⊗ ι) ◦ µ(f)− 1 = (w ⊗ ι) ◦ µ(f)− w(v1) =

= ι((w ⊗ id) ◦ µ(f)− w(v1)) ∈ ι(S(X1, X2)).

From this follows that

Homd(X1, X2) ⊆ ι⋆(Homd(D(X2),D(X1))).

�

Definition 3.17. We inductively define the notion of a d-constructible functor.

(1) The constant functors F ,G,H, I in Lemma 3.10 and the duality functorD in Lemma 3.16
are d-constructible. The functor F associated to a G-equivariant linear map as in
Lemma 3.11 is d-constructible.

(2) If F ′,F ′′ are as in Lemma 3.12 and they are d-constructible, then the very faithful
functor F defined by F(X) = F ′(X)⊕F ′′(X) is d-constructible.

(3) If F ′,F ′′ are as in Lemma 3.14 and they are d-constructible, then the very faithful
functor F defined by F(X) = F ′(X)⊗F ′′(X) is d-constructible.

(4) A composition of d-constructible functors is again d-constructible.

Corollary 3.18. If X1, X2 ∈ Aff(V ), X1
∼=d X2 and F : Cd(V ) → Cd(V

′) is a d-constructible
functor. Then F(X1) ∼=d F(X2). In particular, we have

dimF(X1) = dimF(X2).

Lemma 3.19. Suppose that F ,F ′ : Cd(V ) → Cd(V ′) are d-constructible functors, either both
covariant or both contravariant. Then there exists a d-constructible functor G : Cd(V ) →
Cd(V ′) defined by G(X) = F(X) ∩ F ′(X).
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Proof. If 0 6∈ X1 and 0 6∈ X2, then we have (X+
1 +X+

2 )
+ = X1 ∩X2. In V ⊕ k, we have

((X1 × {1})+ + (X2 × {1})+)+ = X1 ∩X2 × {1}.

So if I : Cd(V ) → Cd(V ⊕ k) is just the inclusion, and P : Cd(V ⊕ k) → Cd(V ) is just the
projection, then we define G by

G(X) = P ◦ D(D ◦ I ◦ F(X) +D ◦ I ◦ F ′(X)).

�

Lemma 3.20. Suppose that f : V → V ′ is a d-constructible equivariant. Then there exists
a d-constructible functor F : Cd(V ) → Cd(V ′) with F({v}) = {f(v)} for all v ∈ V .

Proof. This follows easily from the inductive definitions 3.4 and 3.17. �

Proof of Proposition 3.5. Suppose that f : V → V ′ is a d-constructible equivariant with
f(v1) = 0 and f(v2) 6= 0. By Lemma 3.20 there is a d-constructible functor F : Cd(V ) →
Cd(V ′) with F({v}) = {f(v)} for all v ∈ V . We have Homd(v1, v2) ⊆ Homd(f(v1), f(v2)) = 0
by Lemma 3.3. �

Lemma 3.21. Suppose that v1, v2 ∈ V and

dimF(v1) = dimF(v2)

for all d-constructible functors F . Then f(v1) = 0 ⇔ f(v2) = 0 for every d-constructible
equivariant.

Proof. Suppose that f : V → V ′ is a d-constructible equivariant. There exists a d-constructible
functor F : Cd(V ) → Cd(V ′) with F({w}) = {f(w)} for every w ∈ V by Lemma 3.20. De-
fine a d-constructible functor F ′ with F ′(X) = F(X) ∩ {0}. Suppose that w ∈ V . If
f(w) = 0, then F ′({w}) = {0} and dimF ′({w}) = 0. If f(w) 6= 0, then F ′({w}) = ∅ and
dimF ′({w}) = −∞. �

4. The module isomorphism problem

4.1. Reformulation of the module isomorphism problem. Suppose that M and N
are (left) n-modules of the free associative algebra T = k〈x1, . . . , xr〉, and we would like to
test whether M and N are isomorphic. We can choose a basis in M and identify M with kn.
the action of xi is given by a matrix Ai. Similarly we can identify N with kn. The action
of xi is given by a matrix Bi. An isomorphism is an invertible linear map C :M → N such
that CAi = BiC for all i. This is equivalent to CAiC

−1 = Bi for all i. Let V = Matn,n(k)
r.

Then GLn(k) acts on V by simultaneous conjugation. The following lemma follows from the
discussion above:

Lemma 4.1. The modules M and N are isomorphic if and only if A = (A1, . . . , Ar) and
B = (B1, . . . , Br) lie in the same GLn(k)-orbit.

Proposition 4.2. Let k be the algebraic closure of k. The modules M ⊗k ⊗k and N ⊗k k
are isomorphic if and only if M⊗k k and N⊗k k are isomorphic as T ⊗k k-modules. In other
words, A and B lie in the same GLn(k)-orbit if and only if they lie in the same GLn(k)-orbit.
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Proof. Suppose that M ⊗k k and N ⊗k k are isomorphic T ⊗k k-modules. Then there exists
an invertible matrix C ∈ GLn(k) with entries in k such that CAi = BiC for all i. There
exists a finite field extension L of k such that all entries of C lie in L. It follows from [16,
§5, Lemma 1] that M and N are isomorphic T -modules if k is a finite field. Suppose that k
is infinite. Choose a basis h1, h2, . . . , hr of L as a k-vector space. We can write

C =
∑

j

hjCj

where Cj is an R-module homomorphism from M to N for all j. Let C(s1, s2, . . . , sr) =∑r

j=1 sjCj where s1, . . . , sr are indeterminates. Since C(h1, . . . , hr) is invertible, we have

detC(h1, . . . , hr) 6= 0. So detC(s1, . . . , sr) is not the zero polynomial. Since k is infinite,
we can choose a1, . . . , ar ∈ k such that detC(a1, . . . , ar) 6= 0. Then C(a1, . . . , ar) is an
isomorphism between M and N . �

Theorem 4.3 (See [5, 3]). There exists an algorithm for determining whether two n-dimensional
modules M and N are isomorphic which requires only a polynomial number (polynomial in
n) of arithmetic operations in the field k.

If k is a fixed finite field, then this algorithm runs in polynomial time. Even if k is not
fixed, if k = Fq and log q grows polynomially, then the algorithm still runs in polynomial
time.

4.2. The isomorphism problem in k-categories. A category C is a k-category, if HomC(M,N)
is a vector space for every two objects M and N , and the composition map

HomC(M,N)× HomC(N,P ) → HomC(M,P )

is k-bilinear for all objects M,N, P . Assume we have any k-category C with finite di-
mensional Hom-spaces. Suppose that M and N are two isomorphic objects in C, and let
T = HomC(N,N). Then T and HomC(M,N) are isomorphic as left T -modules.

Lemma 4.4. Suppose that M and N are isomorphic, and ψ : T → HomC(M,N) is an
isomorphism of T -modules. Then ϕ = ψ(1) is an isomorphism between M and N .

Proof. Since 1 generates T as an T -module, ϕ = ψ(1) generates HomC(M,N) as an T -
module. Suppose that γ : M → N is an isomorphism. Since γ ∈ Tϕ, there exists τ ∈
HomC(N,N) = T such that γ = τϕ. So ϕ has a left inverse. The map

Φ : HomC(N,M) → HomC(N,N).

defined by Φ(λ) = ϕλ. is injective because ϕ has a left inverse. Since dimHomC(N,M) =
dimHomC(N,N) < ∞ we have that Φ is surjective. Therefore idN lies in the image of Φ.
This implies that ϕ has a right inverse as well. �

To test whether any two objects M , N are isomorphic, we can proceed as follows.

(1) First test whether T and HomC(M,N) are isomorphic as T -modules. If they are not
isomorphic, then M and N are not isomorphic. Otherwise let ψ : T → HomC(M,N)
be an isomorphism of R-modules.

(2) Let ϕ = ψ(1). Test whether ϕ is an isomorphism. This is easy, because testing
whether ϕ has a left and a right inverse just boils down to a system of linear equations.
Now M and N are isomorphic if and only if ϕ is an isomorphism.
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We can use this approach for the categories Cd(V ). Note that

dimHomd(X1, X2) ≤ dimRd

for all d because Homd(X1, X2) is a subspace of R⋆
d.

Proof of Theorem 1.10. We have reduced the isomorphism problem in Cd(V ) to the isomor-
phism problem of modules, and by Theorem 4.3 the isomorphism problem of modules can
be solved in a polynomial number of arithmetic operations in the field k. �

Let k be the algebraic closure of k. We construct a new category C⊗k k, where the objects
are the same as the objects of C, but

HomC⊗kk
(M,N) = HomC(M,N)⊗k k.

Proposition 4.5. Suppose that M,N are objects in C. If M ⊗k k,N ⊗k k are isomorphic in
C ⊗k k, then they are isomorphic in C.

Proof. Suppose M and N are objects in C which are isomorphic in C ⊗k k. Let T =
HomC(N,N). Then T ⊗k k is isomorphic to HomC(M,N) ⊗k k as a T ⊗k k-module. From
Proposition 4.2 follows that T and HomC(M,N) are isomorphic as T -modules. Let ψ : T →
HomC(M,N) be an isomorphism and define ϕ = ψ(1). Then ψ extends to an isomorphism
ψ ⊗ id : T ⊗k k : T ⊗k k → HomC(M,N) ⊗k k of T ⊗k k-modules. and ϕ ⊗ 1 = ψ(1) is an
isomorphism by Lemma 4.4. We can write

(ϕ⊗ 1)−1 =

l∑

i=1

γi ⊗ ai

where a1, a2, . . . , al ∈ k are linearly independent over k and a1 = 1. Then we have

id = (ϕ⊗ 1) ◦ (ϕ⊗ 1)−1 =
l∑

i=1

(ϕγi)⊗ ai.

It follows that ϕγi = id for i = 1 and ϕγi = 0 for i > 1. Therefore, ϕ has a right inverse.
Similarly ϕ has a left inverse, so ϕ is an isomorphism. �

Proof of Theorem 1.6. The implication (i)⇒(ii) follows from Corollary 3.18. It is easy to
verify that the category Cd(V ⊗k k) (working over the field k) is equal to Cd(V )⊗k k. Suppose
that X1, X2 ∈ Aff(V ) are in the same G(k)-orbit, say g · X1 = X2 for some g ∈ G(k). We
may view g as an element of R∗

d⊗k k if we identify g with the function Rd⊗k k → k which is
evaluation at g. Then g ∈ Homd(X1, X2)⊗k k, and g

−1 ∈ Homd(X2, X1)⊗k k is its inverse.
This shows that X1, X2 are isomorphic in Cd(V ) ⊗k k. By Proposition 4.5, we have that
X1, X2 are isomorphic in Cd(V ). The implication (ii)⇒(iii) follows. �

Proof of Theorem 1.7. The implication (i)⇒(ii) follows from Lemma 3.21. The other impli-
cations follow from Theorem 1.6. �

Proof of Theorem 1.9. The implication (i)⇒(ii) is obvious because Cd contains Ld. The
equivalence (ii)⇔(iii) is Theorem 1.4. The implication (ii)⇒(iv) follows from Corollary 3.8.
The implications (iv)⇒(v)⇒(vi)⇒(vii) follow from Theorem 1.7. The equivalence (vii)⇔(viii)
is Lemma 1.5. �
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4.3. The categories Cd(V ) for the general linear group. Let G be the group GLn(k).
Let U = kn be the standard n-dimensional representation. We can identify G with the
variety

{(C,D) ∈ Hom(kn, U)× Hom(U, kn) | DC = In} ⊆ Un × (U⋆)n.

LetW be the subspace of k[G] spanned by the constant functions, and the functions induced
by linear functions on Un× (U⋆)n. So W is isomorphic to Un⊕ (U⋆)n⊕k as a representation
of G. We have ℓ(U) = ℓ(U⋆) = 1. This choice ofW gives us now a filtration of R = k[G]. For
an n-dimensional vector space V every weakly decreasing sequence λ = (λ1, . . . , λn) ∈ Zn

corresponds to an irreducible representation Sλ(V ) of GL(V ). If λr > 0 and λr+1 ≤ 0 for
some r, then we have that Sλ(V ) is a subrepresentation of

U⊗(λ1+···+λr) ⊗ (U⋆)⊗(−λr+1−···−λn).

It follows that ℓ(Sλ(V )) ≤
∑n

i=1 |λi|, where | · | denotes the absolute value.
Define

V = Matn,n(k)
r = End(U)r

where G acts on V by simultaneous conjugation. We have ℓ(V ) = 2.
The remainder of the Section is dedicated to the prove of Proposition 1.8. Let T =

k〈x1, . . . , xr〉 be the free associative algebra with r generators, and M and N be an n-
dimensional R-modules representated by A = (A1, . . . , Ar) ∈ V and B = (B1, . . . , Br) ∈ V
respectively.

Let T–mod be the category of finite dimensional left R-modules.

Proposition 4.6. There exists a functor F : C3(V ) → T–mod such that for every n-
dimensional module T -module M that is represented by A = (A1, . . . , Ar) we have F(A) ∼=
M .

Proof. Let (C,D) ∈ G. We can write C = (ci,j) and D = (di,j). Then I3(A,B) is the
3-truncated ideal generated by the entries of the matrices CD− I, DC − I and CAiD−Bi

for i = 1, 2, . . . , r. Then the entries of CAi −BiC = (CAiD−Bi)C −CAi(DC − I) also lie
in I3(A,B). The coordinate functions C = (ci,j) define a linear map π : R⋆ → Homk(k

n, kn).
It follows that π(Homd(M,N)) ⊆ HomR(M,N). So we define F(φ) = π(φ) for all φ ∈
Homd(M,N). �

Corollary 4.7. The elements A = (A1, . . . , Ar), B = (B1, . . . , Br) lie in the same orbit if
and only if A and B are isomorphic to C3(V ).

Consider now the case were r = 1. As the following proposition shows, the size needed for
a covariant to distinguish two orbits may be excessively large:

Proposition 4.8. Let

C =

(
0 1
0 0

)
, D =

(
0 0
0 0

)
∈ Mat2,2(C).
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and define the block matrices

A =




C
C

. . .
C

C




and B =




C
C

. . .
C

D




in Mat2n,2n(C). The group GL2n(C) acts on Mat2n,2n(C) by conjugation. Then A,B do not
lie in the same GL2n(C) orbit. If ϕ : V → V ′ is a covariant which distinguishes the orbits
of A and B respectively, then we have dim(V ′) ≥ 3n and ℓ(V ′) ≥ 2n.

Proof. Define V = End(U). Then V ∼= Mat2n,2n(C), and GL(U) ∼= GL2n(C). We can write
U = U1 ⊕ · · · ⊕ Un where Ui

∼= C2. We can view End(U1) ⊕ · · · ⊕ End(Un) as a subalgebra
of End(U). Now A,B ∈ End(U1)⊕ · · ·⊕End(Un) ⊆ End(U) are given by A = (C,C, . . . , C)
and B = (C,C, . . . , C,D).

Suppose that ϕ : V → V ′ is a covariant, where V ′ is an irreducible representation of
GL(V ). If ϕ(A) = 0, then ϕ(B) = 0 because B lies in the orbit closure of A. Suppose that
ϕ(A) 6= 0 and ϕ(B) = 0. As a representation of GL(U1) × · · · × GL(Un), V

′ may not be
irreducible. Let Z1 ⊗ · · ·⊗Zn be an irreducible summand of V ′ as a GL(U1)× · · ·×GL(Un)
representation, such that p(ϕ(A)) 6= 0, where p is the GL(U1) × · · · × GL(Un)-equivariant
projection V ′ → Z1 ⊗ · · · ⊗ Zn, and Zi is an irreducible representation of GL(Ui) for all
i. Let q : End(U1) ⊕ · · · ⊕ End(Un) → Z1 ⊗ · · · ⊗ Zn be the restriction of p ◦ ϕ. We have
q(A) 6= 0. Suppose that dimZi = 1 for some i. Let B′ = (C, . . . , C,D, C, . . . , C). Then B
and B′ are in the same GL(V )-orbit, so ϕ(B′) = 0, and hence q(B′) = 0. Now B′ lies in the
SL(Ui)-closure of of A. Since q is SL(Ui)-invariant, we get q(A) = q(B′) = 0. Contradiction.
Hence dimZi ≥ 2. Since Zi must be an irreducible representation of PSL(Ui), we even have
dimZi ≥ 3. It follows that

dim V ′ ≥ (dimZ1) · · · (dimZn) ≥ 3n.

Let us write V ′ = Sλ(U) for some λ = (λ1, . . . , λ2n) ∈ Z2n and Zi = Sµ(i)
(Ui), where

µ(i) = (µ
(i)
1 , µ

(i)
2 ).

From dim(Zi) ≥ 3 follows that µ
(i)
1 − µ

(i)
2 ≥ 2 for all i. The representation of GL(U)

restricts to GL(U1) × · · · × GL(Un) according to the Littlewood-Richardson rule. We have
the following inequalities:

λ1 ≥
∑

i

µ
(i)
1

and

λ2n ≤
∑

i

µ
(i)
2

Taking the difference gives us

|λ| =
∑

i

|λi| ≥ λ1 − λ2n ≥
n∑

i=1

µ
(i)
1 − µ

(i)
2 ≥ 2n.

It follows that ℓ(V ′) ≥ 2n. �
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Remark 4.9. Define ϕ : End(U) → End(
∧n U) by

ϕ(E) = E ∧ · · · ∧ E.

Then ϕ(A) 6= 0 and ϕ(B) = 0. Note that End(
∧n U) is not irreducible. There exists an

irreducible summand W of End(
∧n U) such that p(ϕ(C)) 6= 0, where p : End(

∧n U) → W
is the projection. If we set q = p ◦ ϕ, then q is a covariant that distinguishes the orbits of A
and B. Note that dimW ≤ dimEnd(

∧n U) ≤ 4n.

5. The Cai-Fürer-Immerman examples

Cai, Fürer and Immerman showed that for every postive integer d there exist non-isomorphic
2-colored graphs Γ and Γ′ such that Γ ∼d Γ′. To explain this result, we need to describe
the construction of Cai, Fürer and Immerman which, given a graph Q, two nonisomorphic
2-colored graphs Γ(Q) and Γ′(Q) (see [4, §6]).

Suppose that Q = 〈X,R〉 is a graph. Let E = {{x, y} | (x, y) ∈ R} be the set of edges in
the graph. For every vertex x ∈ X , we define E(x) ⊆ E by E(x) = {e ∈ E | x ∈ e}. So E(x)
is the set of edges which are incident with x. We define a vertex set X(Q) = X1(Q)∪X2(Q),
where

X1(Q) = {cx,Y | x ∈ X, Y ⊆ E(x), |Y | is even},

and
X2(Q) = {ax,e | x ∈ X, e ∈ E(x)} ∪ {bx,e | x ∈ X, e ∈ E(x)}.

We define the edge set E(Q) by

E(Q) = {{ax,e, cx,Y } | x ∈ X, e ∈ Y } ∪ {{bx,e, cx,Y } | x ∈ X, e 6∈ Y }∪

∪ {{ax,e, aa,e} | x, y ∈ X, e ∈ E(x) ∩ E(y)} ∪ {{bx,e, ba,e} | x, y ∈ X, e ∈ E(x) ∩ E(y)}

We also define another edge set E ′(Q) as follows: We choose two special vertices x̃, ỹ such
that ẽ = {x̃, ỹ} ∈ E is an edge. To obtain E ′(Q), remove {ax̃,ẽ, aỹ,ẽ} and {bx̃,ẽ, bỹ,ẽ} from
E(Q) and add {ax̃,ẽ, bỹ,ẽ} and {aỹ,ẽ, bx̃,ẽ}. Let R(Q) and R′(Q) be the symmetric relations
corresponding to the edge sets E(Q) and E(Q′) respectively. We now have two 2-colored
graphs: Γ(Q) = (X(Q), R(Q), X1(Q), X2(Q)) and Γ′(Q) = (X(Q), R′(Q), X1(Q), X2(Q)).

The following proposition follows from Lemma 6.2 of [4]. We will give a proof here, because
a crucial lemma is based on this proof.

Proposition 5.1. The graphs Γ(Q) and Γ′(Q) are not isomorphic.

Proof. Let M be the adjacency matrix of Γ(Q) with entries in the field F2. Since X(Q) =
X1(Q) ∪X2(Q), M has the following block form:

M =

(
A1,1 A1,2

A2,1 A2,2

)

where A1,1, A2,2 are symmetric and A1,2 = At
2,1. Similarly, let

M ′ =

(
A1,1 A1,2

A2,1 A′
2,2

)

be the adjacency matrix for Γ′(Q).
Let

B =
(
A2,1 A2,2

)
, and B′ =

(
A2,1 A′

2,2

)
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The proposition now follows from the lemma below. �

Lemma 5.2. We have
rank(B) = 3|E|+ |X| − 2

and
rank(B′) = 3|E|+ |X| − 1.

Proof. The image of im(B) of B is equal to im(A2,1) + im(A2,2). The space im(A2,1) is
spanned by all ∑

e∈Y

ax,e +
∑

e∈E(x)\Y

bx,e

with x ∈ X , Y ⊆ E(x) with |Y | even, and im(A2,2) is spanned by all

ax,e + ay,e, bx,e + by,e

with x ∈ X and e ∈ E(x). It is clear that dim im(A2,2) = 2|E|. For e = {x, y} ∈ E,
define ae = ax,e + im(A2,2) = ay,e + im(A2,2) and be = bx,e + im(A2,2) = by,e + im(A2,2) ∈
k4|E|/ im(A2,2). Now im(B)/ im(A2,2) is spanned by all

∑

e∈Y

ae +
∑

e∈E(x)\Y

be

where x ∈ X and Y ⊆ X with |Y | even. Note that ae+ be+af + bf ∈ im(B)/ im(A2,2) for all
x ∈ X , e, f ∈ E(x). Since Q is connected, it follows that ae+ be+ af + bf ∈ im(B)/ im(A2,2)
for all e, f ∈ E. Let Z ⊆ im(B) containing im(A2,2) such that Z/ im(A2,2) is spanned by all
ae + be + af + bf . The dimension of Z/ im(A2,2) is |E| − 1. Now im(B)/Z is spanned by all
elements of the form ∑

e∈E(x)

be + Z

with x ∈ X . Since Q is connected, it follows that dim im(B)/Z = |X|−1. We conclude that

rank(B) = dim im(B) = 2|E|+ (|E| − 1) + (|X| − 1) = 3|E|+ |X| − 2.

We can do a similar computation for rank(B′). First of all dim im(A′
2,2) = 2|E|. Let

ẽ = {x̃, ỹ} be the special edge. For e = {x, y} 6= ẽ, we define a′e = ax,e + im(A′
2,2) and

b′e = bx,e + im(A′
2,2). For ẽ = {x̃, ỹ} we define a′ẽ = ax̃,ẽ + im(A′

2,2) = bỹ,ẽ + im(A′
2,2) and

b′ẽ = bx̃,ẽ+ im(A′
2,2) = aỹ,ẽ ∈ im(A′

2,2). Let Z
′ ⊆ B be he space containing im(A′

2,2) such that
Z ′/ im(A′

2,2) is spanned by all a′e + b′e + a′f + b′f with e, f ∈ E. We have dim(Z ′/ im(A′
2,2)) =

|E| − 1. Finally, im(B′)/ dim(Z ′) is spanned by all
∑

e∈E(x)

b′e + Z ′

with x ∈ X and x 6= ỹ, and ( ∑

e∈E(x̃)\{ẽ}

a′e
)
+ bẽ′.

It is easy to see that dim(im(B′)/ dim(Z ′)) = |X|. So we obtain

dim(im(B′)) = 2|E|+ (|E| − 1) + |X| = 3|E|+ |X| − 1.

�
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Definition 5.3. A separator of a graph Q = (X,R) is a subset Y ⊂ X such that the induced
subgraph on X \ Y has no connected component with more than |X|/2 vertices.

The following theorem is Theorem 6.4 in [4].

Theorem 5.4. Suppose that Q is a graph such that every separator of Q has at least d+ 1
vertices. Then Γ(Q) and Γ′(Q) cannot be distinguished by the d-variable logic with counting.

There exists a family of graphs Td with the following properties: Td has O(d) vertices,
ever vertex in Td has degree 3, and every separator has at least d + 1 vertices. Then Γ(Td)
and Γ′(Td) have O(d) vertices, and Γ(Td) ∼d Γ(T ′

d). Every vertex of Γ(Td) or Γ′(Td) has
degree 3. This shows that for fixed d, the d-dimensional Weisfeiler-Lehman algorithm cannot
distinguish all graphs of degree 3. However, it is possible to distinguish graphs of bounded
degree in polynomial time. Such an algorithm was given in [17].

Proof of Theorem 1.11. Suppose that k = F2 and Q = 〈X,E〉. We will show that AΓ(Q) and
AΓ′(Q) can be separated by a 3-constructible functor. We have AΓ, AΓ1 ∈ V = U ⊗ U ⊕ U ⊕
U ⊕ k. Let p1, p2 : V → U be the two projections onto U , and q : V → U ⊗ U ∼= End(U)
be the projection onto U ⊗ U . Then we have p2(AΓ(Q)) = p2(AΓ′(Q)) =

∑
x∈X2(Q) x. Let

δ : U → U⊗U defined by δ(x) = x⊗x for all x ∈ X(Q). Then δ(p2(AΓ(Q))) = δ(p2(AΓ′(Q))) ∈
U ⊗ U ∼= U ⊗ U⋆ ∼= End(U) is the projection of onto the span of X2(Q). The compositions
q(AΓ(Q)) ◦ δ(p2(AΓ(Q))) and q(AΓ′(Q)) ◦ δ(p2(AΓ′(Q)) are given by the matrices B and B′ in
the proof of Proposition 5.1. Define the following 3-constructible functors: The functor

F1 : C3(V ) → C3(End(U))

is defined by the 3-constructible equivariant linear map δ ◦ p2. The functor

F2 : C3(End(U)) → C3(End(U)⊗ U)

is defined by

F2(Z) = Z ⊗ U.

The functor

F3 : C3(End(U)⊗ U) → C3(U)

is defined by the equivariant f ⊗ v 7→ f(v). Let F4 : C3(V ) → C3(End(U)) defined by the
equivariant linear map q. Then F3 ◦ F2 ◦ F1 and F4 are 3-constructible, and

F4 ⊗ (F3 ◦ F2 ◦ F1) : C3(V ) → C3(End(U)⊗ U).

is constructible. Define a 3-constructible functor G : C3(V ) → C3(U) by

G = F3 ◦ (F4 ⊗ (F3 ◦ F2 ◦ F1)).

Then we have G(AΓ(Q)) = imB and G(AΓ′(Q)) = imB′. By Lemma 5.2, we have dimG(AΓ(Q)) 6=
dimG(AΓ′(Q)), so G distinguishes AΓ(Q) and AΓ′(Q). �

6. Open problems

We finish with some open questions:

Problem 6.1. Does ACd distinguish all pairs of non-isomorphic graphs for some d?
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A positive answer to this problem implies that the Graph Isomorphism Problem lies in
the complexity class P.

Suppose that Γ1,Γ2 are (colored) graphs constructed using the Cai-Fürer-Immerman
method. We know that AΓ1 and AΓ2 are non-isomorphic in C3(V ), assuming we are working
over the field F2 (see Theorem 1.11). The proof heavily relies on the fact that we are working
over the field F2. So a natural question to ask is:

Problem 6.2. Are AΓ1 and AΓ2 non-isomorphic in C3(V ), even if we are working over a
field of characteristic other than 2?

If we work over a base field k = Q, then the size of the rational numbers may grow
exponentially if we do arithmetic operations such as multiplications and additions. So it is
a priori not clear that algorithms for testing isomorphism in Cd(V ) run in polynomial time.

Problem 6.3. If we work over the basefield k = Q, can we test for isomorphism in Cd(V )
in polynomial time?

One may expect that there is a probabilistic algorithm for testing isomorphism in Cd(V )
by working over Fp for various random primes p for which log(p) is polynomial in the number
of vertices.
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[15] J. Köbler, U. Schöning, J. Torán, The graph isomorphism problem: its structural complexity, Progress

in Theoretical Computer Science, Birkhäuser, Boston, 1993.
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