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Abstract

Weak convergence of the empirical copula process is shown to hold
under the assumption that the first-order partial derivatives of the
copula exist and are continuous on certain subsets of the unit hyper-
cube. The assumption is nonrestrictive in the sense that it is needed
anyway to ensure the candidate limiting process to exist and have
continuous trajectories. In addition, resampling methods based on
the multiplier central limit theorem which require consistent estima-
tion of the first-order derivatives continue to be valid. The price to
pay for the weaker assumption is the loss of an explicit rate for the
remainder term. Under certain growth conditions on the second-order
partial derivatives, an almost sure rate can still be established. The
conditions are verified for instance in the case of the Gaussian cop-
ula with full-rank correlation matrix, many Archimedean copulas, and
many extreme-value copulas.
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1 Introduction

A flexible and versatile way to model dependence is via copulas. A fundamen-
tal tool for inference is the empirical copula, which basically is equal to the
empirical distribution function of the sample of multivariate ranks, rescaled
to the unit interval. The asymptotic behaviour of the empirical copula pro-
cess was studied in, amongst others, Stute (1984), Gänssler and Stute (1987)
Chapter 5, van der Vaart and Wellner (1996) p. 389, Tsukahara (2000, 2005),
Fermanian et al. (2004), Ghoudi and Rémillard (2004), and van der Vaart and Wellner
(2007). Weak convergence is shown typically for copulas that are continu-
ously differentiable on the closed hypercube, and rates of convergence of
certain remainder terms have been established for copulas that are twice
continuously differentiable on the closed hypercube. Unfortunately, for many
(even most) popular copula families, even the first-order partial derivatives
of the copula fail to be continuous at some boundary points of the hypercube.

Example 1.1 (Tail dependence). Let C be a bivariate copula with first-order
partial derivatives Ċ1 and Ċ2 and positive lower tail dependence coefficient,
λ = limu↓0 C(u, u)/u > 0. On the one hand, Ċ1(u, 0) = 0 for all u ∈ [0, 1]
by the fact that C(u, 0) = 0 for all u ∈ [0, 1]. On the other hand, Ċ1(0, v) =
limu↓0C(u, v)/u > λ > 0 for all v ∈ (0, 1]. It follows that Ċ1 cannot be
continuous in the point (0, 0). Similarly for Ċ2. For copulas with a positive
upper tail dependence coefficient, the first-order partial derivatives cannot
be continuous at the point (1, 1).

Likewise, for the Gaussian copula with nonzero correlation parameter ρ,
the first-order partial derivatives fail to be continuous at the points (0, 0)
and (1, 1) if ρ > 0 and at the points (0, 1) and (1, 0) if ρ < 0; see also
Example 6.2 below. As a consequence, the cited results on the empirical
copula process do not apply to such copulas. This problem has been largely
ignored in the literature, and unjustified calls to the above results abound.
A notable exception is the paper by Omelka et al. (2009). On page 3031
of that paper, it is claimed that weak convergence of the empirical copula
process still holds if the first-order partial derivatives are continuous at [0, 1]2\
{(0, 0), (0, 1), (1, 0), (1, 1)}.

It is the aim of this paper to remedy the situation by showing that the
earlier cited results on the empirical copula process actually do hold under a
much less restrictive assumption, including indeed many copula families that
were hitherto excluded. The assumption is nonrestrictive in the sense that it
is needed anyway to ensure the candidate limiting process to exist and have
continuous trajectories. The results are stated and proved in general dimen-
sions. When specialized to the bivariate case, the condition is substantially
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weaker still then the above-mentioned condition in Omelka et al. (2009).
Let F be a d-variate cumulative distribution function (cdf) with continu-

ous margins F1, . . . , Fd and copula C, that is, F (x) = C(F1(x1), . . . , Fd(xd))
for x ∈ R

d. Let X1, . . . , Xn be independent random vectors with common
distribution F , where Xi = (Xi1, . . . , Xid). The empirical copula was defined
in Deheuvels (1979) as

Cn(u) = Fn

(

F−1
n1 (u1), . . . , F

−1
nd (ud)

)

, u ∈ [0, 1]d, (1.1)

where Fn and Fnj are the empirical joint and marginal cdfs of the sample and
where F−1

nj is the marginal quantile function of the jth coordinate sample;
see Section 2 below for details. The empirical copula Cn is invariant under
monotone increasing transformations on the data, so it depends on the data
only through the ranks. Indeed, up to a difference of order 1/n, the empirical
copula can be seen as the empirical cdf of the sample of normalised ranks,
as for instance in Rüschendorf (1976). For convenience, the definition in
equation (1.1) will be employed throughout the paper.

The empirical copula process is defined by

Cn =
√
n(Cn − C),

to be seen as a random function on [0, 1]d. We are essentially interested in the
asymptotic distribution of Cn in the space ℓ∞([0, 1]d) of bounded functions
from [0, 1]d into R equipped with the topology of uniform convergence. Weak
convergence is to be understood in the sense used in the monograph by
van der Vaart and Wellner (1996).

Although the empirical copula is itself a rather crude estimator of C, it
plays a crucial rule in more sophisticated inference procedures on C, much
in the same way as the empirical cdf Fn is a fundamental object for cre-
ating and understanding inference procedures on F or parameters thereof.
For instance, the empirical copula is a basic building block when estimating
copula densities (Chen and Huang, 2007; Omelka et al., 2009) or dependence
measures and functions (Schmid et al., 2010; Genest and Segers, 2010), for
testing for independence (Genest and Rémillard, 2004; Genest et al., 2007;
Kojadinovic and Holmes, 2009), for testing for shape constraints (Denuit and Scaillet,
2004; Scaillet, 2005; Kojadinovic and Yan, 2010), for resampling (Rémillard and Scaillet,
2009; Bücher and Dette, 2010), and so forth.

After some preliminaries in Section 2, the principal result of the paper is
given in Section 3, stating weak convergence of the empirical copula process
under the condition that for every j ∈ {1, . . . , d}, the jth first-order partial
derivative Ċj exists and is continuous on the set {u ∈ [0, 1]d : 0 < uj < 1}.
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The condition is non-restrictive in the sense that it is necessary for the candi-
date limiting process to exist and have continuous trajectories. In Section 4,
the resampling method based on the multiplier central limit theorem pro-
posed in Rémillard and Scaillet (2009) is shown to be valid under the same
condition. Section 5 provides a refinement of the main result: under certain
bounds on the second-order partial derivatives that allow for explosive be-
haviour near the boundaries, the almost sure error bound on the remainder
term in Stute (1984) can be recovered up to a log logn term. Section 6 con-
cludes the paper with a number of examples of copulas that do or do not
verify certain sets of conditions.

2 Preliminaries

Let Xi = (Xi1, . . . , Xid), i ∈ {1, . . . , d}, be independent random vectors with
common cdf F whose margins F1, . . . , Fd are continuous and whose copula
is denoted by C. Define Uij = Fj(Xij) for i ∈ {1, . . . , n} and j ∈ {1, . . . , d}.
The random vectors Ui = (Ui1, . . . , Uid) constitute an iid sample from C.
Consider the following empirical distribution functions: for x ∈ R

d and for
u ∈ [0, 1]d,

Fn(x) =
1

n

n
∑

i=1

1(−∞,x](Xi), Fnj(xj) =
1

n

n
∑

i=1

1(−∞,xj ](Xij),

Gn(u) =
1

n

n
∑

i=1

1[0,u](Ui), Gnj(uj) =
1

n

n
∑

i=1

1[0,uj ](Uij).

Here, order relations on vectors are to be interpreted componentwise, and
1A(x) is equal to 1 or 0 according to whether x is an element of A or not.
Let X1:n,j < . . . < Xn:n,j and U1:n,j < . . . < Un:n,j be the vectors of ascending
order statistics of the jth coordinate samples X1j, . . . , Xnj and U1j , . . . , Unj,
respectively. The marginal quantile functions associated to Fnj and Gnj are

F−1
nj (uj) = inf{x ∈ R : Fnj(x) > uj}

=

{

Xk:n,j if (k − 1)/n < uj 6 k/n,

−∞ if uj = 0;

G−1
nj (uj) = inf{u ∈ [0, 1] : Gnj(u) > uj}

=

{

Uk:n,j if (k − 1)/n < uj 6 k/n,

0 if uj = 0.
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Some thought shows that Xij 6 F−1
nj (uj) if and only if Uij 6 G−1

nj (uj), for all
i ∈ {1, . . . , n}, j ∈ {1, . . . , d} and uj ∈ [0, 1]. It follows that the empirical
copula in equation (1.1) is given by

Cn(u) = Gn

(

G−1
n1 (u1), . . . , G

−1
nd (ud)

)

.

In particular, without loss of generality we can work directly with the sample
U1, . . . , Un from C.

The empirical processes associated to the empirical distribution functions
Gn and Gnj are given by

αn(u) =
√
n
(

Gn(u)− C(u)
)

, αnj(uj) =
√
n(Gnj(uj)− uj

)

,

for u ∈ [0, 1]d and uj ∈ [0, 1]. Note that αnj(0) = αnj(1) = 0 almost surely.
We have

αn  α (n → ∞)

in ℓ∞([0, 1]d), the arrow ‘ ’ denoting weak convergence in the sense of
van der Vaart and Wellner (1996). The limit process α is a C-Brownian
bridge, i.e. a tight Gaussian process, centered and with covariance function

cov
(

α(u, v), α(u′, v′)
)

= C(u ∧ u′, v ∧ v′)− C(u, v)C(u′, v′),

for (u, v), (u′, v′) ∈ ([0, 1]d)2; here x ∧ y = (min(x1, y1), . . . ,min(xd, yd)).
Tightness of the process α and continuity of its mean and covariance func-
tions implies that there exists a version of α with continuous trajectories.
Without loss of generality, we assume henceforth that α is such a version.

For j ∈ {1, . . . , d}, let ej be the jth coordinate vector in R
d. For u ∈ [0, 1]d

such that 0 < uj < 1, let

Ċj(u) = lim
h→0

C(u+ hej)− C(u)

h
,

be the jth first-order partial derivative of C, provided it exists.

Condition 2.1. For each j ∈ {1, . . . , d}, the jth first-order partial derivative

Ċj exists and is continuous on the set {u ∈ [0, 1]d : 0 < uj < 1}.
Henceforth, assume Condition 2.1 holds. To facilitate notation, we will

extend the domain of Ċj to the whole of [0, 1]d by setting

Ċj(u) =



















lim sup
h↓0

C(u+ hej)

h
, if u ∈ [0, 1]d, uj = 0;

lim sup
h↓0

C(u)− C(u− hej)

h
, if u ∈ [0, 1]d, uj = 1.

(2.1)

In this way, Ċj is defined everywhere on [0, 1]d, takes values in [0, 1], and is
continuous on the set {u ∈ [0, 1]d : 0 < uj < 1}, by virtue of Condition 2.1.
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3 Weak convergence

If the first-order partial derivatives Ċj exist and are continuous throughout
[0, 1]d, then from Fermanian et al. (2004) and Tsukahara (2005) we know
that Cn

√
n(Cn − C) C in ℓ∞([0, 1]d), where

C(u) = α(u)−
d

∑

j=1

Ċj(u)αj(uj), u ∈ [0, 1]d.

By continuity of Ċj throughout [0, 1]
d, the trajectories of C are continuous.

Now consider the same process C but under Condition 2.1 and with the
domain of the partial derivatives extended to [0, 1]d as in equation (2.1).
Since the trajectories of α are continuous and since αj(0) = αj(1) = 0 for
each j ∈ {1, . . . , d}, the trajectories of C are continuous, even though Ċj may
fail to be continuous in points u ∈ [0, 1]d such that uj ∈ {0, 1}. The process
C is the weak limit in ℓ∞([0, 1]d) of the sequence of processes

C̃n(u) = αn(u)−
d

∑

j=1

Ċj(u)αnj(uj), u ∈ [0, 1]d.

The reason is that the map

ℓ∞([0, 1]d) → ℓ∞([0, 1]d) : f 7→ f −
d

∑

j=1

Ċj πj(f),

where (πj(f))(u) = f(1, . . . , 1, uj, 1, . . . , 1), is linear and bounded.

Proposition 3.1. If Condition 2.1 holds, then

sup
u∈[0,1]d

∣

∣Cn(u)− C̃n(u)
∣

∣

p−→ 0 (n → ∞).

As a consequence, in ℓ∞([0, 1]d),

Cn  C (n → ∞).

Proof. It suffices to show the first statement of the proposition. For u ∈
[0, 1]d, put

Rn(u) =
∣

∣Cn(u)− C̃n(u)
∣

∣, u ∈ [0, 1]d.

If uj = 0 for some j ∈ {1, . . . , d}, then obviously Cn(u) = C̃n(u) = 0, so
Rn(u) = 0 as well. Write

vn(u) =
(

G−1
n1 (u1), . . . , G

−1
nd (ud)

)

, u ∈ [0, 1]d.
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We have

Cn(u) =
√
n
(

Cn(u)− C(u)
)

=
√
n
{

Gn

(

vn(u)
)

− C
(

vn(u)
)}

+
√
n
{

C
(

vn(u)
)

− C(u)
}

= αn

(

vn(u)
)

+
√
n
{

C
(

vn(u)
)

− C(u)
}

. (3.1)

Since αn converges weakly in ℓ∞([0, 1]d) to a C-Brownian bridge α, whose
trajectories are continuous, and since supuj∈[0,1]

|G−1
nj (uj) − uj| → 0 almost

surely, we have

sup
u∈[0,1]d

∣

∣αn

(

vn(u)
)

− αn(u)
∣

∣

p−→ 0, n → ∞.

Consider the auxiliary function f : [0, 1] → [0, 1] defined by

f(λ) = C
(

u+ λ{vn(u)− u}
)

, λ ∈ [0, 1].

If u ∈ (0, 1]d, then vn(u) ∈ (0, 1)d, and therefore u + λ{vn(u) − u} ∈ (0, 1)d

for all λ ∈ (0, 1] as well. By Condition 2.1, the function f is continuous on
[0, 1] and continuously differentiable on (0, 1). By the mean value theorem,
there exists λn(u) ∈ (0, 1) such that

√
n
{

C
(

vn(u)
)

− C(u)
}

=

d
∑

j=1

Ċj

(

u+ λn(u){vn(u)− u}
)√

n
(

G−1
nj (uj)− uj

)

.

(3.2)

If one or more of the components of u are zero, then the above display remains
true as well, no matter how λn(u) ∈ (0, 1) is defined, because both sides of
the equation are equal to zero.

It is known since Kiefer (1970) that

sup
uj∈[0,1]

∣

∣

√
n
(

G−1
nj (uj)− uj

)

+ αnj(uj)
∣

∣

p−→ 0, n → ∞.

Since 0 6 Ċj 6 1, we find

sup
u∈[0,1]d

∣

∣

∣

∣

√
n
{

C
(

vn(u)
)

− C(u)
}

+
d

∑

j=1

Ċj

(

u+ λn(u){vn(u)− u}
)

αnj(uj)

∣

∣

∣

∣

p−→ 0

as n → ∞. It remains to be shown that

sup
u∈[0,1]d

Dnj(u)
p−→ 0 (n → ∞)
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for all j ∈ {1, . . . , d}, where

Dnj(u) =
∣

∣Ċj

(

u+ λn(u){vn(u)− u}
)

− Ċj(u)
∣

∣

∣

∣αnj(uj)
∣

∣. (3.3)

Fix ε > 0 and δ ∈ (0, 1/2). Split the supremum over u ∈ [0, 1]d according to
the cases uj ∈ [δ, 1 − δ] on the one hand and uj ∈ [0, δ) ∪ (1 − δ, 1] on the
other hand. We have

Pr

(

sup
u∈[0,1]d

Dnj(u) > ε

)

6 Pr

(

sup
u∈[0,1]d,uj∈[δ,1−δ]

Dnj(u) > ε/2

)

+ Pr

(

sup
u∈[0,1]d,uj 6∈[δ,1−δ]

Dnj(u) > ε/2

)

.

Since supu∈[0,1]d |vn(u)−u| → 0 almost surely, since Ċj is uniformly continuous

on {u ∈ [0, 1]d : δ/2 6 u 6 1− δ/2}, and since the sequence (αnj)n is tight in
ℓ∞([0, 1]), the first probability on the right-hand side of the previous display
converges to zero. The second probability on the right-hand side of the
previous display is bounded by

Pr

(

sup
uj∈[0,δ)∪(1−δ,1]

∣

∣αnj(uj)
∣

∣ > ε/2

)

.

The lim sup of this probability as n → ∞ is bounded by

Pr

(

sup
uj∈[0,δ)∪(1−δ,1]

∣

∣αj(uj)
∣

∣ > ε/2

)

.

As αj is a standard Brownian bridge, this probability can be made smaller
than an arbitrarly chosen η > 0 by choosing δ sufficiently small. We find

lim sup
n→∞

Pr

(

sup
u∈[0,1]d

Dnj(u) > ε

)

6 η.

As η was arbitrary, the claim is proven.

4 Resampling

For purposes of hypothesis testing or confidence interval construction, re-
sampling procedures are often required. In Fermanian et al. (2004), a boot-
strap procedure for the empirical copula process is proposed, whereas in
Rémillard and Scaillet (2009), a method based on the multiplier central limit
theorem is employed. Yet another method is proposed in Bücher and Dette
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(2010). In the latter paper, the finite-sample propoerties of all these meth-
ods are compared in a simulation study, and the multiplier approach by
Rémillard and Scaillet (2009) is found to be best overall. As the latter ap-
proach requires estimation of the first-order partial derivatives, one may won-
der if it is still valid under Condition 2.1, allowing for discontinuities on the
boundaries. In this section it is shown that this is indeed the case.

For a bandwidth hn ∈ (0, 1/2), the partial derivative Ċj(u) can be esti-
mated as follows: for u ∈ [0, 1]d,

ˆ̇Cnj(u) =



















Cn(u+ hnej)− Cn(u− hnej)

2hn
if uj ∈ [hn, 1− hn],

ˆ̇Cnj(u1, . . . , uj−1, hn, uj+1, . . . , un) if uj ∈ [0, hn),
ˆ̇Cnj(u1, . . . , uj−1, 1− hn, uj+1, . . . , un) if uj ∈ (1− hn, 1]

From the fact that F−1
nj (uj) = X⌈nuj⌉:n,j, it follows that

0 6 ˆ̇Cnj 6 sup
hn6uj61−hn

⌈n(uj + hn)⌉ − ⌈n(uj − hn)⌉
2nhn

6 1 +
1

2nhn
. (4.1)

Lemma 4.1. Suppose Condition 2.1 holds. If limn→∞ hn = 0 and infn hn

√
n >

0, then for any δ ∈ (0, 1/2), we have

sup
u∈[0,1]d:uj∈[δ,1−δ]

∣

∣

ˆ̇Cnj(u)− Ċj(u)
∣

∣

p−→ 0 (n → ∞).

Proof. For n large enough such that 0 < hn 6 δ,

ˆ̇Cnj(u) =
C(u+ hnej)− C(u− hnej)

2hn

+
1

2hn

√
n

(

Cn(u+ hnej)− Cn(u− hnej)

)

,

for all u ∈ [0, 1]d such that uj ∈ [δ, 1− δ]. By the mean value theorem, there
exists λn(u) ∈ [−1, 1] such that

C(u+ hnej)− C(u− hnej)

2hn

= Ċj

(

u+ λn(u)hnej
)

.

Write K = supn 1/(2hn

√
n) < ∞. We obtain

sup
u∈[0,1]d:uj∈[δ,1−δ]

∣

∣

ˆ̇Cnj(u)− Ċj(u)
∣

∣

6 sup
u∈[0,1]d:uj∈[δ,1−δ]

∣

∣Ċj

(

u+ λn(u)hnej
)

− Ċj(u)
∣

∣

+K sup
u∈[0,1]d:uj∈[δ,1−δ]

∣

∣Cn(u+ hnej)− Cn(u− hnej)
∣

∣.
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The first term on the right-hand side converges to zero by uniform continuity
of Ċj on {u ∈ [0, 1]d : uj ∈ [δ, 1 − δ]}. The second term converges to zero in
probability as Cn converges weakly in ℓ∞([0, 1]d) to a stochastic process with
continuous trajectories.

Let ξ1, ξ2, . . . be an iid sequence of random variables with zero mean and
unit variance, independent of the random vectors X1, X2, . . .. Define

α̂n(u) =
1√
n

n
∑

i=1

ξi
(

1{Xi1 6 F−1
n1 (u1), . . . , Xid 6 F−1

nd (ud)} − Cn(u)
)

,

Ĉn(u) = α̂n(u)−
d

∑

j=1

ˆ̇Cnj(u) α̂nj(uj),

where, of course, α̂nj(uj) = α̂n(1, . . . , 1, uj, 1, . . . , 1), with uj appearing at
the jth coordinate.

Proposition 4.2. Assume Condition 2.1. Then in
(

ℓ∞([0, 1]d)
)2
, we have

(Cn, Ĉn) (C, Ĉ) (n → ∞),

where Ĉ is an independent copy of C.

Proof. In
(

ℓ∞([0, 1]d)
)2
, we have by Lemma A.1 in Rémillard and Scaillet

(2009),
(αn, α̂n) (α, α̂) (n → ∞), (4.2)

where α̂ is an independent copy of α. Now define

ˆ̃
Cn(u) = α̂n(u)−

d
∑

j=1

Ċj(u) α̂nj(uj).

The difference with Ĉn is that here, the true partial derivatives of C are used.
By Proposition 3.1 and equation (4.2), we have

(Cn,
ˆ̃
Cn) (C, Ĉ) (n → ∞)

in
(

ℓ∞([0, 1]d)
)2
. Moreover,

∣

∣Ĉn(u)− ˆ̃
Cn(u)

∣

∣ 6

d
∑

j=1

∣

∣

ˆ̇Cnj(u)− Ċj(u)
∣

∣ |α̂nj(uj)|.

It suffices to show that each of the d terms on the right-hand side converges
to 0 in probability, uniformly in u ∈ [0, 1]d. The argument is similar as the
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one at the end of the proof of Proposition 3.1. Pick δ ∈ (0, 1/2) and split the
supremum according to the cases uj ∈ [δ, 1−δ] and uj ∈ [0, δ)∪(1−δ, 1]. For
the first case, use Lemma 4.1 together with tightness of α̂nj. For the second
case, use the bound in equation (4.1) and the fact that the limit process α̂j

is a standard Brownian bridge, having continuous trajectories and vanishing
in 0 and 1.

5 Almost sure rate

If the second-order partial derivatives of C exist and are continuous on [0, 1]d,
then the original result by Stute (1984), proved in detail in Tsukahara (2000),
reinforces the first claim of Proposition 3.1 to

sup
u∈[0,1]d

|Cn(u)− C̃n(u)|

= O
(

n−1/4(log n)1/2(log logn)1/4
)

(n → ∞) almost surely. (5.1)

A reasonable question concerns what can be said on the rate of the left-hand
side under weaker conditions on the second-order partial derivatives, allowing
these to explode near certain parts of the boundary of [0, 1]d, as is the case
for many copula families.

Condition 5.1. For every i, j ∈ {1, . . . , d}, the second-order partial deriva-

tive C̈ij is defined and continuous on the set

Vij = {u ∈ [0, 1]d : 0 < ui < 1 or 0 < uj < 1}.
Moreover, there exists a constant K > 0 such that

|C̈ij(u)| 6 K min

(

1

ui(1− ui)
,

1

uj(1− uj)

)

, u ∈ Vij.

It is useful to spell out Condition 5.1 in the bivariate case: besides exist-
ing and being continuous on the appropriate sets, the second-order partial
derivatives should satisfy

C̈11(u1, u2) 6 K
1

u1(1− u1)
, (u1, u2) ∈ (0, 1)× [0, 1],

C̈22(u1, u2) 6 K
1

u2(1− u2)
, (u1, u2) ∈ [0, 1]× (0, 1),

and

C̈12(u1, u2) 6 K min

(

1

u1(1− u1)
,

1

u2(1− u2)

)

,

(u1, u2) ∈ [0, 1]2 \ {(0, 0), (0, 1), (1, 0), (1, 1)},

11



for some positive constant K. As shown in Section 6, Condition 5.1 holds
for the bivariate Gaussian copula with correlation parameter ρ ∈ (−1, 1) and
for bivariate extreme-value copulas whose Pickands dependence function A
is twice continuously differentiable.

Under Condition 5.1, the rate in equation (5.1) can almost be recovered.

Proposition 5.2. If Condition 5.1 holds, then for every ε > 0, as n → ∞,

sup
u∈[0,1]d

|Cn(u)− C̃n(u)| = o
(

n−1/4 (logn)1/2 (log logn)1/2+ε
)

almost surely.

Proof. From the proof of Proposition 3.1, in particular from the decomposi-
tions in equations (3.1) and (3.2), we have

|Cn(u)− C̃n(u)|

6
∣

∣αn

(

vn(u)
)

− αn(u)
∣

∣+
d

∑

j=1

∣

∣

√
n
(

G−1
nj (uj)− uj

)

+ αnj(uj)
∣

∣+
d

∑

j=1

Dnj(u)

with Dnj(u) as defined in equation (3.3). As in the proof of Theorem 4.1 in
Tsukahara (2000), each of the two sequences

sup
u∈[0,1]d

∣

∣αn

(

vn(u)
)

− αn(u)
∣

∣, sup
uj∈[0,1]

∣

∣

√
n
(

G−1
nj (uj)− uj

)

+ αnj(uj)
∣

∣,

is O
(

n−1/4(log n)1/2(log logn)1/4
)

as n → ∞, almost surely. For the second
sequence, this follows from Kiefer (1970). For the first sequence, this follows
by noting that, by the law of the iterated logarithm for empirical distribution
functions,

sup
uj∈[0,1]

|G−1
nj (uj)− uj| = sup

uj∈[0,1]

|uj −Gnj(uj)|

= O
(

n−1/2(log log n)1/2
)

(n → ∞) almost surely,
(5.2)

and by properties of the oscillation modulus of the multivariate empirical
process αn in (Stute, 1984, Theorem 1.7); see the end of the proof of Theo-
rem 4.1 in Tsukahara (2000). Therefore, we only need to consider the term
supu∈[0,1]d Dnj(u).

Let δn = n−1/2 log logn. We split the supremum of Dnj(u) over u ∈ [0, 1]d

according to the case uj ∈ [0, δn) ∪ (1− δn, 1] and uj ∈ [δn, 1− δn].
Since 0 6 Ċj 6 1, the supremum over u ∈ [0, 1]d such that uj ∈ [0, δn) ∪

(1− δn, 1] is bounded by

sup
u∈[0,1]d:uj∈[0,δn)∪(1−δn,1]

Dnj(u) 6 sup
uj∈[0,δn)∪(1−δn]

|αnj(uj)|.

12



By Theorem 0.2 in Stute (1982), this is of the order

sup
u∈[0,1]d:uj∈[0,δn)∪(1−δn,1]

Dnj(u)

= O
(

δ1/2n (log δ−1
n )1/2

)

= O
(

n−1/4 (log n)1/2 (log log n)1/2
)

(n → ∞) almost surely. (5.3)

Next let u ∈ [0, 1]d be such that δn 6 uj 6 1− δn. By Lemma 5.3 below,

writing K1 = K
√
d,

Dnj(u) =
∣

∣Ċj

(

u+ λn(u){vn(u)− u}
)

− Ċj(u)
∣

∣

∣

∣αnj(uj)
∣

∣

6 K1 max

(

1

uj(1− uj)
,

1

Gnj(uj)(1−Gnj(uj))

)

|vn(u)− u|
∣

∣αnj(uj)
∣

∣.

Let an = (log n)1/2 (log logn)1/2+ε for some ε > 0. Note that
∑∞

n=1 n
−1a−2

n <
∞. By Csáki (1975) or Mason (1981),

Pr

(

sup
0<s<1

|αnj(s)|
(s(1− s))1/2

> an infinitely often

)

= 0.

It follows that, for all sufficiently large n,

|αnj(uj)| 6
(

uj(1− uj)
)1/2

an, uj ∈ [0, 1].

Let I denote the identity function on [0, 1] and let ‖ · ‖ denote the supremum
norm. For uj ∈ [δn, 1− δn],

G−1
nj (uj) = uj

(

1 +
G−1

nj (uj)− uj

uj

)

> uj

(

1−
‖G−1

nj − I‖
δn

)

,

1−G−1
nj (uj) > (1− uj)

(

1−
‖G−1

nj − I‖
δn

)

.

By the law of the iterated logarithm, see (5.2),

‖G−1
nj − I‖ = o(δn) (n → ∞) almost surely.

We find that with probability one, for all sufficiently large n and for all
u ∈ [0, 1]d such that uj ∈ [δn, 1− δn],

Dnj(u) 6 2K1

(

uj(1− uj)
)−1/2 |vn(u)− u| an.

13



We use again the law of the iterated logarithm in (5.2) to bound |vn(u)− u|.
As a consequence, with probability one,

sup
u∈[0,1]d:uj∈[δn,1−δn]

Dnj(u)

= O
(

δ−1/2
n (log logn)1/2 n−1/2 an

)

= O
(

n−1/4 (log n)1/2 (log log n)1/2+ε
)

(n → ∞) almost surely. (5.4)

The bound in (5.3) is dominated by the one in (5.4). The latter one being
true for any ε > 0, we can replace the big ‘O’ by a small ‘o’.

Lemma 5.3. If Condition 5.1 holds, then

|Ċj(v)− Ċj(u)| 6 K
√
d max

(

1

uj(1− uj)
,

1

vj(1− vj)

)

|v − u|,

for every j ∈ {1, . . . , d} and for every u, v ∈ [0, 1]d such that 0 < uj < 1 and

0 < vj < 1.

Proof. Fix j ∈ {1, . . . , d} and u, v ∈ [0, 1]d such that 0 < uj < 1 and 0 <
vj < 1. By the mean-value theorem applied to the function [0, 1] ∋ t 7→
f(t) = Ċj(u+ t(v − u)), we obtain that for some t∗ ∈ (0, 1),

Ċj(v)− Ċj(u) = f(1)− f(0) = f ′(t∗) =
d

∑

i=1

(vi − ui) C̈ij(u+ t∗(v − u)).

As a consequence,

|Ċj(u)− Ċj(v)| 6 |v − u| sup
0<t<1

|∇Ċj(u+ t(v − u))|,

where ∇Ċj = (C̈1j, . . . , C̈dj). By Condition 5.1, for all i ∈ {1, . . . , d},

C̈ij(w) 6 K
1

wj(1− wj)
, w ∈ [0, 1]d, 0 < wj < 1.

But then

|∇Ċj(w)| 6 K
√
d

1

wj(1− wj)
, w ∈ [0, 1]d, 0 < wj < 1.

Finally, since the function s 7→ s−1(1− s)−1 is convex on (0, 1),

|Ċj(u)− Ċj(v)| 6 |v − u|K
√
d sup

0<t<1

1

(uj + t(vj − uj))(1− uj − t(vj − uj))

6 |v − u|K
√
d max

(

1

uj(1− uj)
,

1

vj(1− vj)

)

.
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Remark. The rate as stated in equation (5.1) was used in Genest and Segers
(2009) in the context of bivariate extreme-value copulas; see the proof of
their Theorem 3.2, equation (B.3). However, for bivariate extreme-value
copulas, the first-order partial derivatives are in general not continuous in
the corner points (0, 0) and (1, 1), and the second-order derivatives diverge
at these points. Fortunately, Condition 5.1 is verified (see Example 6.3 below)
and the rate in Proposition 5.2 is sharp enough to make the proof of their
Theorem 3.2 go through without further modifications [in fact, a rate of
op(1/ logn) would already have been sufficient].

6 Examples

Example 6.1 (Archimedean copulas). Let C be a d-variate Archimedean cop-
ula, that is,

C(u) = φ−1
(

φ(u1) + · · ·+ φ(ud)
)

, u ∈ [0, 1]d,

where the generator φ : [0, 1] → [0,∞] is convex, decreasing, finite on (0, 1],
and vanishes at 1, whereas φ−1 : [0,∞) → [0, 1] is its generalized inverse,
φ−1(x) = inf{u ∈ [0, 1] : φ(u) 6 x}; in fact, if d > 3, more conditions on φ
are required for C to be a copula, see McNeil and Nešlehová (2009).

Suppose φ is continuously differentiable on (0, 1] and φ′(0+) = −∞. Then
the first-order partial derivatives of C are given by

Ċj(u) =
φ′(uj)

φ′(C(u))
, u ∈ [0, 1]2, 0 < uj < 1.

If ui = 0 for some i 6= j, then C(u) = 0 and φ′(C(u)) = −∞, so indeed
Ċj(u) = 0. We find that Condition 2.1 is verified, so Propositions 3.1 and 4.2
apply.

In contrast, Ċj may easily fail to be continuous at some boundary points.
For instance, if φ′(1) = 0, then Ċj cannot be extended continuously to
(1, . . . , 1). Or if φ−1 is long-tailed, i.e. if limx→∞ φ−1(x + y)/φ−1(x) = 1
for all y ∈ R, then limu1↓0C(u1, u−1)/u1 = 1 for all u−1 ∈ (0, 1]d−1, whereas
Ċ1(u) = 0 as soon as uj = 0 for some j ∈ {2, . . . , d}. It follows that Ċ1

cannot be extended continuously to the set {0} × ([0, 1]d−1 \ (0, 1]d−1).
Even worse, Ċj may fail to exist altogether when uj = 0. For instance,

let d = 2 and let φ(u) = −
∫ 1

u
φ′(s) ds where φ′ is the piecewise linear

function with knots φ′(2−k) = −2k for k ∈ {0, 1, 2, . . .}; see Theorem 2 in
Charpentier and Segers (2007). Then one can show that C(u1, u2)/u1 fails
to converge as u1 ↓ 0 for u2 ∈ (0, 1) \ {2−1, 2−2, . . .}.
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Example 6.2 (Gaussian copula). Let C be the d-variate copula Gaussian with
correlation matrix R ∈ R

d×d, that is,

C(u) = Pr

( d
⋂

j=1

{Xj 6 Φ−1(uj)}
)

, u ∈ [0, 1]d,

where X = (X1, . . . , Xd) follows a d-variate Gaussian distribution with zero
means, unit variances, and correlation matrix R; here Φ is the standard
normal cdf and Φ−1 is its inverse. Write ρj = corr(X1, Xj) and suppose that
|ρj | < 1 for j ∈ {2, . . . , d}. We can write

Xj = ρjX1 +
√

1− ρ2jYj, j ∈ {2, . . . , d}

where Y = (Y2, . . . , Yd) is independent of X1 and follows a (d − 1)-variate
Gaussian distribution with zero means, unit variances, and a certain corre-
lation matrix. Letting ϕ stand for the standard normal density function, we
have

C(u) =

∫ Φ−1(u1)

−∞

Pr

( d
⋂

j=2

{

ρjx+
√

1− ρ2jYj 6 Φ−1(uj)
}

)

ϕ(x) dx.

It follows that for all u ∈ [0, 1]d such that 0 < u1 < 1,

Ċ1(u) = Pr

( d
⋂

j=2

{

Yj 6
Φ−1(uj)− ρjΦ

−1(u1)
√

1− ρ2j

})

.

We conclude that if the correlation matrix R is of full rank, then Condition 2.1
is verified and Propositions 3.1 and 4.2 apply.

Still, if 0 < ρj < 1 for all j ∈ {2, . . . , d}, then on the one hand we have
limu1↓0 Ċ1(u1, u−1) = 1 for all u−1 ∈ (0, 1]d−1, whereas on the other hand we
have Ċ1(u) = 0 as soon as uj = 0 for some j ∈ {2, . . . , d}; hence Ċ1 cannot
be extended continuously to the set {0} × ([0, 1]d−1 \ (0, 1]d−1).

Let us verify Condition 5.1 in the bivariate case when the correlation
parameter ρ satisfies |ρ| < 1. The copula density is given by

Ċ12(u, v) =
1

√

1− ρ2
ϕ

(

Φ−1(v)− ρΦ−1(u)
√

1− ρ2

)/

ϕ
(

Φ−1(v)
)

.

Although this is not obvious from the above expression, Ċ12 is symmetric in u
and v, by symmetry of C itself. It can be shown that Φ(x)

(

1−Φ(x)
)

6 ϕ(x)

16



for x ∈ [−∞,∞], which implies u (1−u) 6 ϕ(Φ−1(u)) for u ∈ [0, 1]. It follows
that

Ċ12(u, v) 6
ϕ(0)

√

1− ρ2
1

v (1− v)
, (u, v) ∈ [0, 1]× (0, 1).

By symmetry, it then must also be true that

Ċ12(u, v) 6
ϕ(0)

√

1− ρ2
1

u (1− u)
, (u, v) ∈ (0, 1)× [0, 1].

Similarly, we have

Ċ11(u, v) =
−ρ

√

1− ρ2
ϕ

(

Φ−1(v)− ρΦ−1(u)
√

1− ρ2

)/

ϕ
(

Φ−1(u)
)

,

whence

|Ċ11(u, v)| 6
|ρ|ϕ(0)
√

1− ρ2
1

u (1− u)
, (u, v) ∈ (0, 1)× [0, 1],

together with the symmetric bound for |Ċ22(u, v)|.
Example 6.3 (Extreme-value copulas). Let C be a d-variate extreme-value
copula, that is,

C(u) = exp
(

−ℓ(− log u1, . . . ,− log ud)
)

, u ∈ (0, 1]d,

where the tail dependence function or tail copula ℓ : [0,∞)d → [0,∞) verifies

ℓ(x) =

∫

∆d−1

max
j∈{1,...,d}

(wjxj)H(dw), x ∈ [0,∞)d,

with H a nonnegative Borel measure on the unit simplex ∆d−1 = {w ∈
[0, 1]d : w1+ · · ·+wd = 1} satisfying the d constraints

∫

wj H(dw) = 1 for all
j ∈ {1, . . . , d}; see for instance Leadbetter and Rootzén (1988) or Pickands
(1989). It can be verified that ℓ is convex, is homogeneous of order 1, and
that max(x1, . . . , xd) 6 ℓ(x) 6 x1 + · · ·+ xd for all x ∈ [0,∞)d.

Suppose that ℓ is continuously differentiable on [0,∞)d with first-order
partial derivatives ℓ̇1, . . . , ℓ̇d. Then the first-order partial derivatives of C are
given by

Ċj(u) =
C(u)

uj

ℓ̇j(− log u1, . . . ,− log ud), u ∈ (0, 1]d.

The properties of ℓ imply that 0 6 ℓ̇j 6 1 for all j ∈ {1, . . . , d}. Therefore,
if ui ↓ 0 for some i 6= j, then Ċj(u) → 0, as required. Hence Condition 2.1 is
verified and Propositions 3.1 and 4.2 apply.
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Let us consider the bivariate case in somewhat more detail. The function
A : [0, 1] → [1/2, 1] : t 7→ A(t) = ℓ(1− t, t) is called the Pickands dependence
function of C. It is convex and satisfies t∨(1− t) 6 A(t) 6 1 for all t ∈ [0, 1].
The bivariate extreme-value copula C with Pickands dependence function A
is given by

C(u, v) = exp{log(uv)A(t)} = (uv)A(t),

where

t = t(u, v) =



















log(v)

log(uv)
if (u, v) ∈ (0, 1]2 \ {(1, 1)},

0 if 0 = u < v 6 1,

1 if 0 = v < u 6 1.

Assume that A is continuously differentiable on [0, 1] with derivative A′. Put

µ(t) = A(t)− t A′(t) = 1−
∫ t

0

(

A′(t)− A′(s)
)

ds,

ν(t) = A(t) + (1− t)A′(t) = 1−
∫ 1

t

(

A′(s)−A′(t)
)

ds.

The first-order partial derivative of C with respect to u is equal to

Ċ1(u, v) =































C(u,v)
u

µ(t) = (uv)A(t)−(1−t) µ(t) if (u, v) ∈ (0, 1)2,

1 if v = 1, u ∈ [0, 1],

0 if v = 0, u ∈ [0, 1],

µ(1) v if u = 1, v ∈ [0, 1),

vν(0) if u = 0, v ∈ (0, 1].

It follows that Ċ1 may be discontinuous at the points (0, 0) or (1, 1):
• Ċ1 is not continuous at (1, 1) as soon as µ(1) < 1, that is, A′(1) > 0,
which always the case except when A ≡ 1 (independence copula).

• Ċ1 is not continuous at (0, 0) as soon as ν(0) = 0, that is, A′(0) = −1,
which is the case whenever the spectral measure associated to A has
no atoms, for instance the Gumbel–Hougaard copula.

The analysis of Ċ2(u, v) is similar.
We now verify that Condition 5.1 holds provided A is twice continuously

differentiable on [0, 1] with second derivative A′′. Then µ and ν are continu-
ously differentiable with derivatives

µ′(t) = −t A′′(t), ν ′(t) = (1− t)A′′(t).
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The second-order partial derivatives of C on (0, 1)2 are given by

Ċ12(u, v) =
C(u, v)

uv

(

µ(t) ν(t)− t (1− t)A′′(t)

log(uv)

)

,

Ċ11(u, v) =
C(u, v)

u2

(

−µ(t)
(

1− µ(t)
)

+
t2 A′′(t)

log(uv)

)

,

Ċ22(u, v) =
C(u, v)

v2

(

−ν(t)
(

1− ν(t)
)

+
(1− t)2A′′(t)

log(uv)

)

.

On the boundaries, the situation is as follows:

Ċ12(u, v) =



















ν(0) v−(1−ν(0)) if u = 0, v ∈ (0, 1],

ν(0) if v = 1, u ∈ [0, 1),

µ(1) u−(1−µ(1)) if v = 0, u ∈ (0, 1],

µ(1) if u = 1, v ∈ [0, 1).

Moreover, if A′′(1/2) > 0, then limw→1 Ċ12(w,w) = ∞. We see that Ċ12 exists
and is continuous on [0, 1]2 \ {(0, 0), (1, 1)}, whereas at (0, 0) and (1, 1), it
may explode. Furthermore,

Ċ11(u, v) =











0 if v ∈ {0, 1}, u ∈ [0, 1],

v
(

−µ(1)(1− µ(1)) + A′′(1)
log(v)

)

if u = 1, v ∈ [0, 1),

−∞ if u = 0, v ∈ (0, 1).

Similarly for Ċ22.
Put ‖A′′‖∞ = supt∈[0,1]A

′′(t). From − log(x) > 1− x, it follows that

1

− log(uv)
=

1

− log(u)− log(v)
6

1

(1− u) + (1− v)
6

1

1− u
∧ 1

1− v
.

Since C(u, v) 6 min(u, v) and since (a ∧ b) (c ∧ d) 6 (ac) ∧ (bd) for positive
numbers a, b, c, d, we find

0 6 Ċ12(u, v) 6
u ∧ v

uv

[

1 +
‖A′′‖∞

4

(

1

1− u
∧ 1

1− v

)]

6 (1 + ‖A′′‖∞/4)

(

1

u(1− u)
∧ 1

v(1− v)

)

Similarly,

0 6 −Ċ11(u, v) 6
u ∧ v

u2

[

1

4
+ ‖A′′‖∞

(

1

1− u
∧ 1

1− v

)]

6 (1/4 + ‖A′′‖∞)
1

u

(

1

1− u
∧ 1

1− v

)

.
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Example 6.4 (If everything fails. . . ). Sometimes, even Condition 2.1 does not
hold. Consider the bivariate case. The first-order partial derivatives can be
seen as conditional cdfs:

Ċ1(u1, u2) = Pr(U2 6 u2 | U1 = u1).

It follows that Ċ1 will fail to be continuous on (0, 1) × [0, 1] if the law
of U2 given U1 = u1 possesses atoms or if this law depends in a non-
continuous way on u1 ∈ (0, 1). The first phenomenon occurs for instance
for the Fréchet lower and upper bounds, C(u1, u2) = max(u1+u2−1, 0) and
C(u1, u2) = min(u1, u2); for Archimedean copulas whose generator φ is not
continuously differentiable or whose generator satisfies φ′(0+) > −∞; and
for bivariate extreme-value copulas whose Pickands dependence function A is
not continuously differentiable. The second phenomenon occurs for instance
for the checkerboard copula with Lebesgue density c = 21[0,1/2]2∪[1/2,1]2 . In
these cases, the candidate limiting process C has discontinuous trajectories
and the empirical copula process does not converge weakly in ℓ∞([0, 1]2) en-
dowed with the topology of uniform convergence.

One may then wonder if weak convergence of the empirical copula process
might still hold in a weaker topology than the one of uniform convergence,
for instance, a Skorohod-type topology on the space of càdlàg functions on
[0, 1]2. Such a result would still be useful to derive for instance the asymp-
totic distribution of certain functionals of the empirical copula process, e.g.
suprema or integrals such as appearing in certain test statistics.
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