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A VANISHING THEOREM IN TWISTED DE RHAM
COHOMOLOGY

ANA CRISTINA FERREIRA

ABSTRACT. We prove a vanishing theorem for the twisted de Rham
cohomology of a compact manifold.

1. INTRODUCTION

In this article, we show how to use connections with skew torsion to
identify the operator (d+ H)+ (d+ H)*, where H is a three-form, with
a cubic Dirac operator. In the compact case, if H is closed, we prove
a vanishing theorem for twisted de Rham cohomology by means of a
Lichnerowicz formula. As an application, we prove that for a compact
non-abelian Lie group the cohomology of the complex defined by d+ H,
where H is the three-form defined by the Lie bracket, vanishes.

2. THE DIRAC OPERATOR

Let (M, g) be a Riemannian manifold. Suppose that V is a connec-
tion on the tangent bundle of M and let T" be its (1,2) torsion tensor.
If we contract T" with the metric we get a (0,3) tensor which we will
still call the torsion of V. If T" is a three-form then we say that V is a
connection with skew-symmetric torsion. Given any three-form H on
M then there exists a unique metric connection with skew torsion H
defined explicitly by

9(VxY,Z) = g(V&Y, Z) + 5H(X,Y, Z)

where VY is the Levi-Civita connection.
Fix a three-form H and consider the one-parameter family of affine
connections

Ve :=VI+2sH

(Notice that if s = i we recover the connection with torsion H.) If M

is spin, these connections lift to the spin bundle & of M as
Vil(p) = Vi (@) + s(ixH)p
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where X is a vector field, ¢ is a spinor field, and ix H is acting by
Clifford multiplication.

We may define the Dirac operator ) on § with respect to V by
means of the following composition

I(M,8) — T'(M, T*M @ §) — DM, TM @ §) — T'(M, &)

where the first arrow is given by the connection, the second by the
metric and the third by the Clifford action. Suppose now that we have
a complex vector bundle W, we can form the tensor product § ® W,
which is usually called a twisted spinor bundle or a spinor bundle with
values in W. If W is equipped with a Hermitian connection V?Y, we can
consider the tensor product connection V®1+1® V", again denoted
by V, on $ @ W. We can define a Dirac operator on this twisted spinor
bundle associated with the connection V by the same formula, where
the action of the tangent bundle by Clifford multiplication is only on
the left factor.

We will need to make use of a Lichnerowicz type formula for the
square of the Dirac operator. Such a formula first appeared in the
literature in [3]. See also [1].

Theorem 2.1. [Bismut, [3]] The rough Laplacian A® = V**V* and
the square of the Dirac operator D*/3 are related by

1
(DVP)? = A"+ F™ + 2 + sdH — 25°) | H]|?,

where Kk s the Riemannian scalar curvature and F' is the curvature of
the twisting bundle acting as 3, _; FW(e;,e;)eie; on §@W.

Notice that this formula relates the square of the Dirac operator D*/3
and the Laplacian A®. The Dirac operator D'/3 is usually referred to
as the cubic Dirac operator.

3. TWISTED COHOMOLOGY

Consider the spinor bundle with values in itself, that is, $®&. Recall
that for this we do not need a global spin structure. We have, in even
dimensions, the following chain of isomorphisms

S8 ~8 @& ~End($) ~Cl~A

where Cl denotes the Clifford bundle and A the bundle of exterior
forms.

If we take the induced Levi-Civita connection V¢ on both factors of
$ ® $ and consider the tensor product connection VI ® 14 1 ® V9 we
obtain the induced Levi-Civita connection, again denoted by VY, on
A. If we consider the associated Dirac operator D9 on $ ® $ we get a
familiar operator on A. In fact,

DI =d+d
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where d is the exterior differential and d* is its formal adjoint, [5].
The same fact can be claimed for an odd-dimensional manifold. Con-
sider the inclusion M — R x M, $+ and $~ the half spinor bundles
of R x M. The Clifford action by ey, where ey is a unit vector field of
R, gives an isomorphism between $+ and $§  and thus we can regard
&7 ~ $ as the spinor bundle of M. Under this identification, the
Dirac operator associated to the Levi-Civita connection becomes

$+ﬂ) _ﬂ)$+

where eg denotes multiplication by ey. Consider also the Levi-Civita
connection on $ and the twisted Dirac operator

s s B s
Notice that the exterior bundle of M is A ~ Cl ~ $+ ® &, and so the
twisted Dirac operator above is, in terms of differential forms, the re-
striction of the Laplacian d+d* on R x M to forms that are independent
of the coordinate t of R, and can therefore be seen as the Laplacian on
M.

We may now ask ourselves what happens if we introduce connections
with skew torsion in this setting.

Theorem 3.1. Let H be a three-form, and suppose that the left and
right spinor factors are, respectively, equipped with the connections
VI 4 1—12H and V9 — iH. Consider the tensor product of these two
connections on § @ . The corresponding Dirac operator on A\ is given

by
D=(d+H)+ (d+ H)"
where H is acting by exterior multiplication and (d+ H)* is the formal

adjoint of d-+H with respect to the metric, namely, d*+(—1)"P+D) x Hx
on AP,

Proof — Let us consider first an even dimensional manifold. Take a
p-form 6 and identify it with ¢ = > oFf @@, € T'(M,F@¢). Then the
Clifford left and right actions of a vector field e are given, respectively,
by
ep = Yy epf @y, = eNO—elb
pe = Sgr@es = (—LP(eAf+eh)
Using the summation convention, we have
D(p) = e&Vipl @, + e @ VI oot
weileinH)of ® or — jeipf @ (eisH )y
= V() + eileinH)p + Leip(enH).

Since D9(¢p) = e; VY () corresponds to (d+d*)6, it remains to see that
Le;(e;5H ) + Lep(einp) can be identified with (H + H*)6.
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Write H = Hg.eq N e, A €. and observe that
Hapeea N ey A ee A+ Hepeeea(epa(eqaa))

is the same as (H + H*)# since the formal adjoint of exterior multiplica-
tion is interior multiplication. It is simple to see that e;(e;0H)p = 3Hy
and that the action of H is given by

Hupe(ea Nep Nec ANO+eq Aey A (ecaf) +eq A (epa(ecnd) + ...
and that e;p(e; 1H )0 is such that when we add

1 1
—e;(e;uH)0 = —H6
el =5
and .
Zeie(eHH)
the mixed terms cancel and it amounts to
1
iHabc(ea Nep Aee N+ eca(eps(eq i)
plus

3
ZHabc(ea NepNeeNa+ e.a(epa(eqaa))

which is then (H 4+ H*)f. The proof in the odd-dimensional case is
perfectly analogous.

d

Remark 3.2. Notice that these are lifts of the metric connections on the
tangent bundle with torsion %H and —H. It is interesting to observe
that these weights é and —1 also appear in Bismut’s proof of the local
index theorem for non-Kéhler manifolds, [3].

Suppose now that H is a closed three-form. In [2], Atiyah and Segal
defined the concept of twisted de Rham cohomology. On the de Rham
complex of differential forms §2 we can define the operator d+ H. Note
that

(d+ HY?=d*+dH+ Hd+ H*=0
since H is closed and of odd degree. The operator d + H does not
preserve form degrees but preserves the Zs-grading. We then have a
2-step chain complex and the cohomology of this complex is then the
twisted de Rham cohomology.

The twisted de Rham complex is an elliptic complex so, on a compact
manifold, Hodge theory applies. If H* and H~ are the cohomology
groups then

H*~{0cQ: (d+H)) =0 and (d+ H)*0 =0}

or, in other words, each cohomology class has a unique representative
in the kernel of D? where

D=(d+H)+ (d+H)".
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4. A VANISHING THEOREM

We can use the Lichnerowicz formula of theorem 2.1l and also theorem
3.1l to prove the following

Theorem 4.1. Let M be a compact spin manifold and let H be a closed
three-form. Consider the Dirac operator DY/? on $®$ associated with
the connection

V=v'221+10 V",
let F=Y* be the curvature of V=% on § and s the Riemannian scalar
curvature of M. If

11
F~ Y44 2 — Z||H|?
+or 8H I

acts as a positive endomorphism then the twisted de Rham cohomology
for d+ H wvanishes.

Proof — We start by observing that we need only to prove that the
kernel of the operator D'/'? is zero. Consider v a smooth section of
$ ®&. Since dH = 0, the Lichnerowicz formulas gives

1 1
(D12 = AV 4+ P34 — <[ HP,

Now take the inner product of this with . Since the Dirac operator is
self-adjoint and the Laplacian A is given by V*V, we get

_ 1 1
J D21 av = [ A ()4 gl IR aV.
M M

Using the hypothesis that

11
FV4 4 2 — 2| H|]?
+ g6~ gl

is a positive endomorphism we conclude that D/'2¢) = 0 if and only if

¥ = 0.
0

5. AN EXAMPLE

Let G be a compact, non-abelian Lie group equipped with a bi-invariant
metric. Consider the one-parameter family of connections Vi (V) = ¢[X, Y.
Given t, the torsion of V! is (2t — 1)[X,Y]. Notice that since the metric is
ad-invariant, it means that these are metric connecltions and also that their

torsion is skew-symmetric. Note also that if ¢ = 5 we get the Levi-Civita

connection, since the torsion vanishes. The curvature of V! is given by
RVt(X7Y)Z - tz[Xa [Y7 Z]] - tQ[Ya [Xa Z]] - t[[X7 Y]a Z] = (tz - t)[[Xa Y]7 Z]7

by means of the Jacobi identity. For ¢t = 0 and ¢ = 1, we get two flat
connections. These correspond, respectively, to the left and right invariant
trivialization of the tangent bundle, [4].

Let us write the above one-parameter family of connections as

VEY) = V5 (Y) + 2s[X,Y].
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Notice that the Levi-Civita connection corresponds now to the parameters
s = 0 while the two flat connections correspond to s = :I:%.

Consider the lift of these connections to the spinor bundle § of G. Take
the connection VV/2@14+1@V/* on I'(M,$® ). We know from theorem
B.I that the Dirac operator D'/12 then corresponds to (d + H) + (d + H)*
on AG, where H is given by H(X,Y,Z) = ([X,Y],Z). Note that H, being
a bi-invariant form, is closed.

We need the following auxiliary lemma, which can be proved by direct
computation.

Lemma 5.1. Let G be a non-abelian Lie group equipped with a bi-invariant
metric, then the scalar curvature k of G is given by

1
w= 1 leisel?
]

where {e;} is an orthonormal basis of the Lie algebra of G.

Theorem 5.2. Let G be a compact, non-abelian Lie group equipped with
a bi-invariant metric and let H(X,Y,Z) = ([X,Y],Z) be the associated
bi-invariant three-form. Then the twisted de Rham cohomology of d + H
vanishes.

Proof — Since F~1/* = 0, by means of theorem Il we only need to show
that the constant p = tx — ||H|? is positive. We have already computed
# in lemma [B.1] so if we take the same orthonormal basis we get that

1
1" = = > Ileis el en)l,
ijk
and using the Cauchy-Schwarz inequality

1 1
1EIP < 23 e eliPlleell® = 5 3 lles, el
ijk i

Sop> (15— ) > i) leis e5]]1* > 0. .

Remark 5.3. To see this result for connected, compact, simple groups in a
different way, note that it is well known that by averaging, each cohomology
class of G can be represented by a bi-invariant form. The de Rham cohomol-
ogy ring H*(G) is an exterior algebra (more precisely H*(G) is an exterior
algebra on generators in degree 2d; — 1, where each d; is the degree of gen-
erators of invariant polynomials on the Lie algebra of G). The Killing form
gives H3(G) = R. Consider now the twisted de Rham operator d+ H. Since
H is bi-invariant, the twisted cohomology classes can also be represented by
bi-invariant forms. Since bi-invariant forms are closed, (d+H)a = H Aa. So
if HAa =0, since H is a generator, then H A a = 0 implies that « = H A S
for some . Therefore, the twisted cohomology vanishes.
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