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A VANISHING THEOREM IN TWISTED DE RHAM
COHOMOLOGY

ANA CRISTINA FERREIRA

Abstract. We prove a vanishing theorem for the twisted de Rham
cohomology of a compact manifold.

1. Introduction

In this article, we show how to use connections with skew torsion to
identify the operator (d+H)+(d+H)∗, where H is a three-form, with
a cubic Dirac operator. In the compact case, if H is closed, we prove
a vanishing theorem for twisted de Rham cohomology by means of a
Lichnerowicz formula. As an application, we prove that for a compact
non-abelian Lie group the cohomology of the complex defined by d+H ,
where H is the three-form defined by the Lie bracket, vanishes.

2. The Dirac operator

Let (M, g) be a Riemannian manifold. Suppose that ∇ is a connec-
tion on the tangent bundle of M and let T be its (1,2) torsion tensor.
If we contract T with the metric we get a (0,3) tensor which we will
still call the torsion of ∇. If T is a three-form then we say that ∇ is a
connection with skew-symmetric torsion. Given any three-form H on
M then there exists a unique metric connection with skew torsion H
defined explicitly by

g(∇XY, Z) = g(∇g
XY, Z) +

1
2H(X, Y, Z)

where ∇g is the Levi-Civita connection.
Fix a three-form H and consider the one-parameter family of affine

connections

∇s := ∇g + 2sH

(Notice that if s = 1
4
we recover the connection with torsion H .) If M

is spin, these connections lift to the spin bundle /S of M as

∇s
X(ϕ) := ∇g

X(ϕ) + s(iXH)ϕ
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where X is a vector field, ϕ is a spinor field, and iXH is acting by
Clifford multiplication.

We may define the Dirac operator /D on /S with respect to ∇ by
means of the following composition

Γ(M, /S) −→ Γ(M,T ∗M ⊗ /S) −→ Γ(M,TM ⊗ /S) −→ Γ(M, /S)

where the first arrow is given by the connection, the second by the
metric and the third by the Clifford action. Suppose now that we have
a complex vector bundle W, we can form the tensor product /S ⊗W,
which is usually called a twisted spinor bundle or a spinor bundle with
values inW. IfW is equipped with a Hermitian connection ∇W , we can
consider the tensor product connection ∇⊗1+1⊗∇W, again denoted
by ∇, on /S⊗W. We can define a Dirac operator on this twisted spinor
bundle associated with the connection ∇ by the same formula, where
the action of the tangent bundle by Clifford multiplication is only on
the left factor.

We will need to make use of a Lichnerowicz type formula for the
square of the Dirac operator. Such a formula first appeared in the
literature in [3]. See also [1].

Theorem 2.1. [Bismut, [3]] The rough Laplacian ∆s = ∇s∗∇s and

the square of the Dirac operator Ds/3 are related by

(Ds/3)2 = ∆s + FW +
1

4
κ + sdH − 2s2||H||2,

where κ is the Riemannian scalar curvature and F is the curvature of

the twisting bundle acting as
∑

i<j F
W(ei, ej)eiej on /S ⊗W.

Notice that this formula relates the square of the Dirac operatorDs/3

and the Laplacian ∆s. The Dirac operator D1/3 is usually referred to
as the cubic Dirac operator.

3. Twisted cohomology

Consider the spinor bundle with values in itself, that is, /S⊗/S . Recall
that for this we do not need a global spin structure. We have, in even
dimensions, the following chain of isomorphisms

/S ⊗ /S ≃ /S
∗
⊗ /S ≃ End(/S) ≃ Cl ≃ Λ

where Cl denotes the Clifford bundle and Λ the bundle of exterior
forms.

If we take the induced Levi-Civita connection ∇g on both factors of
/S ⊗ /S and consider the tensor product connection ∇g ⊗ 1 + 1⊗∇g we
obtain the induced Levi-Civita connection, again denoted by ∇g, on
Λ. If we consider the associated Dirac operator Dg on /S ⊗ /S we get a
familiar operator on Λ. In fact,

Dg = d+ d∗
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where d is the exterior differential and d∗ is its formal adjoint, [5].
The same fact can be claimed for an odd-dimensional manifold. Con-

sider the inclusion M →֒ R ×M , /S
+
and /S

−
the half spinor bundles

of R×M . The Clifford action by e0, where e0 is a unit vector field of

R, gives an isomorphism between /S
+
and /S

−
and thus we can regard

/S
+

≃ /S
−

as the spinor bundle of M . Under this identification, the
Dirac operator associated to the Levi-Civita connection becomes

/S
+ Dg

−→ /S
− e0−→ /S

+

where e0 denotes multiplication by e0. Consider also the Levi-Civita
connection on /S and the twisted Dirac operator

/S
+
⊗ /S

Dg

−→ /S
−
⊗ /S

e0−→ /S
+
⊗ /S.

Notice that the exterior bundle of M is Λ ≃ Cl ≃ /S
+
⊗ /S, and so the

twisted Dirac operator above is, in terms of differential forms, the re-
striction of the Laplacian d+d∗ on R×M to forms that are independent
of the coordinate t of R, and can therefore be seen as the Laplacian on
M .

We may now ask ourselves what happens if we introduce connections
with skew torsion in this setting.

Theorem 3.1. Let H be a three-form, and suppose that the left and

right spinor factors are, respectively, equipped with the connections

∇g + 1
12
H and ∇g − 1

4
H. Consider the tensor product of these two

connections on /S ⊗ /S. The corresponding Dirac operator on Λ is given

by

D = (d+H) + (d+H)∗

where H is acting by exterior multiplication and (d+H)∗ is the formal

adjoint of d+H with respect to the metric, namely, d∗+(−1)n(p+1)∗H∗
on Λp.

Proof — Let us consider first an even dimensional manifold. Take a
p-form θ and identify it with ϕ =

∑

r ϕ
+
r ⊗ϕ

−
r ∈ Γ(M, /S⊗ /S). Then the

Clifford left and right actions of a vector field e are given, respectively,
by

eϕ =
∑

r eϕ
+
r ⊗ ϕ−

r = e ∧ θ − eyθ
ϕe =

∑

r ϕ
+
r ⊗ eϕ−

r = (−1)p(e ∧ θ + eyθ)

Using the summation convention, we have

D(ϕ) = ei∇
g
ei
ϕ+
r ⊗ ϕ−

r + eiϕ1 ⊗∇g
ei
ϕ2+

1
12
ei(eiyH)ϕ+

r ⊗ ϕ−
r − 1

4
eiϕ

+
r ⊗ (eiyH)ϕ−

r

= ei∇
g
ei
(ϕ) + 1

12
ei(eiyH)ϕ+ 1

4
eiϕ(eiyH).

Since Dg(ϕ) = ei∇
g
ei
(ϕ) corresponds to (d+d∗)θ, it remains to see that

1
12
ei(eiyH)ϕ+ 1

4
eiϕ(eiyϕ) can be identified with (H +H∗)θ.
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Write H = Habcea ∧ eb ∧ ec and observe that

Habcea ∧ eb ∧ ec ∧ α +Habcecy(eby(eayα))

is the same as (H+H∗)θ since the formal adjoint of exterior multiplica-
tion is interior multiplication. It is simple to see that ei(eiyH)ϕ = 3Hϕ
and that the action of H is given by

Habc(ea ∧ eb ∧ ec ∧ θ + ea ∧ eb ∧ (ecyθ) + ea ∧ (eby(ecyθ) + . . .

and that eiϕ(eiyH)θ is such that when we add

1

12
ei(eiyH)θ =

1

4
Hθ

and
1

4
eiθ(eiyH)

the mixed terms cancel and it amounts to
1

4
Habc(ea ∧ eb ∧ ec ∧ α + ecy(eby(eayα))

plus
3

4
Habc(ea ∧ eb ∧ ec ∧ α + ecy(eby(eayα))

which is then (H + H∗)θ. The proof in the odd-dimensional case is
perfectly analogous.

�

Remark 3.2. Notice that these are lifts of the metric connections on the
tangent bundle with torsion 1

3
H and −H . It is interesting to observe

that these weights 1
3
and −1 also appear in Bismut’s proof of the local

index theorem for non-Kähler manifolds, [3].

Suppose now that H is a closed three-form. In [2], Atiyah and Segal
defined the concept of twisted de Rham cohomology. On the de Rham
complex of differential forms Ω we can define the operator d+H . Note
that

(d+H)2 = d2 + dH +Hd+H2 = 0

since H is closed and of odd degree. The operator d + H does not
preserve form degrees but preserves the Z2-grading. We then have a
2-step chain complex and the cohomology of this complex is then the
twisted de Rham cohomology.

The twisted de Rham complex is an elliptic complex so, on a compact
manifold, Hodge theory applies. If H+ and H− are the cohomology
groups then

H± ≃ {θ ∈ Ω± : (d+H)θ = 0 and (d+H)∗θ = 0}

or, in other words, each cohomology class has a unique representative
in the kernel of D2 where

D = (d+H) + (d+H)∗.
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4. A vanishing theorem

We can use the Lichnerowicz formula of theorem 2.1 and also theorem
3.1 to prove the following

Theorem 4.1. LetM be a compact spin manifold and let H be a closed

three-form. Consider the Dirac operator D1/12 on /S⊗ /S associated with

the connection

∇ = ∇1/12 ⊗ 1 + 1⊗∇1/4,

let F−1/4 be the curvature of ∇−1/4 on /S and κ the Riemannian scalar

curvature of M . If

F−1/4 +
1

4
κ−

1

8
‖H‖2

acts as a positive endomorphism then the twisted de Rham cohomology

for d+H vanishes.

Proof — We start by observing that we need only to prove that the
kernel of the operator D1/12 is zero. Consider ψ a smooth section of
/S ⊗ /S. Since dH = 0, the Lichnerowicz formulas gives

(D1/12)2ψ = ∆1/4ψ + F−1/4ψ +
1

4
κψ −

1

8
‖H‖2ψ.

Now take the inner product of this with ψ. Since the Dirac operator is
self-adjoint and the Laplacian ∆ is given by ∇∗∇, we get
∫

M
‖D1/12ψ‖2 dV =

∫

M
‖∇1/4ψ‖2+(F−1/4ψ,ψ)+

1

4
κ‖ψ‖2−

1

8
‖H‖2‖ψ‖2 dV.

Using the hypothesis that

F−1/4 +
1

4
κ−

1

8
‖H‖2

is a positive endomorphism we conclude that D1/12ψ = 0 if and only if
ψ = 0.

�

5. An example

Let G be a compact, non-abelian Lie group equipped with a bi-invariant
metric. Consider the one-parameter family of connections ∇t

X(Y ) = t[X,Y ].
Given t, the torsion of ∇t is (2t − 1)[X,Y ]. Notice that since the metric is
ad-invariant, it means that these are metric connections and also that their
torsion is skew-symmetric. Note also that if t = 1

2 we get the Levi-Civita
connection, since the torsion vanishes. The curvature of ∇t is given by

R∇t

(X,Y )Z = t2[X, [Y,Z]]− t2[Y, [X,Z]]− t[[X,Y ], Z] = (t2 − t)[[X,Y ], Z],

by means of the Jacobi identity. For t = 0 and t = 1, we get two flat
connections. These correspond, respectively, to the left and right invariant
trivialization of the tangent bundle, [4].

Let us write the above one-parameter family of connections as

∇2s
X (Y ) = ∇g

X(Y ) + 2s[X,Y ].
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Notice that the Levi-Civita connection corresponds now to the parameters
s = 0 while the two flat connections correspond to s = ±1

4 .

Consider the lift of these connections to the spinor bundle /S of G. Take
the connection ∇1/12⊗1+1⊗∇1/4 on Γ(M, /S⊗ /S). We know from theorem
3.1 that the Dirac operator D1/12 then corresponds to (d +H) + (d +H)∗

on ΛG, where H is given by H(X,Y,Z) = ([X,Y ], Z). Note that H, being
a bi-invariant form, is closed.

We need the following auxiliary lemma, which can be proved by direct
computation.

Lemma 5.1. Let G be a non-abelian Lie group equipped with a bi-invariant

metric, then the scalar curvature κ of G is given by

κ =
1

4

∑

ij

‖[ei, ej ]‖
2

where {ei} is an orthonormal basis of the Lie algebra of G.

Theorem 5.2. Let G be a compact, non-abelian Lie group equipped with

a bi-invariant metric and let H(X,Y,Z) = ([X,Y ], Z) be the associated

bi-invariant three-form. Then the twisted de Rham cohomology of d + H
vanishes.

Proof — Since F−1/4 = 0, by means of theorem 4.1 we only need to show
that the constant ρ = 1

4κ − 1
8‖H‖2 is positive. We have already computed

κ in lemma 5.1, so if we take the same orthonormal basis we get that

‖H‖2 =
1

6

∑

ijk

|([ei, ej ], ek)|
2,

and using the Cauchy-Schwarz inequality

‖H‖2 6
1

6

∑

ijk

‖[ei, ej ]‖
2‖ek‖

2 =
1

6

∑

ij

‖[ei, ej ]‖
2

So ρ >
(

1
16 − 1

48

)
∑

ij ‖[ei, ej ]‖
2 > 0.

�

Remark 5.3. To see this result for connected, compact, simple groups in a
different way, note that it is well known that by averaging, each cohomology
class of G can be represented by a bi-invariant form. The de Rham cohomol-
ogy ring H∗(G) is an exterior algebra (more precisely H∗(G) is an exterior
algebra on generators in degree 2di − 1, where each di is the degree of gen-
erators of invariant polynomials on the Lie algebra of G). The Killing form
gives H3(G) = R. Consider now the twisted de Rham operator d+H. Since
H is bi-invariant, the twisted cohomology classes can also be represented by
bi-invariant forms. Since bi-invariant forms are closed, (d+H)α = H∧α. So
if H ∧α = 0, since H is a generator, then H ∧α = 0 implies that α = H ∧ β
for some β. Therefore, the twisted cohomology vanishes.
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