
ar
X

iv
:1

01
2.

21
82

v1
  [

m
at

h.
PR

] 
 1

0 
D

ec
 2

01
0 Existence of Gibbs measure for a model of

T-tessellations

Jonas KAHN

December 13, 2010

1 Introduction

Some man-made landscapes, such as plots of land may be viewed as T-
tessellations, that is a tessellations of a subset of the plane, where all vertices
are degree three and with one flat angle. Adamczyk and Kiêu have developed
a random model aiming at representing such landscapes. This article proves
that their model, and extensions thereof, are well-defined.

I shall first shamelessly summarise their arguments for defining this new
model. Models with T-vertices had already been studied [Mackisack and
Miles, 1996], but they are usually built starting from point seeds from which
segments grow until they are blocked: this situation does not really corre-
spond to cultivated fields, and if the segments all grow at the same speed,
the parcels cannot have different scales.

At another extreme, Arak et al. [1993] have introduced a very general
model for random graphs, directly defined by their measure on the set of
graphs. The measure depends on an energy function that can be specified
to yield T-tessellations, as detailed by Mackisack and Miles [2002]. These
graphs have very nice mathematical properties. As a result, they may be
sampled exactly, without resorting to Metropolis algorithm. However these
nice properties come at a price: the tessellations are necessarily very random.
For example, the intersection with any line is a Poisson process. It is thus
hard to generate long-range spatial correlations.

Adamczyk and Kiêu define their model as a non-normalised density with
respect to the model of Arak et al. [1993]. Different energies allow different
kinds of landscapes. We may for example require that all parcels have a
similar area, or penalise sharp angles. The price to pay is harder sampling,
requiring Monte-Carlo Markov chain algorithms.

1

http://arxiv.org/abs/1012.2182v1


From a theoretical point of view, Adamczyk and Kiêu have not managed
to prove that their measure was finite, which is necessary for the model to be
well-defined. This article focuses on proving that we have a true probability
measure.

In section 2, we describe the mathematical structure of the models, make
some general remarks on the structure of T-tessellations, introduce the no-
tations and our strategy. Mainly, it is enough to bound precisely enough
the weight of all T-tessellations on a given configuration of lines. This can
be achieved by bounding the number of different T-tessellations on those
lines. We then count. To do that, we devise algorithms that can rebuild
the tessellation from their input, and count the number of different inputs
they can have. The algorithms and the final theorem are detailed in section
3. Formal proofs of correctness of the algorithms are all delayed to the ap-
pendix A. Finally we discuss the limitations of our proof and hint at possible
ameliorations in section 4.

2 Notations and strategy

Let us first recall some definitions related to Poisson line processes on the
plane R

2.
We may define a line D by an angle α ∈ [0, π[ and a distance p ∈ R. Let

us consider the origin O = (0, 0) and the point P of radial coordinates (p, α).
Then the line D(p, α) is the line orthogonal at point P to the line (OP ).
This parametrisation is usual since the lines corresponding to a homogeneous
Poisson process on [0, π[×R yield a stationary and isotropic process.

We now consider a domain W in the plane. To avoid many complications
thereafter, we require it to be convex. We denote by λW the measure on the
Poisson line process restricted to W , that is the image of the Poisson point
process on DW ⊂ [0, π[×R where DW corresponds to the set of lines in the
plane that intersect W . The measure of this process is denoted λτ

W where the
intensity τ is the expected number of lines in the process. It may be seen as
a measure on the set LW of sets of line on W . In particular, if we denote by
Lτ
W the random set of lines, its cardinal is a Poisson variable with parameter

τ :

P [#Lτ
W = k] = exp(−τ)τ

−k

k!
.

A finite polygonal tessellation of W is a finite partition of W into cells
such that the border of each cell is an union of a finite number of segments
and a part of the border of W itself. A vertex of a tessellation is T-shaped if it

2



is of degree three and two of the incident edges are aligned. A T-tessellation

is a polygonal tessellation such that :

• All its inner vertices are T-shaped.

• No two segments are aligned.

We denote by TW the set of T-tessellations on W . We denote by L(T ),
or simply L the set of lines that support the segments of T .

The measures defined by Adamczyk and Kiêu, which include the partic-
ularization of the model by Arak et al. [1993] to T-tessellations, are of the
form:

dγW (T ) = exp(−H(T ))dλτ
W (L(T )),

where the energy H(T ) ≥ C#L(T ) is bounded from below by a linear func-
tion of the number of lines in the tessellation #L(T ). As a remark, scaling
W is equivalent to scaling τ 2.

We aim at proving that the corresponding partition function is finite. We
may bound it by:

Z =

∫

TW

exp(−H(T ))dλτ
W (L(T ))

≤
∫

TW

[

sup
T ′:L(T ′)=L(T )

exp(−H(T ′))

]

dλτ
W (L(T ))

≤
∫

LW

exp(−C#L(T ))# {T : L(T ) = L} dλτ
W (L)

≤
∞
∑

k=0

exp(−Ck)N (k) exp(−τ)τ
−k

k!
, (1)

where we have used the Poisson distribution on the number of lines in Lτ
W and

denoted by N (k) the maximum number of ways to obtain a T-tessellation as
segments on k given lines, whatever the position of those lines:

N (k) = sup
L:#L=k

# {T : L(T ) = L}

Our strategy consists in counting these T-tessellations on fixed lines, or
rather bound their number from above.

Since k! ≥ (k/e)k, the sum in the partition function (1) converges if, for
any real a:

N (k) = o(kkak). (2)

3



This implies that k-th powers ak are free when we are counting the tessel-
lations, as long as there is a bounded number of such factors. In particular,
we may label each line with “red” or “blue” (2k possibilities), or more gener-
ally with any properties among a finite set. We may also split k indiscernible
objects among the k lines (less than 4k possibilities).

To bound this number N (k), we shall use descriptions of the tessellation,
essentially labels on lines. These descriptions, or labelling schemes will be
shown to characterise the tessellation, given the lines L, by rebuilding T
with an algorithm using that description as input. A bound on the number
of different descriptions then yields a bound on N (k). Many of the further
notations are also thought to be easy of use within an algorithm.

Let us have a closer look at T-tessellations.
A T-tessellation T is built on a set of lines L that support its segments. We

shall write s(l) for the segment supported by the line l ∈ L, and conversely
l(s) for the line that supports s.

The endpoints of those segments can only be an intersection with another
line, or with the border of W . So that, knowing L, the only places where
something can happen are those intersections of lines and possibly border.
We call those intersections events. A generic event is noted e. When specify-
ing the event, through the lines that intersect, we write e(l, m), for l, m ∈ L.
Naturally the event e(l, m) is the same as e(m, l). A special case is when a
line intersects the border B of W . Since W is convex, this happens exactly
twice, so that e(B, l) and e(l,B) are different. Conventionally e(B, l) < e(l,B)
for the order we define now. We write E for the set of events.

Given k lines, we can find their k(k− 1)2 crossing points, as well as their
2k crossing points with the border. They are almost surely distinct. We
choose an axis along which each crossing has a different coordinate. This
axis will be called the time axis, or indifferently abscissas axis. The cor-
responding coordinates are called either times or abscissas. We order the
events according to time. The ordered list of events will be denoted Eo. The
reverse-ordered list will be denoted Er. We shall use the usual vocabulary
associated to time, such as saying that a point (or an event defined at that
point) happens before another if its abscissa is smaller. We also use left and
right for smaller and larger times.

Since the crossings all happen at different times, the extremal points of
each segment of the tessellation have different times. We say that the segment
is born at its extremity with lower time, and dies at the other. We denote
by xT

b (l) and xT
d (l) the times of birth and death of the segment s(l). The line

crossed at the birth is the parent of the segment’s line, and the segment’s
line is its child. The line crossed at death is the killer of the segment’s line.

4



The segment’s line is its victim.
These relations thus give us two trees, the tree of births and the tree

of deaths. Both have k + 1 nodes, labelled by the border and the k lines,
and both are rooted at the border. For the tree of deaths, parent and child
correspond to killer and victim.

The tree of births encode all information about births, that is on leftmost
extremities of segment xT

b (l). Symmetrically, the tree of kills encode all
information about deaths, that is on rightmost extremities of segments xT

d (l).
So that rebuilding the two trees is equivalent to rebuilding the tessellation.

Since the segments describe the tessellation, and for algorithmic purposes,
we now think of a T-tessellation on a set of lines L as a couple of functions
T = (xT

b , x
T
d ) with xT

• : L ∪ B → R. The border is added in the domain for
the algorithms.

Conventionally, to ease the writing of the algorithms, we now require that:

• W is contained in the band of abscissas (0, 1).

• The border is “always alive”: xT
b (B) = 0 and xT

d (B) = 1.

Even when they follow these requirements, all such couples of functions
are not a tessellation, let alone a T-tessellation. We shall dub prototessella-

tion any such couple. The notion will be mainly useful for initialisation of
the algorithms.

A T-tessellation is a prototessellation P with the following three proper-
ties:

• Segments do not cross:

∀ l, m ∈ L : ¬
{[

xP
b (l), x

P
b (m) < e(l, m) < xP

d (l), x
P
d (m)

]

or
[

xP
b (l) = xP

b (m)
]

or
[

xP
b (l) = xP

d (m)
]

or
[

xP
d (l) = xP

d (m)
]}

.

(3)

• Segments are born on the inside of another segment, or on the border:

If xP
b (l) = e(l, m), then xP

b (m) < e(l, m) < xP
d (m). (4)

• Segments die on the inside of another segment, or on the border:

If xP
d (l) = e(l, m), then xP

b (m) < e(l, m) < xP
d (m). (5)

A prototessellation where segments do not cross (3) is a pretessellation.
We deal with such objects within the algorithm, in some cases as output.
We shall usually write P for all prototessellation, and xP

b and xP
d for the

corresponding times of birth and death.

5



3 Algorithms and Result

3.1 Preliminary algorithm

If we know the tree of births alone, we can almost rebuild the tessellation.
We only need the number of murders of each line, which is essentially free
(4k). Hence counting the number of tessellations in the worst case N (k)
is essentially equivalent to counting the highest possible number of trees of
births on k lines.

We start with a labelling scheme that only gives existence of Z for low
intensities (λ < (4e)−1 with non-negative energy H). However it is a basis
of our final labelling scheme, and the proof of its efficiency introduces ideas
that we shall use again, while staying in an easier context.

A first way to label each line so that we may rebuild the tessellation is
the following:

• Give for each line its parent. That yields kk possibilities.

• Give for each line its number of murders. That yields
(

2k
k

)

≤ 4k possi-
bilities.

The number of murders of a line l is defined as

MT (l) = #
{

m : xT
d (m) = e(m, l)

}

. (6)

Conventionally, we may set MT (B) to infinity. Though it is not necessary, it
avoids to keep track of it in the algorithm.

We may now rebuild the tessellation with Algorithm 1.
Informally, we move along the abscissas axis, while prolongating the seg-

ments that are alive. We know when each segment is born, so we add them
then. When two segments cross, we look at their remaining number of mur-
ders. One of the two must be zero. The corresponding segment is killed. The
other segment’s number of murders is decreased by one. When a segment
hits the border, it is also killed.

Lemma 3.1. Algorithm 1 yields T .

Proof in appendix.
The lemma yields N (k) ≤ (4k)k. Putting that back into bound (1) would

yield a convergent series if λ < 1/(4e) and H ≥ 0. Compare with calculations
in section 3.3 for details.

6



Algorithm 1 Rebuild from tree of births and number of murders.

Input: The set L of lines of the tessellation, a prototessellation (xb, xd)
such that xb = xT

b , a murder function M : L ∪ B → N such that M = MT

the number of murders in the real tessellation (6), the ordered set Eo of events.

1: for all l ∈ L do

2: xd(l)← 1 ⊲ Death time temporarily set to maximum
3: end for ⊲ End of initialisation
4: for e ∈ Eo do ⊲ Consider potential events timewise
5: l1, l2 ← l(e)
6: if xb(l1), xb(l2) < e < xd(l1), xd(l2) then ⊲ Do the lines cross?
7: if M(l1) = 0 then ⊲ Which line is killed?
8: xd(l1)← e ⊲ Kill it
9: M(l2)←M(l2)− 1 ⊲ Count that l2 killed it

10: else

11: xd(l2)← e

12: M(l1)←M(l1)− 1
13: end if

14: end if

15: end for

return P

7



3.2 Main algorithm

The previous labelling scheme still uses too much info for proving existence
of our measures. Namely specifying the whole tree of births dooms the effort.

Next algorithm rebuilds T while knowing only part of the times of birth.
We call orphan a line whose parent is not specified in the labelling scheme.
The price to pay is higher complexity: instead of one pass on events, we have
to loop back and forth in time, prolongating orphan segments to their birth,
and cutting too old segments until stabilisation.

Let us be precise. The algorithm is supposed to take the following input
data on the lines. This list will be referred to as requirements.

1. Label each line as “leaf” or “not leaf”. Leaves will not be allowed to
have any child.

2. For each line, its parent is given, and/or it is specified as the parent of
its first child.

3. Each line is given a number of virtual murders, whose properties we
make precise after formulating the algorithm.

4. Each line is given a number of other children, also made precise below.

The first set of labels yields a 2k factor. The third and fourth sets of
labels each yield as usual less than 4k possibilities, as we shall see. We plan
on showing that we can rebuild the tessellation while specifying the parent
of few enough lines to satisfy bound (2).

We shall denote by U0 the set of (orphan) lines without an explicit parent.

Informally, we first initialise the algorithm by moving along the time
axis, while prolongating the segments that are deemed alive. Namely we
prolongate a segment when it is born, if we know the time, and prolongate
it when it has a known child otherwise. When two segments cross, we stop
each one if its virtual number of murders is zero. Both may be stopped at
the same time, and at least one must be. If a segment is not stopped, its
virtual number of murders is decreased by one. When a segment hits the
border, it is killed. End of initialisation.

Now we loop. Each loop consists of one pass backwards in time, and a
cutting phase.

The pass backwards in time is given in Algorithm 3.During the pass back-
wards in time, we extend the segments whose parent we do not know. Since
these segments are extended before their first child (requirement 2) in the
real tessellation T , they never cross each other in the process. When such a

8



backwards segment hits another segment, we decrease that segment’s number
of other children.

The cutting phase is given in Algorithm 4. During the cutting phase,
we cut the segments whose number of other children n is negative. More
precisely, their rightmost point is now their (−n)-th rightmost crossing with
an orphan segment. Their number of other children is reset to zero. The
consequence of this operation is that (−n) orphan segments will be further
extended in the next loop.

End of loop. Stop when all numbers of other children are zero. End of
algorithm.

Let us give some intuition. The algorithm hinges on a few facts.
After initialisation, P is a pretessellation.
Most importantly, the following property is true at the end of each loop:

Late Events Property. Deaths occur after the time they occur in the real

tessellation. Same for births.

In formula, if we denote xP
b and xP

d the times of birth and death at the

end of a loop, then for all lines l ∈ L:

xP
b (l) ≥ xT

b (l), (7)

xP
d (l) ≥ xT

d (l). (8)

Finally, within a loop, birth and death times are always non-increasing.
That is, if we write xi

b and xi
d for times of birth and death after i-th change,

then

xi
b(l) ≥ xi+1

b (l),

xi
d(l) ≥ xi+1

d (l)

for all lines l ∈ L.

We may now state how the number of virtual murders and other children
will be defined as input. A first consequence of these choices will be that the
algorithm actually runs.

For other children, we merely use the number in the real tessellation, that
is the number of orphan segments born from the segment. In formula:

OT (l) = #
{

m ∈ U0 : x
T
b (m) = e(l, m)

}

. (9)

The definition also holds if l is the border B. Here again, we have the crude
bound of k other children, and 4k ways to split them.

For virtual murders, we define them by running the initialisation phase
without them. When two segments cross, we check on the real tessellation

9



Algorithm 2 Rebuild from final labelling scheme

Input: The lines L, the ordered and reverse-ordered list of events Eo
and Er, a subset U0 ∈ L of orphan lines satisfying requirement 2, a
prototessellation P = (xb, xd) such that xb(l) = xT

b (l) for all non-orphan line
l ∈ L\U0, a function “virtual murders” V : L ∪ B → N defined in (13) , and
a function OT : L∪B ∈ N giving the number of orphan children a line has (9).

1: U ← U0

2: for all l ∈ L do

3: xd(l)← 1 ⊲ Death time set to maximum for now
4: end for

5: for all l ∈ U do

6: xb(l)← 1 ⊲ Birth of orphans set to maximum for now
7: end for ⊲ End of “preinitialisation”
8: for all e ∈ Eo do

9: l1, l2 ← l(e)
10: if [xb(l1) = e] ∧ [xb(l2) > e] then ⊲ Is l1 the first child of l2?
11: xb(l2)← e ⊲ Temporary maximum birth time for l2
12: else if [xb(l2) = e] ∧ [xb(l1) > e] then

13: xb(l1)← e

14: else if xb(l1), xb(l2) ≤ e ≤ xd(l1), xd(l2) then ⊲ Do the lines cross?
15: if V (l1) = 0 then ⊲ Is l1 “virtual-killed”?
16: xd(l1)← e ⊲ Death time to new maximum
17: if V (l2) = 0 then ⊲ Is l2 “virtual-killed”?
18: xd(l2)← e ⊲ Death time to new maximum
19: else

20: V (l2)← V (l2)− 1 ⊲ Count that l2 “virtual-killed” l1
21: end if

22: else ⊲ In that case l2 is “virtual-killed”
23: V (l1)← V (l1)− 1 ⊲ Count that l1 “virtual-killed” l2
24: xd(l2)← e ⊲ Death time to new maximum
25: end if

26: end if

27: end for ⊲ End of initialisation
28: repeat

29: P ← Parent_seek(L, P, Eo, U) ⊲ Extend backwards
30: Cuts, U, P ← Cutting(L, P, Er, U0, O

T ) ⊲ Cut too long segments
31: until Cuts = 0

return P

10



Algorithm 3 Parent-seeking loop

Input: The lines L, a pretessellation P = (xb, xd), the ordered sequence of
events Eo, a subset U ∈ L of lines whose parent is not currently known.

1: for all e ∈ Er do ⊲ Reverse timewise
2: l1, l2 ← l(e)
3: if [l1 ∈ U ] ∧ [xb(l1) > e] ∧ [xb(l2) < e < xd(l2)] then

4: xb(l1)← e ⊲ Extend l1 backwards
5: U ← U − l1 ⊲ l1 seen as born on l2, for now
6: end if

7: if [l2 ∈ U ] ∧ [xb(l2) > e] ∧ [xb(l1) < e < xd(l1)] then

8: xb(l2)← e ⊲ Same as above, l1 and l2 switched
9: U ← U − l2

10: end if

11: end for

return P

whether a segment needs to be prolongated, and increase its virtual murders
counter accordingly. We use the number of virtual murders we get in the
end. An immediate consequence is that there are at most k virtual murders,
so that there are less than 4k ways to split them.

Rather than copying the initialisation phase of Algorithm 2 and replac-
ing the statements on V , let’s give another characterisation of these virtual
murders. The pretessellation P (U0) after initialisation has the following prop-
erties (we shall not prove it but merely use it for definition):

x
P (U0)
b (l) = xT

b (l) if l 6∈ U0.

(10)

x
P (U0)
b (l) = inf

{

e(l, m) : e(l, m) = xT
b (m)

}

if l ∈ U0.
(11)

x
P (U0)
d (l) = inf

{

e(l, m) : x
P (U0)
d (m) ≥ e(l, m) ≥ xT

d (l), x
P (U0)
b (m)

}

for all l ∈ L.

(12)

Notice that the times of death are well-defined. Then the number of virtual
murders is simply the number of kills in P (U0), given that simultaneous
deaths do not count:

V (l) = #
{

m ∈ L : e(l, m) = x
P (U0)
d (m) < x

P (U0)
d (l)

}

. (13)

11



Algorithm 4 Cutting loop

Input: The lines L, a pretessellation P = (xb, xd), the reverse-ordered
sequence of events Er, a subset U0 ∈ L of orphan lines, a function
OT : L ∪ B → N giving the number of orphan children a line has, and a
variable set U ⊂ L initially empty.

1: Cuts← 0 ⊲ Reset number of cuts
2: for all l ∈ L do

3: O(l)← 0 ⊲ Reset number of other children
4: end for

5: for all e ∈ Eo do ⊲ Timewise
6: l1, l2 ← l(e)
7: if [l1 ∈ U0] ∧ [xb(l1) = e] then

8: O(l2)← O(l2) + 1
9: if O(l2) = OT (l2) + 1 then

10: xd(l2)← e ⊲ Death time to new maximum
11: Cuts← 1
12: end if

13: if O(l2) ≥ OT (l2) then ⊲ l2 has too many other children
14: l1 ∈ U ⊲ We do not know the father of l2
15: end if

16: else if [l2 ∈ U0] ∧ [xb(l2) = e] then ⊲ Same, switching l1 and l2
17: O(l1)← O(l1) + 1
18: if O(l1) = OT (l1) + 1 then

19: xd(l1)← e

20: Cuts← 1
21: end if

22: if O(l1) ≥ OT (l1) then

23: l2 ∈ U
24: end if

25: end if

26: end for

return Cuts, U, P

12



Conventionally, we may set V (B) to infinity: the border kills everything that
hits it, and it will be easier to keep track in the algorithm.

Lemma 3.2. With input satisfying the requirements given at the beginning

of the section, the Algorithm 2 ends.

Its output is a pretessellation satisfying the Late Events Property . More-

over, each line has the same number of children as in the real tessellation

T .

Proof in appendix.
The lemma states that the algorithm ends, but not that we have the real

tessellation. I confess that I do not know whether we may have patholog-
ical situations where there are several pretessellations with these numbers
of other children and whose segments have the right endpoints to yield the
same initialisation. However, we may circumvent the difficulty by carefully
choosing the set U0 of lines whose parents we specify at input.

For a given set U0, we may write P or P (U0) for the output pretessellation,
S(U0) the associated segments and s(U0, l) the segment on line l. We also call
D(U0) ∈ L the set of lines such that s(U0, l) 6= s(l). We may also consider
the sets Db(U0) and Dd(U0) of lines with different birth and death times,
that is xP

b (l) 6= xT
b (l) (resp. xP

d (l) 6= xT
d (l)). Those two sets may intersect.

Obviously Db(U0) ∪Dd(U0) = D(U0) and Db(U0) ⊂ U0.
Now, if we choose the right line and give its birth time, then there will

be at least two less lines in Db: that one and another. Namely we consider
a line l1 whose birth time was wrong, and look at its wrong parent l2. The
line l3 whose birth time we correct is the one that kills this parent l2 in the
real tessellation. Since the first line l1 had the wrong parent, its fake birth
was later than this kill, so that the parent l2 now lacks a child. Hence there
is another line l4 who will be born on l2 at the end of the algorithm. Since
the death time of l2 is now right, it will really be the parent of l4. Formally:

Lemma 3.3. Let U0, P and D(U0), Db(U0), Dd(U0) defined as above.

Then there is a line l such that

#Db(U0\ {l}) ≤ #Db(U0)− 2 (14)

Proof in appendix.
An important remark is that if all the times of birth are right, then P

is the real tessellation T . Indeed, since the times of birth are right and P
satisfies the Late Events Property , the segments of P contain those of T .
Since P is a pretessellation, segments do not cross, hence the times of death
cannot be later than in the real tessellation T .

13



This remark will finally ensure that we may choose a labelling scheme
with enough orphan lines to prove existence of our measures. We start by
choosing as orphan lines the inner nodes of the tree of birth of odd or even
generations, whichever the biggest. We then use the former lemma to obtain
a working U0. We get:

Theorem 3.4. For any set of k lines, for any ǫ > 0 the number of T-

tessellations built on them is at most:

N (k) ≤ Ck

(

k

(ln k)1−ǫ

)k−k/(lnk)

, (15)

where C depends only on ǫ.

Proof in appendix.

3.3 The T-tessellation model is well-defined

Our combinatorial result implies existence of the Gibbs measure (??) in such
cases.

Theorem 3.5. Let H(T ) be an energy on T such that H(T ) ≥ −C#L(T ),
for some real C and any tessellation T . Then for any intensity τ , the Gibbs

measure with density

dγW (T ) = exp(−H(T ))dλτ
W (L(T ))

is well-defined and finite.

Proof. We have to prove that the measure is finite. We denote by c any
absolute constant. Using the bound (1), Stirling formula and Theorem 3.4,
we get:

∫

T

exp(−H(T ))dλτ
W (L(T )) ≤

∞
∑

k=0

exp(−Mk) exp (−τ) τ
k

k!
N (k)

≤
∞
∑

k=0

ck

kk

(

k

(ln k)1−ǫ

)k−k/(lnk)

≤
∞
∑

k=0

(

c√
ln k

)k

<∞.

14



4 Optimality remarks and perspectives

Though we have used very violent upper bounds at times, there is no way
to get a substantially better combinatorial result. Indeed let us consider for
some integer a ≤ k the following k lines on a square domain [0, 1]2:

y =
λ

a+ 1
for λ ∈ [1, a]

x =
λ

k − a + 1
for λ ∈ [1, k − a].

How many different T-tessellations can we build on those lines? A lower
bound is given by supposing that all horizontal segments are maximal, that
is go from border to border. Then each of the vertical segments is between
two consecutive horizontal lines, and hence of length 1/(k − a + 1). More
significantly, this means each one can be at (k − a + 1) different places,
independently from each other since the vertical lines do not cross. So that
there are at least (k − a + 1)a different T-tessellations that can be built on
those lines. If we take a = k − k/(ln k), we may conclude:

Lemma 4.1. There are sets of k lines such that the number of T-tessellations

on those lines admits the following lower bound:

N (k) ≥
(

k

ln k

)k−k/(lnk)

If we want to get a better result and a tighter upper bound on the partition
function, we then need to have a closer look on the usual topologies of the
lines. That is an order of magnitude harder, but might be worth the effort.
Indeed the previous worst-case example hinges heavily on having many lines
crossing many segments, and topologically equivalent sets of lines have very
low measure, looking like (k2kk!)/(2k)! of the space of all sets of k lines.

By contrast, using very sloppy heuristics, we would expect that for most
sets of k lines, the number of T-tessellations on those lines behaves like

N =
√
k
k
.

The idea is the following: let us take a segment away of the true tessellation.
How many different segments may we put on the line to get a tessellation
again? Neglecting problems of children and murders, this would be the num-
ber of segments that the line cross, plus one. Now the probability of crossing
a segment is essentially the length of this segment. So the number of crossed
segments would be km, where m is the mean length of a segment. Now that

15



length is the interval between two successive segments a line cross, that is
1/(km). So that m should be of order 1/

√
k, and for each new line, we have

k/
√
k =
√
k as many possibilities.

Thus it seems likely that the method in this paper gives little information
on the measure, except its very existence.

References

K. Adamczyk and K. Kiêu. Modèle de tessellation pour les paysages. To be

published.

T. Arak, P. Clifford, and D. Surgailis. Point-based polygonal models for
random graphs. Advances in Applied Probability, 25:348–372, 1993.

S. M. Mackisack and R. E. Miles. Homogeneous rectangular tessellations.
Advances in Applied Probability, (28):993–1013, 1996.

S. M. Mackisack and R. E. Miles. A large class of random tessellations with
classical poisson polygon distributions. Forma, (17):1–17, 2002.

A Proofs for the algorithms

A.1 Proof of Lemma 3.1

At the end of initialisation, we have the following properties:

• Birth times are those of the tessellation for all lines l: xP
b (l) = xT

b (l).

• Death times are overestimated for all lines l: xP
d (l) ≥ xT

d (l).

• The number of murders M(l) for each line is that of the true tessellation.

Indeed the first and third points are merely the input, and the death
times are set to an upper bound at stage 1.

What is important is that those properties will remain true throughout
the loop that completes the algorithm, and this will yield by recurrence that
at the end of the time e loop:

• The remaining number of murders for each line M(l) is that of the true
tessellation MT (l, e) = #

{

m ∈ L : xT
d (m) = e(m, l) and e(m, l) > e

}

.

16



• Death times before e are right, that is: (xT
d (l) ≤ e)⇒ (xP

d (l) = xT
d (l))

We have to prove that if this is true before the e(l1, l2) loop, it will be
true after it.

Now, we enter the loop if and only if there is a death in the real tessella-
tion. Indeed, in that case

xP
b (l1) = xT

b (l1) < e(l1, l2) ≤ xT
d (l1) ≤ xP

d (l1),

and the same for l2. If on the contrary there is no death, since segments
do not cross (??), either xT

b (l) ≥ e(l1, l2) for one of the two lines, and then
this also holds for xP

b (l) = xT
d (l), or one of the two lines l is already dead

xT
d (l) < e(l1, l2). Then xP

d (l) < xT
d (l) by recurrence hypothesis.

If we do not enter the loop, there are no changes to M or xP
d . On the

other hand, there is no change to MT , nor any new line whose death time is
required to be right, so the conditions still hold.

If we do enter the loop, then either xT
d (l1) = e(l1, l2), or xT

d (l2) = e(l1, l2).
In the first case, using the recurrence hypothesis, M(l1) = MT (l1, e(l1, l2)) =
0, and xP

d (l1) is set to xT
d (l1), satisfying the second condition. The first

condition is also still satisfied, since the only number of murders that changes
for the real tessellation is that of l2, which decreases by one, since l1 is no
more in the set of remaining murders. Symmetrically, if xT

d (l2) = e(l1, l2),
then M(l1) = MT (l1, e(l1, l2)) > 0 since it contains l2, and this number of
remaining murders is decreased by one while xP

d (l2) is set to xT
d (l2). So that

the recurrence hypothesis is transmitted.

Since death times before e are right, after we hit the last event, all death
times are right, that is xP

d (l) = xT
d (l) for all lines l. Hence the output

pretessellation is the real tessellation.

A.2 Proof of Lemma 3.2

The proof is built on the fact that throughout the algorithm, after preinitial-
isation, three conditions are fulfilled by every line l of the algorithm. The
two conditions (7) and (8) of the Late Events Property , and the fact that if
we are sure we do not know yet the parent of a line, its birth time is strictly
later than its birth time in the real tessellation. In equation:

(l ∈ U)⇒ xP
b (l) > xT

b (l). (16)

We must then check “the three conditions” still hold each time we change
a birth or death time or the set U .

17



First, let us check “the three conditions” hold after preinitialisation.
Indeed on the one hand at stage (2) we set the death times of all lines to

the maximum possible, that is the rightmost point of the domain. So that
xP
d (l) ≥ xT

d (l).
On the other hand, we know the birth times of the lines l not in U0. For

those xP
b (l) = xT

b (l). For the lines l ∈ U0, whose parent we do not know, we
set their birth time to more than maximum possible at stage (5). So that
xP
b (l) > xT

b (l). Since U is initialised as U0, condition (16) is fulfilled.

The “three conditions” still hold at the end of the whole initialisation.
We shall even prove that the prototessellation at the end of initialisation is
exactly the pretessellation described as P (U0) in equations (10), (11) and
(12).

Indeed on the one hand the birth times are changed only at stages (10)
and (12).

Now these statements are not reached for the lines l 6∈ U0, whose birth
times we know: if e(l, m) = xP

b (m), then either l is really the parent of m
and xT

b (m) = e(l, m) > xT
b (l) = xP

b (l), and we do not reach the change, or
xP
b (m) has been changed at stage (10) or (12), at which time it was set to

xP
b (l) = xT

b (l). Contradiction again. Hence times of birth of lines not in U0

are as described in equation (10) at the end of initialisation.

For lines not in U0, at stages (10) and (12), we set the birth time of a line
l ∈ U0 to e(l, m) for some m ∈ L. This happens once since afterwards the
condition xb(l) > e will never be satisfied. This does happen when m is a
child of l in P . Since the first child of l is specified, according to requirement
2, this is the event to which the birth time is set, and equation (11) is satisfied
at the end of the initialisation.

Since moreover m is the child of l, we know that xT
b (l) < e(l, m) =

xP
b (l). In addition notice that the birth point is always included in the real

tessellation segment sT (l):

xP
b (l) ≤ xT

d (l). (17)

This condition also holds for the lines not in U0 since then xP
b (l) = xT

b (l) <
xT
d (l). It will hold throughout what’s left of the algorithm, since birth times

are never increased. In the latter case, the segment is then even included in
the segment of the real tessellation T .

On the other hand, death times are changed during initialisation only at
stages (15), (17) and (23). We want to prove that at the end of initialisation,

the death time is that mentioned when describing V , that is x
P (U0)
d at equation

18



(12). Since death and birth times can only be changed to e, the recurrence
hypothesis implies that the if condition xb(l1), xb(l2) ≤ e ≤ xd(l1), xd(l2) is
equivalent to it being true at the end of initialisation. Under that hypothesis,
we enter the if statements with l ∈ l(e) if and only if x

P (U0)
d (m) = e or

x
P (U0)
d (l) = e. This happens exactly V (l) + 1 times, with the definition

(13). Each time save the last, V (l) is decreased by one, so that it really is

0 at the last event, and xP
d (l) is set to x

P (U0)
d (l), transmitting the recurrence

hypothesis and satisfying equation (12).
Hence at the end of initialisation, the prototessellation P is really the

pretessellation P (U0).

We now have to deal with the main loop, separated in functions Parent_seek
and Cutting. ?? Not only do we have to check the “three conditions”, but
we shall also make use of the fact that P stays a pretessellation from now
on: segments do not cross (3).

Within Parent_seek, the changes occur at stages (4) and (5), and sym-
metrically (8) and (9). Since any line whose birth time we change is excluded
from U , condition (16) still holds. There are no change in death times, so
that condition (8) still holds.

If (7) still holds, P will stay a pretessellation. Indeed, the extended parts
are then between times of birth and times of first child. These are included
in the real tessellation T , so they cannot cross. A would-be crossing would
then be with a segment s(m) that has not changed during the loop. But then
the birth time would have been changed at e(l, m). Since a line has to be in
U to have its birth time changed, and is excluded from U if it is changed, its
birth time can change only once through one call of Parent_seek, finishing
to show that segments still do not cross (3).

We then have to ensure that birth times are still late (7). Since a birth
time can change only once during one call and the events are tested reverse
timewise, it is enough to prove that if l ∈ U at event xT

b (l), then xP
b (l) is

set to xT
b (l). This is true, since the parent m of a line l in U ⊂ U0 is in

L\U0, thanks to requirement 2. So that this event is in the segment of the
pretessellation: xP

b (m) = xT
b (m) < e(l, m) < xT

d (m) ≤ xP
d (m). We thus enter

the if (3) or its symmetrical (7).

The latter point also proves that when entering the function Cutting, all
lines are born on a segment (4).

Within Cutting, the changes happen at stages (17), (18), (23) and the
symmetrical (17), (18), (23). No birth time is changed so condition (7)
remains valid. To understand what is going on, let us consider an event

19



e(l, m) where l ∈ U0, m ∈ L, and xP
b (l) = e(l, m) at input. Then since the

birth time is included in the real segment (4), either l is really a child of m,
that is xT

b (l) = e(l, m), or since moreover segments in T do not cross (3), the
segment m dies before: xT

d (m) ≤ e(l, m). Now we change death time at stage
(10) (or (17)). The counter O is the number of U -children of m at input
that are born at e(l, m) at the latest. So that when we change its death time
(10), there are OT (m) such children strictly before e(l, m). Since it cannot
have more children, we obtain xT

d (m) ≤ e(l, m) and the condition on death
times (8) is still fulfilled. Besides, when we add a line l to U , at stages (14)
and (23), we still have xP

b (l) < xT
b (l), fulfilling condition (16): indeed this

happens at points e(l, m) where O(m) > OT (m), so that xT
d (m) ≤ e(l, m)

thanks to the former remark, and m cannot be the parent of l.
Notice that O(B) > OT (B) is impossible thanks to the late births (7).
Since segments are only shortened during Cutting, they will not cross

and P stays a pretessellation.
Finally notice that Cuts is set to one, at stages (11) or (18), if and only

if at least one line’s death time gets earlier.

This remark implies that the algorithm ends: indeed death times can only
decrease, and they take values in a finite set, so there will be an iteration
when they do not change, there are no cuts. The algorithm ends at this
point.

What can we say about the final pretessellation returned by the algo-
rithm?

To begin with, it is really a pretessellation that fulfills the Late Events
Property . We have followed the conditions throughout the algorithm.

Moreover, each line has the same number of children as in the true tessel-
lation. Indeed the algorithm ends only when no cuts are made in the Cutting
function, that is when all lines have at most as many children as in the true
tessellation. The other side of the inequality comes from the fact that the
sum of other children in that function is bounded from below by the sum of
other children in the true tessellation: each line is born on another line or on
the border, and since birth times are overestimated, they cannot mistakenly
be thought to be born on the border.

A.3 Proof of Lemma 3.3

A first remark is that for any subset U1 of U0, the Late Events Property holds
for P (U0) with respect to P (U1). Indeed there would be no change when
running Algorithm 2 with U0 as input if P (U1) was the real tessellation. So

20



that x
P (U0)
b (l) ≥ x

P (U1)
b (l) ≥ xT

b (l) for all lines. This implies that Db(U1) is a
subset of Db(U0).

Another remark, already made in the proof of the algorithm, is that when
xP
b (l) = e(l, m), either m is the real parent of l, or xT

d (m) ≤ e(l, m). This
implies that if xT

d (m) = xP
d (m), all its children in P are real children. Since

moreover it has the same number of children as in T , its children are exactly
the right children.

We now consider l1 ∈ Db(U0) and its fake parent l2, so that xP
b (l1) = l2.

Then e(l1, l2) ≥ xT
d (l2). Moreover e(l2, l3) = xT

d (l2) and l3 ∈ Db(U0). Indeed
xb(l3) ≥ e(l2, l3). We take l3 as the line l in the lemma. Since l3 6∈ U0\ {l3},
we know that l3 6∈ Db(U0\ {l3}).

Now l3 is no longer a child of l2. But the number of children of l2 at the
end of the algorithm is fixed, equal to that in the real tessellation T . So that
there is a line l4 that is a child of l2 in P ((U0\ {l3}) and was not in P (U0).
Since moreover l2 is killed by the right line in P (U0\ {l3}), we know that
l4 ∈ Db(U0) and l4 6∈ Db(U0\ {l3}).

Finally, since Db(U0\ {l3}) ∈ Db(U0), we may write:

#Db(U0\ {l}) ≤ #Db(U0)−# {l3, l4} = #Db(U0)− 2.

A.4 Proof of Theorem 3.4

We may rebuild any tessellation T on the lines L with Algorithm 2 and the
input given in the “requirements” mentioned at the start section 2. However
we have to make it more specific, namely to describe U0 the set of orphan
lines.

This set is obtained by looking at the tree of births. On the one hand,
we must specify the parent of each leaf, since we cannot give their first
child. We add to this the interior nodes either of even, or of odd generations,
whichever the smaller. Thus the lines Ui without specified parents are at
most ui = (k−z)/2, where z is the number of leaves. This is a valid labelling
as the lines whose parents are not specified have all their children marked as
such, since the parity of their generation is different. Hence requirement 2
for the input is satisfied.

Now we run the algorithm. We may not find the true tessellation, and
have a set of lines Db(Ui) whose parent is wrong. This set is included in
Ui. We then remove a line from U0 as in Lemma 3.3 and run the algorithm
again. And we iterate until we obtain the true tessellation. Since Db(U0) is
at least two elements smaller at each steps, we have to remove at most u/2
lines from our initial Ui to get a set U0 we may use as input in Algorithm 2
to obtain the true tessellation. So that its cardinal is at least u = (k − z)/4.

21



Let’s now go over each element of the input in order.
First labelling each line as “leaf” or “not leaf”. As already mentioned, this

yields at most 2k possibilities.
Second labelling each line not in U0 with its parent. Since a leaf cannot

be a parent, there are at most (k+1−z)k−u ≤ (k+1−z)(3k+z)/4 possibilities.
Third labelling each line with its number of virtual murders yield at most

4k possibilities, as already mentioned.
Fourth labelling each line with its number of other children yield at most

4k possibilities, as already mentioned.
Thus we may give the following upper bound on the number of different

T-tessellations on k given lines, using C for any absolute constant:

N (k) ≤ Ck sup
1≤z≤k

(k + 1− z)(3k+z)/4

≤ Ck

(

k

(ln k)1−ǫ

)k−k/(lnk)

,

where we have used the following bound on the supremum in the right-hand
side: take the derivative in z of the logarithm, and we see that the maximum
is attained when

(1 + k − z)(1 + ln(1 + k − z)) = 4k − 1.

For big k, this implies k/ ln(k)1−ǫ ≥ 1 + k − z ≥ 4k/ ln(k). We then replace
by the right bounds in the exponent and the basis.

22


