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Abstract

We show how the study of the geometry of the nine flex tangenésdubic produces many
pseudo-parameterizations, including the ones given bst,IE@mmerer, Lercier, Renault and
Farashahi.

To Jean-Jacques Quisquater, on the occasion of his éméritat

1 Introduction

Much attention has been focused recently on the problem mipoting points on a given elliptic
curve over a finite field in deterministic polynomial time. i3 fproblem arises in a very natural man-
ner in many cryptographic protocols when one wants to encoegsages into the group of points
of an elliptic curve. A good example of the algorithmic angptologic motivations in finding these
parameterizations can be found in the identity-based etiory from [Bo]. The difficulty is to de-
terministically find a field element such that some polynomial in is a square, see [Ko], Section
6.1.8. For example, when the curve is given by a reduced Weass equatiop® = =3 + ax + b, we
deterministically search such that:® + az + b is a square in the field.

In 2006, Shallue and Woestjine [Sh-Wo] proposed a first alctleterministic algorithm. In
2009, Icart [Ic] proposed another deterministic encodimigéiliptic curves over a field witly ele-
ments, whery is congruent t@® modulo3. Icart’s algorithm has quasi-quadratic complexitylag g.
Kammerer, Lercier and Renault [Ka-Le-Re] proposed a diffeparameterization under the addi-
tional condition that the elliptic curve has a rational gaiforder3, and even for a special class of
hyperelliptic curves. Farashahi [Fa] found yet anotheapeaterization for such elliptic curves too.
The point is that the map — 22 is bijective for finite fields with cardinality congruent fomodulo
3. So one looks for a parameterization of the cubic by cubiicedsl This is a special case of the
problem of finding parameterizations of curves by radic8ks-§e, Se-Wi-Pr].

It turns out that such parameterizations closely relatdhéogeometry of the dual curve of the
elliptic curve. In a nutshell, the dual of a curveC parameterizes the tangentsd@o The tangents
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at the flex points of” correspond to singular points @ namely cusps. From rational curves going
through these cusps, we can derive pseudo-parametenzatfc’'.

In this paper we review the geometry of the nine flex tangengsamooth plane cubiC, and we
explain how this geometry relates to the parameterizafiomsd by Icart, Farashahi, and Kammerer,
Lercier, Renault. We will see that these parameterizat@mmsespond to rational curves in a degree
two covering of the dual plane ramified along the dual se&tiof C'. Such rational curves can be
constructed using the very special configuration formechiey ttusps ofC, which correspond to the
nine flexes ofC.

In Section 2 we recall notation and derive classical formdita the solution of equations of degree
3, that will be used in the sequel. Section 3 briefly recallsdlenentary properties of the dual of a
smooth plane cubic curve. In Section 4 we study the geométityeonine flex tangents to a smooth
plane cubic. We show that the nine points in the dual plarsgcated with these nine tangents, are
not in generic position with respect to conics and quartite. explain in the next Section 5 how to
use this special configuration of nine points to parametdtie cubic by cubic radicals.

Throughout the paper, we denote by field with characteristic different fromand3, by k& > &
an algebraic closure df, and by(s € k a primitive third root of unity. We se{/—3 = 2(3 + 1.

The Maple [Wa] code for the calculations in this article caftund on the authors’ web pages.

2 Solving cubic equations

In this section we recall the Tartaglia-Cardan formulaedwolving cubic equations by radicals. A
modern treatment can be found in [Du-Fo]. We believe it istlvatating these equations in an
unambiguous form, that is well adapted to our context, amd ot make excessive use of radicals and
roots of unity. In other words we need regular and generimfoae. Leth(z) = 23 — 5122 + 502 — 53

be a degres separable polynomial ih[z]. Call g, 7, andr, the three roots of(z) in k. Set

6= \/—_3(’1“1 —7“0)(7“2 —T’l)(T’Q—T‘Q)

andA = §2. Note thatA is the usual discriminant multiplied by3. We call it thetwisted discrimi-
nant Since it is a symmetric function of the roots, it can be egpeel as a polynomial iy, s5 and
s3. Indeed

A = 8153 — 5ds35159 — 35755 + 125553 + 1255,

In particularA lies ink. Letl = k(C3,6) C k be the field obtained by adjoiningand a primitive
third root of unity tok. We setm = [(ry,72,70).

If the extensiori C m is non-trivial then it is a cyclic cubic extension. Sinaontains a primitive
third root of unity, this cubic extension is a Kummer extensiit is generated by the cubic root of
some element ih. Let o be the generator of the Galois group that sends ;. fori € {0,1,2},
with the convention that indices make sense moduld/e set

p=ro+C 1+ (3

and we check that(p) = (3p. We setR = p* and we check thaR is invariant byo. So R is an
invariant for the alternate group acting én, 2, 73} and it can be expressed as a polynomiadiin
s2, s3 andd. Indeed we find

27 9 3

R:p3 :5?+733— 53132 — 55



Similarly we set
P =ro+ (3 + Gra

and we check that or 9 5
R=p3=s4+"g3—= =5.
P 31+ 233 23132+2
We note thatp’ = 2 + r? + 13 — rory — r1re — o1y IS invariant by the full symmetric group
and is indeed equal tﬁ — 3s9. So bothp andp’ are computed by extracting a single cubic root.
Finally, the three rootgy, r1, 3 can be expressed in termsmby solving the linear system:

ro+ 71+ 72 = 5
ro+Glri+Gre = p
ro+Gri+Gre = g
In particular the formula for the root
si+p+p
o= "5 (1)

does not involves.

3 The dual curve of a cubic

In this section we review the properties of the dual of a cuiove. A thorough treatment of the
duality for plane curves can be found in [Hi-Ko-To] and [Hi].

Let E = k3 and letE be the dual ofF. LetU = (1,0,0), V = (0,1,0) andW = (0,0,1).
So (U, V,W) is the canonical basis df. Let (X,Y, Z) be the dual basis ofzU, V,1W). LetP =
Proj(E) = Projk[X,Y, Z] be the projective plane ovér. LetP = Proj(E) = Projk[U,V, W]
be the dual projective plane. The poiaf : V' : W] in P corresponds to the line with equation
UX+VY+WZ =0inP. LetC C P be a smooth cubic with equatidfi(X,Y,Z) = 0. Let
Fx = 98, Fy = 9£, F; = 92 Dbe the three partial derivatives &f. To every point orC' one can
associate the point ift corresponding to the tangent € at P. The set of such points is the dual
curveC of C. SoC is the image of the so called Gauss morphism

we s C P

(X :Y: Z|——[Fx(X,Y,2),Fy(X,Y,Z),F7(X,Y, Z)]

The plane curv& has degreé andw¢ induces a birational equivalence betwegmndC. To each

of the nine flexes of” there corresponds an ordinary cusp@nSinceC' has geometric genusand
arithmetic genug0 = (6 — 1)(6 — 2)/2 we deduce that there is no other singularity on it than these
nine cusps. For example, @ has equatiorF'(X,Y, Z) = 0 where

F(X,Y,Z)=X*4+Y3+ 273 - 3aXY Z, 2)
then the dual curve has equati6itU, V, W) = 0 where
GU,V,W)=US + VS + W — 6a®>(UVW + UVAW + UVIW?)
+(4a® = 2)(UV3 + UBW?3 + V3W3) + (12a — 3a*)U VW2,
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The equation of the dual is found by eliminatiag Y, andZ in the system

U = Fx(X,Y,Z2)
V = K(X,Y,2)
W = Fz(X,Y,2)

The two curves” andC are represented in Figure 1 and Figure 2 respectively inabeac= 0.

Figure 1: The cubic with equatiok® + Y3 + Z3 =0

Figure 2: The dual curve with equatiéff + V6 + W6 — 203V3 — 2V3W3 — 2U3W3 =0

4 The geometry of flexes

Let C c P be a smooth plane projective cubic. The nine flex points' diefine a configuration in the
planeP. More interestingly, the nine flex tangents correspond te mioints in the dual plari. We
study the latter configuration.

We are particularly interested in low degremicursal curves going through many of these nine
cusps ofC. By aunicursal curve we mean a curve having geometric genus 0 and a ratioi#l p
This is equivalent to the existence of a rational paranmedtidn, see [Se-Wi-Pr], theorem 4.11.

We will first assume thaf” is the Hessian plane cubic given by Equation (2). Indeed samyoth
plane cubic can be mapped onto such an Hessian cubic by atprejinear transform, possibly after
replacingk by a finite extension of it. The modular invariant@fis

~ 27a%(a+2)%(a® — 2a + 4)°
 (a—1)3(a?+a+1)3

j(a)




The nine flexes o€’ are the three points in the orbit @ : —1 : 1) under the action ofs, plus the
six points in the orbit of —1 : (3 : 0) under the action ofs. Let

we:(X:Y:2)—(X?—aYZ:Y?—aXZ: 2% - aXY)

be the Gauss map associated withThe images bwc of the nine flexes are the three points in the
orbit of (@ : 1 : 1) under the action o83 plus the six points in the orbit oft2 : (3 : a) under the
action ofSs. Figure 3 lists these cusps and their images by the GaussWeapetO = (0: —1: 1)
andO = (a:1:1)

Flex of C Cusp onC
0:=1:1) | (a:1:1)
(=1:1:0) | (1:1:a)
(1:0:=1) | (1:a:1)
(—1:¢3:0) [ (§:¢3:a)
(G:0:-1) | (Gra:¢d)
(0:=1:G) | (a:¢F:G)
(GG:—=1:0) | ((3:¢3:a)
(=1:0:G) | (¢§:a:y)
0:¢G:—1) | (a:¢:G)

Figure 3: Flexes of” and the corresponding cusps on its dual

These nine points in the dual plane form an interesting cordigpn, depending on the single
parameter.

Position with respect to lines One can first check, e.g. by exhaustive search, that no timeag
these nine points are colinear unless the modular invaisarero. See the proof of Proposition 1 in
Section 7.2 of [Br-Kn]. So the nine points in the dual planeesponding to the nine flex lines are in
general position with respect to lines. We deduce the falighemma by duality.

Lemma 1 A smooth plane projective cubic over a field with prime to &iaracteristic has no three
concurrent tangent flexes, unless its modular invarianeie z

Position with respect to conics We now consider the configuration of the nine flex tangentfro
the point of view of pencils of conics. Remember that six ®in general position do not lie on any
conic. Six pairwise distinct points lying on a conic are saithecoconic Six pairwise distinct lines
are said to beoconicif they all are tangent to a smooth conic.

Lemma 2 Consider a smooth plane projective cubic over a field witlngrito six characteristic and
assume its modular invariant is not zero. Remdwmlinear flex points. The six tangents at the six
remaining flexes are coconic. There are twelve such configms of six coconic flex tangents.

Note that we claim that the six flex tangents are coconic. Nesix flex points. Equivalently we
claim that the six points in the dual plane correspondindnéosix flex tangents are coconic.

We first note that the conic with equati@flV’ — aV2 = 0 meetsC at(a : 1 : 1), (1 : 1 : a),
(3 :¢:a)(a:¢3:(),(¢:¢:a)and(a: 3: ¢3). The three remaining flexes ik are



(1:0:—1),(¢3:0:—1)and(1:0: ¢3) and they lie on the line with equatidri = 0. The action of
S3 produces two more similar conics.

The conic with equatio/? + V2 + W2 + (a + 1)(UV + UW + VW) = 0 meetsC at the
six points in the orbit of (2 : (3 : a) under the action 0f3. The three remaining flexes ih are
(0:=1:1),(=1:1:0),and(1:0: —1). They lie on the line with equatioX +Y + Z = 0.

The conic with equatiol/2 + (3V2 + (W2 + (a + 1)(GGUV + GUW + VW) = 0 meetsC
at the three points in the orbit ¢& : 1 : 1) under the action ofs. And also at the three points in
the orbit of (¢2 : (3 : a) under the action of3. The three remaining flexes ihare (0 : (3 : —1),
(¢3: —1:0),and(—1:0: (3). They lie on the line with equatioX + (3Y + (3Z = 0. The action
of S3 produces one more such conic.

The conic with equatiogzU? + V2 4 W2 + (a + 3)(UV + GUW + VW) = 0 meetsC' at
(a:1:1),(1:1:a),(3:a:¢3),(a:¢2:¢),(G: ¢ a),(¢3:a: (). The three remaining
flexes inPare(1 : 0: —1), (—1 : 3 : 0), and(0 : {3 : —1). They lie on the line with equation
(3X +Y + (3Z = 0. The action ofS3 produces five more conics.

We thus obtain twelve smooth conics that cross the dual aliraesix out of its nine cusps. Each
of these conics is associated with one of the twelve tripleplinear flexes. |

Four among these twelve conics are especially interestigguse their equations do not involve
(3. We note that three among these four conics are clearly tsstoverk(a) because they have
an evidentk(a) rational point. The last one is unicursal also because itgiept by the evident
automorphism of ordes is P! overk(a).

Position with respect to cubics Next we study the pencil of cubics going through the nine {aim
the dual plane associated with the nine flex tangents. It tigsqtive dimension zero in general. The
cubic with equation

a(U3 + V3 4+ W?3) = (a® +2)UVW

goes through all these nine points in the dual plane. Thigdslin general non-singular. So it is not
particularly interesting for our purpose.

Position with respect to quartics We now consider curves of degrdein the dual plane. The
projective dimension of the space of plane quarticddis So we can force a quartic to meet the
9 points we are interested in and there remdindegrees of freedom. Since we are particularly
interested in unicursal curves we use these remaining eeg@fdreedom to impose a big singularity
atO = (a : 1:1). Indeed, two degrees of freedom suffice to cancel the degpeet in the Taylor
expansion aD. And three more degrees of freedom suffice to cancel the eégrart also. We find

a unicursal quarti€) in P passing through the nine cusps@fnd having intersection multiplicity at
least two at each of them (because they are cusps) and asibeasthe cusg). The equation of this
unicursal quarti@) is

U+ a(VH+ W = 2a(U3V + UW + V3W + VW) — (a® + DU (VE + W3)
+3a2UH (V2 + W) + (a* + 20) VW2 + (1 — A UVW(V + W) = 0.
This quadric is irreducible as soon as the modular invadudt is non-zero, which we assume

from now on. Computing the intersection with all lines thgbwO we find the following parameteri-
zation of this quartic



Ut) = a*t* —2at + (a3 + 2)t* — 2d%t +q,
V() = a*t*+ (1 —3a®)t® + 3a*t? — 2at + 1,
W) = at*—(a®+ 1)t3 + 3d®t* — 2at + 1.

SubstitutingU, V, andW by U(t), V (t), andW (t) in the equation of”' we find the degree4
polynomial

O+ 12t —t+1)%(at —2)*((a + 1t — D?((a® — a + 1)t2 + (1 — 2a)t + 1)*(a®*t> + 1 — at)?.

We check that) has two branches &. One branch corresponds to= 0, and it has intersection
multiplicity 6 with C. The other branch correspondstte- 2/a, and it has intersection multiplicity
with C. This is illustrated by Figure 4 wher@ is in black andy is in red. So the total multiplicity of
Q.C atO is 8. And the intersection)).C' only consists of cusps af’; one with multiplicity 8 and the
eight others with multiplicity2. The real part of this intersection locus is visible on Faydr

Lemma 3 Consider a smooth plane projective culdgicover a field with prime to six characteristic
and assume its modular invariant is not zero. Celve the dual of”. LetO be one of the nine cusps of
C. There exists a unicursal quarti@ in the dual plane, such that the intersectionC' has multiplicity

8 aEO and? at each of the eight remaining cusps. In particu@rC' is an even combination of cusps
of C.

We stress that the definition of the quarficinvolves one flex on the one hand, and the eight
remaining flexes on the other hand. So we can define this qudartany cubic having a rational flex,
that is for any elliptic curve (and this makes a differencéwiie four conics constructed earlier, that
distinguish a triple of colinear flexes, and therefore camhways be defined over the base field.)

Figure 4: The real part of the intersection@fandQ.
So we can take fof” an elliptic curve with Weierstrass equation
F(X,Y,Z2)=Y?2Z — X3 —aX7* - bZ3. (3)

We assume # 0, so the modular invariant is non-zero either. The image®btiginO = (0: 1 : 0)
by the Gauss map @ = (0 : 0 : 1), and the quartic) given by Lemma 3 has equation

U* —3Vi 46UV =0,

and parameterization



Uty = 6t% (4)
V(i) = 6t
W(t) = 3at?-1.

5 Intersecting a cubic with lines

In this section we assume that the map- a3 from & to k is surjective. This is the case#fis the
field of real numbers for example. This is also the cadeisf a finite field withqg elements whepg is
congruent t® modulo3. For every element in k£ we choose once and for all a cubic ropt of a.
This way we define a mag : k— k.

Let C C PP? be a plane projective smooth cubic curve okerWe want to construck-rational
points onC. More precisely, we look for a non-trivial map fromto C'(k). SinceC has genug it
is not unicursal, and the map we are looking for cannot be ghigm of algebraic curves. We try
to construct a map frorh to C'(k) that could be expressed with rational fractions and theccrdmt
operatory. The idea is to look for a one parameter family of liié ), in the projective plane such
that, for every value of the parametethe intersectiorD; N C has a rational point in it. We observe
that this intersection is described by a cubic extensiopddding ont). So we ask that the twisted
discriminant of this extension be a square for every valub@parametet. If this is the case, we can
construct a root (and the corresponding poin€im D;) using the Tartaglia-Cardan formulae given
in Section 2 and the cubic root mgp: k¥ — k defined above.

Aline D C P meetsC in exactly three points unless it is a tangent linet¢in which case we
have one simple point and one double point) or even a flex (iclhwtase we have one triple point).
Assume thatD is the line with equation

UX+VY +WZ=0. (5)

The intersectionD.C' is described by the homogeneous system consisting of EBquéd) and the
equation of the cubi€’. We can use Equation (5) to eliminate one of the three vasab| Y, Z in the
equation ofC'. We obtain a binary cubic form whose twisted discrimin&dt/, V, W) is essentially
the equation of the dual cun@ because it cancels when the intersectidrt’ has multiplicities. In
particular this twisted discriminant is not a square. Hosveif ¢ is an indeterminate, and if we choose
carefullyU, V andWW to be polynomiald/(t), V(¢t) andW (¢) in k[t], then the corresponding rational
fraction A(t) might be a square ik(¢) or something close to a square. So we look for a unicursal
curve L C P that intersects the dual curéé with lots of even multiplicities. Note that may be
given by its projective equation, or as the image of a pararization\ : P! — P that maps the point
(t:1)onto(U(t): V(t): W(t)).

The considerations in Section 4 provide several candidateb.

5.1 Intersecting the dual curve with a conic

We may first takel. to be one of the twelve conics in Lemma 2. So we assumethatthe Hessian
cubic given by Equation (2) for somesuch that® # 1. Four conics, among the twelve conics given
in Lemma 2, are unicursal ovéfa). The intersectior..C' has degreé2 and contains six among the
nine cusps of”', each with multiplicity2. So this intersection is exactly twice the sum of these six



cusps. If we take fol the conic with equatio® W — aV? = 0 then a convenient parameterization
is given byU (t) = 1, V(t) = —t andW (t) = at?. The corresponding lin®; has equation

X —tY +at*Z = 0.
We substituteX by tY — at?Z in the Hessian Equation (2) and find the degdderm in Y andZ
3+ 1)Y3 = 3at(t® + 1)Y2Z + 3a** (3 + 1)Y 22 + (1 — a®1%) 23

describing the intersectiof.D;. We divide by (t3 + 1)Z3 and we obtain a cubic polynomial in
y =Y /Z whose twisted discriminant is

PN

We use the formulae and notation in Section 2. We have

s1 = 3at,
So = 3a2t2,
adts —1
s3 = 7t3+1 )
9(1 + a®t3)
0 = ——3—,
1+13
adtd +1
o= =
R =0

So we find the solution
o 5/adtd +1
y t3—|—1 Y
ast3 + 1
=X/Z =ty —at® = —t{| ———
=X/ y—a PN

This is the pseudo-parameterization found by Farashahi [Fa

and we deduce

5.2 Intersecting the dual curve with a quartic

Assume now that we takeé to be the unicursal quartiQ in Lemma 3. All the multiplicities in the
intersection).C are even. So we expect the twisted discriminant to be a sqUikigtime we may as
well take forC the Weierstrass cubic in Equation (3). The parameterizati@) given in Equation (4)
provides a one parameter family of lin€s,), with equation

6t°X + 6t°Y + (3at* —1)Z = 0.

We divide byZ, we setr = X/Z, y = Y/Z and we substitutg by 1/(6t3) — at/2 — =/t in the
Weierstrass Equation (3). We find a cubic equatidn- s122 + sox — s3in x = X/Z, where

s1 = 1/t2,
sy = 1/(3th),
s3 = (1/t% — 6a/t* — 36b + 9a*t?)/36.



Using the formulae and notation in Section 2 we find
5 = (—1/t°—108b — 18a/t* + 27a*t*)/12,
R = 0,
R = (=1/t® —108b — 18a/t* + 27a’t?) /4.

So we find the solution

1 3/ a?t? 1 a
—X/Z =+ =y O
r=XZ =35 T T Tosm 612
and )
y:Y/ZZG?—at/Z—:U/t.

This is the pseudo-parameterization found by Icart [Ic[taithe change of variable— —1/t.

5.3 Intersecting the dual curve with a line

Assume finally that we take fok a line passing through two rational cusps@f So we assume
that C is the Hessian cubic given by Equation (2) for somie# 1. AssumeL is the unique line
passing through the two cusps : 1 : 1) and(1 : a : 1) of C. The intersection..C' has degreé.
Since(a : 1: 1) and(1 : a : 1) each have intersection multiplicity 2, there remains at most two
intersection points. This situation is illustrated on Fey6.

Figure 5: The intersection &f and L

Not all the multiplicities in the intersectioh.C' are even, but only two multiplicities are odd. So
we expectA(t) to be a square times a degzpolynomial int.

Points onZ C P represent a linear pencil of lines hgenerated by the tangents @at (0 :
—1:1)and(1:0: —1). The first tangent has equatiaX + Y + Z = 0. The second tangent has
equationX + aY + Z = 0. So lett be a formal parameter and consider the lingwith equation
(at+1)X + (t+a)Y + (t+1)Z = 0. The tangent af0 : —1 : 1) corresponds to the value
t = oo. The tangent atl : 0 : —1) corresponds to the value= 0. The line D; meets the fixed point
(1:1:—a—1)and the moving pointl, —¢,t — 1). So a parametric description 6f; is given by

i (i+1ii—t:t—1—(a+1)i).

We substituteX by i+ 1, Y byi —tandZ byt — 1 — (a + 1)i in Equation (2) and divide by the
leading coefficient. We find the degree three polynomial

3t(a +2)i 3t(1 —t)
a?+a+1 a?+a+1

h(i) =i + (6)

10



defining the intersectio®;.C'. The twisted discriminant df is

(@®+a+1)t2+22a+1)(a®> +a+T7)t+9(a® +a+1)

9
_ 2
A(t) = 81t P

: (7)

This is not quite a square ih(a)(t). However, it only has two roots with odd multiplicity. So
if we substitutet by a well chosen rational fraction, we can tutninto a square. So we look for a
parameterization of the plane projective conic with ecurati

(a®>+a+1)S*=9a®>+a+1)T? +22a+1)(a®* +a+7)TK +9(a* +a + 1) K% (8)

This conic has two eviderik-rational points, namely3 : 1 : 0) and(3 : 0 : 1). The line through
these two points has equation
-5+ 37T+ 3W =0.

The tangent a3 : 0 : 1) has equation
3(a*+a+1)S - (2a+1)(a®*+a+ 7T —9(a*+a+1)W = 0.
The generic line in the linear pencil generated by these itvas lhas equation
(Ba®>+a+1)—)S+Bj— 2a+1)(a*+a+ )T+ (35 —9a* +a+1)j) )W =0 (9)

wherej is a formal parameter.
Intersecting the conic in Equation (8) with the line in Edoat(9) we find the parameterization

S() = 37 =2(a+2)’ +3(a+2)*(a® +a+1),
T(G) = 77 —3(a®> + a+1)),
W) = (a®> 4 a+1)((a +2)% - 39).

We now substitute by 7'(j) /W (j) in Equation (6) and find a cubic polynomial with coefficients
in the fieldk(a)(j). If we substitutet by 7'(5) /W () in Equation (7) we find that = 6%(j) where

sy = UG —2a+2)% +3(0® +a+ 1)(a+2)*)(3(@* +a+ 1) - j)
b) = (@28 =32 +a+1) '

We use the formulae and notation in Section 2. The polynomialEquation (6) has coefficients
1, —s1, s5 and—s3 with

S1 = 0
3j(a+2)(3(a® +a+1)—7)
(e +a+1)2((a+2)3 —3j)
3j(3(a* +a+1) — j)((a* + a+1)(a +2)° — j?)
(a® +a+1)3((a+2)% - 3j)? '

52

S3 =

We deduce the following pseudo-parameterization of thécotib
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275°(3(a* + a+1) — j)
((a+2)% —3j)(a?2 +a+1)3

p(j) = {R()
9j(a +2)(3(a®> +a+1) — j)

(@® +a+1)*((a + 2)% = 3j)p(j)
" )+ 0/ (J
i) = 48] 3/) ()

J(3(a* +a+1) —j)
(a®+a+1)((a+2)3 —3j5)

P() = (()+1:i() = 1(7)  4() = 1 = (a+ 1)i(7))

whereP(j) is the point onC' associated with the parameter

We illustrate this situation on Figure 6 in the case= 2. The red segment corresponds to the

parametey taking values in the interval-4, —0.3]. We also note that the computation in Section 3.1
of [Ka-Le-Re] hides a similar geometric situation.

&

Figure 6: A pseudo parameterization
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