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KAZHDAN-LUSZTIG BASIS FOR GENERIC SPECHT MODULES

YUNCHUAN YIN

Abstract. In this paper, we let H be the Hecke algebra associated with
a finite Coxeter group W and with one-parameter, over the ring of scalars
A = Z(q, q−1). With an elementary method, we introduce a cellular basis of
H indexed by the sets EJ(J ⊆ S) and obtain a general theory of ”Specht
modules”. Our main purpose is to provide an algorithm for W-graphs for the
”generic Specht module”, which associates with the Kazhdan and Lusztig cell
( or more generally, a union of cells of W ) containing the longest element of a
parabolic subgroup WJ for appropriate J ⊆ S. As an example of applications,
we show a construction of W-graphs for the Hecke algebra of type A.

Preliminaries

LetW be a finite Coxeter group with S the set of simple reflections, and let H be
the corresponding Hecke algebra. We use a variation of the definition given in [3],
taking H to be an algebra over A = Z[q−1, q], the ring of Laurent polynomials
with integer coefficients in the indeterminate q. Then H is a algebra generated by
(Ts)s∈S subject to

Ts
2 = 1 + (q − q−1)Ts

TrTsTr · · ·
︸ ︷︷ ︸

mrs factors

= TsTrTs · · ·
︸ ︷︷ ︸

mrs factors

(for all r, s ∈ S).
Moreover, H has A-basis {Tw | w ∈ W } where Tw = Ts1Ts2 · · ·Tsl whenever

s1s2 · · · sl is a reduced expression for w, and

(1) TsTw =

{

Tsw if ℓ(sw) > ℓ(w)

Tsw + (q − q−1)Tw if ℓ(sw) < ℓ(w),

for all w ∈ W and s ∈ S. We also define A+ = Z[q], the ring of polynomials in
q with integer coefficients, and let a 7→ a be the involutory automorphism of A
such that q = q−1. This involution on A extends to an involution on H satisfying
Ts = T−1

s = Ts + (q−1 − q) for all s ∈ S. This gives Tw = T−1
w−1 for all w ∈ W . The

map H → H , h 7−→ h is a ring involution such that

∑

w∈W

awTw =
∑

w∈W

āwTw−1
−1, aw ∈ A.
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0.1. Kazhdan-Lusztig basis. There are two types of Kazhdan-Lusztig bases of
H , denoted by {Cw|w ∈ W} and {C′

w|w ∈ W} in the original article by Kazhdan-
Lusztig [3]. It will be technically more convenient to work with the C-basis. The
reason can be seen, for example, in Lusztig [5, chap.18]. The basis element Cw is
uniquely determined by the conditions that Cw = Cw and Cw ≡ Tw mod H>0,
where H>0 :=

∑

w∈W qA+Tw, see [5]. Or more clearly

Cw = Tw +
∑

y∈W,y<w

py,wTy,

where ≤ denotes the Bruhat-Chevalley order on W and py,w ∈ qA+ for all y < w
in W . We write y < w if y ≤ w and y 6= w.

The polynomials py,w are related to the polynomials Py,w of [3] (the Kazhdan-

Lusztig polynomials) by py,w(q) = (−q)ℓ(w)−ℓ(y)Py,w(q2). That is, to get py,w from

Py,w replace q by q2, apply the bar involution, and then multiply by (−q)ℓ(w)−ℓ(y).

0.2. Multiplication rules for C-basis. For s ∈ S,w ∈ W , we have

(2) TsCw =







−q−1Cw , if sw < w

qCw +
∑

y<w,sy<y
µ(y, w)Cy , if sw > w.

The quantity µ(y, w), which is the coefficient of q
1
2 (ℓ(w)−ℓ(y)−1) in Py,w, is the

coefficient of q in (−1)ℓ(w)−ℓ(y)py,w. However, since Kazhdan and Lusztig show that
µ(y, w) is nonzero only when ℓ(w) − ℓ(y) is odd, therefore µ(y, w) ∈ Z can also be
described as the coefficient of q in −py,w, as above.

The following notion of W-graph was introduced by Kazhdan and Lusztig in [3].

Definition of W -graph. Since we have slightly modified the definition of Hecke
algebra used in [3], we are forced to also slightly alter the definition of W-graph.
We define a W-graph datum to be a triple (Γ, I, µ) consisting of a set Γ (the vertices
of the graph), a function

I : γ 7→ Iγ

from Γ to the set of all subsets of S, and a function

µ : Γ× Γ → Z

such that µ(δ, γ) 6= 0 if and only if {δ, γ} is an edge of the graph. These data are
subject to the requirement that AΓ, the free A-module on Γ, has an H -module
structure satisfying

(3) Tsγ =







−q−1γ if s ∈ Iγ

qγ +
∑

{δ∈Γ|s∈Iδ}
µ(δ, γ)δ if s /∈ Iγ ,

for all s ∈ S and γ ∈ Γ. If τs is the A-endomorphism of AΓ such that τs(γ) is the
right-hand side of Eq. (3) then this requirement is equivalent to the condition that
for all s, t ∈ S such that st has finite order, we require that

τsτtτs . . .
︸ ︷︷ ︸

m factors

= τtτsτt . . .
︸ ︷︷ ︸

m factors

where m is the order of st. (Note that the definition of τs guarantees that
(τs + q−1)(τs − q) = 0 for all s ∈ S.)
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For simplicity, if (Γ, I, µ) is a W-graph datum, we say that Γ is W-graph. We
call Iγ the descent set of the vertex γ ∈ Γ, and we call µ(δ, γ) and µ(γ, δ) the edge
weights associated with the edge {δ, γ}. In almost all the cases we consider it turns
out that µ(γ, δ) = µ(δ, γ).

0.3. Cells in W-graphs. Following [3], given any W-graph Γ we define a preorder
relation ≤ on Γ as follows: for γ, γ′ ∈ Γ we say that γ ≤Γ γ′ if there exists a
sequence of vertices γ = γ0, γ1, · · · γn = γ′ such that for each i (1 6 i 6 n), we have
both µ(γi−1, γi) 6= 0 and Iγi−1 * Iγi

. We shall refer to ≤Γ as the Kazhdan-Lusztig
preorder on Γ.

Let ∼ be the equivalence relation on Γ associated to the Kazhdan-Lusztig pre-
order; thus γ ∼ γ′ means that γ ≤Γ γ′ and γ′ ≤Γ γ. The corresponding equivalence
classes are called the cells of Γ.

In this paper, the preorder ≤Γ is generated by Kazhdan-Lusztig left preorder [3]:
x ≤L y if Cx occurs with nonzero coefficient in the expression of TsCy in the C-
basis, for some s ∈ S. Their equivalence classes are called left cells, see [3, 5, 11]
where right cells and two-sided cells are also defined.

0.4. Left cell module. Let C be a left cell or, more generally, a union of left cells

of W . We define an H -module by [C]A := JC/ĴC where

JC := 〈Cw|w 6L z for some z ∈ C〉A

ĴC := 〈Cw |w /∈ C, w 6L z for some z ∈ C〉A

are the A-spanned modules.
This paper is organized as follows. In Sect. 1 we introduce the indexing sets

DJ , DJ for the basis of H -module H CwJ
, and EJ for the so called general Specht

module. In Sect. 2, we obtain a version of cellular basis for H in general and
set up the concept of general Specht module. In Sect. 3 we show the construction
of W-graph basis by introducing a new family of EJ -Kazhdan-Lusztig polynomials
pxy, and show an inductive procedure for computing p′xys. In Sect.4 we consider
an example of type A and discuss the applications of our results, we show the
transition between Murphy basis and W-graph basis.

1. The indexing sets

For each J ⊆ S, let Ĵ = S\J(the complement of J) and define WJ = 〈J〉, the
corresponding parabolic subgroup of W and let wJ ∈ WJ be the unique element
of maximal length . Let HJ be the Hecke algebra associated with WJ . As is well
known, HJ can be identified with a subalgebra of H .

1.1. Sets DJ , DJ and EJ . Let DJ = {w ∈ W | ℓ(ws) > ℓ(w) for all s ∈ J }, the
set of minimal coset representatives of W/WJ . The following lemma is well known,
it is also an easy consequence of [19, Prop. 5.9].

Lemma 1.1 (Deodhar [2, Lemma 3.2]). Let J ⊆ S and s ∈ S, and define

D−
J,s = { d ∈ DJ | ℓ(sd) < ℓ(d) },

D+
J,s = { d ∈ DJ | ℓ(sd) > ℓ(d) and sd ∈ DJ },

D0
J,s = { d ∈ DJ | ℓ(sd) > ℓ(d) and sd /∈ DJ },
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so that DJ is the disjoint union D−
J,s ∪ D+

J,s ∪ D0
J,s. Then sD+

J,s = D−
J,s, and if

d ∈ D0
J,s then sd = dt for some t ∈ J .

Define

(4) EJ = { d ∈ W | ℓ(ds) < ℓ(d) for all s ∈ J and ℓ(ds) > ℓ(d) for all s /∈ J }

that is, EJ is the set of maximal coset representatives of W/WJ and the minimal
ones of W/WĴ . Clearly ♯EJ = ♯EĴ , where EĴ was introduced and written as YJ

in [7].
Let ≤L denote the left weak Bruhat order on W . That is, x ≤L y if and

only if y = wx for some w ∈ W such that ℓ(y) = ℓ(w) + ℓ(x). McDonough-
Pallikaros [15] also say that x is a prefix of y if x ≤L y. Given x, y ∈ W let
[x, y]L = {z ∈ w | x ≤L z ≤L y} be the left interval they determine.

Let
DJ = DJwJ ,

then
DJ = { d ∈ W | ℓ(ds) < ℓ(d) for all s ∈ J}

is the set of longest coset representatives of WJ in W . Thus,

EJ = DJ ∩DĴ ,

and directly from the definition,

DJ =
⋃

J⊆K⊆S

EK ,

where the union is disjoint.

Proposition 1.2. Let J ⊆ S and s ∈ S, we define

E−
J,s = { d ∈ EJ | ℓ(sd) < ℓ(d) and sd ∈ EJ },

E+
J,s = { d ∈ EJ | ℓ(sd) > ℓ(d) and sd ∈ EJ },

E0
J,s = { d ∈ EJ | sd /∈ EJ }

so that EJ is the disjoint union E−
J,s ∪ E+

J,s ∪ E0
J,s, then sE+

J,s = E−
J,s; let

E0,−
J,s = { d ∈ EJ | ℓ(sd) < ℓ(d) and sd /∈ EJ },

E0,+
J,s = { d ∈ EJ | ℓ(sd) > ℓ(d) and sd /∈ EJ },

then E0
J,s = E0,−

J,s

⋃
E0,+

J,s (disjoint union); if d ∈ E0,−
J,s then sd = dt for some t ∈ J ,

if d ∈ E0,+
J,s then sd = dt for some t ∈ Ĵ .

Proof. For any d ∈ EJ , we write d = d′wJ , where d′ ∈ DJ and wJ the longest
element of WJ . Given s ∈ S, we have either sd < d or sd > d.

Case(a): if sd < d then we have either sd ∈ EJ or sd /∈ EJ . If sd ∈ EJ then
d ∈ E−

J,s.

We now consider the case sd /∈ EJ . Since d ∈ EJ ( that is, d ∈ DJ and
d ∈ DĴ)and sd < d, according to Lemma 1.1 we have sd ∈ DĴ . Thus sd /∈ DJ ,
that is sd′ /∈ DJ , this is the case d′ ∈ D0

J,s in the statement of Lemma 1.1 , so we

have sd′ > d′ and sd′ = d′t for some t ∈ J , and

sd = s(d′wJ ) = (sd′)wJ = (d′t)wJ = (d′wJ )t
′ = dt′

where t′ = wJ twJ ∈ J . This is the case d ∈ E0,−
J,s .
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Case(b): if sd > d then again we have either sd ∈ EJ or sd /∈ EJ . If sd ∈ EJ

then d ∈ E+
J,s. we consider the case sd /∈ EJ .

Since sd = s(d′wJ ) = (sd′)wJ , where d′ ∈ D+
J,s ( according to the above discus-

sion, the case d′ ∈ D0
J,s can not happen , and clearly d′ /∈ D−

J,s). So sd ∈ DJ , and

by the assumption sd /∈ EJ , we have sd /∈ DĴ .

Applying Lemma 1.1 to the set DĴ , we have sd = dt for some t ∈ Ĵ , which is

the case d ∈ E0,+
J,s . �

For w ∈ W we set L(w) = {s ∈ S; sw < w},R(w) = {s ∈ S;ws < w} and refer
them to be the left and right descent set of w.
Lemma 1.3. [3][5, Prop.8.6] Let w,w′ ∈ W , then

(a) if w ≤L w′, then R(w′) ⊆ R(w). If w ∼L w′, then R(w′) = R(w).
(b) if w ≤R w′, then L(w′) ⊆ L(w). If w ∼R w′, then L(w′) = L(w).

The linear map εJ : HJ → A defined by εJ(Tw) = ǫwq
−ℓ(w) for any w ∈ WJ is

an algebra homomorphism, called the sign representation. We denote by IndS
J (εJ),

the H -module obtained by induction from εJ .
We now introduce the element CwJ

in the Kazhdan-Lusztig C-basis of H . By [5,
Cor. 12.2], it has the expression

CwJ
= ǫwJ

qℓ(wJ )
∑

w∈WJ

ǫwq
−ℓ(w)Tw.

Lemma 1.4. [8, Lemma 2.8] The followings hold
(a) For any w ∈ WJ , we have TwCwJ

= ǫwq
−ℓ(w)CwJ

.
(b) We have C2

wJ
= ǫwJ

q−ℓ(wJ )PJCwJ
, where PJ =

∑

w∈WJ
q2ℓ(w).

(c) The set DJ = DJwJ is a union of left cells in W , we have

DJ = {w ∈ W | w ≤L wJ},

and [DJ ]A ∼= IndSJ (εJ)
∼= H CwJ

(isomorphisms as left H -modules).

Proposition 1.5. For J ⊆ S, then
(1) EJ is the left cell, or union of left cells with right descent set J .
(2) The Bruhat order ≤ for the elements of EJ is exactly the weak order ≤L . If

x, y ∈ EJ and x ≤ y, then
[
x, y

]

L
⊆ EJ .

Proof. (1) is directly from Lemma 1.3 and 1.4.
(2) is from Prop. 1.2. �

Remark For convenience, in the following sections we still use the usual nota-
tions of Bruhat order ≤, < for the weak Bruhat orders ≤L , <L for the elements of
EJ , unless indicated.

1.2. Some multiplication rules. For J ⊆ S, let MJ = H CwJ
be a H -module,

then

Lemma 1.6. (1) Let J ⊆ S, then MJ is a free A-module with basis

{TwCwJ
| w ∈ DJ}, or alternatively {TwCwJ

| w ∈ DJ}.

the multiplication of H with respect to this basis:

Ts(TwCwJ
) =







TswCwJ
+ (q − q−1)TwCwJ

if w ∈ D−
J,s or w ∈ D

−
J,s

TswCwJ
if w ∈ D+

J,s or w ∈ D
+

J,s

−q−1TwCwJ
if w ∈ D0

J,s or w ∈ D
0

J,s
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for all s ∈ S.
(2) For w ∈ EJ , we have :

Ts(TwCwJ
) =







TswCwJ
+ (q − q−1)TwCwJ

if w ∈ E−
J,s

TswCwJ
if w ∈ E+

J,s

−q−1TwCwJ
if w ∈ E0,−

J,s

qTwCwJ
+ TwCtwJ

if w ∈ E0,+
J,s , t = w−1sw ∈ Ĵ

Proof. (1) MJ is spanned by the elements TwCwJ
, where w ∈ W ; however, if

w = dv for d ∈ DJ and v ∈ WJ , then TwCwJ
= εvq

−ℓ(v)TdCwJ
. It follows that MJ

is a free A-module with the basis shown and it remains to verify the multiplication
formulae.

According to Eq. (1) we immediately get the first two rules. By the multiplica-
tion formula for the C-basis elements( Eq. (2)), we have:

TsCwJ
=

{

−q−1CwJ
if s ∈ J

qCwJ
+ CswJ

if s ∈ Ĵ

if w ∈ D0
J,s, let t = w−1sw and t ∈ J then sw = wt < w, we have

Ts(TwCwJ
) =

[
Tsw + (q − q−1)Tw

]
CwJ

=
[
Twt + (q − q−1)Tw

]
CwJ

=
[
Twt(TtTt

−1) + (q − q−1)Tw

]
CwJ

= TwTt
−1CwJ

+ (q − q−1)TwCwJ

= Tw

[
Tt + (q−1 − q)

]
CwJ

+ (q − q−1)TwCwJ

= −q−1TwCwJ
.

(2) If w ∈ E0,+
J,s and t = w−1sw ∈ Ĵ , again by the multiplication rules for CwJ

Ts(TwCwJ
) = Tw(TtCwJ

) = Tw(qCwJ
+ Ctw)

�

2. A cellular basis and generic Specht modules

The concept of ”cellular algebras” was introduced by Graham-Lehrer [14]. It
provides a systematic framework for studying the representation theory of non-
semisimple algebras which are deformations of semisimple ones. The original defi-
nition was modeled on properties of the Kazhdan-Lusztig basis [3] in Hecke algebras
of type A. There is now a significant literature on the subject, and many classes
of algebras have been shown to admit a ”cellular” structure, including Ariki-Koiki
algebras, q-Schur algebras, Temperly-Lieb algebras, and a variety of other algebras
with geometric connections.

As we discussed above, H is the one-parameter Hecke algebra associated to
finite Weyl group W . Furthermore, if H is defined over a ground ring in which
”bad” primes for W are invertible, Geck [9] used deep properties of the Kazhdan-
Lusztig basis and Lusztig’s a-function, he showed that H has a natural cellular
structure in the sense of Graham-Lehrer.
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For the purpose of this paper, we show a new version of cellular basis of H .
Thus, we also obtain a general theory of ”Specht modules” for Hecke algebras of
finite type.

We introduce an A-linear anti-involution: ∗ : H −→ H by T ∗
w = Tw−1 for

w ∈ W . Clearly, C∗
wJ

= CwJ
; for any J ⊆ S and let x, y ∈ DJ (or x, y ∈ DJ), we

define mxy = TxCwJ
T ∗
y . Then m∗

xy = myx. For convenience, we use the indexing

set DJ in the following context.
Remark If J = ∅ then DJ = W , as an A-modules, M∅ = H so the elements

{mxy | x, y ∈ D∅}

certainly span H .
In order to show that H is cellular, we have to show that mxy with x, y ∈ DJ ,

can be written as an A-linear combination of {muv | u, v ∈ EK , J ⊆ K}.

Lemma 2.1. For any x ∈ DJ , we have

TxCwJ
=

∑

x′∈EJ

rx′Tx′CwJ
+

∑

u∈EK,J(K

ruTuCwK
.

where rx′ , ru ∈ A.

Proof. As we have found DJ =
⋃

J⊆K⊆S

EK , where the union is disjoint. If x ∈ EJ

there is nothing to prove; suppose that x /∈ EJ , then x ∈ EK where K ) J . By
Prop. 1.2 we have x = wwK and wK = gwJ where w ∈ W (or more exactly w ∈ DK)
and g ∈ DK

J = DJ ∩WK , with ℓ(x) = ℓ(w) + ℓ(wK) and ℓ(wK) = ℓ(g) + ℓ(wJ ).
Since TgCwJ

is the sum of CgwJ
= CwK

and a linear combination of terms ChwJ

where h ∈ DK
J and h < g (this is the special case of [10, Prop.2.3]). On the other

hand, ChwJ
is the sum of ThCwJ

and an A-linear combination of terms TfCwJ
,

where f < h, f ∈ DK
J . As a result, TgCwJ

is the sum of CwK
and an A-linear

combination of these terms TfCwJ
. Thus

TxCwJ
= Tw(gwJ )CwJ

= ǫwJ
q−ℓ(wJ )Tw(TgCwJ

)

= ǫwJ
q−ℓ(wJ )Tw

(
CwK

+
∑

f<g,f∈DK
J

rfTfCwJ

)

= rwTwCwK
+

∑

z∈DJ ,z<wg

rzTzCwJ

where rw, rf , rz ∈ A. By induction, each term TzCwJ
has also the required form.

�

Lemma 2.2. Let J ⊆ S and suppose that x, y ∈ DJ , then there exist rx′y, ruv ∈ A
such that

mxy =
∑

x′∈EJ

rx′ymx′y +
∑

u∈EK ,v∈DK ,J(K

ruvmuv.
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Proof. By Lemma 2.1, we have

mxy = TxCwJ
T ∗
y

=
[ ∑

x′∈EJ

rx′Tx′CwJ
+

∑

u∈EK,J(K

ruTuCwK

]
T ∗
y

=
∑

x′∈EJ

rx′Tx′CwJ
T ∗
y +

∑

u∈EK,J(K

ruTuCwK
T ∗
y

and

CwK
T ∗
y = (TyCwK

)∗

where TyCwK
∈ H CwK

, this implies TyCwK
∈ 〈TvCwK

| v ∈ DK〉A, as required.
�

Let Ωlex = {J | J ⊆ S} be a set ordered lexicographically.

Theorem 2.3. The Hecke algebra H is free as an A-module with basis

M = {muv | u, v ∈ EJ for some J ⊆ S}.

Proof. We first show that M spans H by showing that whenever x, y ∈ DJ then
mxy can be written as a A-linear combination of terms muv in M. When J = S
this is clear because H CwJ

H = ACwJ
. If J 6= S, by Lemma 2.2 , we have

mxy =
∑

x′∈EJ

rx′ymx′y +
∑

(u,v),J(K

ruvmuv,

where rx′ , ruv ∈ A, and the second sum is over the pairs (u, v) where u ∈ EK ,
v ∈ DK . However, m∗

xy = myx so by induction on the elements of Ωlex again ( start
with J = S, clearly C∗

wJ
= CwJ

), mxy can be written as an A-linear combination
of elements of M. Finally, let J = ∅, then H = H Cw∅

H .
Therefore M spans H .
By Wedderburn’s theorem dim(H ) = |W | =

∑

J⊆S

|M(J)|2, where

M(J) = {muv | u, v ∈ EJ for a fixed J, J ⊆ S}.

Hence the set M has the correct cardinality. �

Define Ĥ J to be the A-module with basis

{muv | w, v ∈ EK for some K such that J ⊂ K ⊆ S}.

where we write J ⊂ K when J ⊆ K and J 6= K. Similarly, we define H J to be
the H -module with basis muv where u, v ∈ EK with J ⊆ K ⊆ S.

Theorem 2.4. (1) The A-linear map determined by

muv 7−→ mvu

for all muv ∈ M, is an anti-isomorphism of H .
(2) Suppose that h ∈ H and that u ∈ EJ , there exist ru ∈ A such that for all

v ∈ EJ

hmuv ≡
∑

w∈EJ

rwmwv mod Ĥ J .

Consequently, {M,Ωlex} is a cellular basis of H .



KAZHDAN-LUSZTIG BASIS FOR GENERIC SPECHT MODULES 9

Proof. (1) The ∗-endomorphism and the A-linear map determined by muv 7−→ mvu

coincide since m∗
uv = mvu for all muv in M. This proves (1) since ∗ is an anti-

isomorphism of H

(2) We argue by induction on J ∈ Ωlex. By (1), if J = S then H CwJ
H = ACwJ

,
there is nothing to prove. Suppose that J ⊆ S. First we consider v = wJ . Since
M is a basis of H , for any h ∈ H we may write

hmu,wJ
=

∑

x,y∈EK,K⊆S

rxymxy

for some rxy ∈ A. Now hmu,wJ
belongs to MJ , clearly, if rxy 6= 0 then J ⊆ K;

further, if J = K then we must also have v = wJ . Hence,

(5) hmu,wJ
=

∑

x∈EJ

rxmx,wJ
mod Ĥ J

where rx = rx,wJ
∈ A. This completes the proof of (2) when v = wJ .

Now, if K ) J and u, y ∈ EK then muyT
∗
v = (Tvmyu)

∗ ∈ H K ⊆ Ĥ J by
induction on J ∈ Ωlex. Therefore, we can multiply the Eq. (5) on the right by T ∗

v ,
to complete the proof. �

So we can now introduce the following:

Definition 2.5. Let SJ = 〈TuCwJ
+Ĥ J | u ∈ EJ〉A, then SJ is an H -submodule

of H J/Ĥ J . We call this the generic Specht module of H associated with J .

The bar involution for SJ . For all x, y ∈ EJ we define elements Rx,y ∈ A by
the formula

(6) TyCwJ
=

∑

x∈EJ

Rx,yTxCwJ
mod Ĥ

J ,

We can easily derive the following formulae which provide an inductive procedure
for calculating these elements in SJ .

Proposition 2.6. Let x, y ∈ EJ . If s ∈ S is such that ℓ(sy) < ℓ(y) then

Rx,y(mod Ĥ
J ) =







Rsx,sy if x ∈ E−
J,s

Rsx,sy + (q−1 − q)Rx,sy if x ∈ E+
J,s

−qRx,sy if x ∈ E0,−
J,s

q−1Rx,sy if x ∈ E0,+
J,s

We may use induction on ℓ(y) to establish that Rx,y = 0 unless x 6L y in the
weak Bruhat partial order on EJ ; this follows from the fact that if sy 6L y and
x 6L sy then both x 6L y and sx 6L y. It is also easily seen that Rx,x = 1.

3. W-graphs for generic Specht modules

Let CwJ
be a left cell, or more generally, a union of left cells containing wJ ,

then the transition between the bases of the left cell module [CwJ
]A and the generic

Specht module SJ is described as the following:

Theorem 3.1. The H -module SJ has a unique basis {Cw | w ∈ EJ } such that
Cw = Cw for all w ∈ EJ , and

Cw =
∑

y∈EJ

Py,wTyCwJ
mod Ĥ J
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for some elements Py,w ∈ A+ with the following properties :

(i) Py,w = 0 if y 
 w;
(ii) Pw,w = 1;
(iii) Py,w has zero constant term if y 6= w.

Comparing with the original Kazhdan-Lusztig’s polynomials in [3], we called
{Py,w | y, w ∈ EJ} the family of EJ -relative Kazhdan-Lusztig polynomials. We
shall show that the basis {Cw | w ∈ EJ} give SJ the structure of a W-graph. That
is, there is a W-graph Λ with vertex elements {Cw | w ∈ EJ}. Before showing the
proof of Theorem 3.1, we describe the edge weights and descent sets for Λ.

Given y, w ∈ EJ with y 6= w, we define an integer µ(y, w) as follows. If y < w
then µ(y, w) is the coefficient of q in −Py,w.

We write y ≺ w if y < w and µ(y, w) 6= 0.
The (left) descent set associated with the vertex element Cw(w ∈ EJ ) of Λ is

I(w) = { s ∈ S | ℓ(sw) < ℓ(w)}

= { s ∈ S | w ∈ E−
J,s} ∪ {s | w ∈ E0,−

J,s }

In accordance with the notation introduced in Section 2, we define

Λ−
s = {w ∈ EJ | s ∈ I(w) }

= {w | w ∈ E−
J,s or w ∈ E0,−

J,s },

and similarly Λ+
s = {w ∈ EJ | s /∈ I(w) }. Our proof of Theorem 3.1 will also

incorporate a proof of the following result, which will be an important component
of the subsequent proof that Λ is a W-graph.

Theorem 3.2. Let v ∈ EJ . Then for all s ∈ S such that ℓ(sv) > ℓ(v) and sv ∈ EJ

we have

TsCv = qCv + Csv +
∑

z∈EJ

µ(z, v)Cz,

where the sum is over all z ∈ Λ−
s such that z ≺ v.

The following is the proof of Theorem 4.1.

Proof. Uniqueness is proved similarly with that of [3, Theorem 1.1], we omit the
details.

Existence. We give a recursive procedure for constructing elements Px,w satisfy-
ing the requirements of Theorem 3.1. We start with the definition

PwJ ,wJ
= 1

so that Cw = Cw holds for w = wJ , as do Conditions (i), (ii) and (iii).
Now assume that w 6= wJ and that for all v ∈ EJ with ℓ(v) < ℓ(w) the elements

Px,v have been defined (for all x ∈ EJ ) so that the requirements of Theorem 3.1
are satisfied. Thus the elements Cv are known when ℓ(v) < ℓ(w). We may choose
s ∈ S such that w = sv with ℓ(w) = ℓ(v) + 1; note that v ∈ EJ by Lemma 1.6. In
accordance with the formula in Theorem 3.2 we define

(7) Cw = (Ts − q)Cv −
∑

z≺v
z∈Λ−

s

µ(z, v)Cz .
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Since Ts − q = Ts − q, induction immediately gives Cw = Cw. We define P ′
y,w and

P ′′
y,w by

(Ts − q)Cv =
∑

y∈EJ

P ′
y,wTyCwJ

(8)

∑

z≺v

µ(z, v)Cz =
∑

y∈EJ

P ′′
y,wTyCwJ

(9)

and define Py,w = P ′
y,w − P ′′

y,w.
If y ∈ EJ then

(Ts − q)Ty =







Tsy − qTy if y ∈ E+
J,s

Tsy − q−1Ty if y ∈ E−
J,s

Ty(Tt − q) if y ∈ E0,−
J,s

Tsy − qTy if y ∈ E0,+
J,s

where we have written t = y−1sy in the case y ∈ E0
J,s. Thus we see that

(Ts − q)Cv =
∑

y∈E+
J,s

Py,v(Tsy − qTy)CwJ
+

∑

y∈E−

J,s

Py,v(Tsy − q−1Ty)CwJ

+
∑

y∈E0,−
J,s

Py,vTy(Tt − q)CwJ
+

∑

y∈E0,+
J,s

Py,v(Tsy − qTy)CwJ

=
∑

y∈E−

J,s

(Psy,v − q−1Py,v)TyCwJ
+

∑

y∈E+
J,s

(Psy,v − qPy,v)TyCwJ

+
∑

y∈E0,−
J,s

Py,v(−q−1 − q)TyCwJ

+
∑

y∈E0,+
J,s

Py,v

[

(qTyCwJ
+ TyCtwJ

)− qTyCwJ

]

Now comparing Eq. (8) with the expression for (Ts − q)Cv obtained above we
obtain the following formulas for the cases y ∈ E+

J,s (case (a)), y ∈ E−
J,s (case (b)),

y ∈ E0,−
J,s and (case (c)) and y ∈ E0,+

J,s (case (d)):

(10) P ′
y,w =







Psy,v − qPy,v (case (a)),

Psy,v − q−1Py,v (case (b)),

(−q − q−1)Py,v (case (c)),

0 (case (d)).

Since Cz =
∑

y∈EJ
Py,zTyCwJ

, we have
∑

z≺v,z∈Λ−
s

µ(z, v)Cz =
∑

y∈EJ

∑

z≺v,z∈Λ−
s

µ(z, v)Py,zTyCwJ

and by comparison with Eq. (9)

(11) P ′′
y,w =

∑

z≺v
z∈Λ−

s

µ(z, v)Py,z.
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We may check that with P ′
y,w and P ′′

y,w given by Eq’s (10) and (11), the elements

Py,w = P ′
y,w−P ′′

y,w lie in A+ and satisfy Conditions (i), (ii) and (iii) of Theorem 3.1.
We omit the details here. �

For convenience, let T̃w = TwCwJ
. Observe that the formula for Cw in Theo-

rem 3.1 may be written as

Cw = T̃w +
∑

y<w,y∈EJ

Py,wT̃y,

and inverting this gives

(12) T̃w = Cw +
∑

y<w,y∈EJ

Qy,wCy

where the elements Qy,w (defined whenever y < w) are given recursively by

Qy,w = −Py,w −
∑

{z|y<z<w}

Qy,zPz,w.

In particular, Qy,w is in A+, has zero constant term, and has coefficient of q equal
to µ(y, w).

We now state our main result.

Theorem 3.3. The basis {Cw | w ∈ EJ} gives the generic Specht module SJ the
structure of a W-graph, as described above.

Proof. The proof is similar with [21, Theorem 2.6], modified appropriately. We
start by using induction on ℓ(w) to prove that for all s ∈ S

(13) TsCw =







−q−1Cw if w ∈ Λ−
s ,

qCw +
∑

z∈EJ ,z∈Λ−
s

µ(z, w)Cz if w /∈ Λ−
s .

or more exactly
(14)

TsCw( mod Ĥ J) =







−q−1Cw if w ∈ E−
J,s or w ∈ E0,−

J,s ,

qCw + Csw +
∑

z∈E−

J,s
,z<w

µ(z, w)Cz if w ∈ E+
J,s.

qCw +
∑

z∈E−

J,s
,z<w

µ(z, w)Cz if w ∈ E0,+
J,s .

If w ∈ E+
J,s then w /∈ Λ−

s , and Eq. (13) follows immediately from Theorem 3.2

(applied with v replaced by w), since the only z ∈ Λ−
s with µ(z, w) 6= 0 and

ℓ(z) > ℓ(w) is z = sw.

For the case w ∈ E0,+
J,s , the term Csw can not appear in the sum of Eq. (13).

If w ∈ E−
J,s, which implies that w ∈ Λ−

s , then writing v = sw and applying
Theorem 3.2 gives

Cw = (Ts − q)Cv −
∑

µ(z, v)Cz ,

where z ≺ v and z ∈ Λ−
s for all terms in the sum. The inductive hypothesis thus

gives TsCz = −q−1Cz , and since we also have Ts(Ts − q) = −q−1(Ts − q) it follows
that TsCw = −q−1Cw, as required.
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Now suppose that w ∈ E0
J,s, and as usual let us write sw = wt. Suppose first

that t = w−1sw ∈ J , so that w ∈ Λ−
s . By Eq. (12),

Cw = T̃w −
∑

{y|y<w,y∈EJ}

Qy,wCy ,

and since TsTwCwJ
+ q−1TwCwJ

= Tw(TtCwJ
+ q−1CwJ

) = 0 we find that

(15) TsCw + q−1Cw = −
∑

{y|y<w,y∈EJ}

Qy,w(TsCy + q−1Cy).

By the inductive hypothesis,

TsCy + q−1Cy =







0 if y ∈ Λ−
s

(q + q−1)Cy +
∑

z∈Λ−
s

µ(z, y)Cz if y /∈ Λ−
s ,

and so Eq. (15) gives

(16) TsCw + q−1Cw = −
∑

y/∈Λ−
s

y<w

Qy,w(q + q−1)Cy + X

for some X in the A-submodule spanned by the elements Cz for z ∈ Λ−
s . Now since

Ts = T−1
s + (q − q−1) it follows that

(Ts + q−1)Cw = (Ts + q−1)Cw

= −
∑

y/∈Λ−
s

y<w

Qy,w(q
−1 + q)Cy + X,

and comparing with Eq. (16) shows that for all y with y < w(y ∈ EJ ) and y /∈ Λ−
s ,

(17) Qy,w = Qy,w.

Since Qy,w is in A+ and has zero constant term, Eq. (17) forces Qy,w to be zero
whenever y < w and y /∈ Λ−

s . Therefore the right hand side of Eq. (15) is zero,
since TsCy + Cy = 0 whenever y ∈ Λ−

s . So

TsCw = −q−1Cw,

as required. �

.

4. Applications to type A

Throughout this section, we apply our results to the Hecke algebra of type A.
Let W = Gn be the symmetric group acting on the left on {1, 2, · · · , n}. Another
reference is the exposition by Mathas [6]. For i = 1, 2, · · · , n− 1 let si be the basic
transposition (i, i+ 1) and let S = {s1, s2, · · · , sn−1}, the generating set of Gn.
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4.1. Notations. Let λ = (λ1, λ2, · · · , λr) be a partition of n with the notation
λ ⊢ n. A standard λ-tableau is a tableau whose entries are exactly 1, 2, · · · , n and
which has both increasing rows and increasing columns, the set is denoted T(λ).
Let tλ (resp. tλ) be the λ-tableau in which the numbers 1, 2, · · · appear in order
from left to right (resp. top to bottom) and down along successive rows (resp.
columns), then tλ, tλ ∈ T(λ). For a Young tableau t, we put

I(t) = {i | 1 ≤ i ≤ n− 1, i+ 1 is in a lower position than i in t}

and call it the descent set of t. Let

I0(t) = {i ∈ I(t) | i+ 1 is in the left side of i in t},

I1(t) = {i ∈ I(t) | i+ 1 is directly below i in t}.
Lemma 4.1. [17] For a standard tableau t of shape λ ⊢ n,

(1)I(t) = I0(t) ∪ I1(t);

(2)I(t) ∪ I(t′) = {1, 2, . . . , n− 1};

(3)I0(t) = ∅ if and only if t = tλ;

(4)I0(t
′) = ∅ if and only if t = tλ.

The Young subgroup Gλ = Gλ1 × · · ·×Gλr
of Gn is the row stabilizer of tλ. Let

Dλ be the set of distinguished left coset representatives of Gλ in Gn, by Dipper-
James [1] and Mathas [6], we have the following explicit description:

Dλ = {w ∈ Gn | wtλ is row-standard}.

As in [1, 12, 6], if t is a row-standard λ-tableau, the unique element d ∈ Dλ such
that t = dtλ will be denoted by d(t). Let wJ(λ) be the longest element of the Young

subgroup Gλ, an element wλ is defined by tλ = wλt
λ.

Given partitions µ = (µ1, µ2, ...) and λ = (λ1, λ2, ...) of n, we say µ dominates
λ, and write λ E µ, if

λ1 ≤ µ1, λ1 + λ2 ≤ µ1 + µ2, λ1 + λ2 + λ3 ≤ µ1 + µ2 + µ3, ...

we write λ E µ if λ E µ and µ 6= λ. The partial order E on the set of partitions(or
shapes) of n will be referred to as the dominance order.

For a fixed λ ⊢ n, s, t ∈ T(λ). We write s E t if ℓ(d(s)) 6 ℓ(d(t)), and s ⊳ t if
s E t and s 6= t. We note that the notation here is different with [6][pp.31].

4.2. Cells. The cells of W = Gn may be described in terms of the Robinson-
Schensted correspondence. The correspondence is a bijection of Sn to pairs of
standard tableaux (P,Q) of the same shape corresponding to partitions of n, so
that if w 7−→ (P (w), Q(w)) then Q(w) = P (w−1). In particular, the involutions
are the elements w ∈ W for which Q(w) = P (w). If λ ⊢ n, the pair of tableaux
corresponding to wJ(λ) has the form (tλ′ , tλ′). Hence, the tableaux corresponding
to wJ(λ) have shape λ′, where λ′ denotes the partition conjugate to λ.

If R is a fixed standard tableau then the set {w ∈ W : Q(w) = R} is a left cell
of W and the set {w ∈ W : P (w) = R} is a right cell of W . See [3] and also [4] for
an alternative proof of this result.

Lemma 4.2. Let λ ⊢ n and t ∈ T(λ). The element of Gn, which corresponds to the

pair of tableaux (tλ
′

, tλ′) under the Robinson-Schensted correspondence, is wλwJ(λ).
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The following is the corollaries of the discussion in Section 1, see also in [15,
Lemma 3.3] and Du [16, Lemma 1.2].

Lemma 4.3. The followings hold(i) wλwJ(λ) ∈ Dλ, (ii) dwJ(λ) ∈ Dλ for each
prefix d of wλ, (iii) dwJ(λ) ∈ Dλ is in the same left cell as wJ(λ) for each prefix d
of wλ.

As in Section 1, we write EJ(λ) = {e | e = dwJ(λ) and d is a prefix of wλ}, for
any si = (i, i+ 1) ∈ S we define

E−
J(λ),si

= { e ∈ EJ(λ) | ℓ(sie) < ℓ(e) and sie ∈ EJ(λ) },

E+
J(λ),si

= { e ∈ EJ(λ) | ℓ(sie) > ℓ(e) and sie ∈ EJ(λ) },

E0
J(λ),si

= { e ∈ EJ(λ) | sie /∈ EJ(λ) }

so that EJ(λ) is the disjoint union E−
J(λ),si

∪ E+
J(λ),si

∪ E0
J(λ),si

, then

siE
+
J(λ),si

= E−
J(λ),si

;

let

E0,−
J(λ),si

= { e ∈ EJ(λ) | ℓ(sie) < ℓ(e) and sie /∈ EJ(λ) },

E0,+
J(λ),si

= { e ∈ EJ(λ) | ℓ(sie) > ℓ(e) and sie /∈ EJ(λ) },

then E0
J(λ),si

= E0,−
J(λ),si

⋃
E0,+

J(λ),si
(disjoint union); if e ∈ E0,−

J(λ),si
then sie = et

for some t ∈ J(λ), if e ∈ E0,+
J(λ),si

then sie = et for some t ∈ ˆJ(λ), where

ˆJ(λ) = S�J(λ).
We have the following observation

E−
J(λ),si

= { d(t)wJ(λ) | t ∈ T(λ), i ∈ I0(t
′)},

E+
J(λ),si

= { d(t)wJ(λ) | t ∈ T(λ), i ∈ I0(t)},

E0,−
J(λ),si

= { d(t)wJ(λ) | t ∈ T(λ), i ∈ I1(t
′)},

E0,+
J(λ),si

= { d(t)wJ(λ) | t ∈ T(λ), i ∈ I1(t)},

Let

CwJ(λ)
= ǫwJ(λ)

qℓ(wJ(λ))
∑

w∈Gλ

ǫwq
−ℓ(w)Tw.

then the following statement is a corollary of Lemma 2.1.
Lemma 4.4. [1]Mathas2 Let λ ⊢ n, then H CwJ (λ) is a free A-module with basis

{Td(t)CwJ(λ)
|t a row standard λ-tableau}.

Moreover, if t is row standard and s = sit for some 1 ≤ i ≤ n− 1, then

TiTd(t)CwJ(λ)
=







Td(s)CwJ(λ)
, if i ∈ I0(t)

Td(s)CwJ(λ)
+ (q − q−1)Td(t)CwJ(λ)

, if i ∈ I0(t
′)

−q−1Td(t)CwJ(λ)
, if i ∈ I1(t

′)

where Ti := Tsi .
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4.3. Murphy basis and W-graph basis. The following is a corollary of the main
Theorems in Section 2.
Theorem 4.5. [12, 13] For any λ ⊢ n and s, t ∈ T(λ), we define elements of H

by

mst = Td(s)CwJ(λ)
Td(t)−1

then the following hold (a) The set {mst|s, t ∈ T(λ) for some λ ⊢ n} is an A-basis
of H ; (b) For any λ ⊢ n, let H λ be the A-submodule of H spanned by all elements
mst where s, t ∈ T(µ) for some λE µ, then H λ is a two-sided ideals in H .

Note that the element that we denote by Tw corresponds to the element qℓ(w)Tw

in Murphy’s notation. Thus the element denoted by CwJ(λ)
in the above statement

is exactly as in Murphy’s work, except the associated coefficient ǫwJ(λ)
qℓ(wJ(λ)).

However, this does not affect the validity of (a) and (b) since q is invertible in A.
The statement in (a) can be found in Murphy [12, Th.3.9] or Murphy [13, Th. 4.17].
The statement(b) is proved in [13, Th. 4.18].

Murphy also obtains the following result concerning the Specht modules of H .

For any λ ⊢ n, let Ĥ λ be the A-submodule of H spanned by all mst where
s, t ∈ T(µ) for some µ ⊢ n such that λ ⊳ µ. Thus, we have

Ĥ λ =
∑

µ

H
µ

where the sum runs over all µ ⊢ n such that λ ⊳ µ. In particular, Ĥ λ is a two-sided

ideal and we have H λ = H CwJ (λ)H + Ĥ λ

Definition 4.6. [6] For λ ⊢ n, the Specht module Sλ is defined to be the left

H -module (Ĥ λ + CwJ(λ)
)H .

Note that Ĥ λ + CwJ(λ)
is an element of the H -module H /Ĥ λ so that Sλ is

a submodule of H /Ĥ λ. As we defined it, the Specht module Sλ is isomorphic to
the dual of the Specht module which Dipper and James [1] indexed by λ′.

For a standard λ-tableau t let mt = mttλ + Ĥ λ = Td(t)CwJ(λ)
+ Ĥ λ , We have

Theorem 4.7. [8, 13] The Specht module Sλ is free as an H -module with basis

{mt|t ∈ T(λ)}, and H
λ/Ĥ λ is a direct sum of |T(λ)| copies of Sλ.

While
Lemma 4.8. [6] Suppose t ∈ T(λ) such that i ∈ I1(t), then for all s ∈ T(λ)

Timst ≡ qmst +
∑

v⊳s

rvmvt mod Ĥ λ

for some rv ∈ A.

Corollary 4.9. Let t ∈ T(λ) and s = sit for some 1 ≤ i ≤ n− 1, then

Timt =







ms, if i ∈ I0(t)

ms + (q − q−1)mt, if i ∈ I0(t
′)

−q−1mt, if i ∈ I1(t
′)

qmt +
∑

v⊳t rvmv mod Ĥ λ, if i ∈ I1(t).

where rv ∈ A.



KAZHDAN-LUSZTIG BASIS FOR GENERIC SPECHT MODULES 17

We apply with Theorem 4.1 and 4.3 to establish the transition between Murphy’s
basis and W-graph basis of the Specht module. We also note that in the references,
the authors related the Kazhdan-Lusztig cell module and the corresponding Specht
module in the case of symmetry group, group algebra and Hecke algebra of type A.
See Naruse [17], Garsia-MacLarnan [18] and MacDonough and Pallicaros [15] ect.

Theorem 4.10. For a fixed λ ⊢ n, we define the elements of the C-basis for Sλ

Cd(s)wJ(λ)
= ms − q

∑

d(t)<d(s)

pt,smt,

= Td(s)CwJ(λ)
− q

∑

t⊳s

pt,sTd(t)CwJ(λ)
mod(Ĥ ).

where s, t ∈ T(λ) and pt,s ∈ Z(q) will be defined recursively by
(18)

TiCd(t)wJ(λ)
=







−q−1Cd(t)wJ(λ)
, if i ∈ I(t′)

qCd(t)wJ(λ)
+

∑

i∈I(u′),u⊳t

µ(u, t)Cd(u)wJ(λ)
, if i ∈ I1(t)

qCd(t)wJ(λ)
+ Csid(t)wJ(λ)

+
∑

i∈I(u′),u⊳t

µ(u, t)Cd(u)wJ(λ)
, if i ∈ I0(t)

where µ(u, t) is the constant term of the polynomial pu,t.
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