KAZHDAN-LUSZTIG BASIS FOR GENERIC SPECHT MODULES

YUNCHUAN YIN

Abstract

In this paper, we let \mathscr{H} be the Hecke algebra associated with a finite Coxeter group W and with one-parameter, over the ring of scalars $\mathcal{A}=\mathbb{Z}\left(q, q^{-1}\right)$. With an elementary method, we introduce a cellular basis of \mathscr{H} indexed by the sets $E_{J}(J \subseteq S)$ and obtain a general theory of "Specht modules". Our main purpose is to provide an algorithm for W-graphs for the "generic Specht module", which associates with the Kazhdan and Lusztig cell (or more generally, a union of cells of W) containing the longest element of a parabolic subgroup W_{J} for appropriate $J \subseteq S$. As an example of applications, we show a construction of W-graphs for the Hecke algebra of type A.

Preliminaries

Let W be a finite Coxeter group with S the set of simple reflections, and let \mathscr{H} be the corresponding Hecke algebra. We use a variation of the definition given in 3, taking \mathscr{H} to be an algebra over $\mathcal{A}=\mathbb{Z}\left[q^{-1}, q\right]$, the ring of Laurent polynomials with integer coefficients in the indeterminate q. Then \mathscr{H} is a algebra generated by $\left(T_{s}\right)_{s \in S}$ subject to

$$
\begin{aligned}
T_{s}^{2} & =1+\left(q-q^{-1}\right) T_{s} \\
\underbrace{T_{r} T_{s} T_{r} \cdots}_{m_{r s} \text { factors }} & =\underbrace{T_{s} T_{r} T_{s} \cdots}_{m_{r s} \text { factors }}
\end{aligned}
$$

(for all $r, s \in S$).
Moreover, \mathscr{H} has \mathcal{A}-basis $\left\{T_{w} \mid w \in W\right\}$ where $T_{w}=T_{s_{1}} T_{s_{2}} \cdots T_{s_{l}}$ whenever $s_{1} s_{2} \cdots s_{l}$ is a reduced expression for w, and

$$
T_{s} T_{w}= \begin{cases}T_{s w} & \text { if } \ell(s w)>\ell(w) \tag{1}\\ T_{s w}+\left(q-q^{-1}\right) T_{w} & \text { if } \ell(s w)<\ell(w)\end{cases}
$$

for all $w \in W$ and $s \in S$. We also define $\mathcal{A}^{+}=\mathbb{Z}[q]$, the ring of polynomials in q with integer coefficients, and let $a \mapsto \bar{a}$ be the involutory automorphism of \mathcal{A} such that $\bar{q}=q^{-1}$. This involution on \mathcal{A} extends to an involution on \mathscr{H} satisfying $\overline{T_{s}}=T_{s}^{-1}=T_{s}+\left(q^{-1}-q\right)$ for all $s \in S$. This gives $\overline{T_{w}}=T_{w^{-1}}^{-1}$ for all $w \in W$. The map $\mathscr{H} \rightarrow \mathscr{H}, h \longmapsto \bar{h}$ is a ring involution such that

$$
\overline{\sum_{w \in W} a_{w} T_{w}}=\sum_{w \in W} \overline{a_{w}} T_{w^{-1}}^{-1}, a_{w} \in \mathcal{A} .
$$

[^0]0.1. Kazhdan-Lusztig basis. There are two types of Kazhdan-Lusztig bases of \mathscr{H}, denoted by $\left\{C_{w} \mid w \in W\right\}$ and $\left\{C_{w}^{\prime} \mid w \in W\right\}$ in the original article by KazhdanLusztig [3]. It will be technically more convenient to work with the C-basis. The reason can be seen, for example, in Lusztig [5, chap.18]. The basis element C_{w} is uniquely determined by the conditions that $\overline{C_{w}}=C_{w}$ and $C_{w} \equiv T_{w} \bmod \mathscr{H}_{>0}$, where $\mathscr{H}_{>0}:=\sum_{w \in W} q \mathcal{A}^{+} T_{w}$, see [5]. Or more clearly
$$
C_{w}=T_{w}+\sum_{y \in W, y<w} p_{y, w} T_{y}
$$
where \leq denotes the Bruhat-Chevalley order on W and $p_{y, w} \in q \mathcal{A}^{+}$for all $y<w$ in W. We write $y<w$ if $y \leq w$ and $y \neq w$.

The polynomials $p_{y, w}$ are related to the polynomials $P_{y, w}$ of [3] (the KazhdanLusztig polynomials) by $p_{y, w}(q)=(-q)^{\ell(w)-\ell(y)} \overline{P_{y, w}\left(q^{2}\right)}$. That is, to get $p_{y, w}$ from $P_{y, w}$ replace q by q^{2}, apply the bar involution, and then multiply by $(-q)^{\ell(w)-\ell(y)}$.
0.2. Multiplication rules for C-basis. For $s \in S, w \in W$, we have

$$
T_{s} C_{w}=\left\{\begin{array}{l}
-q^{-1} C_{w}, \text { if } s w<w \tag{2}\\
q C_{w}+\sum_{y<w, s y<y} \mu(y, w) C_{y}, \text { if } s w>w .
\end{array}\right.
$$

The quantity $\mu(y, w)$, which is the coefficient of $q^{\frac{1}{2}(\ell(w)-\ell(y)-1)}$ in $P_{y, w}$, is the coefficient of q in $(-1)^{\ell(w)-\ell(y)} p_{y, w}$. However, since Kazhdan and Lusztig show that $\mu(y, w)$ is nonzero only when $\ell(w)-\ell(y)$ is odd, therefore $\mu(y, w) \in \mathbb{Z}$ can also be described as the coefficient of q in $-p_{y, w}$, as above.

The following notion of W-graph was introduced by Kazhdan and Lusztig in [3].
Definition of W-graph. Since we have slightly modified the definition of Hecke algebra used in [3], we are forced to also slightly alter the definition of W-graph. We define a W-graph datum to be a triple (Γ, I, μ) consisting of a set Γ (the vertices of the graph), a function

$$
I: \gamma \mapsto I_{\gamma}
$$

from Γ to the set of all subsets of S, and a function

$$
\mu: \Gamma \times \Gamma \rightarrow \mathbb{Z}
$$

such that $\mu(\delta, \gamma) \neq 0$ if and only if $\{\delta, \gamma\}$ is an edge of the graph. These data are subject to the requirement that $\mathcal{A} \Gamma$, the free \mathcal{A}-module on Γ, has an \mathscr{H}-module structure satisfying

$$
T_{s} \gamma= \begin{cases}-q^{-1} \gamma & \text { if } s \in I_{\gamma} \tag{3}\\ q \gamma+\sum_{\left\{\delta \in \Gamma \mid s \in I_{\delta}\right\}} \mu(\delta, \gamma) \delta & \text { if } s \notin I_{\gamma}\end{cases}
$$

for all $s \in S$ and $\gamma \in \Gamma$. If τ_{s} is the \mathcal{A}-endomorphism of $\mathcal{A} \Gamma$ such that $\tau_{s}(\gamma)$ is the right-hand side of Eq. (3) then this requirement is equivalent to the condition that for all $s, t \in S$ such that $s t$ has finite order, we require that

$$
\underbrace{\tau_{s} \tau_{t} \tau_{s} \ldots}_{m \text { factors }}=\underbrace{\tau_{t} \tau_{s} \tau_{t} \ldots}_{m \text { factors }}
$$

where m is the order of $s t$. (Note that the definition of τ_{s} guarantees that $\left(\tau_{s}+q^{-1}\right)\left(\tau_{s}-q\right)=0$ for all $s \in S$.)

For simplicity, if (Γ, I, μ) is a W-graph datum, we say that Γ is W-graph. We call I_{γ} the descent set of the vertex $\gamma \in \Gamma$, and we call $\mu(\delta, \gamma)$ and $\mu(\gamma, \delta)$ the edge weights associated with the edge $\{\delta, \gamma\}$. In almost all the cases we consider it turns out that $\mu(\gamma, \delta)=\mu(\delta, \gamma)$.
0.3. Cells in W-graphs. Following [3], given any W-graph Γ we define a preorder relation \leq on Γ as follows: for $\gamma, \gamma^{\prime} \in \Gamma$ we say that $\gamma \leq_{\Gamma} \gamma^{\prime}$ if there exists a sequence of vertices $\gamma=\gamma_{0}, \gamma_{1}, \cdots \gamma_{n}=\gamma^{\prime}$ such that for each $i(1 \leqslant i \leqslant n)$, we have both $\mu\left(\gamma_{i-1}, \gamma_{i}\right) \neq 0$ and $I_{\gamma_{i-1}} \nsubseteq I_{\gamma_{i}}$. We shall refer to \leq_{Γ} as the Kazhdan-Lusztig preorder on Γ.

Let \sim be the equivalence relation on Γ associated to the Kazhdan-Lusztig preorder; thus $\gamma \sim \gamma^{\prime}$ means that $\gamma \leq_{\Gamma} \gamma^{\prime}$ and $\gamma^{\prime} \leq_{\Gamma} \gamma$. The corresponding equivalence classes are called the cells of Γ.

In this paper, the preorder \leq_{Γ} is generated by Kazhdan-Lusztig left preorder [3: $x \leq_{\mathcal{L}} y$ if C_{x} occurs with nonzero coefficient in the expression of $T_{s} C_{y}$ in the C basis, for some $s \in S$. Their equivalence classes are called left cells, see [3, 5, 11] where right cells and two-sided cells are also defined.
0.4. Left cell module. Let \mathfrak{C} be a left cell or, more generally, a union of left cells of W. We define an \mathscr{H}-module by $[\mathfrak{C}]_{\mathcal{A}}:=\mathfrak{J} \mathfrak{C} / \hat{\mathfrak{J}} \mathfrak{C}$ where

$$
\begin{gathered}
\left.\mathfrak{J C}_{\mathfrak{C}}:=\left\langle C_{w}\right| w \leqslant_{\mathcal{L}} z \text { for some } z \in \mathfrak{C}\right\rangle_{\mathcal{A}} \\
\left.\hat{\mathfrak{J}_{\mathfrak{C}}}:=\left\langle C_{w}\right| w \notin \mathfrak{C}, w \leqslant_{\mathcal{L}} z \text { for some } z \in \mathfrak{C}\right\rangle_{\mathcal{A}}
\end{gathered}
$$

are the \mathcal{A}-spanned modules.
This paper is organized as follows. In Sect. 1 we introduce the indexing sets $D_{J}, \overline{D_{J}}$ for the basis of \mathscr{H}-module $\mathscr{H} C_{w_{J}}$, and E_{J} for the so called general Specht module. In Sect. 2, we obtain a version of cellular basis for \mathscr{H} in general and set up the concept of general Specht module. In Sect. 3 we show the construction of W-graph basis by introducing a new family of E_{J}-Kazhdan-Lusztig polynomials $p_{x y}$, and show an inductive procedure for computing $p_{x y}^{\prime} s$. In Sect. 4 we consider an example of type A and discuss the applications of our results, we show the transition between Murphy basis and W-graph basis.

1. The indexing sets

For each $J \subseteq S$, let $\hat{J}=S \backslash J$ (the complement of J) and define $W_{J}=\langle J\rangle$, the corresponding parabolic subgroup of W and let $w_{J} \in W_{J}$ be the unique element of maximal length. Let \mathscr{H}_{J} be the Hecke algebra associated with W_{J}. As is well known, \mathscr{H}_{J} can be identified with a subalgebra of \mathscr{H}.
1.1. Sets $D_{J}, \overline{D_{J}}$ and E_{J}. Let $D_{J}=\{w \in W \mid \ell(w s)>\ell(w)$ for all $s \in J\}$, the set of minimal coset representatives of W / W_{J}. The following lemma is well known, it is also an easy consequence of [19, Prop. 5.9].

Lemma 1.1 (Deodhar [2, Lemma 3.2]). Let $J \subseteq S$ and $s \in S$, and define

$$
\begin{aligned}
& D_{J, s}^{-}=\left\{d \in D_{J} \mid \ell(s d)<\ell(d)\right\} \\
& D_{J, s}^{+}=\left\{d \in D_{J} \mid \ell(s d)>\ell(d) \text { and } s d \in D_{J}\right\} \\
& D_{J, s}^{0}=\left\{d \in D_{J} \mid \ell(s d)>\ell(d) \text { and } s d \notin D_{J}\right\}
\end{aligned}
$$

so that D_{J} is the disjoint union $D_{J, s}^{-} \cup D_{J, s}^{+} \cup D_{J, s}^{0}$. Then $s D_{J, s}^{+}=D_{J, s}^{-}$, and if $d \in D_{J, s}^{0}$ then $s d=d t$ for some $t \in J$.

Define

$$
\begin{equation*}
E_{J}=\{d \in W \mid \ell(d s)<\ell(d) \text { for all } s \in J \text { and } \ell(d s)>\ell(d) \text { for all } s \notin J\} \tag{4}
\end{equation*}
$$

that is, E_{J} is the set of maximal coset representatives of W / W_{J} and the minimal ones of $W / W_{\hat{J}}$. Clearly $\sharp E_{J}=\sharp E_{\hat{J}}$, where $E_{\hat{J}}$ was introduced and written as Y_{J} in 7].

Let $\leq \mathscr{L}$ denote the left weak Bruhat order on W. That is, $x \leq \mathscr{L} y$ if and only if $y=w x$ for some $w \in W$ such that $\ell(y)=\ell(w)+\ell(x)$. McDonoughPallikaros [15] also say that x is a prefix of y if $x \leq \mathscr{L} y$. Given $x, y \in W$ let $[x, y]_{\mathscr{L}}=\{z \in w \mid x \leq \mathscr{L} z \leq \mathscr{L} y\}$ be the left interval they determine.

Let

$$
\overline{D_{J}}=D_{J} w_{J}
$$

then

$$
\overline{D_{J}}=\{d \in W \mid \ell(d s)<\ell(d) \text { for all } s \in J\}
$$

is the set of longest coset representatives of W_{J} in W. Thus,

$$
E_{J}=\overline{D_{J}} \cap D_{\hat{J}}
$$

and directly from the definition,

$$
\overline{D_{J}}=\bigcup_{J \subseteq K \subseteq S} E_{K}
$$

where the union is disjoint.
Proposition 1.2. Let $J \subseteq S$ and $s \in S$, we define

$$
\begin{aligned}
& E_{J, s}^{-}=\left\{d \in E_{J} \mid \ell(s d)<\ell(d) \text { and } s d \in E_{J}\right\}, \\
& E_{J, s}^{+}=\left\{d \in E_{J} \mid \ell(s d)>\ell(d) \text { and } s d \in E_{J}\right\}, \\
& E_{J, s}^{0}=\left\{d \in E_{J} \mid s d \notin E_{J}\right\}
\end{aligned}
$$

so that E_{J} is the disjoint union $E_{J, s}^{-} \cup E_{J, s}^{+} \cup E_{J, s}^{0}$, then $s E_{J, s}^{+}=E_{J, s}^{-}$; let

$$
\begin{aligned}
& E_{J, s}^{0,-}=\left\{d \in E_{J} \mid \ell(s d)<\ell(d) \text { and } s d \notin E_{J}\right\} \\
& E_{J, s}^{0,+}=\left\{d \in E_{J} \mid \ell(s d)>\ell(d) \text { and sd } \neq E_{J}\right\}
\end{aligned}
$$

then $E_{J, s}^{0}=E_{J, s}^{0,-} \cup E_{J, s}^{0,+}$ (disjoint union); if $d \in E_{J, s}^{0,-}$ then $s d=d t$ for some $t \in J$, if $d \in E_{J, s}^{0,+}$ then $s d=d t$ for some $t \in \hat{J}$.

Proof. For any $d \in E_{J}$, we write $d=d^{\prime} w_{J}$, where $d^{\prime} \in D_{J}$ and w_{J} the longest element of W_{J}. Given $s \in S$, we have either $s d<d$ or $s d>d$.

Case(a): if $s d<d$ then we have either $s d \in E_{J}$ or $s d \notin E_{J}$. If $s d \in E_{J}$ then $d \in E_{J, s}^{-}$.

We now consider the case $s d \notin E_{J}$. Since $d \in E_{J}$ (that is, $d \in \overline{D_{J}}$ and $d \in D_{\hat{J}}$)and $s d<d$, according to Lemma 1.1 we have $s d \in D_{\hat{J}}$. Thus $s d \notin \overline{D_{J}}$, that is $s d^{\prime} \notin D_{J}$, this is the case $d^{\prime} \in D_{J, s}^{0}$ in the statement of Lemma 1.1, so we have $s d^{\prime}>d^{\prime}$ and $s d^{\prime}=d^{\prime} t$ for some $t \in J$, and

$$
s d=s\left(d^{\prime} w_{J}\right)=\left(s d^{\prime}\right) w_{J}=\left(d^{\prime} t\right) w_{J}=\left(d^{\prime} w_{J}\right) t^{\prime}=d t^{\prime}
$$

where $t^{\prime}=w_{J} t w_{J} \in J$. This is the case $d \in E_{J, s}^{0,-}$.

Case(b): if $s d>d$ then again we have either $s d \in E_{J}$ or $s d \notin E_{J}$. If $s d \in E_{J}$ then $d \in E_{J, s}^{+}$. we consider the case $s d \notin E_{J}$.

Since $s d=s\left(d^{\prime} w_{J}\right)=\left(s d^{\prime}\right) w_{J}$, where $d^{\prime} \in D_{J, s}^{+}$(according to the above discussion, the case $d^{\prime} \in D_{J, s}^{0}$ can not happen, and clearly $d^{\prime} \notin D_{J, s}^{-}$). So $s d \in \overline{D_{J}}$, and by the assumption $s d \notin E_{J}$, we have $s d \notin D_{\hat{J}}$.

Applying Lemma 1.1 to the set $D_{\hat{J}}$, we have $s d=d t$ for some $t \in \hat{J}$, which is the case $d \in E_{J, s}^{0,+}$.

For $w \in W$ we set $\mathcal{L}(w)=\{s \in S ; s w<w\}, \mathcal{R}(w)=\{s \in S ; w s<w\}$ and refer them to be the left and right descent set of w.
Lemma 1.3. 3] [5, Prop.8.6] Let $w, w^{\prime} \in W$, then
(a) if $w \leq_{\mathcal{L}} w^{\prime}$, then $\mathcal{R}\left(w^{\prime}\right) \subseteq \mathcal{R}(w)$. If $w \sim_{\mathcal{L}} w^{\prime}$, then $\mathcal{R}\left(w^{\prime}\right)=\mathcal{R}(w)$.
(b) if $w \leq_{\mathcal{R}} w^{\prime}$, then $\mathcal{L}\left(w^{\prime}\right) \subseteq \mathcal{L}(w)$. If $w \sim_{\mathcal{R}} w^{\prime}$, then $\mathcal{L}\left(w^{\prime}\right)=\mathcal{L}(w)$.

The linear map $\varepsilon_{J}: \mathscr{H}_{J} \rightarrow \mathcal{A}$ defined by $\varepsilon_{J}\left(T_{w}\right)=\epsilon_{w} q^{-\ell(w)}$ for any $w \in W_{J}$ is an algebra homomorphism, called the sign representation. We denote by $\operatorname{Ind}_{J}^{S}\left(\varepsilon_{J}\right)$, the \mathscr{H}-module obtained by induction from ε_{J}.

We now introduce the element $C_{w_{J}}$ in the Kazhdan-Lusztig C-basis of \mathscr{H}. By [5], Cor. 12.2], it has the expression

$$
C_{w_{J}}=\epsilon_{w_{J}} q^{\ell\left(w_{J}\right)} \sum_{w \in W_{J}} \epsilon_{w} q^{-\ell(w)} T_{w} .
$$

Lemma 1.4. [8, Lemma 2.8] The followings hold
(a) For any $w \in W_{J}$, we have $T_{w} C_{w_{J}}=\epsilon_{w} q^{-\ell(w)} C_{w_{J}}$.
(b) We have $C_{w_{J}}^{2}=\epsilon_{w_{J}} q^{-\ell\left(w_{J}\right)} P_{J} C_{w_{J}}$, where $P_{J}=\sum_{w \in W_{J}} q^{2 \ell(w)}$.
(c) The set $\overline{D_{J}}=D_{J} w_{J}$ is a union of left cells in W, we have

$$
\overline{D_{J}}=\left\{w \in W \mid w \leq_{\mathcal{L}} w_{J}\right\}
$$

and $\left[\overline{D_{J}}\right]_{\mathcal{A}} \cong \operatorname{Ind}_{J}^{S}\left(\varepsilon_{J}\right) \cong \mathscr{H} C_{w_{J}}$ (isomorphisms as left \mathscr{H}-modules).
Proposition 1.5. For $J \subseteq S$, then
(1) E_{J} is the left cell, or union of left cells with right descent set J.
(2) The Bruhat order \leq for the elements of E_{J} is exactly the weak order $\leq \mathscr{L}$. If $x, y \in E_{J}$ and $x \leq y$, then $[x, y]_{\mathscr{L}} \subseteq E_{J}$.
Proof. (1) is directly from Lemma 1.3 and 1.4.
(2) is from Prop. 1.2.

Remark For convenience, in the following sections we still use the usual notations of Bruhat order $\leq,<$ for the weak Bruhat orders $\leq \mathscr{L},<\mathscr{L}$ for the elements of E_{J}, unless indicated.
1.2. Some multiplication rules. For $J \subseteq S$, let $M^{J}=\mathscr{H} C_{w_{J}}$ be a \mathscr{H}-module, then
Lemma 1.6. (1) Let $J \subseteq S$, then M^{J} is a free \mathcal{A}-module with basis

$$
\left\{T_{w} C_{w_{J}} \mid w \in D_{J}\right\}, \text { or alternatively }\left\{T_{w} C_{w_{J}} \mid w \in \overline{D_{J}}\right\}
$$

the multiplication of \mathscr{H} with respect to this basis:

$$
T_{s}\left(T_{w} C_{w_{J}}\right)= \begin{cases}T_{s w} C_{w_{J}}+\left(q-q^{-1}\right) T_{w} C_{w_{J}} & \text { if } w \in D_{J, s}^{-} \text {or } w \in \bar{D}_{J, s}^{-} \\ T_{s w} C_{w_{J}} & \text { if } w \in D_{J, s}^{+} \text {or } w \in \bar{D}_{J, s}^{+} \\ -q^{-1} T_{w} C_{w_{J}} & \text { if } w \in D_{J, s}^{0} \text { or } w \in \bar{D}_{J, s}^{0}\end{cases}
$$

for all $s \in S$.
(2) For $w \in E_{J}$, we have :

$$
T_{s}\left(T_{w} C_{w_{J}}\right)= \begin{cases}T_{s w} C_{w_{J}}+\left(q-q^{-1}\right) T_{w} C_{w_{J}} & \text { if } w \in E_{J, s}^{-} \\ T_{s w} C_{w_{J}} & \text { if } w \in E_{J, s}^{+} \\ -q^{-1} T_{w} C_{w_{J}} & \text { if } w \in E_{J, s}^{0,-} \\ q T_{w} C_{w_{J}}+T_{w} C_{t w_{J}} & \text { if } w \in E_{J, s}^{0,+}, t=w^{-1} s w \in \hat{J}\end{cases}
$$

Proof. (1) M^{J} is spanned by the elements $T_{w} C_{w_{J}}$, where $w \in W$; however, if $w=d v$ for $d \in D_{J}$ and $v \in W_{J}$, then $T_{w} C_{w_{J}}=\varepsilon_{v} q^{-\ell(v)} T_{d} C_{w_{J}}$. It follows that M^{J} is a free \mathcal{A}-module with the basis shown and it remains to verify the multiplication formulae.

According to Eq. (1) we immediately get the first two rules. By the multiplication formula for the C-basis elements(Eq. (2)), we have:

$$
T_{s} C_{w_{J}}= \begin{cases}-q^{-1} C_{w_{J}} & \text { if } s \in J \\ q C_{w_{J}}+C_{s w_{J}} & \text { if } s \in \hat{J}\end{cases}
$$

if $w \in D_{J, s}^{0}$, let $t=w^{-1} s w$ and $t \in J$ then $s w=w t<w$, we have

$$
\begin{aligned}
T_{s}\left(T_{w} C_{w_{J}}\right) & =\left[T_{s w}+\left(q-q^{-1}\right) T_{w}\right] C_{w_{J}} \\
& =\left[T_{w t}+\left(q-q^{-1}\right) T_{w}\right] C_{w_{J}} \\
& =\left[T_{w t}\left(T_{t} T_{t}^{-1}\right)+\left(q-q^{-1}\right) T_{w}\right] C_{w_{J}} \\
& =T_{w} T_{t}^{-1} C_{w_{J}}+\left(q-q^{-1}\right) T_{w} C_{w_{J}} \\
& =T_{w}\left[T_{t}+\left(q^{-1}-q\right)\right] C_{w_{J}}+\left(q-q^{-1}\right) T_{w} C_{w_{J}} \\
& =-q^{-1} T_{w} C_{w_{J}}
\end{aligned}
$$

(2) If $w \in E_{J, s}^{0,+}$ and $t=w^{-1} s w \in \hat{J}$, again by the multiplication rules for $C_{w_{J}}$

$$
T_{s}\left(T_{w} C_{w_{J}}\right)=T_{w}\left(T_{t} C_{w_{J}}\right)=T_{w}\left(q C_{w_{J}}+C_{t w}\right)
$$

2. A cellular basis and generic Specht modules

The concept of "cellular algebras" was introduced by Graham-Lehrer [14]. It provides a systematic framework for studying the representation theory of nonsemisimple algebras which are deformations of semisimple ones. The original definition was modeled on properties of the Kazhdan-Lusztig basis [3] in Hecke algebras of type A. There is now a significant literature on the subject, and many classes of algebras have been shown to admit a "cellular" structure, including Ariki-Koiki algebras, q-Schur algebras, Temperly-Lieb algebras, and a variety of other algebras with geometric connections.

As we discussed above, \mathscr{H} is the one-parameter Hecke algebra associated to finite Weyl group W. Furthermore, if \mathscr{H} is defined over a ground ring in which "bad" primes for W are invertible, Geck [9] used deep properties of the KazhdanLusztig basis and Lusztig's a-function, he showed that \mathscr{H} has a natural cellular structure in the sense of Graham-Lehrer.

For the purpose of this paper, we show a new version of cellular basis of \mathscr{H}. Thus, we also obtain a general theory of "Specht modules" for Hecke algebras of finite type.

We introduce an \mathcal{A}-linear anti-involution: $*: \mathscr{H} \longrightarrow \mathscr{H}$ by $T_{w}^{*}=T_{w^{-1}}$ for $w \in W$. Clearly, $C_{w_{J}}^{*}=C_{w_{J}}$; for any $J \subseteq S$ and let $x, y \in D_{J}$ (or $x, y \in \overline{D_{J}}$), we define $m_{x y}=T_{x} C_{w_{J}} T_{y}^{*}$. Then $m_{x y}^{*}=m_{y x}$. For convenience, we use the indexing set $\overline{D_{J}}$ in the following context.

Remark If $J=\emptyset$ then $D_{J}=W$, as an \mathcal{A}-modules, $M^{\emptyset}=\mathscr{H}$ so the elements

$$
\left\{m_{x y} \mid x, y \in \overline{D_{\emptyset}}\right\}
$$

certainly span \mathscr{H}.
In order to show that \mathscr{H} is cellular, we have to show that $m_{x y}$ with $x, y \in \overline{D_{J}}$, can be written as an \mathcal{A}-linear combination of $\left\{m_{u v} \mid u, v \in E_{K}, J \subseteq K\right\}$.

Lemma 2.1. For any $x \in \overline{D_{J}}$, we have

$$
T_{x} C_{w_{J}}=\sum_{x^{\prime} \in E_{J}} r_{x^{\prime}} T_{x^{\prime}} C_{w_{J}}+\sum_{u \in E_{K}, J \subsetneq K} r_{u} T_{u} C_{w_{K}}
$$

where $r_{x^{\prime}}, r_{u} \in \mathcal{A}$.
Proof. As we have found $\overline{D_{J}}=\bigcup_{J \subseteq K \subseteq S} E_{K}$, where the union is disjoint. If $x \in E_{J}$ there is nothing to prove; suppose that $x \notin E_{J}$, then $x \in E_{K}$ where $K \supsetneq J$. By Prop. 1.2 we have $x=w w_{K}$ and $w_{K}=g w_{J}$ where $w \in W$ (or more exactly $w \in D_{K}$) and $g \in D_{J}^{K}=D_{J} \cap W_{K}$, with $\ell(x)=\ell(w)+\ell\left(w_{K}\right)$ and $\ell\left(w_{K}\right)=\ell(g)+\ell\left(w_{J}\right)$.

Since $T_{g} C_{w_{J}}$ is the sum of $C_{g w_{J}}=C_{w_{K}}$ and a linear combination of terms $C_{h w_{J}}$ where $h \in D_{J}^{K}$ and $h<g$ (this is the special case of [10, Prop.2.3]). On the other hand, $C_{h w_{J}}$ is the sum of $T_{h} C_{w_{J}}$ and an \mathcal{A}-linear combination of terms $T_{f} C_{w_{J}}$, where $f<h, f \in D_{J}^{K}$. As a result, $T_{g} C_{w_{J}}$ is the sum of $C_{w_{K}}$ and an \mathcal{A}-linear combination of these terms $T_{f} C_{w_{J}}$. Thus

$$
\begin{aligned}
T_{x} C_{w_{J}} & =T_{w\left(g w_{J}\right)} C_{w_{J}} \\
& =\epsilon_{w_{J}} q^{-\ell\left(w_{J}\right)} T_{w}\left(T_{g} C_{w_{J}}\right) \\
& =\epsilon_{w_{J}} q^{-\ell\left(w_{J}\right)} T_{w}\left(C_{w_{K}}+\sum_{f<g, f \in D_{J}^{K}} r_{f} T_{f} C_{w_{J}}\right) \\
& =r_{w} T_{w} C_{w_{K}}+\sum_{z \in \overline{D_{J}}, z<w g} r_{z} T_{z} C_{w_{J}}
\end{aligned}
$$

where $r_{w}, r_{f}, r_{z} \in \mathcal{A}$. By induction, each term $T_{z} C_{w_{J}}$ has also the required form.

Lemma 2.2. Let $J \subseteq S$ and suppose that $x, y \in \overline{D_{J}}$, then there exist $r_{x^{\prime} y}, r_{u v} \in \mathcal{A}$ such that

$$
m_{x y}=\sum_{x^{\prime} \in E_{J}} r_{x^{\prime} y} m_{x^{\prime} y}+\sum_{u \in E_{K}, v \in \overline{D_{K}}, J \subsetneq K} r_{u v} m_{u v}
$$

Proof. By Lemma 2.1, we have

$$
\begin{aligned}
m_{x y} & =T_{x} C_{w_{J}} T_{y}^{*} \\
& =\left[\sum_{x^{\prime} \in E_{J}} r_{x^{\prime}} T_{x^{\prime}} C_{w_{J}}+\sum_{u \in E_{K}, J \subsetneq K} r_{u} T_{u} C_{w_{K}}\right] T_{y}^{*} \\
& =\sum_{x^{\prime} \in E_{J}} r_{x^{\prime}} T_{x^{\prime}} C_{w_{J}} T_{y}^{*}+\sum_{u \in E_{K}, J \subsetneq K} r_{u} T_{u} C_{w_{K}} T_{y}^{*}
\end{aligned}
$$

and

$$
C_{w_{K}} T_{y}^{*}=\left(T_{y} C_{w_{K}}\right)^{*}
$$

where $T_{y} C_{w_{K}} \in \mathscr{H} C_{w_{K}}$, this implies $T_{y} C_{w_{K}} \in\left\langle T_{v} C_{w_{K}} \mid v \in \overline{D_{K}}\right\rangle_{\mathcal{A}}$, as required.

Let $\Omega^{l e x}=\{J \mid J \subseteq S\}$ be a set ordered lexicographically.
Theorem 2.3. The Hecke algebra \mathscr{H} is free as an \mathcal{A}-module with basis

$$
\mathcal{M}=\left\{m_{u v} \mid u, v \in E_{J} \text { for some } J \subseteq S\right\}
$$

Proof. We first show that \mathcal{M} spans \mathscr{H} by showing that whenever $x, y \in \overline{D_{J}}$ then $m_{x y}$ can be written as a \mathcal{A}-linear combination of terms $m_{u v}$ in \mathcal{M}. When $J=S$ this is clear because $\mathscr{H} C_{w_{J}} \mathscr{H}=\mathcal{A} C_{w_{J}}$. If $J \neq S$, by Lemma 2.2, we have

$$
m_{x y}=\sum_{x^{\prime} \in E_{J}} r_{x^{\prime} y} m_{x^{\prime} y}+\sum_{(u, v), J \subsetneq K} r_{u v} m_{u v}
$$

where $r_{x^{\prime}}, r_{u v} \in \mathcal{A}$, and the second sum is over the pairs (u, v) where $u \in E_{K}$, $v \in \overline{D_{K}}$. However, $m_{x y}^{*}=m_{y x}$ so by induction on the elements of $\Omega^{l e x}$ again (start with $J=S$, clearly $C_{w_{J}}^{*}=C_{w_{J}}$), $m_{x y}$ can be written as an \mathcal{A}-linear combination of elements of \mathcal{M}. Finally, let $J=\emptyset$, then $\mathscr{H}=\mathscr{H} C_{w_{\emptyset}} \mathscr{H}$.

Therefore \mathcal{M} spans \mathscr{H}.
By Wedderburn's theorem $\operatorname{dim}(\mathscr{H})=|W|=\sum_{J \subseteq S}|\mathcal{M}(J)|^{2}$, where

$$
\mathcal{M}(J)=\left\{m_{u v} \mid u, v \in E_{J} \text { for a fixed } J, J \subseteq S\right\}
$$

Hence the set \mathcal{M} has the correct cardinality.
Define $\hat{\mathscr{H}}^{J}$ to be the \mathcal{A}-module with basis

$$
\left\{m_{u v} \mid w, v \in E_{K} \text { for some } K \text { such that } J \subset K \subseteq S\right\}
$$

where we write $J \subset K$ when $J \subseteq K$ and $J \neq K$. Similarly, we define \mathscr{H}^{J} to be the \mathscr{H}-module with basis $m_{u v}$ where $u, v \in E_{K}$ with $J \subseteq K \subseteq S$.

Theorem 2.4. (1) The \mathcal{A}-linear map determined by

$$
m_{u v} \longmapsto m_{v u}
$$

for all $m_{u v} \in \mathcal{M}$, is an anti-isomorphism of \mathscr{H}.
(2) Suppose that $h \in \mathscr{H}$ and that $u \in E_{J}$, there exist $r_{u} \in \mathcal{A}$ such that for all $v \in E_{J}$

$$
h m_{u v} \equiv \sum_{w \in E_{J}} r_{w} m_{w v} \quad \bmod \hat{\mathscr{H}}^{J}
$$

Consequently, $\left\{\mathcal{M}, \Omega^{\text {lex }}\right\}$ is a cellular basis of \mathscr{H}.

Proof. (1) The $*$-endomorphism and the \mathcal{A}-linear map determined by $m_{u v} \longmapsto m_{v u}$ coincide since $m_{u v}^{*}=m_{v u}$ for all $m_{u v}$ in \mathcal{M}. This proves (1) since $*$ is an antiisomorphism of \mathscr{H}
(2) We argue by induction on $J \in \Omega^{l e x}$. By (1), if $J=S$ then $\mathscr{H} C_{w_{J}} \mathscr{H}=\mathcal{A} C_{w_{J}}$, there is nothing to prove. Suppose that $J \subseteq S$. First we consider $v=w_{J}$. Since \mathcal{M} is a basis of \mathscr{H}, for any $h \in \mathscr{H}$ we may write

$$
h m_{u, w_{J}}=\sum_{x, y \in E_{K}, K \subseteq S} r_{x y} m_{x y}
$$

for some $r_{x y} \in \mathcal{A}$. Now $h m_{u, w_{J}}$ belongs to M^{J}, clearly, if $r_{x y} \neq 0$ then $J \subseteq K$; further, if $J=K$ then we must also have $v=w_{J}$. Hence,

$$
\begin{equation*}
h m_{u, w_{J}}=\sum_{x \in E_{J}} r_{x} m_{x, w_{J}} \quad \bmod \hat{\mathscr{H}}^{J} \tag{5}
\end{equation*}
$$

where $r_{x}=r_{x, w_{J}} \in \mathcal{A}$. This completes the proof of (2) when $v=w_{J}$.
Now, if $K \supsetneq J$ and $u, y \in E_{K}$ then $m_{u y} T_{v}^{*}=\left(T_{v} m_{y u}\right)^{*} \in \mathscr{H}^{K} \subseteq \hat{\mathscr{H}}^{J}$ by induction on $J \in \Omega^{l e x}$. Therefore, we can multiply the Eq. (5) on the right by T_{v}^{*}, to complete the proof.

So we can now introduce the following:
Definition 2.5. Let $S^{J}=\left\langle T_{u} C_{w_{J}}+\hat{\mathscr{H}}^{J} \mid u \in E_{J}\right\rangle_{\mathcal{A}}$, then S^{J} is an \mathscr{H}-submodule of $\mathscr{H}^{J} / \hat{\mathscr{H}}^{J}$. We call this the generic Specht module of \mathscr{H} associated with J.
The bar involution for S^{J}. For all $x, y \in E_{J}$ we define elements $R_{x, y} \in \mathcal{A}$ by the formula

$$
\begin{equation*}
\overline{T_{y} C_{w_{J}}}=\sum_{x \in E_{J}} R_{x, y} T_{x} C_{w_{J}} \quad \bmod \hat{\mathscr{H}}^{J} \tag{6}
\end{equation*}
$$

We can easily derive the following formulae which provide an inductive procedure for calculating these elements in S^{J}.

Proposition 2.6. Let $x, y \in E_{J}$. If $s \in S$ is such that $\ell(s y)<\ell(y)$ then

$$
R_{x, y}\left(\bmod \hat{\mathscr{H}}^{J}\right)= \begin{cases}R_{s x, s y} & \text { if } x \in E_{J, s}^{-} \\ R_{s x, s y}+\left(q^{-1}-q\right) R_{x, s y} & \text { if } x \in E_{J, s}^{+} \\ -q R_{x, s y} & \text { if } x \in E_{J, s}^{0,-} \\ q^{-1} R_{x, s y} & \text { if } x \in E_{J, s}^{0,+}\end{cases}
$$

We may use induction on $\ell(y)$ to establish that $R_{x, y}=0$ unless $x \leqslant \mathscr{L} y$ in the weak Bruhat partial order on E_{J}; this follows from the fact that if $s y \leqslant \mathscr{L} y$ and $x \leqslant \mathscr{L} s y$ then both $x \leqslant \mathscr{L} y$ and $s x \leqslant \mathscr{L} y$. It is also easily seen that $R_{x, x}=1$.

3. W-graphs for generic Specht modules

Let $\mathfrak{C}_{w_{J}}$ be a left cell, or more generally, a union of left cells containing w_{J}, then the transition between the bases of the left cell module $\left[\mathfrak{C}_{w_{J}}\right]_{\mathcal{A}}$ and the generic Specht module S^{J} is described as the following:

Theorem 3.1. The \mathscr{H}-module S^{J} has a unique basis $\left\{C_{w} \mid w \in E_{J}\right\}$ such that $\overline{C_{w}}=C_{w}$ for all $w \in E_{J}$, and

$$
C_{w}=\sum_{y \in E_{J}} P_{y, w} T_{y} C_{w_{J}} \bmod \hat{\mathscr{H}}^{J}
$$

for some elements $P_{y, w} \in \mathcal{A}^{+}$with the following properties:
(i) $P_{y, w}=0$ if $y \nless w$;
(ii) $P_{w, w}=1$;
(iii) $P_{y, w}$ has zero constant term if $y \neq w$.

Comparing with the original Kazhdan-Lusztig's polynomials in 3], we called $\left\{P_{y, w} \mid y, w \in E_{J}\right\}$ the family of E_{J}-relative Kazhdan-Lusztig polynomials. We shall show that the basis $\left\{C_{w} \mid w \in E_{J}\right\}$ give S^{J} the structure of a W-graph. That is, there is a W-graph Λ with vertex elements $\left\{C_{w} \mid w \in E_{J}\right\}$. Before showing the proof of Theorem 3.1, we describe the edge weights and descent sets for Λ.

Given $y, w \in E_{J}$ with $y \neq w$, we define an integer $\mu(y, w)$ as follows. If $y<w$ then $\mu(y, w)$ is the coefficient of q in $-P_{y, w}$.

We write $y \prec w$ if $y<w$ and $\mu(y, w) \neq 0$.
The (left) descent set associated with the vertex element $C_{w}\left(w \in E_{J}\right)$ of Λ is

$$
\begin{aligned}
I(w) & =\{s \in S \mid \ell(s w)<\ell(w)\} \\
& =\left\{s \in S \mid w \in E_{J, s}^{-}\right\} \cup\left\{s \mid w \in E_{J, s}^{0,-}\right\}
\end{aligned}
$$

In accordance with the notation introduced in Section 2, we define

$$
\begin{aligned}
\Lambda_{s}^{-} & =\left\{w \in E_{J} \mid s \in I(w)\right\} \\
& =\left\{w \mid w \in E_{J, s}^{-} \text {or } w \in E_{J, s}^{0,-}\right\},
\end{aligned}
$$

and similarly $\Lambda_{s}^{+}=\left\{w \in E_{J} \mid s \notin I(w)\right\}$. Our proof of Theorem 3.1 will also incorporate a proof of the following result, which will be an important component of the subsequent proof that Λ is a W-graph.

Theorem 3.2. Let $v \in E_{J}$. Then for all $s \in S$ such that $\ell(s v)>\ell(v)$ and $s v \in E_{J}$ we have

$$
T_{s} C_{v}=q C_{v}+C_{s v}+\sum_{z \in E_{J}} \mu(z, v) C_{z}
$$

where the sum is over all $z \in \Lambda_{s}^{-}$such that $z \prec v$.
The following is the proof of Theorem 4.1.
Proof. Uniqueness is proved similarly with that of [3, Theorem 1.1], we omit the details.

Existence. We give a recursive procedure for constructing elements $P_{x, w}$ satisfying the requirements of Theorem 3.1. We start with the definition

$$
P_{w_{J}, w_{J}}=1
$$

so that $\overline{C_{w}}=C_{w}$ holds for $w=w_{J}$, as do Conditions (i), (ii) and (iii).
Now assume that $w \neq w_{J}$ and that for all $v \in E_{J}$ with $\ell(v)<\ell(w)$ the elements $P_{x, v}$ have been defined (for all $x \in E_{J}$) so that the requirements of Theorem 3.1 are satisfied. Thus the elements C_{v} are known when $\ell(v)<\ell(w)$. We may choose $s \in S$ such that $w=s v$ with $\ell(w)=\ell(v)+1$; note that $v \in E_{J}$ by Lemma 1.6. In accordance with the formula in Theorem 3.2 we define

$$
\begin{equation*}
C_{w}=\left(T_{s}-q\right) C_{v}-\sum_{\substack{z \prec v \\ z \in \Lambda_{s}^{-}}} \mu(z, v) C_{z} . \tag{7}
\end{equation*}
$$

Since $\overline{T_{s}-q}=T_{s}-q$, induction immediately gives $\overline{C_{w}}=C_{w}$. We define $P_{y, w}^{\prime}$ and $P_{y, w}^{\prime \prime}$ by

$$
\begin{align*}
\left(T_{s}-q\right) C_{v} & =\sum_{y \in E_{J}} P_{y, w}^{\prime} T_{y} C_{w_{J}} \tag{8}\\
\sum_{z \prec v} \mu(z, v) C_{z} & =\sum_{y \in E_{J}} P_{y, w}^{\prime \prime} T_{y} C_{w_{J}} \tag{9}
\end{align*}
$$

and define $P_{y, w}=P_{y, w}^{\prime}-P_{y, w}^{\prime \prime}$.
If $y \in E_{J}$ then

$$
\left(T_{s}-q\right) T_{y}= \begin{cases}T_{s y}-q T_{y} & \text { if } y \in E_{J, s}^{+} \\ T_{s y}-q^{-1} T_{y} & \text { if } y \in E_{J, s}^{-} \\ T_{y}\left(T_{t}-q\right) & \text { if } y \in E_{J, s}^{0,-} \\ T_{s y}-q T_{y} & \text { if } y \in E_{J, s}^{0,+}\end{cases}
$$

where we have written $t=y^{-1} s y$ in the case $y \in E_{J, s}^{0}$. Thus we see that

$$
\begin{aligned}
&\left(T_{s}-q\right) C_{v}= \sum_{y \in E_{J, s}^{+}} P_{y, v}\left(T_{s y}-q T_{y}\right) C_{w_{J}}+\sum_{y \in E_{J, s}^{-}} P_{y, v}\left(T_{s y}-q^{-1} T_{y}\right) C_{w_{J}} \\
& \quad+\sum_{y \in E_{J, s}^{0,-}} P_{y, v} T_{y}\left(T_{t}-q\right) C_{w_{J}}+\sum_{y \in E_{J, s}^{0,+}} P_{y, v}\left(T_{s y}-q T_{y}\right) C_{w_{J}} \\
&=\sum_{y \in E_{J, s}^{-}}\left(P_{s y, v}-q^{-1} P_{y, v}\right) T_{y} C_{w_{J}}+\sum_{y \in E_{J, s}^{+}}\left(P_{s y, v}-q P_{y, v}\right) T_{y} C_{w_{J}} \\
& \quad+\sum_{y \in E_{J, s}^{0,-}} P_{y, v}\left(-q^{-1}-q\right) T_{y} C_{w_{J}} \\
&+\sum_{y \in E_{J, s}^{0,+}} P_{y, v}\left[\left(q T_{y} C_{w_{J}}+T_{y} C_{t w_{J}}\right)-q T_{y} C_{w_{J}}\right]
\end{aligned}
$$

Now comparing Eq. (8) with the expression for $\left(T_{s}-q\right) C_{v}$ obtained above we obtain the following formulas for the cases $y \in E_{J, s}^{+}$(case (a)), $y \in E_{J, s}^{-}$(case (b)), $y \in E_{J, s}^{0,-}$ and (case (c)) and $y \in E_{J, s}^{0,+}$ (case (d)):

$$
P_{y, w}^{\prime}= \begin{cases}P_{s y, v}-q P_{y, v} & (\text { case (a)), } \tag{10}\\ P_{s y, v}-q^{-1} P_{y, v} & (\text { case (b)), } \\ \left(-q-q^{-1}\right) P_{y, v} & (\text { case (c)) }, \\ 0 & \text { (case (d)). }\end{cases}
$$

Since $C_{z}=\sum_{y \in E_{J}} P_{y, z} T_{y} C_{w_{J}}$, we have

$$
\sum_{z \prec v, z \in \Lambda_{s}^{-}} \mu(z, v) C_{z}=\sum_{y \in E_{J}} \sum_{z \prec v, z \in \Lambda_{s}^{-}} \mu(z, v) P_{y, z} T_{y} C_{w_{J}}
$$

and by comparison with Eq. (9)

$$
\begin{equation*}
P_{y, w}^{\prime \prime}=\sum_{\substack{z \nless v \\ z \in \Lambda_{s}^{-}}} \mu(z, v) P_{y, z} . \tag{11}
\end{equation*}
$$

We may check that with $P_{y, w}^{\prime}$ and $P_{y, w}^{\prime \prime}$ given by Eq's (10) and (11), the elements $P_{y, w}=P_{y, w}^{\prime}-P_{y, w}^{\prime \prime}$ lie in \mathcal{A}^{+}and satisfy Conditions (i), (ii) and (iii) of Theorem 3.1, We omit the details here.

For convenience, let $\tilde{T}_{w}=T_{w} C_{w_{J}}$. Observe that the formula for C_{w} in Theorem 3.1 may be written as

$$
C_{w}=\tilde{T}_{w}+\sum_{y<w, y \in E_{J}} P_{y, w} \tilde{T}_{y}
$$

and inverting this gives

$$
\begin{equation*}
\tilde{T}_{w}=C_{w}+\sum_{y<w, y \in E_{J}} Q_{y, w} C_{y} \tag{12}
\end{equation*}
$$

where the elements $Q_{y, w}$ (defined whenever $y<w$) are given recursively by

$$
Q_{y, w}=-P_{y, w}-\sum_{\{z \mid y<z<w\}} Q_{y, z} P_{z, w}
$$

In particular, $Q_{y, w}$ is in \mathcal{A}^{+}, has zero constant term, and has coefficient of q equal to $\mu(y, w)$.

We now state our main result.
Theorem 3.3. The basis $\left\{C_{w} \mid w \in E_{J}\right\}$ gives the generic Specht module S^{J} the structure of a W-graph, as described above.

Proof. The proof is similar with [21, Theorem 2.6], modified appropriately. We start by using induction on $\ell(w)$ to prove that for all $s \in S$

$$
T_{s} C_{w}= \begin{cases}-q^{-1} C_{w} & \text { if } w \in \Lambda_{s}^{-} \tag{13}\\ q C_{w}+\sum_{z \in E_{J}, z \in \Lambda_{s}^{-}} \mu(z, w) C_{z} & \text { if } w \notin \Lambda_{s}^{-}\end{cases}
$$

or more exactly
$T_{s} C_{w}\left(\bmod \hat{\mathscr{H}}^{J}\right)= \begin{cases}-q^{-1} C_{w} & \text { if } w \in E_{J, s}^{-} \text {or } w \in E_{J, s}^{0,-}, \\ q C_{w}+C_{s w}+\sum_{z \in E_{J, s}^{-}, z<w} \mu(z, w) C_{z} & \text { if } w \in E_{J, s}^{+} . \\ q C_{w}+\sum_{z \in E_{J, s}^{-}, z<w} \mu(z, w) C_{z} & \text { if } w \in E_{J, s}^{0,+} .\end{cases}$
If $w \in E_{J, s}^{+}$then $w \notin \Lambda_{s}^{-}$, and Eq. (13) follows immediately from Theorem 3.2 (applied with v replaced by w), since the only $z \in \Lambda_{s}^{-}$with $\mu(z, w) \neq 0$ and $\ell(z) \geqslant \ell(w)$ is $z=s w$.

For the case $w \in E_{J, s}^{0,+}$, the term $C_{s w}$ can not appear in the sum of Eq. (13).
If $w \in E_{J, s}^{-}$, which implies that $w \in \Lambda_{s}^{-}$, then writing $v=s w$ and applying Theorem 3.2 gives

$$
C_{w}=\left(T_{s}-q\right) C_{v}-\sum \mu(z, v) C_{z}
$$

where $z \prec v$ and $z \in \Lambda_{s}^{-}$for all terms in the sum. The inductive hypothesis thus gives $T_{s} C_{z}=-q^{-1} C_{z}$, and since we also have $T_{s}\left(T_{s}-q\right)=-q^{-1}\left(T_{s}-q\right)$ it follows that $T_{s} C_{w}=-q^{-1} C_{w}$, as required.

Now suppose that $w \in E_{J, s}^{0}$, and as usual let us write $s w=w t$. Suppose first that $t=w^{-1} s w \in J$, so that $w \in \Lambda_{s}^{-}$. By Eq. (12),

$$
C_{w}=\tilde{T}_{w}-\sum_{\left\{y \mid y<w, y \in E_{J}\right\}} Q_{y, w} C_{y},
$$

and since $T_{s} T_{w} C_{w_{J}}+q^{-1} T_{w} C_{w_{J}}=T_{w}\left(T_{t} C_{w_{J}}+q^{-1} C_{w_{J}}\right)=0$ we find that

$$
\begin{equation*}
T_{s} C_{w}+q^{-1} C_{w}=-\sum_{\left\{y \mid y<w, y \in E_{J}\right\}} Q_{y, w}\left(T_{s} C_{y}+q^{-1} C_{y}\right) \tag{15}
\end{equation*}
$$

By the inductive hypothesis,

$$
T_{s} C_{y}+q^{-1} C_{y}= \begin{cases}0 & \text { if } y \in \Lambda_{s}^{-} \\ \left(q+q^{-1}\right) C_{y}+\sum_{z \in \Lambda_{s}^{-}} \mu(z, y) C_{z} & \text { if } y \notin \Lambda_{s}^{-}\end{cases}
$$

and so Eq. (15) gives

$$
\begin{equation*}
T_{s} C_{w}+q^{-1} C_{w}=-\sum_{\substack{y \notin \Lambda_{s}^{-} \\ y<w}} Q_{y, w}\left(q+q^{-1}\right) C_{y}+X \tag{16}
\end{equation*}
$$

for some X in the \mathcal{A}-submodule spanned by the elements C_{z} for $z \in \Lambda_{s}^{-}$. Now since $T_{s}=T_{s}^{-1}+\left(q-q^{-1}\right)$ it follows that

$$
\begin{aligned}
\left(T_{s}+q^{-1}\right) C_{w} & =\overline{\left(T_{s}+q^{-1}\right) C_{w}} \\
& =-\sum_{\substack{y \notin \Lambda_{s}^{-} \\
y<w}} \overline{Q_{y, w}\left(q^{-1}+q\right) C_{y}+\bar{X}},
\end{aligned}
$$

and comparing with Eq. (16) shows that for all y with $y<w\left(y \in E_{J}\right)$ and $y \notin \Lambda_{s}^{-}$,

$$
\begin{equation*}
\overline{Q_{y, w}}=Q_{y, w} \tag{17}
\end{equation*}
$$

Since $Q_{y, w}$ is in \mathcal{A}^{+}and has zero constant term, Eq. (17) forces $Q_{y, w}$ to be zero whenever $y<w$ and $y \notin \Lambda_{s}^{-}$. Therefore the right hand side of Eq. (15) is zero, since $T_{s} C_{y}+C_{y}=0$ whenever $y \in \Lambda_{s}^{-}$. So

$$
T_{s} C_{w}=-q^{-1} C_{w}
$$

as required.

4. Applications to type A

Throughout this section, we apply our results to the Hecke algebra of type A. Let $W=\mathfrak{G}_{n}$ be the symmetric group acting on the left on $\{1,2, \cdots, n\}$. Another reference is the exposition by Mathas [6]. For $i=1,2, \cdots, n-1$ let s_{i} be the basic transposition $(i, i+1)$ and let $S=\left\{s_{1}, s_{2}, \cdots, s_{n-1}\right\}$, the generating set of \mathfrak{G}_{n}.
4.1. Notations. Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{r}\right)$ be a partition of n with the notation $\lambda \vdash n$. A standard λ-tableau is a tableau whose entries are exactly $1,2, \cdots, n$ and which has both increasing rows and increasing columns, the set is denoted $\mathbb{T}(\lambda)$. Let t^{λ} (resp. t_{λ}) be the λ-tableau in which the numbers $1,2, \cdots$ appear in order from left to right (resp. top to bottom) and down along successive rows (resp. columns), then $t^{\lambda}, t_{\lambda} \in \mathbb{T}(\lambda)$. For a Young tableau t, we put

$$
I(t)=\{i \mid 1 \leq i \leq n-1, i+1 \text { is in a lower position than } i \text { in } t\}
$$

and call it the descent set of t. Let

$$
\begin{aligned}
& I_{0}(t)=\{i \in I(t) \mid i+1 \text { is in the left side of } i \text { in } t\}, \\
& I_{1}(t)=\{i \in I(t) \mid i+1 \text { is directly below } i \text { in } t\}
\end{aligned}
$$

Lemma 4.1. [17] For a standard tableau t of shape $\lambda \vdash n$,

$$
\begin{aligned}
(1) I(t) & =I_{0}(t) \cup I_{1}(t) ; \\
(2) I(t) \cup I\left(t^{\prime}\right) & =\{1,2, \ldots, n-1\} ; \\
(3) I_{0}(t) & =\emptyset \text { if and only if } t=t_{\lambda} ; \\
(4) I_{0}\left(t^{\prime}\right) & =\emptyset \text { if and only if } t=t^{\lambda} .
\end{aligned}
$$

The Young subgroup $\mathfrak{G}_{\lambda}=\mathfrak{G}_{\lambda_{1}} \times \cdots \times \mathfrak{G}_{\lambda_{r}}$ of \mathfrak{G}_{n} is the row stabilizer of t^{λ}. Let D_{λ} be the set of distinguished left coset representatives of \mathfrak{G}_{λ} in \mathfrak{G}_{n}, by DipperJames [1] and Mathas [6, we have the following explicit description:

$$
D_{\lambda}=\left\{w \in \mathfrak{G}_{n} \mid w t^{\lambda} \text { is row-standard }\right\} .
$$

As in [1, 12, 6], if t is a row-standard λ-tableau, the unique element $d \in D_{\lambda}$ such that $t=d t^{\lambda}$ will be denoted by $d(t)$. Let $w_{J(\lambda)}$ be the longest element of the Young subgroup \mathfrak{G}_{λ}, an element w_{λ} is defined by $t_{\lambda}=w_{\lambda} t^{\lambda}$.

Given partitions $\mu=\left(\mu_{1}, \mu_{2}, \ldots\right)$ and $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ of n, we say μ dominates λ, and write $\lambda \unlhd \mu$, if

$$
\lambda_{1} \leq \mu_{1}, \lambda_{1}+\lambda_{2} \leq \mu_{1}+\mu_{2}, \lambda_{1}+\lambda_{2}+\lambda_{3} \leq \mu_{1}+\mu_{2}+\mu_{3}, \ldots
$$

we write $\lambda \unlhd \mu$ if $\lambda \unlhd \mu$ and $\mu \neq \lambda$. The partial order \unlhd on the set of partitions(or shapes) of n will be referred to as the dominance order.

For a fixed $\lambda \vdash n, s, t \in \mathbb{T}(\lambda)$. We write $s \unlhd t$ if $\ell(d(s)) \leqslant \ell(d(t))$, and $s \triangleleft t$ if $s \unlhd t$ and $s \neq t$. We note that the notation here is different with [6] [pp.31].
4.2. Cells. The cells of $W=\mathfrak{G}_{n}$ may be described in terms of the RobinsonSchensted correspondence. The correspondence is a bijection of S_{n} to pairs of standard tableaux (P, Q) of the same shape corresponding to partitions of n, so that if $w \longmapsto(P(w), Q(w))$ then $Q(w)=P\left(w^{-1}\right)$. In particular, the involutions are the elements $w \in W$ for which $Q(w)=P(w)$. If $\lambda \vdash n$, the pair of tableaux corresponding to $w_{J(\lambda)}$ has the form $\left(t_{\lambda^{\prime}}, t_{\lambda^{\prime}}\right)$. Hence, the tableaux corresponding to $w_{J(\lambda)}$ have shape λ^{\prime}, where λ^{\prime} denotes the partition conjugate to λ.

If R is a fixed standard tableau then the set $\{w \in W: Q(w)=R\}$ is a left cell of W and the set $\{w \in W: P(w)=R\}$ is a right cell of W. See [3] and also [4 for an alternative proof of this result.

Lemma 4.2. Let $\lambda \vdash n$ and $t \in \mathbb{T}(\lambda)$. The element of \mathfrak{G}_{n}, which corresponds to the pair of tableaux $\left(t^{\lambda^{\prime}}, t_{\lambda^{\prime}}\right)$ under the Robinson-Schensted correspondence, is $w_{\lambda} w_{J(\lambda)}$.

The following is the corollaries of the discussion in Section 1, see also in [15, Lemma 3.3] and Du [16, Lemma 1.2].

Lemma 4.3. The followings hold(i) $w_{\lambda} w_{J(\lambda)} \in D_{\lambda}$, (ii) $d w_{J(\lambda)} \in D_{\lambda}$ for each prefix d of w_{λ}, (iii) $d w_{J(\lambda)} \in D_{\lambda}$ is in the same left cell as $w_{J(\lambda)}$ for each prefix d of w_{λ}.

As in Section 1, we write $E_{J(\lambda)}=\left\{e \mid e=d w_{J(\lambda)}\right.$ and d is a prefix of $\left.w_{\lambda}\right\}$, for any $s_{i}=(i, i+1) \in S$ we define

$$
\begin{aligned}
& E_{J(\lambda), s_{i}}^{-}=\left\{e \in E_{J(\lambda)} \mid \ell\left(s_{i} e\right)<\ell(e) \text { and } s_{i} e \in E_{J(\lambda)}\right\}, \\
& E_{J(\lambda), s_{i}}^{+}=\left\{e \in E_{J(\lambda)} \mid \ell\left(s_{i} e\right)>\ell(e) \text { and } s_{i} e \in E_{J(\lambda)}\right\}, \\
& E_{J(\lambda), s_{i}}^{0}=\left\{e \in E_{J(\lambda)} \mid s_{i} e \notin E_{J(\lambda)}\right\}
\end{aligned}
$$

so that $E_{J(\lambda)}$ is the disjoint union $E_{J(\lambda), s_{i}}^{-} \cup E_{J(\lambda), s_{i}}^{+} \cup E_{J(\lambda), s_{i}}^{0}$, then

$$
s_{i} E_{J(\lambda), s_{i}}^{+}=E_{J(\lambda), s_{i}}^{-}
$$

let

$$
\begin{aligned}
& E_{J(\lambda), s_{i}}^{0,-}=\left\{e \in E_{J(\lambda)} \mid \ell\left(s_{i} e\right)<\ell(e) \text { and } s_{i} e \notin E_{J(\lambda)}\right\}, \\
& E_{J(\lambda), s_{i}}^{0,+}=\left\{e \in E_{J(\lambda)} \mid \ell\left(s_{i} e\right)>\ell(e) \text { and } s_{i} e \notin E_{J(\lambda)}\right\},
\end{aligned}
$$

then $E_{J(\lambda), s_{i}}^{0}=E_{J(\lambda), s_{i}}^{0,-} \bigcup E_{J(\lambda), s_{i}}^{0,+}$ (disjoint union); if $e \in E_{J(\lambda), s_{i}}^{0,-}$ then $s_{i} e=e t$ for some $t \in J(\lambda)$, if $e \in E_{J(\lambda), s_{i}}^{0,+}$ then $s_{i} e=$ et for some $t \in \hat{J(\lambda)}$, where $J \hat{(\lambda)}=S \backslash J(\lambda)$.

We have the following observation

$$
\begin{aligned}
& E_{J(\lambda), s_{i}}^{-}=\left\{d(t) w_{J(\lambda)} \mid t \in \mathbb{T}(\lambda), i \in I_{0}\left(t^{\prime}\right)\right\}, \\
& E_{J(\lambda), s_{i}}^{+}=\left\{d(t) w_{J(\lambda)} \mid t \in \mathbb{T}(\lambda), i \in I_{0}(t)\right\}, \\
& E_{J(\lambda), s_{i}}^{0,-}=\left\{d(t) w_{J(\lambda)} \mid t \in \mathbb{T}(\lambda), i \in I_{1}\left(t^{\prime}\right)\right\}, \\
& E_{J(\lambda), s_{i}}^{0,+}=\left\{d(t) w_{J(\lambda)} \mid t \in \mathbb{T}(\lambda), i \in I_{1}(t)\right\},
\end{aligned}
$$

Let

$$
C_{w_{J(\lambda)}}=\epsilon_{w_{J(\lambda)}} q^{\ell\left(w_{J(\lambda)}\right)} \sum_{w \in \mathfrak{G}_{\lambda}} \epsilon_{w} q^{-\ell(w)} T_{w}
$$

then the following statement is a corollary of Lemma 2.1.
Lemma 4.4. [1] Mathas2 Let $\lambda \vdash n$, then $\mathscr{H} C_{w_{J}(\lambda)}$ is a free \mathcal{A}-module with basis

$$
\left\{T_{d(t)} C_{w_{J(\lambda)}} \mid t \text { a row standard } \lambda \text {-tableau }\right\}
$$

Moreover, if t is row standard and $s=s_{i}$ t for some $1 \leq i \leq n-1$, then

$$
T_{i} T_{d(t)} C_{w_{J(\lambda)}}=\left\{\begin{array}{l}
T_{d(s)} C_{w_{J(\lambda)}}, \text { if } i \in I_{0}(t) \\
T_{d(s)} C_{w_{J(\lambda)}}+\left(q-q^{-1}\right) T_{d(t)} C_{w_{J(\lambda)}}, \text { if } i \in I_{0}\left(t^{\prime}\right) \\
-q^{-1} T_{d(t)} C_{w_{J(\lambda)}}, \text { if } i \in I_{1}\left(t^{\prime}\right)
\end{array}\right.
$$

where $T_{i}:=T_{s_{i}}$.
4.3. Murphy basis and W-graph basis. The following is a corollary of the main Theorems in Section 2.
Theorem 4.5. [12, 13] For any $\lambda \vdash n$ and $s, t \in \mathbb{T}(\lambda)$, we define elements of \mathscr{H} by

$$
m_{s t}=T_{d(s)} C_{w_{J(\lambda)}} T_{d(t)^{-1}}
$$

then the following hold (a) The set $\left\{m_{s t} \mid s, t \in \mathbb{T}(\lambda)\right.$ for some $\left.\lambda \vdash n\right\}$ is an \mathcal{A}-basis of \mathscr{H}; (b) For any $\lambda \vdash n$, let \mathscr{H}^{λ} be the \mathcal{A}-submodule of \mathscr{H} spanned by all elements $m_{\text {st }}$ where $s, t \in \mathbb{T}(\mu)$ for some $\lambda \unlhd \mu$, then \mathscr{H}^{λ} is a two-sided ideals in \mathscr{H}.

Note that the element that we denote by T_{w} corresponds to the element $q^{\ell(w)} T_{w}$ in Murphy's notation. Thus the element denoted by $C_{w_{J(\lambda)}}$ in the above statement is exactly as in Murphy's work, except the associated coefficient $\epsilon_{w_{J(\lambda)}} q^{\ell\left(w_{J(\lambda)}\right)}$. However, this does not affect the validity of (a) and (b) since q is invertible in \mathcal{A}. The statement in (a) can be found in Murphy [12, Th.3.9] or Murphy [13, Th. 4.17]. The statement(b) is proved in [13, Th. 4.18].

Murphy also obtains the following result concerning the Specht modules of \mathscr{H}. For any $\lambda \vdash n$, let $\hat{\mathscr{H}}^{\lambda}$ be the \mathcal{A}-submodule of \mathscr{H} spanned by all $m_{s t}$ where $s, t \in \mathbb{T}(\mu)$ for some $\mu \vdash n$ such that $\lambda \triangleleft \mu$. Thus, we have

$$
\hat{\mathscr{H}}^{\lambda}=\sum_{\mu} \mathscr{H}^{\mu}
$$

where the sum runs over all $\mu \vdash n$ such that $\lambda \triangleleft \mu$. In particular, $\hat{\mathscr{H}}^{\lambda}$ is a two-sided ideal and we have $\mathscr{H}^{\lambda}=\mathscr{H} C_{w_{J}(\lambda)} \mathscr{H}+\hat{\mathscr{H}}^{\lambda}$
Definition 4.6. [6] For $\lambda \vdash n$, the Specht module S^{λ} is defined to be the left \mathscr{H}-module $\left(\hat{\mathscr{H}}^{\lambda}+C_{w_{J(\lambda)}}\right) \mathscr{H}$.

Note that $\hat{\mathscr{H}}^{\lambda}+C_{w_{J(\lambda)}}$ is an element of the \mathscr{H}-module $\mathscr{H} / \hat{\mathscr{H}}^{\lambda}$ so that S^{λ} is a submodule of $\mathscr{H} / \hat{\mathscr{H}}^{\lambda}$. As we defined it, the Specht module S^{λ} is isomorphic to the dual of the Specht module which Dipper and James [1] indexed by λ^{\prime}.

For a standard λ-tableau t let $m_{t}=m_{t t^{\lambda}}+\hat{\mathscr{H}}^{\lambda}=T_{d(t)} C_{w_{J(\lambda)}}+\hat{\mathscr{H}}^{\lambda}$, We have Theorem 4.7. [8, 13] The Specht module S^{λ} is free as an \mathscr{H}-module with basis $\left\{m_{t} \mid t \in \mathbb{T}(\lambda)\right\}$, and $\mathscr{H}^{\lambda} / \hat{\mathscr{H}}^{\lambda}$ is a direct sum of $|\mathbb{T}(\lambda)|$ copies of S^{λ}.

While
Lemma 4.8. 6] Suppose $t \in \mathbb{T}(\lambda)$ such that $i \in I_{1}(t)$, then for all $s \in \mathbb{T}(\lambda)$

$$
T_{i} m_{s t} \equiv q m_{s t}+\sum_{v \triangleleft s} r_{v} m_{v t} \quad \bmod \hat{\mathscr{H}}^{\lambda}
$$

for some $r_{v} \in \mathcal{A}$.
Corollary 4.9. Let $t \in \mathbb{T}(\lambda)$ and $s=s_{i}$ t for some $1 \leq i \leq n-1$, then

$$
T_{i} m_{t}=\left\{\begin{array}{l}
m_{s}, \text { if } i \in I_{0}(t) \\
m_{s}+\left(q-q^{-1}\right) m_{t}, \text { if } i \in I_{0}\left(t^{\prime}\right) \\
-q^{-1} m_{t}, \text { if } i \in I_{1}\left(t^{\prime}\right) \\
q m_{t}+\sum_{v \triangleleft t} r_{v} m_{v} \quad \bmod \hat{\mathscr{H}}^{\lambda}, \text { if } i \in I_{1}(t)
\end{array}\right.
$$

where $r_{v} \in \mathcal{A}$.

We apply with Theorem 4.1 and 4.3 to establish the transition between Murphy's basis and W-graph basis of the Specht module. We also note that in the references, the authors related the Kazhdan-Lusztig cell module and the corresponding Specht module in the case of symmetry group, group algebra and Hecke algebra of type A. See Naruse [17], Garsia-MacLarnan [18] and MacDonough and Pallicaros [15] ect.
Theorem 4.10. For a fixed $\lambda \vdash n$, we define the elements of the C-basis for S^{λ}

$$
\begin{aligned}
C_{d(s) w_{J(\lambda)}} & =m_{s}-q \sum_{d(t)<d(s)} p_{t, s} m_{t} \\
& =T_{d(s)} C_{w_{J(\lambda)}}-q \sum_{t \triangleleft s} p_{t, s} T_{d(t)} C_{w_{J(\lambda)}} \bmod (\hat{\mathscr{H}}) .
\end{aligned}
$$

where $s, t \in \mathbb{T}(\lambda)$ and $p_{t, s} \in \mathbb{Z}(q)$ will be defined recursively by

$$
T_{i} C_{d(t) w_{J(\lambda)}}=\left\{\begin{array}{l}
-q^{-1} C_{d(t) w_{J(\lambda)}}, \text { if } i \in I\left(t^{\prime}\right) \tag{18}\\
q C_{d(t) w_{J(\lambda)}}+\sum_{i \in I\left(u^{\prime}\right), u \triangleleft t} \mu(u, t) C_{d(u) w_{J(\lambda)}}, \text { if } i \in I_{1}(t) \\
q C_{d(t) w_{J(\lambda)}}+C_{s_{i} d(t) w_{J(\lambda)}}+\sum_{i \in I\left(u^{\prime}\right), u \triangleleft t} \mu(u, t) C_{d(u) w_{J(\lambda)}}, \text { if } i \in I_{0}(t)
\end{array}\right.
$$

where $\mu(u, t)$ is the constant term of the polynomial $p_{u, t}$.

References

[1] R. Dipper and G. James, Representations of Hecke algebras of general linear groups, Proc. London Meth. Soc. 52 (1986), 20-52.
[2] V. Deodhar, Some characterizations of Bruhat ordering on a Coxeter group and determination of the relative Möbius function, Invent. Math. 39 (1977), 187-198.
[3] D. Kazhdan and G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), 165-184.
[4] S. Ariki, Robinson-Schensted correspondence and left cells, Advanced studies in Pure Math. 28, 2000, Combinatorial methods in Representation Theory pp.1-20. (1979), 165-184.
[5] G. Lusztig, Hecke algebras with unequal parameters, CRM Monographs Ser., vol. 18. Am. math. Soc., Providence, RI(2003).
[6] A. Mathas, Iwahori-Hecke algebras and Schur algebras of symmetric groups, Univ. Lecture Ser., vol. 15, Amer. Math. Soc., Providence, RI, 1999.
[7] L. Solomon, A decomposition of the group algebra of finite Coxeter group, J. Alg.9(1968), 220-239.
[8] M. Geck, Kazhdan-Lusztig cells and the Murphy basis, Proc. London Math. Soc. 93(2006), 635-665.
[9] M. Geck, Hecke algebras of finite type are cellular, Invent. Math. 169(2007), 501-517.
[10] M. Geck, On the induction of Kazhdan-Lusztig cells, Bull. London Math. Soc. 35(2003), 608-614.
[11] J. Y. Shi, The Kazhdan-Lusztig cells in certain affine Weyl groups, Lecture Notes in math.1179, Springer-Verlag(1986).
[12] G. E. Murphy, On the representation theory of the symmetric groups and associated Hecke algebras, J. of Alg152(1992), 492-513.
[13] G. E. Murphy, The representations of Hecke algebras of type A_{n}, J. of Alg173(1995), 97-121.
[14] J. Graham and G. Lehrer, Cellular algebras, Invent. Math. 123(1996), 1-34.
[15] T. P. McDonough and C. A. Pallikaros, On relations between the classical and the KazhdanLusztig representations of symmetric groups and associated Hecke algebras, J. of Pure and Applied Alg. 203(2005), 133-144.
[16] J. Du, A new proof for the cannical basis of type A, Algebra Colloquium. 126:4(1999), 377-383.
[17] H. Naruse, On an isomorphism between Specht module and left cells of \mathcal{G}_{n}, Tokyo J. Math. 12(1989), 247-267.
[18] A. M. Garsia and T. J. MaLarnan, Relations between Young's Natural and the KazhdanLusztig representations of S_{n}, Advances in Math. 69(1988), 32-92.
[19] J. E. Humphreys, Reflection groups and Coxeter groups, Combridge Studies in Advanced Math. 29 (1990).
[20] N. Xi, Representations of Affine Hecke algebras, Lecture Notes in Mathematics 1587, Springer, Berlin, (1991).
[21] Yunchuan Yin, W-graph representations for Coxeter groups and Hecke algebras, PhD thesis, the University of Sydney, 2004.

Department of Applied Mathematics, Shanghai University of Finance and Ecomonics, Shanghai 200433, P. R. China

E-mail address: yunchuan228@hotmail.com
E-mail address: yyin@mail.shufe.edu.cn

[^0]: 2000 Mathematics Subject Classification. Primary and secondary 20C08.
 Key words and phrases. Hecke algebra, Coxeter group, Kazhdan-Lusztig bases, Specht module, Murphy basis, W-graph.

