KAZHDAN-LUSZTIG BASIS FOR GENERIC SPECHT MODULES

YUNCHUAN YIN

ABSTRACT. In this paper, we let \mathscr{H} be the Hecke algebra associated with a finite Coxeter group W and with one-parameter, over the ring of scalars $\mathcal{A} = \mathbb{Z}(q, q^{-1})$. With an elementary method, we introduce a cellular basis of \mathscr{H} indexed by the sets $E_J(J \subseteq S)$ and obtain a general theory of "Specht modules". Our main purpose is to provide an algorithm for W-graphs for the "generic Specht module", which associates with the Kazhdan and Lusztig cell (or more generally, a union of cells of W) containing the longest element of a parabolic subgroup W_J for appropriate $J \subseteq S$. As an example of applications, we show a construction of W-graphs for the Hecke algebra of type A.

Preliminaries

Let W be a finite Coxeter group with S the set of simple reflections, and let \mathscr{H} be the corresponding Hecke algebra. We use a variation of the definition given in [3], taking \mathscr{H} to be an algebra over $\mathcal{A} = \mathbb{Z}[q^{-1}, q]$, the ring of Laurent polynomials with integer coefficients in the indeterminate q. Then \mathscr{H} is a algebra generated by $(T_s)_{s \in S}$ subject to

$$T_s^2 = 1 + (q - q^{-1})T_s$$
$$\underbrace{T_r T_s T_r \cdots}_{m_{rs} \text{ factors}} = \underbrace{T_s T_r T_s \cdots}_{m_{rs} \text{ factors}}$$

(for all $r, s \in S$).

Moreover, \mathscr{H} has \mathcal{A} -basis { $T_w \mid w \in W$ } where $T_w = T_{s_1}T_{s_2}\cdots T_{s_l}$ whenever $s_1s_2\cdots s_l$ is a reduced expression for w, and

(1)
$$T_s T_w = \begin{cases} T_{sw} & \text{if } \ell(sw) > \ell(w) \\ T_{sw} + (q - q^{-1})T_w & \text{if } \ell(sw) < \ell(w) \end{cases}$$

for all $w \in W$ and $s \in S$. We also define $\mathcal{A}^+ = \mathbb{Z}[q]$, the ring of polynomials in q with integer coefficients, and let $a \mapsto \overline{a}$ be the involutory automorphism of \mathcal{A} such that $\overline{q} = q^{-1}$. This involution on \mathcal{A} extends to an involution on \mathscr{H} satisfying $\overline{T_s} = T_s^{-1} = T_s + (q^{-1} - q)$ for all $s \in S$. This gives $\overline{T_w} = T_{w^{-1}}^{-1}$ for all $w \in W$. The map $\mathscr{H} \to \mathscr{H}, h \mapsto \overline{h}$ is a ring involution such that

$$\sum_{w \in W} a_w T_w = \sum_{w \in W} \bar{a_w} T_{w^{-1}}^{-1}, a_w \in \mathcal{A}.$$

²⁰⁰⁰ Mathematics Subject Classification. Primary and secondary 20C08.

Key words and phrases. Hecke algebra, Coxeter group, Kazhdan-Lusztig bases, Specht module, Murphy basis, W-graph.

0.1. **Kazhdan-Lusztig basis.** There are two types of Kazhdan-Lusztig bases of \mathscr{H} , denoted by $\{C_w | w \in W\}$ and $\{C'_w | w \in W\}$ in the original article by Kazhdan-Lusztig [3]. It will be technically more convenient to work with the *C*-basis. The reason can be seen, for example, in Lusztig [5, chap.18]. The basis element C_w is uniquely determined by the conditions that $\overline{C_w} = C_w$ and $C_w \equiv T_w \mod \mathscr{H}_{>0}$, where $\mathscr{H}_{>0} := \sum_{w \in W} q \mathcal{A}^+ T_w$, see [5]. Or more clearly

$$C_w = T_w + \sum_{y \in W, y < w} p_{y,w} T_y,$$

where \leq denotes the *Bruhat-Chevalley order* on W and $p_{y,w} \in q\mathcal{A}^+$ for all y < w in W. We write y < w if $y \leq w$ and $y \neq w$.

The polynomials $p_{y,w}$ are related to the polynomials $P_{y,w}$ of [3] (the Kazhdan-Lusztig polynomials) by $p_{y,w}(q) = (-q)^{\ell(w)-\ell(y)} \overline{P_{y,w}(q^2)}$. That is, to get $p_{y,w}$ from $P_{y,w}$ replace q by q^2 , apply the bar involution, and then multiply by $(-q)^{\ell(w)-\ell(y)}$.

0.2. Multiplication rules for C-basis. For $s \in S, w \in W$, we have

(2)
$$T_s C_w = \begin{cases} -q^{-1}C_w, \text{ if } sw < w \\ qC_w + \sum_{y < w, sy < y} \mu(y, w)C_y, \text{ if } sw > w \end{cases}$$

The quantity $\mu(y, w)$, which is the coefficient of $q^{\frac{1}{2}(\ell(w)-\ell(y)-1)}$ in $P_{y,w}$, is the coefficient of q in $(-1)^{\ell(w)-\ell(y)}p_{y,w}$. However, since Kazhdan and Lusztig show that $\mu(y, w)$ is nonzero only when $\ell(w) - \ell(y)$ is odd, therefore $\mu(y, w) \in \mathbb{Z}$ can also be described as the coefficient of q in $-p_{y,w}$, as above.

The following notion of W-graph was introduced by Kazhdan and Lusztig in [3].

Definition of W-graph. Since we have slightly modified the definition of Hecke algebra used in [3], we are forced to also slightly alter the definition of W-graph. We define a W-graph datum to be a triple (Γ, I, μ) consisting of a set Γ (the vertices of the graph), a function

 $I: \gamma \mapsto I_{\gamma}$

from Γ to the set of all subsets of S, and a function

$$\mu: \Gamma \times \Gamma \to \mathbb{Z}$$

such that $\mu(\delta, \gamma) \neq 0$ if and only if $\{\delta, \gamma\}$ is an edge of the graph. These data are subject to the requirement that $\mathcal{A}\Gamma$, the free \mathcal{A} -module on Γ , has an \mathscr{H} -module structure satisfying

(3)
$$T_s \gamma = \begin{cases} -q^{-1}\gamma & \text{if } s \in I_\gamma \\ q\gamma + \sum_{\{\delta \in \Gamma | s \in I_\delta\}} \mu(\delta, \gamma)\delta & \text{if } s \notin I_\gamma, \end{cases}$$

for all $s \in S$ and $\gamma \in \Gamma$. If τ_s is the \mathcal{A} -endomorphism of $\mathcal{A}\Gamma$ such that $\tau_s(\gamma)$ is the right-hand side of Eq. (3) then this requirement is equivalent to the condition that for all $s, t \in S$ such that st has finite order, we require that

$$\underbrace{\tau_s \tau_t \tau_s \dots}_{m \text{ factors}} = \underbrace{\tau_t \tau_s \tau_t \dots}_{m \text{ factors}}$$

where m is the order of st. (Note that the definition of τ_s guarantees that $(\tau_s + q^{-1})(\tau_s - q) = 0$ for all $s \in S$.)

For simplicity, if (Γ, I, μ) is a *W*-graph datum, we say that Γ is *W*-graph. We call I_{γ} the *descent set* of the vertex $\gamma \in \Gamma$, and we call $\mu(\delta, \gamma)$ and $\mu(\gamma, \delta)$ the *edge weights* associated with the edge $\{\delta, \gamma\}$. In almost all the cases we consider it turns out that $\mu(\gamma, \delta) = \mu(\delta, \gamma)$.

0.3. Cells in W-graphs. Following [3], given any W-graph Γ we define a preorder relation \leq on Γ as follows: for $\gamma, \gamma' \in \Gamma$ we say that $\gamma \leq_{\Gamma} \gamma'$ if there exists a sequence of vertices $\gamma = \gamma_0, \gamma_1, \dots, \gamma_n = \gamma'$ such that for each i $(1 \leq i \leq n)$, we have both $\mu(\gamma_{i-1}, \gamma_i) \neq 0$ and $I_{\gamma_{i-1}} \not\subseteq I_{\gamma_i}$. We shall refer to \leq_{Γ} as the Kazhdan-Lusztig preorder on Γ .

Let ~ be the equivalence relation on Γ associated to the Kazhdan-Lusztig preorder; thus $\gamma \sim \gamma'$ means that $\gamma \leq_{\Gamma} \gamma'$ and $\gamma' \leq_{\Gamma} \gamma$. The corresponding equivalence classes are called the *cells* of Γ .

In this paper, the preorder \leq_{Γ} is generated by Kazhdan-Lusztig left preorder [3]: $x \leq_{\mathcal{L}} y$ if C_x occurs with nonzero coefficient in the expression of $T_s C_y$ in the *C*-basis, for some $s \in S$. Their equivalence classes are called *left cells*, see [3, 5, 11] where *right cells* and *two-sided cells* are also defined.

0.4. Left cell module. Let \mathfrak{C} be a left cell or, more generally, a union of left cells of W. We define an \mathscr{H} -module by $[\mathfrak{C}]_{\mathcal{A}} := \mathfrak{J}_{\mathfrak{C}}/\hat{\mathfrak{J}}_{\mathfrak{C}}$ where

$$\mathfrak{J}_{\mathfrak{C}} := \langle C_w | w \leqslant_{\mathcal{L}} z \text{ for some } z \in \mathfrak{C} \rangle_{\mathcal{A}}$$
$$\hat{\mathfrak{J}}_{\mathfrak{C}} := \langle C_w | w \notin \mathfrak{C}, w \leqslant_{\mathcal{L}} z \text{ for some } z \in \mathfrak{C} \rangle_{\mathcal{A}}$$

are the \mathcal{A} -spanned modules.

This paper is organized as follows. In Sect. 1 we introduce the indexing sets $D_J, \overline{D_J}$ for the basis of \mathscr{H} -module $\mathscr{H}C_{w_J}$, and E_J for the so called *general Specht* module. In Sect. 2, we obtain a version of cellular basis for \mathscr{H} in general and set up the concept of *general Specht module*. In Sect. 3 we show the construction of W-graph basis by introducing a new family of E_J -Kazhdan-Lusztig polynomials p_{xy} , and show an inductive procedure for computing $p'_{xy}s$. In Sect.4 we consider an example of type A and discuss the applications of our results, we show the transition between Murphy basis and W-graph basis.

1. The indexing sets

For each $J \subseteq S$, let $\hat{J} = S \setminus J$ (the complement of J) and define $W_J = \langle J \rangle$, the corresponding parabolic subgroup of W and let $w_J \in W_J$ be the unique element of maximal length. Let \mathscr{H}_J be the Hecke algebra associated with W_J . As is well known, \mathscr{H}_J can be identified with a subalgebra of \mathscr{H} .

1.1. Sets D_J , $\overline{D_J}$ and E_J . Let $D_J = \{ w \in W \mid \ell(ws) > \ell(w) \text{ for all } s \in J \}$, the set of minimal coset representatives of W/W_J . The following lemma is well known, it is also an easy consequence of [19, Prop. 5.9].

Lemma 1.1 (Deodhar [2, Lemma 3.2]). Let $J \subseteq S$ and $s \in S$, and define

$$D_{J,s}^{-} = \{ d \in D_J \mid \ell(sd) < \ell(d) \},\$$

$$D_{J,s}^{+} = \{ d \in D_J \mid \ell(sd) > \ell(d) \text{ and } sd \in D_J \},\$$

$$D_{J,s}^{0} = \{ d \in D_J \mid \ell(sd) > \ell(d) \text{ and } sd \notin D_J \},\$$

so that D_J is the disjoint union $D_{J,s}^- \cup D_{J,s}^+ \cup D_{J,s}^0$. Then $sD_{J,s}^+ = D_{J,s}^-$, and if $d \in D_{J,s}^0$ then sd = dt for some $t \in J$.

Define

(4)
$$E_J = \{ d \in W \mid \ell(ds) < \ell(d) \text{ for all } s \in J \text{ and } \ell(ds) > \ell(d) \text{ for all } s \notin J \}$$

that is, E_J is the set of maximal coset representatives of W/W_J and the minimal ones of $W/W_{\hat{J}}$. Clearly $\sharp E_J = \sharp E_{\hat{J}}$, where $E_{\hat{J}}$ was introduced and written as Y_J in [7].

Let $\leq_{\mathscr{L}}$ denote the *left weak Bruhat order* on W. That is, $x \leq_{\mathscr{L}} y$ if and only if y = wx for some $w \in W$ such that $\ell(y) = \ell(w) + \ell(x)$. McDonough-Pallikaros [15] also say that x is a *prefix of* y if $x \leq_{\mathscr{L}} y$. Given $x, y \in W$ let $[x, y]_{\mathscr{L}} = \{z \in w \mid x \leq_{\mathscr{L}} z \leq_{\mathscr{L}} y\}$ be the left interval they determine.

Let

$$\overline{D_J} = D_J w_J$$

then

$$\overline{D_J} = \{ d \in W \mid \ell(ds) < \ell(d) \text{ for all } s \in J \}$$

is the set of longest coset representatives of W_J in W. Thus,

$$E_J = \overline{D_J} \cap D_{\hat{J}},$$

and directly from the definition,

$$\overline{D_J} = \bigcup_{J \subseteq K \subseteq S} E_K$$

where the union is disjoint.

Proposition 1.2. Let $J \subseteq S$ and $s \in S$, we define

$$\begin{split} E_{J,s}^{-} &= \{ d \in E_J \mid \ell(sd) < \ell(d) \text{ and } sd \in E_J \}, \\ E_{J,s}^{+} &= \{ d \in E_J \mid \ell(sd) > \ell(d) \text{ and } sd \in E_J \}, \\ E_{J,s}^{0} &= \{ d \in E_J \mid sd \notin E_J \} \end{split}$$

so that E_J is the disjoint union $E_{J,s}^- \cup E_{J,s}^+ \cup E_{J,s}^0$, then $sE_{J,s}^+ = E_{J,s}^-$; let

$$E_{J,s}^{0,-} = \{ d \in E_J \mid \ell(sd) < \ell(d) \text{ and } sd \notin E_J \},\$$

$$E_{J,s}^{0,+} = \{ d \in E_J \mid \ell(sd) > \ell(d) \text{ and } sd \notin E_J \},\$$

then $E_{J,s}^0 = E_{J,s}^{0,-} \bigcup E_{J,s}^{0,+}$ (disjoint union); if $d \in E_{J,s}^{0,-}$ then sd = dt for some $t \in J$, if $d \in E_{J,s}^{0,+}$ then sd = dt for some $t \in \hat{J}$.

Proof. For any $d \in E_J$, we write $d = d'w_J$, where $d' \in D_J$ and w_J the longest element of W_J . Given $s \in S$, we have either sd < d or sd > d.

Case(a): if sd < d then we have either $sd \in E_J$ or $sd \notin E_J$. If $sd \in E_J$ then $d \in E_{Js}^-$.

We now consider the case $sd \notin E_J$. Since $d \in E_J$ (that is, $d \in \overline{D_J}$ and $d \in D_{\hat{j}}$) and sd < d, according to Lemma 1.1 we have $sd \in D_{\hat{j}}$. Thus $sd \notin \overline{D_J}$, that is $sd' \notin D_J$, this is the case $d' \in D_{J,s}^0$ in the statement of Lemma 1.1, so we have sd' > d' and sd' = d't for some $t \in J$, and

$$sd = s(d'w_J) = (sd')w_J = (d't)w_J = (d'w_J)t' = dt'$$

where $t' = w_J t w_J \in J$. This is the case $d \in E_{J,s}^{0,-}$.

4

Case(b): if sd > d then again we have either $sd \in E_J$ or $sd \notin E_J$. If $sd \in E_J$ then $d \in E_{J,s}^+$, we consider the case $sd \notin E_J$.

Since $sd = s(d'w_J) = (sd')w_J$, where $d' \in D_{J,s}^+$ (according to the above discussion, the case $d' \in D_{J,s}^0$ can not happen, and clearly $d' \notin D_{J,s}^-$). So $sd \in \overline{D_J}$, and by the assumption $sd \notin E_J$, we have $sd \notin D_{j}$.

Applying Lemma 1.1 to the set $D_{\hat{J}}$, we have sd = dt for some $t \in \hat{J}$, which is the case $d \in E_{J,s}^{0,+}$.

For $w \in W$ we set $\mathcal{L}(w) = \{s \in S; sw < w\}, \mathcal{R}(w) = \{s \in S; ws < w\}$ and refer them to be the *left and right descent set* of w.

- **Lemma 1.3.** [3][5, Prop.8.6] Let $w, w' \in W$, then
 - (a) if $w \leq_{\mathcal{L}} w'$, then $\mathcal{R}(w') \subseteq \mathcal{R}(w)$. If $w \sim_{\mathcal{L}} w'$, then $\mathcal{R}(w') = \mathcal{R}(w)$.

(b) if $w \leq_{\mathcal{R}} w'$, then $\mathcal{L}(w') \subseteq \mathcal{L}(w)$. If $w \sim_{\mathcal{R}} w'$, then $\mathcal{L}(w') = \mathcal{L}(w)$.

The linear map $\varepsilon_J : \mathscr{H}_J \to \mathcal{A}$ defined by $\varepsilon_J(T_w) = \epsilon_w q^{-\ell(w)}$ for any $w \in W_J$ is an algebra homomorphism, called the sign representation. We denote by $\operatorname{Ind}_J^S(\varepsilon_J)$, the \mathscr{H} -module obtained by induction from ε_J .

We now introduce the element C_{w_J} in the Kazhdan-Lusztig C-basis of \mathcal{H} . By [5, Cor. 12.2], it has the expression

$$C_{w_J} = \epsilon_{w_J} q^{\ell(w_J)} \sum_{w \in W_J} \epsilon_w q^{-\ell(w)} T_w.$$

Lemma 1.4. [8, Lemma 2.8] The followings hold

(a) For any $w \in W_J$, we have $T_w C_{w_J} = \epsilon_w q^{-\ell(w)} C_{w_J}$.

(b) We have $C_{w_J}^2 = \epsilon_{w_J} q^{-\ell(w_J)} P_J C_{w_J}$, where $P_J = \sum_{w \in W_J} q^{2\ell(w)}$.

(c) The set $\overline{D_J} = D_J w_J$ is a union of left cells in W, we have

$$\overline{D_J} = \{ w \in W \mid w \leq_{\mathcal{L}} w_J \},\$$

and $[\overline{D_J}]_{\mathcal{A}} \cong \operatorname{Ind}_J^S(\varepsilon_J) \cong \mathscr{H}C_{w_J}$ (isomorphisms as left \mathscr{H} -modules). **Proposition 1.5.** For $J \subseteq S$, then

(1) E_J is the left cell, or union of left cells with right descent set J.

(2) The Bruhat order \leq for the elements of E_J is exactly the weak order $\leq_{\mathscr{L}}$. If $x, y \in E_J$ and $x \leq y$, then $[x, y]_{\mathscr{L}} \subseteq E_J$.

Proof. (1) is directly from Lemma 1.3 and 1.4.

(2) is from Prop. 1.2.

Remark For convenience, in the following sections we still use the usual notations of Bruhat order $\leq, <$ for the weak Bruhat orders $\leq_{\mathscr{L}}, <_{\mathscr{L}}$ for the elements of E_J , unless indicated.

1.2. Some multiplication rules. For $J \subseteq S$, let $M^J = \mathscr{H}C_{w_J}$ be a \mathscr{H} -module, then

Lemma 1.6. (1) Let $J \subseteq S$, then M^J is a free A-module with basis

$$\{T_w C_{w_J} \mid w \in D_J\}, \text{ or alternatively } \{T_w C_{w_J} \mid w \in \overline{D_J}\}.$$

the multiplication of \mathscr{H} with respect to this basis:

$$T_{s}(T_{w}C_{w_{J}}) = \begin{cases} T_{sw}C_{w_{J}} + (q - q^{-1})T_{w}C_{w_{J}} & \text{if } w \in D_{J,s}^{-} \text{ or } w \in \overline{D}_{J,s}^{-} \\ T_{sw}C_{w_{J}} & \text{if } w \in D_{J,s}^{+} \text{ or } w \in \overline{D}_{J,s}^{+} \\ -q^{-1}T_{w}C_{w_{J}} & \text{if } w \in D_{J,s}^{0} \text{ or } w \in \overline{D}_{J,s}^{0} \end{cases}$$

for all $s \in S$. (2) For $w \in E_J$, we have :

$$T_{s}(T_{w}C_{w_{J}}) = \begin{cases} T_{sw}C_{w_{J}} + (q - q^{-1})T_{w}C_{w_{J}} & \text{if } w \in E_{J,s}^{-1} \\ T_{sw}C_{w_{J}} & \text{if } w \in E_{J,s}^{-1} \\ -q^{-1}T_{w}C_{w_{J}} & \text{if } w \in E_{J,s}^{0,-1} \\ qT_{w}C_{w_{J}} + T_{w}C_{tw_{J}} & \text{if } w \in E_{J,s}^{0,+}, t = w^{-1}sw \in \hat{J} \end{cases}$$

Proof. (1) M^J is spanned by the elements $T_w C_{w_J}$, where $w \in W$; however, if w = dv for $d \in D_J$ and $v \in W_J$, then $T_w C_{w_J} = \varepsilon_v q^{-\ell(v)} T_d C_{w_J}$. It follows that M^J is a free \mathcal{A} -module with the basis shown and it remains to verify the multiplication formulae.

According to Eq. (1) we immediately get the first two rules. By the multiplication formula for the *C*-basis elements (Eq. (2)), we have:

$$T_s C_{w_J} = \begin{cases} -q^{-1} C_{w_J} & \text{if } s \in J\\ q C_{w_J} + C_{sw_J} & \text{if } s \in \hat{J} \end{cases}$$

if $w \in D^0_{J,s}$, let $t = w^{-1}sw$ and $t \in J$ then sw = wt < w, we have

$$T_{s}(T_{w}C_{w_{J}}) = [T_{sw} + (q - q^{-1})T_{w}]C_{w_{J}}$$

$$= [T_{wt} + (q - q^{-1})T_{w}]C_{w_{J}}$$

$$= [T_{wt}(T_{t}T_{t}^{-1}) + (q - q^{-1})T_{w}]C_{w_{J}}$$

$$= T_{w}T_{t}^{-1}C_{w_{J}} + (q - q^{-1})T_{w}C_{w_{J}}$$

$$= T_{w}[T_{t} + (q^{-1} - q)]C_{w_{J}} + (q - q^{-1})T_{w}C_{w_{J}}$$

$$= -q^{-1}T_{w}C_{w_{J}}.$$

(2) If $w \in E_{J,s}^{0,+}$ and $t = w^{-1}sw \in \hat{J}$, again by the multiplication rules for C_{w_J}

$$T_s(T_w C_{w_J}) = T_w(T_t C_{w_J}) = T_w(q C_{w_J} + C_{tw})$$

2. A Cellular basis and generic Specht modules

The concept of "cellular algebras" was introduced by Graham-Lehrer [14]. It provides a systematic framework for studying the representation theory of nonsemisimple algebras which are deformations of semisimple ones. The original definition was modeled on properties of the Kazhdan-Lusztig basis [3] in Hecke algebras of type A. There is now a significant literature on the subject, and many classes of algebras have been shown to admit a "cellular" structure, including Ariki-Koiki algebras, q-Schur algebras, Temperly-Lieb algebras, and a variety of other algebras with geometric connections.

As we discussed above, \mathscr{H} is the one-parameter Hecke algebra associated to finite Weyl group W. Furthermore, if \mathscr{H} is defined over a ground ring in which "bad" primes for W are invertible, Geck [9] used deep properties of the Kazhdan-Lusztig basis and Lusztig's **a**-function, he showed that \mathscr{H} has a natural cellular structure in the sense of Graham-Lehrer.

 $\mathbf{6}$

For the purpose of this paper, we show a new version of cellular basis of \mathcal{H} . Thus, we also obtain a general theory of "Specht modules" for Hecke algebras of finite type.

We introduce an \mathcal{A} -linear anti-involution: $*: \mathscr{H} \longrightarrow \mathscr{H}$ by $T_w^* = T_{w^{-1}}$ for $w \in W$. Clearly, $C_{w_J}^* = C_{w_J}$; for any $J \subseteq S$ and let $x, y \in D_J$ (or $x, y \in \overline{D_J}$), we define $m_{xy} = T_x C_{w_J} T_y^*$. Then $m_{xy}^* = m_{yx}$. For convenience, we use the indexing set $\overline{D_J}$ in the following context.

Remark If $J = \emptyset$ then $D_J = W$, as an \mathcal{A} -modules, $M^{\emptyset} = \mathcal{H}$ so the elements

$$\{m_{xy} \mid x, y \in \overline{D_{\emptyset}}\}$$

certainly span \mathcal{H} .

In order to show that \mathscr{H} is cellular, we have to show that m_{xy} with $x, y \in \overline{D_J}$, can be written as an \mathcal{A} -linear combination of $\{m_{uv} \mid u, v \in E_K, J \subseteq K\}$.

Lemma 2.1. For any $x \in \overline{D_J}$, we have

$$T_x C_{w_J} = \sum_{x' \in E_J} r_{x'} T_{x'} C_{w_J} + \sum_{u \in E_K, J \subsetneq K} r_u T_u C_{w_K}.$$

where $r_{x'}, r_u \in \mathcal{A}$.

Proof. As we have found $\overline{D_J} = \bigcup_{J \subseteq K \subseteq S} E_K$, where the union is disjoint. If $x \in E_J$ there is nothing to prove; suppose that $x \notin E_J$, then $x \in E_K$ where $K \supseteq J$. By Prop. 1.2 we have $x = ww_K$ and $w_K = gw_J$ where $w \in W$ (or more exactly $w \in D_K$) and $g \in D_J^K = D_J \cap W_K$, with $\ell(x) = \ell(w) + \ell(w_K)$ and $\ell(w_K) = \ell(g) + \ell(w_J)$.

Since $T_g C_{w_J}$ is the sum of $C_{gw_J} = C_{w_K}$ and a linear combination of terms C_{hw_J} where $h \in D_J^K$ and h < g (this is the special case of [10, Prop.2.3]). On the other hand, C_{hw_J} is the sum of $T_h C_{w_J}$ and an \mathcal{A} -linear combination of terms $T_f C_{w_J}$, where $f < h, f \in D_J^K$. As a result, $T_g C_{w_J}$ is the sum of C_{w_K} and an \mathcal{A} -linear combination of these terms $T_f C_{w_J}$. Thus

$$T_x C_{w_J} = T_{w(gw_J)} C_{w_J}$$

= $\epsilon_{w_J} q^{-\ell(w_J)} T_w (T_g C_{w_J})$
= $\epsilon_{w_J} q^{-\ell(w_J)} T_w (C_{w_K} + \sum_{f < g, f \in D_J^K} r_f T_f C_{w_J})$
= $r_w T_w C_{w_K} + \sum_{z \in \overline{D_J}, z < w_g} r_z T_z C_{w_J}$

where $r_w, r_f, r_z \in \mathcal{A}$. By induction, each term $T_z C_{w_J}$ has also the required form.

Lemma 2.2. Let $J \subseteq S$ and suppose that $x, y \in \overline{D_J}$, then there exist $r_{x'y}, r_{uv} \in \mathcal{A}$ such that

$$m_{xy} = \sum_{x' \in E_J} r_{x'y} m_{x'y} + \sum_{u \in E_K, v \in \overline{D_K}, J \subsetneq K} r_{uv} m_{uv}.$$

Proof. By Lemma 2.1, we have

$$m_{xy} = T_x C_{w_J} T_y^*$$

= $\left[\sum_{x' \in E_J} r_{x'} T_{x'} C_{w_J} + \sum_{u \in E_K, J \subsetneq K} r_u T_u C_{w_K}\right] T_y^*$
= $\sum_{x' \in E_J} r_{x'} T_{x'} C_{w_J} T_y^* + \sum_{u \in E_K, J \subsetneq K} r_u T_u C_{w_K} T_y^*$

and

$$C_{w_K}T_y^* = (T_y C_{w_K})^*$$

where $T_y C_{w_K} \in \mathscr{H} C_{w_K}$, this implies $T_y C_{w_K} \in \langle T_v C_{w_K} | v \in \overline{D_K} \rangle_{\mathcal{A}}$, as required.

Let $\Omega^{lex} = \{J \mid J \subseteq S\}$ be a set ordered lexicographically.

Theorem 2.3. The Hecke algebra \mathcal{H} is free as an \mathcal{A} -module with basis

 $\mathcal{M} = \{ m_{uv} \mid u, v \in E_J \text{ for some } J \subseteq S \}.$

Proof. We first show that \mathcal{M} spans \mathscr{H} by showing that whenever $x, y \in \overline{D_J}$ then m_{xy} can be written as a \mathcal{A} -linear combination of terms m_{uv} in \mathcal{M} . When J = S this is clear because $\mathscr{H}C_{w_J}\mathscr{H} = \mathcal{A}C_{w_J}$. If $J \neq S$, by Lemma 2.2, we have

$$m_{xy} = \sum_{x' \in E_J} r_{x'y} m_{x'y} + \sum_{(u,v), J \subsetneq K} r_{uv} m_{uv}$$

where $r_{x'}, r_{uv} \in \mathcal{A}$, and the second sum is over the pairs (u, v) where $u \in E_K$, $v \in \overline{D_K}$. However, $m_{xy}^* = m_{yx}$ so by induction on the elements of Ω^{lex} again (start with J = S, clearly $C_{w_J}^* = C_{w_J}$), m_{xy} can be written as an \mathcal{A} -linear combination of elements of \mathcal{M} . Finally, let $J = \emptyset$, then $\mathcal{H} = \mathcal{H}C_{w_{\emptyset}}\mathcal{H}$.

Therefore \mathcal{M} spans \mathscr{H} .

By Wedderburn's theorem $\dim(\mathscr{H}) = |W| = \sum_{J \subseteq S} |\mathcal{M}(J)|^2$, where

$$\mathcal{M}(J) = \{ m_{uv} \mid u, v \in E_J \text{ for a fixed } J, J \subseteq S \}.$$

Hence the set \mathcal{M} has the correct cardinality.

Define $\hat{\mathscr{H}}^J$ to be the \mathcal{A} -module with basis

 $\{m_{uv} \mid w, v \in E_K \text{ for some } K \text{ such that } J \subset K \subseteq S\}.$

where we write $J \subset K$ when $J \subseteq K$ and $J \neq K$. Similarly, we define \mathscr{H}^J to be the \mathscr{H} -module with basis m_{uv} where $u, v \in E_K$ with $J \subseteq K \subseteq S$.

Theorem 2.4. (1) The A-linear map determined by

$$m_{uv} \mapsto m_{vu}$$

for all $m_{uv} \in \mathcal{M}$, is an anti-isomorphism of \mathcal{H} .

(2) Suppose that $h \in \mathscr{H}$ and that $u \in E_J$, there exist $r_u \in \mathcal{A}$ such that for all $v \in E_J$

$$hm_{uv} \equiv \sum_{w \in E_J} r_w m_{wv} \mod \hat{\mathscr{H}}^J$$

Consequently, $\{\mathcal{M}, \Omega^{lex}\}$ is a cellular basis of \mathcal{H} .

Proof. (1) The *-endomorphism and the \mathcal{A} -linear map determined by $m_{uv} \mapsto m_{vu}$ coincide since $m_{uv}^* = m_{vu}$ for all m_{uv} in \mathcal{M} . This proves (1) since * is an anti-isomorphism of \mathcal{H}

(2) We argue by induction on $J \in \Omega^{lex}$. By (1), if J = S then $\mathscr{H}C_{w_J}\mathscr{H} = \mathcal{A}C_{w_J}$, there is nothing to prove. Suppose that $J \subseteq S$. First we consider $v = w_J$. Since \mathcal{M} is a basis of \mathscr{H} , for any $h \in \mathscr{H}$ we may write

$$hm_{u,w_J} = \sum_{x,y \in E_K, K \subseteq S} r_{xy} m_{xy}$$

for some $r_{xy} \in \mathcal{A}$. Now hm_{u,w_J} belongs to M^J , clearly, if $r_{xy} \neq 0$ then $J \subseteq K$; further, if J = K then we must also have $v = w_J$. Hence,

(5)
$$hm_{u,w_J} = \sum_{x \in E_J} r_x m_{x,w_J} \mod \hat{\mathscr{H}}^J$$

where $r_x = r_{x,w_J} \in \mathcal{A}$. This completes the proof of (2) when $v = w_J$.

Now, if $K \supseteq J$ and $u, y \in E_K$ then $m_{uy}T_v^* = (T_v m_{yu})^* \in \mathscr{H}^K \subseteq \hat{\mathscr{H}}^J$ by induction on $J \in \Omega^{lex}$. Therefore, we can multiply the Eq. (5) on the right by T_v^* , to complete the proof.

So we can now introduce the following:

Definition 2.5. Let $S^J = \langle T_u C_{w_J} + \hat{\mathscr{H}}^J \mid u \in E_J \rangle_{\mathcal{A}}$, then S^J is an \mathscr{H} -submodule of $\mathscr{H}^J/\hat{\mathscr{H}}^J$. We call this the *generic Specht module* of \mathscr{H} associated with J.

The bar involution for S^J . For all $x, y \in E_J$ we define elements $R_{x,y} \in \mathcal{A}$ by the formula

(6)
$$\overline{T_y C_{w_J}} = \sum_{x \in E_J} R_{x,y} T_x C_{w_J} \mod \hat{\mathscr{H}}^J,$$

We can easily derive the following formulae which provide an inductive procedure for calculating these elements in S^{J} .

Proposition 2.6. Let $x, y \in E_J$. If $s \in S$ is such that $\ell(sy) < \ell(y)$ then

$$R_{x,y}(mod \ \hat{\mathscr{H}}^{J}) = \begin{cases} R_{sx,sy} & \text{if } x \in E_{J,s}^{-} \\ R_{sx,sy} + (q^{-1} - q)R_{x,sy} & \text{if } x \in E_{J,s}^{+} \\ -qR_{x,sy} & \text{if } x \in E_{J,s}^{0,-} \\ q^{-1}R_{x,sy} & \text{if } x \in E_{J,s}^{0,+} \end{cases}$$

We may use induction on $\ell(y)$ to establish that $R_{x,y} = 0$ unless $x \leq_{\mathscr{L}} y$ in the weak Bruhat partial order on E_J ; this follows from the fact that if $sy \leq_{\mathscr{L}} y$ and $x \leq_{\mathscr{L}} sy$ then both $x \leq_{\mathscr{L}} y$ and $sx \leq_{\mathscr{L}} y$. It is also easily seen that $R_{x,x} = 1$.

3. W-GRAPHS FOR GENERIC SPECHT MODULES

Let \mathfrak{C}_{w_J} be a left cell, or more generally, a union of left cells containing w_J , then the transition between the bases of the left cell module $[\mathfrak{C}_{w_J}]_{\mathcal{A}}$ and the generic Specht module S^J is described as the following:

Theorem 3.1. The \mathscr{H} -module S^J has a unique basis $\{C_w \mid w \in E_J\}$ such that $\overline{C_w} = C_w$ for all $w \in E_J$, and

$$C_w = \sum_{y \in E_J} P_{y,w} T_y C_{w_J} \mod \hat{\mathscr{H}}^J$$

for some elements $P_{u,w} \in \mathcal{A}^+$ with the following properties:

- (i) $P_{y,w} = 0$ if $y \leq w$;
- (ii) $P_{w,w} = 1;$

(iii) $P_{y,w}$ has zero constant term if $y \neq w$.

Comparing with the original Kazhdan-Lusztig's polynomials in [3], we called $\{P_{y,w} \mid y, w \in E_J\}$ the family of E_J -relative Kazhdan-Lusztig polynomials. We shall show that the basis $\{C_w \mid w \in E_J\}$ give S^J the structure of a W-graph. That is, there is a W-graph Λ with vertex elements $\{C_w \mid w \in E_J\}$. Before showing the proof of Theorem 3.1, we describe the edge weights and descent sets for Λ .

Given $y, w \in E_J$ with $y \neq w$, we define an integer $\mu(y, w)$ as follows. If y < w then $\mu(y, w)$ is the coefficient of q in $-P_{y,w}$.

We write $y \prec w$ if y < w and $\mu(y, w) \neq 0$.

The (left) descent set associated with the vertex element $C_w(w \in E_J)$ of Λ is

$$I(w) = \{ s \in S \mid \ell(sw) < \ell(w) \}$$

= $\{ s \in S \mid w \in E_{J,s}^{-} \} \cup \{ s \mid w \in E_{J,s}^{0,-} \}$

In accordance with the notation introduced in Section 2, we define

$$\Lambda_{s}^{-} = \{ w \in E_{J} \mid s \in I(w) \}$$

= $\{ w \mid w \in E_{J,s}^{-} \text{ or } w \in E_{J,s}^{0,-} \}$

and similarly $\Lambda_s^+ = \{ w \in E_J \mid s \notin I(w) \}$. Our proof of Theorem 3.1 will also incorporate a proof of the following result, which will be an important component of the subsequent proof that Λ is a W-graph.

Theorem 3.2. Let $v \in E_J$. Then for all $s \in S$ such that $\ell(sv) > \ell(v)$ and $sv \in E_J$ we have

$$T_sC_v = qC_v + C_{sv} + \sum_{z \in E_J} \mu(z, v)C_z,$$

where the sum is over all $z \in \Lambda_s^-$ such that $z \prec v$.

The following is the proof of Theorem 4.1.

Proof. Uniqueness is proved similarly with that of [3, Theorem 1.1], we omit the details.

Existence. We give a recursive procedure for constructing elements $P_{x,w}$ satisfying the requirements of Theorem 3.1. We start with the definition

$$P_{w_J,w_J} = 1$$

so that $\overline{C_w} = C_w$ holds for $w = w_J$, as do Conditions (i), (ii) and (iii).

Now assume that $w \neq w_J$ and that for all $v \in E_J$ with $\ell(v) < \ell(w)$ the elements $P_{x,v}$ have been defined (for all $x \in E_J$) so that the requirements of Theorem 3.1 are satisfied. Thus the elements C_v are known when $\ell(v) < \ell(w)$. We may choose $s \in S$ such that w = sv with $\ell(w) = \ell(v) + 1$; note that $v \in E_J$ by Lemma 1.6. In accordance with the formula in Theorem 3.2 we define

(7)
$$C_w = (T_s - q)C_v - \sum_{\substack{z \prec v \\ z \in \Lambda_s^-}} \mu(z, v)C_z.$$

10

Since $\overline{T_s - q} = T_s - q$, induction immediately gives $\overline{C_w} = C_w$. We define $P'_{y,w}$ and $P''_{y,w}$ by

(8)
$$(T_s - q)C_v = \sum_{y \in E_J} P'_{y,w} T_y C_{w_J}$$

(9)
$$\sum_{z \prec v} \mu(z, v) C_z = \sum_{y \in E_J} P_{y,w}'' T_y C_{w_J}$$

and define $P_{y,w} = P'_{y,w} - P''_{y,w}$. If $y \in E_J$ then

$$(T_s - q)T_y = \begin{cases} T_{sy} - qT_y & \text{if } y \in E_{J,s}^+ \\ T_{sy} - q^{-1}T_y & \text{if } y \in E_{J,s}^- \\ T_y(T_t - q) & \text{if } y \in E_{J,s}^{0,-} \\ T_{sy} - qT_y & \text{if } y \in E_{J,s}^{0,+} \end{cases}$$

where we have written $t = y^{-1}sy$ in the case $y \in E^0_{J,s}$. Thus we see that

$$(T_{s} - q)C_{v} = \sum_{y \in E_{J,s}^{+}} P_{y,v}(T_{sy} - qT_{y})C_{w_{J}} + \sum_{y \in E_{J,s}^{-}} P_{y,v}(T_{sy} - q^{-1}T_{y})C_{w_{J}}$$

+
$$\sum_{y \in E_{J,s}^{0,-}} P_{y,v}T_{y}(T_{t} - q)C_{w_{J}} + \sum_{y \in E_{J,s}^{0,+}} P_{y,v}(T_{sy} - qT_{y})C_{w_{J}}$$

=
$$\sum_{y \in E_{J,s}^{-}} (P_{sy,v} - q^{-1}P_{y,v})T_{y}C_{w_{J}} + \sum_{y \in E_{J,s}^{+}} (P_{sy,v} - qP_{y,v})T_{y}C_{w_{J}}$$

+
$$\sum_{y \in E_{J,s}^{0,-}} P_{y,v}(-q^{-1} - q)T_{y}C_{w_{J}}$$

+
$$\sum_{y \in E_{J,s}^{0,+}} P_{y,v}\Big[(qT_{y}C_{w_{J}} + T_{y}C_{tw_{J}}) - qT_{y}C_{w_{J}}\Big]$$

Now comparing Eq. (8) with the expression for $(T_s - q)C_v$ obtained above we obtain the following formulas for the cases $y \in E_{J,s}^+$ (case (a)), $y \in E_{J,s}^-$ (case (b)), $y \in E_{J,s}^{0,-}$ and (case (c)) and $y \in E_{J,s}^{0,+}$ (case (d)):

(10)
$$P'_{y,w} = \begin{cases} P_{sy,v} - qP_{y,v} & (\text{case (a)}), \\ P_{sy,v} - q^{-1}P_{y,v} & (\text{case (b)}), \\ (-q - q^{-1})P_{y,v} & (\text{case (c)}), \\ 0 & (\text{case (d)}). \end{cases}$$

Since $C_z = \sum_{y \in E_J} P_{y,z} T_y C_{w_J}$, we have

$$\sum_{\forall v, z \in \Lambda_s^-} \mu(z, v) C_z = \sum_{y \in E_J} \sum_{z \prec v, z \in \Lambda_s^-} \mu(z, v) P_{y, z} T_y C_{w_J}$$

 $z \prec v, z \in \Lambda_s^$ and by comparison with Eq. (9)

(11)
$$P_{y,w}'' = \sum_{\substack{z \prec v \\ z \in \Lambda_s^-}} \mu(z,v) P_{y,z}.$$

We may check that with $P'_{y,w}$ and $P''_{y,w}$ given by Eq's (10) and (11), the elements $P_{y,w} = P'_{y,w} - P''_{y,w}$ lie in \mathcal{A}^+ and satisfy Conditions (i), (ii) and (iii) of Theorem 3.1. We omit the details here.

For convenience, let $T_w = T_w C_{w_J}$. Observe that the formula for C_w in Theorem 3.1 may be written as

$$C_w = \tilde{T_w} + \sum_{y < w, y \in E_J} P_{y,w} \tilde{T_y},$$

and inverting this gives

(12)
$$\tilde{T_w} = C_w + \sum_{y < w, y \in E_J} Q_{y,w} C_y$$

where the elements $Q_{y,w}$ (defined whenever y < w) are given recursively by

$$Q_{y,w} = -P_{y,w} - \sum_{\{z \mid y < z < w\}} Q_{y,z} P_{z,w}$$

In particular, $Q_{y,w}$ is in \mathcal{A}^+ , has zero constant term, and has coefficient of q equal to $\mu(y, w)$.

We now state our main result.

Theorem 3.3. The basis $\{C_w \mid w \in E_J\}$ gives the generic Specht module S^J the structure of a W-graph, as described above.

Proof. The proof is similar with [21, Theorem 2.6], modified appropriately. We start by using induction on $\ell(w)$ to prove that for all $s \in S$

(13)
$$T_s C_w = \begin{cases} -q^{-1}C_w & \text{if } w \in \Lambda_s^-, \\ qC_w + \sum_{z \in E_J, z \in \Lambda_s^-} \mu(z, w)C_z & \text{if } w \notin \Lambda_s^-. \end{cases}$$

or more exactly (14)

$$T_s C_w (\text{ mod } \hat{\mathscr{H}}^J) = \begin{cases} -q^{-1} C_w & \text{if } w \in E_{J,s}^- \text{ or } w \in E_{J,s}^{0,-}, \\ q C_w + \sum_{z \in E_{J,s}^-, z < w} \mu(z,w) C_z & \text{if } w \in E_{J,s}^+. \\ q C_w + \sum_{z \in E_{J,s}^-, z < w} \mu(z,w) C_z & \text{if } w \in E_{J,s}^{0,+}. \end{cases}$$

If $w \in E_{J,s}^+$ then $w \notin \Lambda_s^-$, and Eq. (13) follows immediately from Theorem 3.2 (applied with v replaced by w), since the only $z \in \Lambda_s^-$ with $\mu(z, w) \neq 0$ and $\ell(z) \ge \ell(w)$ is z = sw.

For the case $w \in E_{J,s}^{0,+}$, the term C_{sw} can not appear in the sum of Eq. (13).

If $w \in E_{J,s}^-$, which implies that $w \in \Lambda_s^-$, then writing v = sw and applying Theorem 3.2 gives

$$C_w = (T_s - q)C_v - \sum \mu(z, v)C_z,$$

where $z \prec v$ and $z \in \Lambda_s^-$ for all terms in the sum. The inductive hypothesis thus gives $T_s C_z = -q^{-1}C_z$, and since we also have $T_s(T_s - q) = -q^{-1}(T_s - q)$ it follows that $T_s C_w = -q^{-1}C_w$, as required.

Now suppose that $w \in E^0_{J,s}$, and as usual let us write sw = wt. Suppose first that $t = w^{-1}sw \in J$, so that $w \in \Lambda_s^-$. By Eq. (12),

$$C_w = \tilde{T_w} - \sum_{\{y \mid y < w, y \in E_J\}} Q_{y,w} C_y,$$

and since $T_s T_w C_{w_J} + q^{-1} T_w C_{w_J} = T_w (T_t C_{w_J} + q^{-1} C_{w_J}) = 0$ we find that

(15)
$$T_s C_w + q^{-1} C_w = -\sum_{\{y|y < w, y \in E_J\}} Q_{y,w} (T_s C_y + q^{-1} C_y).$$

By the inductive hypothesis,

$$T_s C_y + q^{-1} C_y = \begin{cases} 0 & \text{if } y \in \Lambda_s^- \\ (q + q^{-1}) C_y + \sum_{z \in \Lambda_s^-} \mu(z, y) C_z & \text{if } y \notin \Lambda_s^-, \end{cases}$$

and so Eq. (15) gives

(16)
$$T_s C_w + q^{-1} C_w = -\sum_{\substack{y \notin \Lambda_s^- \\ y < w}} Q_{y,w} (q+q^{-1}) C_y + X$$

for some X in the A-submodule spanned by the elements C_z for $z \in \Lambda_s^-$. Now since $T_s = T_s^{-1} + (q - q^{-1})$ it follows that

$$(T_s + q^{-1})C_w = \overline{(T_s + q^{-1})C_w}$$
$$= -\sum_{\substack{y \notin \Lambda_s^- \\ y < w}} \overline{Q_{y,w}}(q^{-1} + q)C_y + \overline{X},$$

and comparing with Eq. (16) shows that for all y with $y < w(y \in E_J)$ and $y \notin \Lambda_s^-$,

(17)
$$\overline{Q_{y,w}} = Q_{y,w}.$$

Since $Q_{y,w}$ is in \mathcal{A}^+ and has zero constant term, Eq. (17) forces $Q_{y,w}$ to be zero whenever y < w and $y \notin \Lambda_s^-$. Therefore the right hand side of Eq. (15) is zero, since $T_s C_y + C_y = 0$ whenever $y \in \Lambda_s^-$. So

$$T_s C_w = -q^{-1} C_w,$$

as required.

.

4. Applications to type A

Throughout this section, we apply our results to the Hecke algebra of type A. Let $W = \mathfrak{G}_n$ be the symmetric group acting on the left on $\{1, 2, \dots, n\}$. Another reference is the exposition by Mathas [6]. For $i = 1, 2, \dots, n-1$ let s_i be the basic transposition (i, i+1) and let $S = \{s_1, s_2, \dots, s_{n-1}\}$, the generating set of \mathfrak{G}_n .

4.1. Notations. Let $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_r)$ be a partition of n with the notation $\lambda \vdash n$. A standard λ -tableau is a tableau whose entries are exactly $1, 2, \dots, n$ and which has both increasing rows and increasing columns, the set is denoted $\mathbb{T}(\lambda)$. Let t^{λ} (resp. t_{λ}) be the λ -tableau in which the numbers $1, 2, \dots$ appear in order from left to right (resp. top to bottom) and down along successive rows (resp. columns), then $t^{\lambda}, t_{\lambda} \in \mathbb{T}(\lambda)$. For a Young tableau t, we put

$$I(t) = \{i \mid 1 \le i \le n - 1, i + 1 \text{ is in a lower position than } i \text{ in } t\}$$

and call it the *descent set* of t. Let

 $I_0(t) = \{i \in I(t) \mid i+1 \text{ is in the left side of } i \text{ in } t\},$ $I_1(t) = \{i \in I(t) \mid i+1 \text{ is directly below } i \text{ in } t\}.$

Lemma 4.1. [17] For a standard tableau t of shape $\lambda \vdash n$,

 $(\mathbf{a}) \mathbf{T}(\mathbf{a})$

$$(1)I(t) = I_0(t) \cup I_1(t);$$

$$(2)I(t) \cup I(t') = \{1, 2, ..., n-1\};$$

$$(3)I_0(t) = \emptyset \text{ if and only if } t = t_{\lambda};$$

$$(4)I_0(t') = \emptyset \text{ if and only if } t = t^{\lambda}.$$

T (1) . . T (1)

The Young subgroup $\mathfrak{G}_{\lambda} = \mathfrak{G}_{\lambda_1} \times \cdots \times \mathfrak{G}_{\lambda_r}$ of \mathfrak{G}_n is the row stabilizer of t^{λ} . Let D_{λ} be the set of distinguished left coset representatives of \mathfrak{G}_{λ} in \mathfrak{G}_n , by Dipper-James [1] and Mathas [6], we have the following explicit description:

$$D_{\lambda} = \{ w \in \mathfrak{G}_n \mid wt^{\lambda} \text{ is row-standard} \}.$$

As in [1, 12, 6], if t is a row-standard λ -tableau, the unique element $d \in D_{\lambda}$ such that $t = dt^{\lambda}$ will be denoted by d(t). Let $w_{J(\lambda)}$ be the longest element of the Young subgroup \mathfrak{G}_{λ} , an element w_{λ} is defined by $t_{\lambda} = w_{\lambda}t^{\lambda}$.

Given partitions $\mu = (\mu_1, \mu_2, ...)$ and $\lambda = (\lambda_1, \lambda_2, ...)$ of n, we say μ dominates λ , and write $\lambda \leq \mu$, if

$$\lambda_1 \leq \mu_1, \lambda_1 + \lambda_2 \leq \mu_1 + \mu_2, \lambda_1 + \lambda_2 + \lambda_3 \leq \mu_1 + \mu_2 + \mu_3, \dots$$

we write $\lambda \leq \mu$ if $\lambda \leq \mu$ and $\mu \neq \lambda$. The partial order \leq on the set of partitions(or shapes) of *n* will be referred to as the *dominance order*.

For a fixed $\lambda \vdash n$, $s, t \in \mathbb{T}(\lambda)$. We write $s \leq t$ if $\ell(d(s)) \leq \ell(d(t))$, and s < t if $s \leq t$ and $s \neq t$. We note that the notation here is different with [6][pp.31].

4.2. Cells. The cells of $W = \mathfrak{G}_n$ may be described in terms of the Robinson-Schensted correspondence. The correspondence is a bijection of S_n to pairs of standard tableaux (P,Q) of the same shape corresponding to partitions of n, so that if $w \mapsto (P(w), Q(w))$ then $Q(w) = P(w^{-1})$. In particular, the involutions are the elements $w \in W$ for which Q(w) = P(w). If $\lambda \vdash n$, the pair of tableaux corresponding to $w_{J(\lambda)}$ has the form $(t_{\lambda'}, t_{\lambda'})$. Hence, the tableaux corresponding to $w_{J(\lambda)}$ have shape λ' , where λ' denotes the partition conjugate to λ .

If R is a fixed standard tableau then the set $\{w \in W : Q(w) = R\}$ is a left cell of W and the set $\{w \in W : P(w) = R\}$ is a right cell of W. See [3] and also [4] for an alternative proof of this result.

Lemma 4.2. Let $\lambda \vdash n$ and $t \in \mathbb{T}(\lambda)$. The element of \mathfrak{G}_n , which corresponds to the pair of tableaux $(t^{\lambda'}, t_{\lambda'})$ under the Robinson-Schensted correspondence, is $w_{\lambda}w_{J(\lambda)}$.

The following is the corollaries of the discussion in Section 1, see also in [15, Lemma 3.3] and Du [16, Lemma 1.2].

Lemma 4.3. The followings $hold(i) \ w_{\lambda}w_{J(\lambda)} \in D_{\lambda}$, (ii) $dw_{J(\lambda)} \in D_{\lambda}$ for each prefix d of w_{λ} , (iii) $dw_{J(\lambda)} \in D_{\lambda}$ is in the same left cell as $w_{J(\lambda)}$ for each prefix d of w_{λ} .

As in Section 1, we write $E_{J(\lambda)} = \{e \mid e = dw_{J(\lambda)} \text{ and } d \text{ is a prefix of } w_{\lambda}\}$, for any $s_i = (i, i+1) \in S$ we define

$$E_{J(\lambda),s_i}^- = \{ e \in E_{J(\lambda)} \mid \ell(s_i e) < \ell(e) \text{ and } s_i e \in E_{J(\lambda)} \},\$$

$$E_{J(\lambda),s_i}^+ = \{ e \in E_{J(\lambda)} \mid \ell(s_i e) > \ell(e) \text{ and } s_i e \in E_{J(\lambda)} \},\$$

$$E_{J(\lambda),s_i}^0 = \{ e \in E_{J(\lambda)} \mid s_i e \notin E_{J(\lambda)} \}$$

so that $E_{J(\lambda)}$ is the disjoint union $E^{-}_{J(\lambda),s_i} \cup E^{+}_{J(\lambda),s_i} \cup E^{0}_{J(\lambda),s_i}$, then

$$s_i E^+_{J(\lambda), s_i} = E^-_{J(\lambda), s_i}$$

 let

$$E_{J(\lambda),s_i}^{0,-} = \{ e \in E_{J(\lambda)} \mid \ell(s_i e) < \ell(e) \text{ and } s_i e \notin E_{J(\lambda)} \},\$$
$$E_{J(\lambda),s_i}^{0,+} = \{ e \in E_{J(\lambda)} \mid \ell(s_i e) > \ell(e) \text{ and } s_i e \notin E_{J(\lambda)} \},\$$

then $E_{J(\lambda),s_i}^0 = E_{J(\lambda),s_i}^{0,-} \bigcup E_{J(\lambda),s_i}^{0,+}$ (disjoint union); if $e \in E_{J(\lambda),s_i}^{0,-}$ then $s_i e = et$ for some $t \in J(\lambda)$, if $e \in E_{J(\lambda),s_i}^{0,+}$ then $s_i e = et$ for some $t \in J(\hat{\lambda})$, where $\hat{J(\lambda)} = S \setminus J(\lambda)$.

We have the following observation

$$E_{J(\lambda),s_{i}}^{-} = \{ d(t)w_{J(\lambda)} \mid t \in \mathbb{T}(\lambda), i \in I_{0}(t') \}, \\ E_{J(\lambda),s_{i}}^{+} = \{ d(t)w_{J(\lambda)} \mid t \in \mathbb{T}(\lambda), i \in I_{0}(t) \}, \\ E_{J(\lambda),s_{i}}^{0,-} = \{ d(t)w_{J(\lambda)} \mid t \in \mathbb{T}(\lambda), i \in I_{1}(t') \}, \\ E_{J(\lambda),s_{i}}^{0,+} = \{ d(t)w_{J(\lambda)} \mid t \in \mathbb{T}(\lambda), i \in I_{1}(t) \}, \end{cases}$$

Let

$$C_{w_{J(\lambda)}} = \epsilon_{w_{J(\lambda)}} q^{\ell(w_{J(\lambda)})} \sum_{w \in \mathfrak{G}_{\lambda}} \epsilon_{w} q^{-\ell(w)} T_{w}.$$

then the following statement is a corollary of Lemma 2.1. Lemma 4.4. [1] Mathas2 Let $\lambda \vdash n$, then $\mathscr{H}C_{w_J(\lambda)}$ is a free \mathcal{A} -module with basis

 $\{T_{d(t)}C_{w_{J(\lambda)}}|t \text{ a row standard } \lambda\text{-tableau}\}.$

Moreover, if t is row standard and $s = s_i t$ for some $1 \le i \le n-1$, then

$$T_{i}T_{d(t)}C_{w_{J(\lambda)}} = \begin{cases} T_{d(s)}C_{w_{J(\lambda)}}, & \text{if } i \in I_{0}(t) \\ T_{d(s)}C_{w_{J(\lambda)}} + (q - q^{-1})T_{d(t)}C_{w_{J(\lambda)}}, & \text{if } i \in I_{0}(t') \\ -q^{-1}T_{d(t)}C_{w_{J(\lambda)}}, & \text{if } i \in I_{1}(t') \end{cases}$$

where $T_i := T_{s_i}$.

4.3. Murphy basis and *W*-graph basis. The following is a corollary of the main Theorems in Section 2.

Theorem 4.5. [12, 13] For any $\lambda \vdash n$ and $s, t \in \mathbb{T}(\lambda)$, we define elements of \mathscr{H} by

$$m_{st} = T_{d(s)} C_{w_J(\lambda)} T_{d(t)^{-1}}$$

then the following hold (a) The set $\{m_{st}|s,t\in\mathbb{T}(\lambda) \text{ for some } \lambda\vdash n\}$ is an \mathcal{A} -basis of \mathscr{H} ; (b) For any $\lambda\vdash n$, let \mathscr{H}^{λ} be the \mathcal{A} -submodule of \mathscr{H} spanned by all elements m_{st} where $s,t\in\mathbb{T}(\mu)$ for some $\lambda\leq\mu$, then \mathscr{H}^{λ} is a two-sided ideals in \mathscr{H} .

Note that the element that we denote by T_w corresponds to the element $q^{\ell(w)}T_w$ in Murphy's notation. Thus the element denoted by $C_{w_{J(\lambda)}}$ in the above statement is exactly as in Murphy's work, except the associated coefficient $\epsilon_{w_{J(\lambda)}}q^{\ell(w_{J(\lambda)})}$. However, this does not affect the validity of (a) and (b) since q is invertible in \mathcal{A} . The statement in (a) can be found in Murphy [12, Th.3.9] or Murphy [13, Th. 4.17]. The statement(b) is proved in [13, Th. 4.18].

Murphy also obtains the following result concerning the Specht modules of \mathscr{H} . For any $\lambda \vdash n$, let $\hat{\mathscr{H}}^{\lambda}$ be the \mathcal{A} -submodule of \mathscr{H} spanned by all m_{st} where $s, t \in \mathbb{T}(\mu)$ for some $\mu \vdash n$ such that $\lambda \triangleleft \mu$. Thus, we have

$$\hat{\mathscr{H}}^{\lambda} = \sum_{\mu} \mathscr{H}^{\mu}$$

where the sum runs over all $\mu \vdash n$ such that $\lambda \triangleleft \mu$. In particular, $\hat{\mathscr{H}}^{\lambda}$ is a two-sided ideal and we have $\mathscr{H}^{\lambda} = \mathscr{H}C_{w,I}(\lambda)\mathscr{H} + \hat{\mathscr{H}}^{\lambda}$

Definition 4.6. [6] For $\lambda \vdash n$, the Specht module S^{λ} is defined to be the left \mathscr{H} -module $(\mathscr{H}^{\lambda} + C_{w_{I(\lambda)}})\mathscr{H}$.

Note that $\hat{\mathscr{H}}^{\lambda} + C_{w_{J(\lambda)}}$ is an element of the \mathscr{H} -module $\mathscr{H}/\hat{\mathscr{H}}^{\lambda}$ so that S^{λ} is a submodule of $\mathscr{H}/\hat{\mathscr{H}}^{\lambda}$. As we defined it, the Specht module S^{λ} is isomorphic to the dual of the Specht module which Dipper and James [1] indexed by λ' .

For a standard λ -tableau t let $m_t = m_{tt^{\lambda}} + \hat{\mathscr{H}}^{\lambda} = T_{d(t)}C_{w_{J(\lambda)}} + \hat{\mathscr{H}}^{\lambda}$, We have **Theorem 4.7.** [8, 13] The Specht module S^{λ} is free as an \mathscr{H} -module with basis $\{m_t | t \in \mathbb{T}(\lambda)\}$, and $\mathscr{H}^{\lambda}/\hat{\mathscr{H}}^{\lambda}$ is a direct sum of $|\mathbb{T}(\lambda)|$ copies of S^{λ} .

While

Lemma 4.8. [6] Suppose $t \in \mathbb{T}(\lambda)$ such that $i \in I_1(t)$, then for all $s \in \mathbb{T}(\lambda)$

$$T_i m_{st} \equiv q m_{st} + \sum_{v \triangleleft s} r_v m_{vt} \qquad mod \; \hat{\mathscr{H}}^{\lambda}$$

for some $r_v \in \mathcal{A}$.

Corollary 4.9. Let $t \in \mathbb{T}(\lambda)$ and $s = s_i t$ for some $1 \leq i \leq n-1$, then

$$T_{i}m_{t} = \begin{cases} m_{s}, if \ i \in I_{0}(t) \\ m_{s} + (q - q^{-1})m_{t}, if \ i \in I_{0}(t') \\ -q^{-1}m_{t}, if \ i \in I_{1}(t') \\ qm_{t} + \sum_{v \lhd t} r_{v}m_{v} \mod \hat{\mathscr{H}}^{\lambda}, if \ i \in I_{1}(t). \end{cases}$$

where $r_v \in \mathcal{A}$.

We apply with Theorem 4.1 and 4.3 to establish the transition between Murphy's basis and W-graph basis of the Specht module. We also note that in the references, the authors related the Kazhdan-Lusztig cell module and the corresponding Specht module in the case of symmetry group, group algebra and Hecke algebra of type A. See Naruse [17], Garsia-MacLarnan [18] and MacDonough and Pallicaros [15] ect.

Theorem 4.10. For a fixed $\lambda \vdash n$, we define the elements of the C-basis for S^{λ}

$$\begin{split} C_{d(s)w_{J(\lambda)}} &= m_s - q \sum_{d(t) < d(s)} p_{t,s} m_t, \\ &= T_{d(s)} C_{w_{J(\lambda)}} - q \sum_{t \lhd s} p_{t,s} T_{d(t)} C_{w_{J(\lambda)}} \mod(\hat{\mathscr{H}}). \end{split}$$

where $s, t \in \mathbb{T}(\lambda)$ and $p_{t,s} \in \mathbb{Z}(q)$ will be defined recursively by (18)

$$T_i C_{d(t)w_{J(\lambda)}} = \begin{cases} -q^{-1} C_{d(t)w_{J(\lambda)}}, & \text{if } i \in I(t') \\ q C_{d(t)w_{J(\lambda)}} + \sum_{i \in I(u'), u \lhd t} \mu(u, t) C_{d(u)w_{J(\lambda)}}, & \text{if } i \in I_1(t) \\ q C_{d(t)w_{J(\lambda)}} + C_{s_i d(t)w_{J(\lambda)}} + \sum_{i \in I(u'), u \lhd t} \mu(u, t) C_{d(u)w_{J(\lambda)}}, & \text{if } i \in I_0(t) \end{cases}$$

where $\mu(u,t)$ is the constant term of the polynomial $p_{u,t}$.

References

- R. Dipper and G. James, Representations of Hecke algebras of general linear groups, Proc. London Meth. Soc. 52 (1986), 20-52.
- [2] V. Deodhar, Some characterizations of Bruhat ordering on a Coxeter group and determination of the relative Möbius function, Invent. Math. 39 (1977), 187–198.
- [3] D. Kazhdan and G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), 165–184.
- [4] S. Ariki, Robinson-Schensted correspondence and left cells, Advanced studies in Pure Math. 28, 2000, Combinatorial methods in Representation Theory pp.1-20. (1979), 165–184.
- [5] G. Lusztig, Hecke algebras with unequal parameters, CRM Monographs Ser., vol. 18. Am. math. Soc., Providence, RI(2003).
- [6] A. Mathas, Iwahori-Hecke algebras and Schur algebras of symmetric groups, Univ. Lecture Ser., vol. 15, Amer. Math. Soc., Providence, RI, 1999.
- [7] L. Solomon, A decomposition of the group algebra of finite Coxeter group, J. Alg.9(1968), 220-239.
- [8] M. Geck, Kazhdan-Lusztig cells and the Murphy basis, Proc. London Math. Soc. 93(2006), 635–665.
- [9] M. Geck, Hecke algebras of finite type are cellular, Invent. Math. 169(2007), 501–517.
- [10] M. Geck, On the induction of Kazhdan-Lusztig cells, Bull. London Math. Soc. 35(2003), 608–614.
- [11] J. Y. Shi, The Kazhdan-Lusztig cells in certain affine Weyl groups, Lecture Notes in math.1179, Springer-Verlag(1986).
- [12] G. E. Murphy, On the representation theory of the symmetric groups and associated Hecke algebras, J. of Alg152(1992), 492-513.
- [13] G. E. Murphy, The representations of Hecke algebras of type A_n , J. of Alg173(1995), 97-121.
- [14] J. Graham and G. Lehrer, Cellular algebras, Invent. Math. 123(1996), 1-34.
- [15] T. P. McDonough and C. A. Pallikaros, On relations between the classical and the Kazhdan-Lusztig representations of symmetric groups and associated Hecke algebras, J. of Pure and Applied Alg. 203(2005), 133-144.
- [16] J. Du, A new proof for the cannical basis of type A, Algebra Colloquium. 126:4(1999), 377-383.
- [17] H. Naruse, On an isomorphism between Specht module and left cells of \mathcal{G}_n , Tokyo J. Math. **12**(1989), 247-267.

- [18] A. M. Garsia and T. J. MaLarnan, Relations between Young's Natural and the Kazhdan-Lusztig representations of S_n , Advances in Math. **69**(1988), 32-92.
- [19] J. E. Humphreys, *Reflection groups and Coxeter groups*, Combridge Studies in Advanced Math. **29** (1990).
- [20] N. Xi, Representations of Affine Hecke algebras, Lecture Notes in Mathematics 1587, Springer, Berlin, (1991).
- [21] Yunchuan Yin, W-graph representations for Coxeter groups and Hecke algebras, PhD thesis, the University of Sydney, 2004.

DEPARTMENT OF APPLIED MATHEMATICS, SHANGHAI UNIVERSITY OF FINANCE AND ECOMONICS, SHANGHAI 200433, P. R. CHINA

E-mail address: yunchuan228@hotmail.com

 $E\text{-}mail\ address:\ \texttt{yyin@mail.shufe.edu.cn}$