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On the notion of guessing model

Matteo Viale

Abstract

We introduce the notion ajuessing modelThis notion is a mean to at-
tribute to accessible cardinals combinatorial propestibiEh can be used in
combination with inaccessibility to characterize varitarge cardinals rang-
ing from supercompact to rank to rank embeddings. The ntgjofithese
large cardinals can be described by properties which aressiple in terms
of elementary embedding : V, — V,. The key observation is that such
embeddings are uniquely determined by the image struciveé$ These
structures will be the prototypegiessing modeldVe shall show that by the
same elementarity argument by which the structfixg] attributes combi-
natorial properties to the ording(crit(j)), a guessing modd¥l will attribute
analogue combinatorial properties to the cardinak jm(crit(jm)), where
jm is the inverse of the transitive collapse Mf. «y will always be a reg-
ular cardinal but can consistently be a successor cardixgplications of
our analysis will be proofs of the failure of the square pipte and of the
singular cardinal hypothesis assuming the existence afsjjug models. In
particular the failure of square shows that existence ofgjug models is a
very strong assumption in terms of large cardinal strength.

1 Guessing models

Definition 1.1. Let W be a transitive model afFC. R € W is asuitable initial
segmentf@]:

¢ Ris a transitive set,

¢ Ris amodel of all axioms afFC except eventually the replacement schema
and the powerset axiom,

We adopt standard terminology as taken for example fidm Tlje reader who may feel
unfamiliar with it may have a quick look to sectibn1l.1 below.

1


http://arxiv.org/abs/1012.2212v1

e Rsatisfies either the replacement axiom or the powerset gaxiom

e P(X)W c Rforall X e R

In order to simplify notation and without loss of generalihe reader may
assume all along the paper that we are working in some themsitodelW for
ZFC with class many strongly inaccessible cardinal and Bhat W, for some
inaccessible cardinal

Tipically R = H}" for someW-regular uncountable cardinal & = W, for
some ordinak are the two kind of suitable initial segmerRsve shall be inter-
ested. Most of our results and definitions apply to a widerilfaof transitive
structureRR than those captured by the above definition but, in our ctigtane of
knowledge, it is not worth the prize to specify all the timlks &xact assumptions
on these structures that we need to carry out the argument.

Let X be any set, we define, whenever this makes sense:

kx = minfa € X : ais an ordinal anK N a # «}.

Definition 1.2. Let R be a suitable initial segment amdl < R. Given a cardinal
6 < km, X € M andd € P(X) N Rwe say that:

e dis (6, M)-approximatedf dnZ € M forall Z € M n PsR.

e dis M-guessedf dN M =en M for somee e M n P(X).

M < Ris ad-guessing model for X every (6, M)-approximated subset of is
M-guessed.

M < Ris ad-guessing modef for all X € M, M is as-guessing model foX.

M < Ris aguessing modet for someé < ky, M < Ris ad-guessing model.

We shall show in sectidnl 3, exploiting ideas of Magiddr [4attmany large
cardinal axioms above supercompactness are equivaldrd éxistence of appro-
priateNo-guessing models. For uncountablahe notion of5-guessing model is
motivated by the core results 6f [6] and [7]. For example ohie main results
of [7] can be rephrased as follows:



It is relatively consistent with the existence of a superpaat cardi-
nals that there I8V model ofZFC in which for eventually all regula#
there is ar¥;-guessing mode¥l < H)V with kv successor of a regular
cardinal.

On the other hand irn_[6] it is shown that the proper forcingpaxPFA implies
that for every regula# > N, there areX;-guessing modelM < Hgy with xy = N,.

In the two papers we have also backward results, for exarm@ebthe main
results of [6] can be stated as follolfzs

AssumeV C W are a pair of transitive models @~C which have the
k-covering andk-approximation property for someinaccessible in
V. Then the existence of afy-guessing models! < W, with xy = «
implies thatky, is at least 46| -strongly compact cardinal iv.

The first two results above show th&guessing models for uncountahie
are a mean to transfer mangry large cardinalfeatures ofinaccessiblecardi-
nals to regulaaccessiblecardinals and the latter result above combined with the
characterization we give [d 3 of very large cardinals shdvas this is a two way
correspondance: the existence @éFguessing model moddll in some transitive
class modeW of ZFC will most often be a sfficient conditions to show thady
is a very large cardinal in some transitive inner modeif W.

By very large cardinalsve intend large cardinals axioms which are currently
out of reach using fine structural inner models, i.e. caldimdose strength is
at least in the range of strong compactness. In view of theeabonsiderations
guessing models appears to be of central interest in alist@ensy problems re-
lated to this type of large cardinal axioms.

1.1 Notation

The notation used is mostly standard and in most cases isembfrom [1]. If
W is a transitive model oZFC, for a cardinald in W we letH)" be the set of
z € W whose transitive closure has size less tham \W, for an ordinale we let
W, be the set ok € W of rank less thamw. Ord denotes the class of all ordinals.
If ais a set of ordinals, otpdenotes the order type af For a regular cardinal,
cof 6 denotes the class of all ordinals of cofinalityand cofk §) denotes those
of cofinality less thai. Given a seX and an ordinab, P;X = {z€ P(X) : |2 < 6},
[X]? = {z€ P(X) : otp(zn Ord) = 5}.

2see sectiof 111 for the relevant yet undefined notions
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Clearly for W a transitive model oZFC, (PsX)W = {ze W : W E |7 <
6} similarly we shall denote the relativization of variousssti the appropriate
transitive model.

Given a structur& = (R, €, P; : i € I) we shall say thaMm < Rif M € Rand
(M,e,Pin M : i€ l)is an elementary substructurefaf

For forcings, we writep <  to meanp is stronger tharg. Names either
carry a dot above them or are canonical hames for elements eb that we
can confuse sets in the ground model with their names. GividteaG on P,
oa(A) = {os(X) : Ap € G pl- x € A} is the standard interpretation Btnames
given byG.

The phrasegor large enoughy andfor syficiently largeé will be used for
saying that there existgasuch that the sentence’s proposition holds foé &l¢’.

Forf : P,X —» Xwe let Ck = {x € P(X) | f[P,X] c x}. The club filter on
P(X) is the normal filter generated by the sets.Cl

S C P(X) is stationary if it is positive with respect to the club filte

If X c X', Rc P(X), U c P(X"), then the projectiondfl to XisU [ X := {un
X|ue U} c P(X)andthe lift ofRto X" isRX := {x € P(X’) | X nX € R} c P(X).

We shall need for reference and motivation of our resultahewing defini-
tions:

Definition 1.3. LetV € W be a pair of transitive models @C.

e (V, W) satisfies the:-covering property if the clas8)V is cofinal inP)'V,
that is, for everyx e W with x ¢ V and|x < u there isz € PXV such that
XCzZ

e (V,W) satisfies the:-approximation property if for alk € W, x c V, it
holds that ifxn ze V forall ze P}V, thenx € V.

A forcing IP is said to satisfy thg-covering property or the-approximation prop-
erty if for everyV-genericG c PP the pair ¥, V[G]) satisfies the:-covering prop-
erty or theu-approximation property respectively.

We shall adopt the following definitions of forcing axioms:
Definition 1.4. Given a class of forcing notioriswe let:

e MA(I) hold if for any posefP € I and eventually all regula#, there are
stationarily many structurdgl < H(9) of sizeX; which have arM-generic
filter G for PP.



e MA(I)*2 hold if for any posetP € I' and eventually all regulad, given
P-namesS, andS; for stationary subsets af; there are stationarily many
structuresM < H(#) of sizeX; which have arM-generic filterG for IP and
are such that(S)) is stationary.

If T"is the family of CCC posets, we shall denté(I') by MA. If ' is the fam-
ily of proper posets, we shall dendA(I") by PFA andMA(I)*2 by PFA™2. If T
is the family of stationary set preserving posds(I') is Martin’s maximumMM.
We refer the reader to][1] for the definition of the relevBist We recall however
that anyCCC partial order is proper and any proper partial order is Gtatiy set
preserving.

2 Basic properties of guessing models

The following are basic properties of guessing mdtlels

Proposition 2.1. Let R be a suitable initial segment and ¥#R.

[ —

. kv Is aregular cardinal.
2. M is a0-guessing modeljiit is an Np-guessing model.

3. If Misas-guessing model, thenitis alsgraguessing model for all cardinal
v 2> 0.

4. If M is as-guessing model an2f’ < ky, M is a0-guessing model.

5. If M is a0-guessing modeky, and Mn «y, are strongly inaccessible cardi-
nals.

6. If M is ad-guessing model and for some regular cardigpat 6, 2<7 < ky,
then Mn Ordis closed under suprema of sequences of length at mast
particular a guessing model M is always closed under couertabprema.

Proof. (1): We first showky, is a cardinal: assume not, then by elementarity there
is a bijectiong € M betweerxy andé = |ky| < km. Sinced < ky N M, § € M,
sinceg € M, ¢[d] = ky € M contradicting the very definition ady.

3Property(6) is a rephrasing in the terminology of guessing models of alréy Weiss (see

[70).



Next we showky, is regular: assume not and f&ke M cofinal inky of order
typed < ky. Then sinced € M N «y, we have thas € M and thusE € M. Now
eitherxy € M which contradicts the very definition @f, or kv is not the least
ordinal in M such thatM N «y is bounded below,, which again contradicts the
very definition ofky. Note that(1) holds for anyM < Rand not just for guessing
models.

(2): Immediate.
(3): Immediate.

(4): Observe that iZ € M and|Z| < 6, R E |IP(Z)| < 2. So there is a
bijection ¢ from some ordinakr < ky andP(Z). ThenP(Z) = ¢[a] € M: this
follows sincea € M becauser < xy anda = dom) € M. Thus ifd e Rn P(X)
for someX € RandZ € M is any set of size less thand N Z € P(Z) € M. Thus
anyd € P(X) N Ris (6, M)-approximated for alX € M. SinceM is §-guessing,
anyd € P(X) n Ris M-guessed for anX € M, ThusM is 0-guessing.

(5): We first show thak N M is a regular cardinal iR. Assume not and pick
C c knMin Rof order type cf{n M) < kN M. SinceM is 0-guessingC = ENM
for someE € M. Now it is not hard to check that:

M E E is an unbounded subsetqj of order type less thak,.

For this reason there is a unique order preserving bijecticn M from some
ordinalé¢ less thanxy into E. By elementarity € M. Since¢ < «ky, £ € M. Thus
E = ¢[¢] € M. ThusC = E which implies that supgy N M) = «y, contradicting
the very definition oky,.

Now assume 2> ky N M for somes < «y. By elementarity, sincé € M, we
getthat 2 > «y. Now letg : 2° — P(5) be a bijection inM. Let X = ¢(ky N M).
ThenX € § € M. SinceM is 0-guessingX = Y N M for someY € P(6) N M,
sinceY € 6 € M, X =Y, thusky N M = ¢ 1(Y) € M which contradicts the
very definition ofky. This proves thaty, N M is strongly inaccessible. Now by
elementarityM models thaky, is strong limit. Thus, is strong limit and regular
in Ri.e. strongly inaccessible.

(6): Assume not for som#. Observe that for such a, P, (X) € M for all
X € M of sizey since 27 < ky and any bijection irM betweenX andy lifts to a
bijection in M betweerP,(X) and 27 € M N ky.

Now let¢é € M have cofinality larger tham and be such that sul(n &) ¢ M
has cofinality at most. This means tha¥in[supMn¢), &) is empty. Then for any
d € M of sizey, dn¢ is bounded below sup{N¢) else supiNé) < sup@né) < &



andsupd Nn¢) e M. FixinR, d* = {a; : ¢ € ¥} € M N increasing and cofinal
sequence converging © Thend* N d € R has order type less thanfor all
d € M which have sizey and thus belongs t&,d € M. Thusd® is a @, M)-
approximated subset dfl. This means thad* = d* "M = en M for some
e e MnPE). NowM E eis an unbounded subset &f thus otpé) > cf(¢),
in particular otpé N M) > otp(cfE¢) N M) > otp(y N M) = y = otp(d*). Thus
en M # d* which is the desired contradiction. OJ

Notice the immediate by-product of our results:

Remark 2.2. AssumeM < W, is ad-guessing model which is not a 0-guessing
model. Then & > ky.

Proof. This follows by the third item above. O

Thus existence of guessing models h&gas on the exponential function.
We shall see in sectidn 6 that the existence dfainternally unboundedsee def
4.71)N;-guessing modeM is an assumption strong enough to imply 8@H for
all cardinals inM.

3 Large cardinals and®y-guessing models.

In this section we show that most of the large cardinal axiprasent in the liter-
ature can be formulated in terms of the existence of the gpiatte No-guessing
model.

3.1 Supercompactness

Magidor [4] has characterized supercompactness as fallows

Theorem 3.1 (Magidor). « is supercompact in \ffifor everyd > « there is anon
trivial elementary embedding:jV, — V, with j(crit(j)) = «.

The core of his argument can be rephrased in our setting dslibweing:

Lemma 3.2. M <V, is anNy-guessing model if and only if the transitive collapse
of M is some V.



Proof. We prove just one direction, the other one is proved by a aimallgument.
Recall thatM < V, is an&y-guessing modelffi it is a 0-guessing model. Now
assumeM < V, is a 0-guessing model. We proceed by inductioBenM N A to
show thatM N V; collapses to som¥,, viazy | V. This is clear ifg is a limit
ordinal sincery | Vs = Uy v [ Vo = Uacs Vy, = V.

Now consider the successor stage, fe= a + 1. V,, =V, 1 = P(am | Vo).
Thus for everyY € V5 Y = ny[Xy] for someXy € P(M NnV,). Now M is a
0-guessing model Thus, since evetye P(V, N M) is 0-approximated, we have
that for everyY, Xy is M-guessed i.eXy = M N Ey for someEy € M. Clearly
such arEy € V,,1. In conclusion:

Vy/; = {JTM[Ey] Ev e Vﬂ N M} = Tm rVﬂ
The conclusion follows. O

Note that ifM < V, andzy[M] = V, thenj = ;} is an elementary embedding
of V, inV,.
Thus Magidor’s theorem can be reformulated as follows:

Theorem 3.3 (Magidor). « is supercompactffi for everyd > « there is anNo-
guessing model M V, with ky = «.

3.2 Hugeness

Recall that a cardinat is huge inV if for someé > « there is a normal fine
ultrafiltetf on [5]*.

Lemma 3.4. Assume that for some there is anXy-guessing model M< V,
such thatotp(M N ) > «v, thenk = my(ky) IS @ huge cardinal. If moreover
otp(M N 2) > ky + 2then alsay is huge.

Proof. Let§ < 4 be such that ot N 6) = ku. Letj = xy}. Thenj:V, - V,is
elementaryj(x) = ky andj(ky) = 6 (moreover if otpMNA) > ky+2,y > km+2).
ThusM N ¢ € j([«xm]*). Now define inV the ultrafilter?{ on [ky]“ by A € U iff
MNné e j(A). U e V2 withesses that is huge inV. Moreover ify > «y + 2,
U eV, and thusj(U) € V, witnesses thaty is huge. OJ

With some more care one can also put conditiondvbto guarantee that it
witnessesi-hugeness ofy,.

4An ultra filter U on [6]~ is fine if for alla < &, (X € [6]* : @ € X} € U. An ultrafilter U/ is
normal if for all A € ¢ and all choice function$ on A there isB € U such thatf is constant on
B.



3.3 Rank initial segment embeddings and beyond
The following fact is an immediate outcome of Magidor’s alvsd¢ions:

Fact 3.5. | : Vi1 — Vi1 is elementaryff j[Vii1] = M < V1 is anXg-guessing
model.

Thus the existence of afy-guessing modeVl < V,,; such that otg{inA) = A
is an equivalent formulation of the axiom

PickingR = L,(V, + 1) for a large enougl it is not hard to define in terms
of anXy-guessing modeil < R the axiom stating the existence of an elementary
embedding oL, (V, + 1) into itself with critical point smaller than.

4 Internal closure of guessing models

In this and in the next section, we come back to an analysis@fproperties
of guessing models and we also address some consisteney iggarding their
existence.

If M <V, is anNo-guessing modeky is inaccessible ang,M < M for all
v € MNky. Such a degree of closure cannot be achieve fajuessing models,
however we can prove that such models have a reasonablesd&fgcsure in
most cases. To this aim we need to recall the following dédimst

Definition 4.1. Let R be a suitable initial segment. For a modél < R and a
cardinals, we say thatvi:

e is¢g-internally unbounded iIMNP;M is cofinal in the partial ordeiR;M, <),
e iss-internally club ifM N PsM is a club subset dPsM,
e isd-internally stationary iM N PsM is a stationary subset &;M.

We let 7C°R be the set oM < R which ares-internally club,7S°R be the set of
M < Rwhich ares-internally stationary andZ/°R be the set oM < Rwhich are
o-internally unbounded.

Recall that the pseudo-intersection numpes the minimal size of a family
X € P(w) which is closed under finite intersections and for whichréhis no
infinite a C w such that C* b (i.e. a\ bis finite) for allb € X. We will show the
following:



Lemma 4.2. Assume M< R for a suitable initial segment R is a%-guessing
model such thag > |[M|. Then M is ifU™R.

Proof. Assume not and pick < R guessing model witnessing it. Pigkcount-
able subset oM which is not covered by any countable sethh The family
{x\z:ze Mn P, M} has the finite intersection property and has size at most
IM| < p. Thus there iy C x such thaty N zis finite for all countable € M. Thus

y is M-approximated. Letl € M be such thatln M = y. Thend is countable,
else, sincael € M andw; € M, d N M is uncountable and thusftirent fromy.

This means thad = d n M =y. This is impossible sincd Ny is finite by choice
ofy. O

Theorem 4.3. AssumeMM. Then for evey regula# > K, the following sets are
stationary:

1. the set ofN;-guessing models M H, of sizeN; which areX;-internally
club,

2. the set oik;-guessing models M Hy of sizeX; which areN;-internally
unbounded but nd$;-internally stationary,

3. the set ofk;-guessing models M Hy of sizeX; which areN;-internally
stationary but no;-internally club.

For item(1) PFA sufices and for itenf3) PFA*? suffices.
Proof. In [6] we showed the following:

AssumeP is a poset with they;-approximation and; -covering prop-
erties which collapseB(X) to N1, then there is iiv? aCCC-posetQp
such that for eventually &, any modeM < H, in V of sizeX; which
has aP = Qp-generic filter, is guessing alk¢, M)-approximated sub-
sets ofX.

Now if X = H, andP is a poset with thev;-approximation andv;-covering
properties which collapsd¥(X) to 8; andM < Hy in V of sizeX; has aP * Qp-
generic filter, we get tha¥l N H, < H, is N;-guessing of siz&;.

Kruger in [2] and [3] has shown that for eveythere are stationary set pre-
serving poset®; fori < 3 all with thew;-approximation and;-covering proper-
ties and all collapsing(H,) to X; and that each one has the following property:

10



e any modelM < Hy in V of sizeX; which has dPg = Q]po-generic filter, is
such thatM n H, is internally club,

e any modelM < Hy in V of sizeX; which has dP; = Qpl-generic filter, is
such thatM N H, is internally unbounded but not internally stationary,

e any modelM < Hy in V of sizeX; which have &P, x sz-generic filter is
such thatM N H, is internally stationary but not internally club.

Actually P, andlP, are semiproper whilBy is proper. Combining our and Kruger’s
results we can get the desired conclusion of the theorem. O

5 Isomorphism types of guessing models

In this section we will show that for guessing mod&iswhich are internally
club, the isomorphism type is uniquely determined by thenaldM N «y and the
order-type of the set of cardinals M. In the case of 0-guessing models this is
Magidor’s result that any 0-guessing modél < V, is isomorphic to som&,,,
however when we want to extend this resultNpguessing models we must put
some extra condition to constrain the variety of possilenisrphism types.

Given a seM we letCardy be the set of cardinals ikl andyy : Cardy —
supM N Ord be the characteristic function ™ which mapsy — supM N a).

This theorem intends to generalize Magidor’s lenima 3.2 erigbmorphism
type of 0-guessing models.

Theorem 5.1. Assume Mland M, < Hy are N;-guessing models which are inter-
nally club and moreover that:

® KMy = KMy = K,
L] MomK: Mlmk,
o 2% <,

e otp(Cardy,) = otp(Cardy,).

Then My and M, are isomorphic.
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Proof. The proof goes by induction on oérdy,) \ ku = otp(Cardy,) \ km = ¢.

Let {o] : n < & = Cardy, \ kv. We show that for any ordina} < ¢,
(Mo N &g, P(ag) N My, €) is isomorphic to M, N o7, P(e]) N My, €). This suffices,
since itis well known that two submodéi4, M, of Hy such that otp{lp) NOrd =
otp(M, N Ord) and which are isomorphic on sets of ordinals are fully isgrha.

Base casewg = k = ky

Clearly the identity map defines an isomorphism of the oddikan « with itself.
Since %0 < «, there is a bijection in M; betweerP,, x andk. Using this bijection
¢ we get that alsdlonNP,,« = M;NP,, . We extend the identity map doNP,, x
to an isomorphism ofNlp N «, P(k) N Mg, €) with (M1 N «, P(x) N My, €) using the
guessing property of ead¥; as follows:

d € Mgn P(x) iff d N Mg is Mg N k-approximated ffd N My is M; N «-
approximatedfd n M; = e(d) N M; for some &) € M; N P(x).

The mappingry which is the identity onMy N « and sendsl — e(d) is an
isomorphism of Mg N «, P(k) N Mg, €) with (M1 N «, P(k) N My, €).

The idea is to extend step by step todll € Cardy, this isomorphism first
showing thatMq N Pwlag is isomorphic toM; N Pwlai and then extend the iso-
morphism to the full structuresV N a, P(af‘) N M, €) using the key property of
guessing models. We will need the assumption that the madeisternally club
to handle the limit stages of countable cofinality.

Now assume the induction has been carried up to some orgliralé by
defining a sequence of coherent and unique isomorphismis(Mo N &4, P(af) N
Mo, €) with (M1 N &, P(e)) N My, €) for all 8 < 7.

To definer, we proceed by cases according to whether:

1. & is a limit cardinal of uncountable cofinality,
2. o is a successor cardinal,
3. o] is a limit cardinal of countable cofinality.
ay is a limit cardinal of uncountable cofinality
We start with the first case. First of all sin& N Ord is closed under countable

suprema, we get that siy( N o) are ordinals of uncountable cofinality. This
means thal Js_, 75 [ Mo N B defines an isomorphism &g N ag with My N .
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Sincea! have uncountable cofinalityl N P, = Us.,(Mi N P,,.@}). Thus
we get that s, 75 | Mo N (o U P,,a}) defines an isomorphism of (Mo N
Pwlag, ag N Mo) with (M]_ N Pwlaz, CY’}_ N Ml)

Now we can apply the same trick as before to extend the isdmsrpr* to
P(Qg) N Mo:

Pick d in this set. Therd is My approximated, thud; = 7*[d N Mg] is M;-
approximated, thud, = e(d) for some uniquel € My N P(e]). Letr, extendr®
by sendingl to e(d). Thenr, is the desired isomorphism d?(a) " Mg, aN Mo, €)
with (P(a@) N M1, @ N My, €) which extends all they.

a! is the successor o/

We are givenr; isomorphism of P(a/) N Mo, @5 N Mo, €) with (P(e%) N My, & N
My, €). Any ordinalé in afi"“l is coded by a binary relation orf whose transitive
collapse is5. Now letg; € M; be functions from/*™* to P(¢?) such that for each
y <™, ¢:(y) codesy.

Then we can extend; to 7* on Mg N af,“ as follows,n*(y) = ¢ iff ¢1(6) =
mg(po(y)). Notice that this also induces an isomorphismM§( P, i, ;N Mo, €)
onto My N P,,a], @] N My, €) which sendsa € Mo N P, ] in 7*[a].

Now we proceed as before: Pidkn P(}) N Mo. Thend is Mo-approximated,
thusd; = 7" [dNMg] is M;-approximated, thud, = (d) for some uniquel € M1N
P(e]). Letn, extendr* by sendingd to e(d). Thenx, is the desired isomorphism
of (P(f) N Mo, & N Mo, €) with (P(a]) N M1, @] N My, €) which extendsr.

! is a limit cardinal of countable cofinality

Fix (8i : i < w) € Mo N My increasing sequence converginggteuch that are
regular cardinals.

We get that J;.,, 7 defines an isomorphisnt of (Xo N Mo, @/ N Mg, €) with
(X1 N My, a’{ N My, €), whereX; = Uj., Pwla/f" is the family of countable and
bounded subsets of .

Now observe that, since bol are internally clubM;NP,,, ! are club subsets
C' of P,,(Mi N a]). By going to the order typg of M; N o] we get that botlC;
collapse to club subse of P, ¢. LetC = C; n C] andC; be the clubs in
P..Mi N« which collapse tcC.

Then every element i@; belongs taV; and=* can be extended to an isomor-
phism of the structuresX(n M;) U Ci, M; N ¢/, €). We want to extend* further
to an isomorphism of the structurddi(n P,,,e], Mi N ¢/, €). So pickd € C; and
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consider the treéy = {end : e € X} ordered bye <4 f iff f Nsupe = eand there
is somer”’ € supf \ supe.

Notice the following property of 4:

Ford € C; and ee M; N (P,,,e” \ X)), e d if and only if(en o/’ :
] < w) is an infinite branch of {.

Let us identify an infinite branch dfy by the corresponding subset. By the above
property for anye € M; N (P,,,a! \ X;) eventually alld in C; havee has an infinite
branch ofTy.

Observe thally € M; is a tree of heightv and ifd is in Cy, we have thatr*
induces in the natural way an isomorphism®f ( Mo, <q) with
(Tre@ N My, <), let us call agaim™ this isomorphism..

Now T4 and T, are trees of size at most2< x. Moreover ify is the order
type ofd, T4 and T, are both isomorphic to the unique trég € M; N P,,«
contained inP,,,n which is uniquely defined by the collapsg of d to its order
type. So let us denote by : Tg — To andnr,q) @ Tr@ — To these uniquely
defined isomorphisms living repectively My andM;. On the other hand remark
thatTo € Mg N M.

So there is an injectiog in MgnN M; between the infinite branchestf andk.
Let, for an infinite branckx of Ty (Trq)), ¢a(X) = @ iff ¢(m4[X]) = @ (¢ @)(X) =
T (e (@) (X)) = ).

Thus the map; : MoN P, d = M1N P, 7*(d) which mapse — € iff ¢4(€) =
&) (€7) induces a unique natural isomorphism of the set of infiniéambhesT]
of Ty with the set of infinite branches af. q).

Recall thatt = otp(M; N «/') andC is the transitive collapse «; induced by
the collapser; of M; na. Consider the directed structuférf(,d) : n < MgnN«),d €
C}, <) with (,d) < (y,e) iffd c eand¢;}l[ q (n) = ;}l[e] (y).

Let us call sets of the forrf{ag, d) : de E} point's if E C C; is upward closed
and for alld C e € E (ag,d) < (e, ©).

All our efforts amount to the following of which we omit a rigorous proof

Fact5.2. Any ee M; n P, o/ determines the point(p) = {(¢q(€),m[d]) : d €
Ci, e C d} and conversely any poirag, d) : d € E} uniquely determines sets
e € M; such that(ag, d) € p(g) for all (aq,d) € p.

Now we can extend* to a full isomorphism of the structureM(nP,,a!, Min
@, €) mappinge to the uniques* such thatp(e) = p(e").

14



Finally we can extend* to n, by the usual trick employed in the previous
cases.
This completes the proof of the theorem. O

5.1 Faithful models

In this section assumeis inaccessible iW. The above characterization of iso-
morphism types fos-guessingg-internally club models is not completely satis-
factory since it could be the case that two such mod&jsM,; < W, have the
same isomorphism type, are such thgt = ku, = k andMg N kv = M3 N ky but
for some cardinall € Mg N M3 \ k, xm, (1) = xm,(4) andym, [ 2 # xm, [ 4. We
shall show that for 0-guessing models this cannot be the tasewe would like
that this rigidity property of 0-guessing models holds dtsoarbitrary guessing
models. We shall see that in modeldw¥ there is a stationary set 8f-guessing
models which have this rigidity property. Let

G ={M < W, : Mis as-guessing model aney = «}
For S stationary subset ®@(W;), letT(S) ={ym [ y: M € S, y € Cardn M}.
Theorem 5.3. The following holds:
1. T(GO) is a tree of functions ordered by end extension.

2. AssuméIM. Then there is S stationary subsegﬁj; NIC™ such that TS)
is a tree of functions ordered by end extension.

We need the following definition. Given a set of ordin&lsuch thatS is a
stationary subset of supj let:

P*(S) ={T € S: T is stationary in sSug)}.

Definition 5.4. M < W, is anS -faithful modeif for all T € P(S) n M, T reflects
onsupM N S)) iff T € P*(S).

M < W, is aA-faithful modelif M is Efo-faithful.

M < W, is afaithful modelif M is Efo-faithful for all regulard € M.

The following lemma motivates the definition of faithful meid:

Lemma 5.5. Assume M M; < W, are A-faithful models for some regulat €
Mo N M3 andym, (1) = ym,(4). Thenym, [ A =xm, | 4.
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Proof. Let{S, : @ < A} € Mg N M, be a partition oE;<0 in stationary sets, then:
@ € M; iff M; ' S, is stationary ff S, reflects onyw, (1)

Thus
MiNA={a:S, reflects onyw, (1)}

and we are done. OJ
Lemma5.6. If M < W, is a0-guessing model then M is a faithful model.
Proof. This follows from the fact thal is isomorphic taN, for somey. 0J

By the two lemmas the first part of the theorem is proved. To@itbe second
part of the theorem we proceed as follows:

Proof. Letin W
X = U{P*(Efo) : 1< 0 is regulaj

Fix also inW a family {S,, : @ < w1} of disjoint stationary subsets af; such that
minS, > a for all @ and{S,, : @ < w;} is a maximal antichain oR(w;)/NS,,, .
Let C be Cohen forcing. I'W[G] whereG is W-generic forC we define the
posetP as follows.
A conditionp € P is a pair (p, ¢,) such that:

o fy:ia+1—Wn(P,W,) ¢ is a continuos map.
o ¢p:a+1— Xissuchthatforalh < ¢ < a:
& € S, iff sup(fp(§) N supgp(m) € dp(n).
p < qif f, extendsfy and¢, extendsp,. We omit the proof of the following:

Lemma 5.7. The poseR = C = P is stationary set preserving and has the-
covering andw;-approximation properties.

By MM in W, there are stationarily manly < H ). of sizeN; which have a
generic filter for the poseR * Qr, WhereQy is theCCC-poset inWR used in the
proof of theoreni_4]3. For any sudthwe can check the following properties of
M = NN W

M < W, is anN;-guessing faithful model which is internally club.

This completes the proof of the second part of the theorem. OJ
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6 Applications of guessing models

We show that the failure of the weakest forms of square grle@nd the singular

cardinal hypothesis are simple byproduct of the existefgeiessing models. In

particular the first application yields that the existenta guessing models has
very large cardinal strength.

6.1 The failure of square principles
Recall the following definitions:

Definition 6.1. A sequencéC, | @ € Lim N E N A) is called aJg(x, 1)-sequence
if it satisfies the following properties.

() 0<|C,| <kforallae LImnENA,
(i) Ccaisclubforalla e LiImNENAandC € C,,
(i) CnpeCgforallaeLIMmNENA CeC,andseLimC,
(iv) thereisnocluD c AsuchthaDnNnéeCsforall6 e LimDNEN A.

We say thatJg(x, A) holds if there exists alg(, 2)-sequencell(x, 1) stands for
D,l(K, /l)

Note that ], ., impliesC(«, 7*) and thatJ(1) is (2, 2).

The theorem below is just a rephrasing using the notion afgjng models of
the results on the failure of square principles Weiss obthassuming his inEa-
bility property for thin lists (see [7]).

Theorem 6.2. Suppose there is &guessing model Mk Hy for somes < «y.
Then for everyl < 6 such thatcf A > «u, Ocoticry) (km, 4) fails.

Proof. Assume not. Sinc#/ is ad-guessing model is closed under countable
suprema, thug = supMnA) has uncountable cofinality. Pick a seque(@g| a €

A, cf(a) < km) € M witnessingUeof(<iy) (kM. 4). SincelCe| < ky for all ¢ < 4,

C: C Mforall £ € M. PickC € C,. ThenCn ¢ € C: € M for all ¢ € M which

are limit points ofC. SinceM is closed under countable suprema, there are club
many sucl¥ of countable cofinality ifM. Now givenze M NP4, findé e CNM
above su) andD € C; suchthalCn¢ = D. ThenCnz=Dnze M since

z, D € M. ThusC is (6, M)-approximated. Sinc# is ad-guessing model, there
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iISE € M be suchtha€ N M = E. ThenM E E is a club subset oft and for all
& € Mlimit pointsof E,ENéNM =CnénM =Dn M for someD € C;.
This shows thatM models thatE is a counterexample tC, | @« € 1) being a
Deof(<in) (km, 4)-S€QUENCE. O

6.2 A proof of SCH

We give a proof o65CH assuming there ate;-internally unboundedy;-guessing
modelsM. This assumption is known to hold in all consistent cases.
We recall the following definition from [5]:

Definition 6.3. Supposel is a cardinal withcfil = w. D = (D(n,a) IN< w, a <
A*) is called astrong covering matrix on* if

() Un<w D(N,@) = aforall @ < A7,
(i) D(m,a) c D(n,a) forall @ < A* andm < n < w,

(i) for all @ < &’ < A* there isn < w such thatD(m,a) c D(m,a’) for all
m > n,

(iv) for all x € P,,A* there isy, < A" such that for allv > y, there isn < w
such thaD(m, @) N x = D(M, y,) N xfor allm> n,

(V) ID(n, )| < Aforall @ < A* andn < w.

The following simple facts are proved in the cited papeér [5]:

Fact 6.4. Assumel > 2% has countable cofinality. Then there is a strong cover-
ing matrix? on A*.

Fact 6.5. Assume that for all > 2% of countable cofinality, there is a strong
covering matrixD on A* andA unbounded subset af such thaP,, A is covered
by D. ThenSCH holds.

Lemma 6.6. Supposel is a cardinal withcf 1 = w and D is a strong covering
matrix onA*. Let6 be syficiently large. Suppose M P,,H, is anN;-internally
unbounded model an® € M. Then there is K w such that m, supM N A*))N
xe M forall x € P, 4" N M and m> n.
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Proof. Assume not and for eaahpick x, € M n P, A* such thaD(n, supM N
A Nx, ¢ M. Letx € M be a countable set containing all thg X exists
sinceM is Ni-internally unbounded. Now, € M by elementarity and thus there
is ng such thatD(n, supM N 2*)) N x = D(n,yx) N x € M for all n > ng. This
means thaD(n, supM N 1*)) N X, = (D(n,supM N 1%)) N X) N X, € M since
D(n,supM N 1*)) N x € M andx, € M. This is the desired contradiction. [

Theorem 6.7. Suppose that there are stationarily mayguessing models M
He which areN;-internally unbounded for all requla# > . ThenSCH holds.

Proof. Let A be a cardinal with cft = w. By [9] there exists a strong covering
matrix onA* and it sdfices to show there is an unbound®d A* such thaP,, A

is covered byD, that is, for allx € P,,A there ise < A* andn < w such that
x c D(n, ).

Let 8 be sdficiently large. Pick arN;-guessing modeM < Hg which is
Ni-internally unbounded and is also such tlate M. Pick a strong covering
matrix © € M, and by proposition 211 we may assume cf $dpf 1*) > w;.
By Lemmal6.6 there is¥ < w such thatD(m,supM N 1*)) N x € M for all
xe P, A "N Mandm> . As M is anX;-guessing model, this means that for all
m > ' there isA,, € M such thaD(m, supM N 1%)) = A, N M.

Since cf supi N A*) > w; andJ{D(m, supM N A1%)) | m < w} = supM N 2¥)
there is am < w, n > n’, such that, is unbounded in sup{ N 1*). ASA, € M,
this impliesA, is unbounded in*.

Letxe MNP, A,. Thenx=A,Nx=D(n,supM NA*))Nnx c D(n, supM N
A")). ThusHy models thaix is covered by som®(n, a). Sincex € M, alsoM
models it. Since this occurs for an arbitratye M N P,, X, M modelsP, A, is
covered byD, whence it really holds. O

7 Conclusions and open problems

We close this paper with a list of open problems and some gaasstheir possi-
ble solutions:

1. Is it at all consistent that there afeguessing models which are nisi-
guessing for somé > N;? It seems reasonable to expect this is the case but
it is not clear what kind of forcing may achieve this.

2. Isitconsistent that for a guessing mobiglxy, is the successor of a singular
cardinal? | think that this shouldn’t be possible.
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3. AssumingPFA in W, g:;wg is stationary for all inaccessibte Is it possi-
ble to build a transitive inner mod¥1 of W such thatX, is supercompact in
V? Note that this would be the case if\) Qﬁgvg is stationary for all inac-
cessible. In [6] and [7] there are several positive partial answersnwve
assume thatV is a forcing extension of. A possible attempt to overcome
this latter assumption would be to isolate in modeldvitd some station-
ary subsef of g:;WQ, and then try to argue th&, is 6-supercompact in
L({MN&: M e T}) orin some simple transitive class modelZfC defined
usingiM N 6 : M € T} as a parameter to define it.

References

[1] T. Jech,Set theory Springer Monographs in Mathematics, Springer, Berlin,
2003, The third millennium edition, revised and expandel M40513

[2] J. Krueger,Internally club and approachabjédv. Math.213(2007), no. 2,
734-740.

[8] -, Internal approachability and reflectiond. Math. Logic8 (2008),
no. 1, 23-39.

[4] M. Magidor, On the role of supercompact and extendible cardinals indogi
Isr. Jour. Mathl0 (1971), 147-157. MR MR0295904

[5] M. Viale, A family of covering propertieMath. Res. Lettl5 (2008), no. 2,
221-238. MR 2385636

[6] M. Viale and C. WeissOn the consistency strength of the proper forcing
axiom (Unpublished results).

[7] C. Weil3, Subtle and ingable tree propertiesPh.D. thesis, Ludwig Maxi-
milians Universitat Minchen, 2010.

20



	1 Guessing models
	1.1 Notation

	2 Basic properties of guessing models
	3 Large cardinals and 0-guessing models.
	3.1 Supercompactness
	3.2 Hugeness
	3.3 Rank initial segment embeddings and beyond

	4 Internal closure of guessing models
	5 Isomorphism types of guessing models
	5.1 Faithful models

	6 Applications of guessing models
	6.1 The failure of square principles
	6.2 A proof of SCH

	7 Conclusions and open problems

