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THE SECOND PINCHING THEOREM FOR
HYPERSURFACES WITH CONSTANT MEAN
CURVATURE IN A SPHERE *

HONG-WEI XU AND ZHI-YUAN XU

Abstract

We generalize the second pinching theorem for minimal hypersurfaces in a sphere
due to Peng-Terng, Wei-Xu, Zhang, and Ding-Xin to the case of hypersurfaces with
small constant mean curvature. Let M" be a compact hypersurface with constant mean
curvature H in S"*1. Denote by S the squared norm of the second fundamental form of
M. We prove that there exist two positive constants y(n) and §(n) depending only on n
such that if |H| < y(n) and B(n, H) < S < fB(n,H) +d(n), then S = 3(n, H) and M is
one of the following cases: (i) Sk(\/%) x SPF (4 / ”Tfk), 1<k<n-—1;(ii) S} —1:##) X
H? + 3022 /2 T +4(n — 1) H? and =

3
S”’l(\/ﬁT). Here B(n,H) = n+ ST
n|H|4++/n2H2+4(n—1)

) .

)

1. Introduction

Let M™ be an n-dimensional compact hypersurface with constant mean curvature H in
an (n + 1)-dimensional unit sphere S**!. Denote by S the squared length of the second
fundamental form of M and R its scalar curvature. Then R = n(n — 1) +n?H? — S. When
H = 0, the famous pinching theorem due to Simons, Lawson, and Chern, do Carmo and
Kobayashi ([2], [9], [L3]) says that if S <n, then S =0 or S = n, i.e., M must be the great
sphere S” or the Clifford torus Sk(\/% ) x SPR(4/ "T_k), 1 <k <n—1. Further discussions
have been carried out by many other authors (see [7], [10], [14], [I7], [18], [23], etc.). In
1970’s, Chern proposed the following conjectures.

Chern Conjecture 1. Let M be a compact minimal hypersurface with constant scalar
curvature in SPT. Then the possible values form a discrete set. In particular, if n < S <
2n, then S =n, or S = 2n.

Chern Conjecture II. Let M be a compact minimal hypersurface in S*T1. Ifn < S < 2n,
then S =n, or S = 2n.

In 1983, Peng and Terng made breakthrough on the Chern conjectures I and II. They
[11] proved that if M is a compact minimal hypersurface with constant scalar curvature in
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the unit sphere S"*1, andif n < S < n + ﬁ, then S = n. Moreover, Peng and Terng [12]
proved that if M is a compact minimal hypersurface in the unit sphere S**!, and if n < 5
and n < S < n+my(n), where 7 (n) is a positive constant depending only on n, then S = n.
During the past two decades, there have been some important progress on these aspects(see
[, [, B, [8, [15], [16], [24], etc.). In 1993, Chang [I] solved Chern Conjecture I for the
case of dimension 3. In [4] and [5], Cheng, Ishikawa and Yang obtained some interesting
results on the Chern conjectures.

In 2007, Suh-Yang and Wei-Xu made some progress on Chern Conjectures, respectively.
Suh and Yang [I5] proved that if M is a compact minimal hypersurface with constant scalar
curvature in S"*l, and if n <S5 <n+ %n, then S = n and M is a minimal Clifford torus.
Meanwhile, Wei and Xu [I6] proved that if M is a compact minimal hypersurface in S**!,
n=26,7, and if n < S < n+ m(n), where 75(n) is a positive constant depending only on
n, then S = n and M is a minimal Clifford torus. Later, Zhang [24] extended the sec-
ond pinching theorem due to Peng-Terng [12] and Wei-Xu [16] to 8-dimensional compact
minimal hypersurfaces in a unit sphere. Recently Ding and Xin [8] obtained the following
pinching theorem for n-dimensional minimal hypersurfaces in a sphere.

Theorem A. Let M be an n-dimensional compact minimal hypersurface in a unit sphere
S"*1 and S the squared length of the second fundamental form of M. Then there exists a
positive constant T(n) depending only on n such that if n < S <n-+7(n), then S =n, i.e.,
M is a Clifford torus.

The pinching phenomenon for hypersurfaces of constant mean curvature in spheres is
much more complicated than the minimal hypersurface case (see [17], [19]). In [I7], Xu
proved the following pinching theorem for submanifolds with parallel mean curvature in a
sphere.

Theorem B. Let M be an n-dimensional compact submanifold with parallel mean cur-
vature vector (H # 0) in an (n + p)-dimensional unit sphere S"*P. If S < a(n, H),
then either M is pseudo-umbilical, or S = a(n,H) and M is the isoparametric hyper-
surface S"_l(\/li_ﬁ) X Sl(ﬁ) in a great sphere S"tY. In particular, if M is a compact
hypersurface with constant mean curvature H(# 0) in S*TY, then M is either a totally

umbilical sphere S"(———), or a Clifford hypersurface S*'(—==) x S'(-2=). Here

V1+H? V142 V1422
n3H2 nln— n|H|+y/n2H24+4(n—1
a(n, H) = n+ g — 202U /X {24 4(n = 1) and A = 14| ML (D),

In [20], Xu and Tian generalized Suh-Yang’s pinching theorem [I5] to the case where M
is a compact hypersurface with constant scalar curvature and small constant mean curva-
ture in S"*!1. The following second pinching theorem for hypersurfaces with small constant
mean curvature was proved for n < 7 by Cheng-He-Li [3] and Xu-Zhao [2I] respectively,
and for n = 8 by Xu [22].

Theorem C. Let M be an n-dimensional compact hypersurface with constant mean cur-
vature H(# 0) in a unit sphere S*T1, n < 8. There exist two positive constants Yo(n) and
do(n) depending only on n such that if |H| < vo(n), and B(n,H) < S < B(n,H) + dp(n),

then S = B(n,H) and M = Sl(m) X Sn_l(\/ﬁT)- Here B(n,H) = n + 2(:—:)}12 +




n|H|++/n2H2+4(n—1)
5 .

-2
g((Z—l)) VR2HY +4(n — 1)H? and p =

In this paper, we prove the second pinching theorem for n-dimensional hypersurfaces
with constant mean curvature, which is a generalization of Theorems A and C.

Main Theorem. Let M be an n-dimensional compact hypersurface with constant mean
curvature H in a unit sphere S**1. There exist two positive constants y(n) and 6(n) depend-
ing only on n such that if |H| < v(n), and B(n,H) < S < B(n,H)+(n), then S = 3(n, H)
and M is one of the following cases: (i) Sk(\/%) X S"‘k(\/"T_k), 1 <k<n-—1; (i)
1 n— _ n3 n(n—2)

Sl(m) x S 1(\/5—7) Here B(n,H) = n + 2(n—1)H2 + 5D Vn2H* + 4(n — 1)H?
n|H|++/n2H2+4(n—1)

5 .

and p =

2. Preliminaries

Let M™ be an n-dimensional compact hypersurface with constant mean curvature in a
unit sphere S"T!. We shall make use of the following convention on the range of indices.

1<AB,C,....<n+1, 1<ijk,....,<n.

For an arbitrary fixed point z € M C S™*!, we choose an orthonormal local frame field
{ea} in S"*! such that e;’s are tangent to M. Let {wa} be the dual frame fields of {ea}
and {wap} the connection 1-forms of S"*!. Restricting to M, we have

Wniti = Y hijw;, hij = hji. (1)
J

Let h be the second fundamental form of M. Denote by R, H and S the scalar curvature,
mean curvature and squared length of the second fundamental form of M, respectively.
Then we have

h:Zhijwi@)Wj, (2)
4,
1
— P = hii
S Z-Zjh”’ nZ : (3)
R=n(n—1)+n*H? - S. (4)

We choose e,1+1 such that H = %Zh“ > 0. Denote by hjji, hijr and hgjrm, the first,

1
second and third covariant derivatives of the second fundamental tensor h;;, respectively.
Then we have

Vh =" hijpwi ® wj @ Wk, hijk = hikj, (5)
4,7,k
hijkt = Pijik + > PanRonitt + Y _ him R, (6)
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hijklm = hijkml + Z hrijrilm + Z hirerjlm + Z hierrklm- (7)

At each fixed point € M, we take orthonormal frames {e;} such that h;; = \;d;; for
all 4, j. Then Y. \; = nH and Y A\? = S. By a direct computation, we have
i i

%Asz S(n—S8) —n*H? + nH fs + |Vh|?, (8)

1
SAIVAP = (2n+3- 8)|VhP - g\vsﬁ + V2R

+ Z (6hijkhitmMihkm — 3hijphijihemhm) + 3nH Z hijihjicha
i7j,k7l7m ivjvkvl

— (20 43— S)|VA]? - g\vsﬁ +V2h)? + 3(2B — A) + 3nHC, )

where

Ji = Z)\f’ A= Zh?jk)‘?7 B = Zh?jk)‘i)‘jy C= Zh?jk)\,-.

i7j7k i?j7k i?j7k

Using a similar method as in [I1], we obtain

hijij = hyiji + tij, (10)
3 3
2712 E 2 E 2
i) 1
and
3(A —2B) < aS|Vh|?, (12)

where t;; = (A — Aj)(1 + A\Aj) and a = @ From (11), we have
|V2h|? > g[Sf4—f§—S2 —S(S —n) —n’H? + 2nH f3). (13)

By a computation, we obtain
1 1
3 D hij(fs)iy = 3 > el f3)kn
i, k
= > MO hawA 2> hipi)
k i ,J

= > hidA +2> B A

ik i,k
= > [hwkii + (i = M) (L + Xidp)|ApA? + 2B

ik

Sii
= D (5 = D RGN Y AN — AL+ A + 2B
i 4.k ik

_ hig b 2 2
= > oSt nH fs = 5% = [+ Sfa— (A-2B). (14)

1,7,k



Since [,; > hij(f3)ijdM = 0, we drive the following integral formula.
2%

Ry
/ (A—2B)dM = / (nHfs— $2— f3+ Sfi+ 3 “EM g yan
M M i,k 2
Si
= [ (nfa= 8 = g4 = 3 bty )y )M
M i,k
2 2 Si Si
= (nHfs—S*— fi+Sf1— Z hikjhkjg - Z hikhkjjj)dM
M i,k 4,5,k
Si
- / (nHfs—S? — f2 4+ Sf; — Z hikjhkjg)dM
M i,k
VS|?
- [ g sn-han (15)
M

3. Proof of Main Theorem

The key to the proof of Main Theorem is to establish some integral equalities and
inequalities on the second fundamental form of M and its covariant derivatives by the
parameter method.

To simplify the computation, we introduce the tracefree second fundamental form ¢ =
Z ¢ijwi QX wy, where ¢ij = hij — Héz] If hij = /\2-62-]-, then @ij = ,uZ-(SZ-j, where p; = \; — H.
iJ
Putting ® = |¢|?> and fr = Y uF, we get ® = S — nH?, f3 = f3 +3H® + nH? and

_ _ i
fi=fi1+4Hf3 +6H?® +nH*. From (8), we obtain

%Acb — S(n—S)—nH? 4 nHfs+ |Vh?

= —®?4nd® 4 nHfz+nH*®+ |Vo|?
= —F(®)+ Vo], (16)

where F(®) = &% — n® — nH?® — nH f3. Therefore, we have

VO|* = %A((I))z — DAD = %A(cp)? + 20F(®) — 20|Vo|?, (17)
and
/ F(®)dM = / |Vé|2dM. (18)
M M
Lemma 1.(See [17]) Let a1, as, ..., an be real numbers satisfying > a; =0 and 3" a? = a.
Then ' '

2l e

and the equality holds if and only if at least n — 1 numbers of a;’s are same with each other.



From Lemma 1, we get

3
2)Hd?
F@) > 0 —no—pie_ M Z2HP
n(n—1)
1
—2)H®?
_ <1>[<1>— nin—2)Ho: —n(1+H2)}
n(n—1)
> 0, (19)
provided
@ > ol H) i=n+ —" g2+ P02 T I T —
= PR 2(n—1) 2(n —1) '

Moreover, F'(®) = 0 if and only if & = Sy(n, H).
Set
G =Y (=X (14N>
'7j

Then we have
G =2[Sfs— f3—5%—S(S—n)+2nHf; —n*H?. (20)
This together with (8) and (15) implies

%/M GdM - /M[(A ~2B) ~ VAP + {|VS[dM. (21)

Lemma 2. Let M be an n(> 4)-dimensional compact hypersurface with constant mean
curvature in S*TL. If S > B(n, H), then we have

3(A — 2B) < 2S|Vh[® + Cy(n)|Vh[?G?,

where C1(n) = (VIT — 3)[6(vVIT + 1)]—%(\/% Y2 Ly-5,
Proof. We derive the estimate above at each fixed point x € M. If )\? — 4\ < 28 for
all ¢ # 7, then we get the desired estimate immediately. Otherwise, we assume that there

exist ¢ # j, such that /\? — 4NN =15 > 28,

We get
tS — A2
> A2 4 N2 = (———9)2 4 )2, 22
S_Z+](4Aj)+] (22)
Then
1 1
)\?§1—17(t—|—8—|—4\/4+t—t2)5, 2<t< \/_7; , (23)
which implies
1 S
—/\i/\j21—7(4t—2—\/4+t—t2)520.265>E21. (24)
On the other hand, we have
Aj t
= 0 = (407 + 208 — ) = 8. (25)



By the definition of G, we get

G > 200 — N2+ A))?

> ﬁsamx)
S,
> —5(—/\2')\3'—5)
2
> 3t[17(4t—2—\/4+t—t2)—%] 3. (26)

We define an auxiliary function

C) = — 3[1—17(4t—2—\/m)_%]27 2<t§\/ﬁ+1'

2

) > —te[ma-2-va) -]’

(t—2)3
¢ 1 172
- 2<t<‘/_+1 (t 2)3 [_(475_2_\/5)_;]
ANVIT+1) 2 V2 12
(V17 — 3)3<\/_7_?_E) ‘ (27)
Hence
(A7 —4xA; —29)° = (t—2)°9°
. 26
—3¢()
(WVIT=3° 2 V2 1.,
= 6(\/1—7+1)(x/1_7__7_5) ¢
= (Ci(n)G3)%. (28)

This implies

3(A—2B) < D ROTAHN N — NN+ )R 3 (A — AR
1,7,k distinct 1#£]

25 Y 243 h2;(28 + Ci(n)G)

1,7,k distinct i#£j
2S|Vh|2 + Cy(n)|Vh2GS. (29)

IN

IN

Proof of Main Theorem.(i) When H = 0, the assertion follows from Theorem A.
(i) When H # 0, the assertion for lower dimensional cases (n < 8) was verified in [3], [21]



and [22]. We consider the case for n > 4. From (10) and (11), we see that G = Zt?j and
i7j

|V2h|? > 3G. Let 0 < 6 < 1, we have

/|V2h|2dM2 3(14_9)+¥]/ GdM. (30)

From ( ) 21), Lemma 2 and Young’s inequality, we drive the following inequality.

< / [(5 20— 3)/VA2 + 21VSI? + 304 - 28) ~ 3ntC - Z]an
M

= /(S—2n—3+ )IVA| dM+(3—ﬁ)/ (A—2B)dM

M 27 I

+(——— / |VS|2dM — 3nH/ CdM
< /(S—2n—3+ )IVh| dM+(1—g)/ (2S|Vh|?

M

+C1(n)|Vh[? Gs)dM+(— - = / \VS\ dM — 3nH/ CdM
< / [(3—9)5—271—3—!— }|Vh| M+ 2 /GdM

M M

5 3 30 )
+05(n,0) [ |VRPdM + (5 — =) [ |VS|PdM
—3nH/ CdM, (31)

where Cy(n,8) = 2Cy(n)2(1 - §)2(1 - 6) 2.
Let € > 0, from (16), we get
/|Vh|3dM = /|V¢|3dM
M M
- / VoI(F(®) + ZAR)IM
_ / F(® )|V¢|dM——/ V|Vo| VoM
< / F(® |V¢|dM+e/ (V22 dM+—/ |V®|2dM.  (32)

Since

|C| < VS|Vh|?, (33)

we have

0 < / [(3+3vnH — 9)(<I>+nH2)—2n—3+ ]\wy dM
M
+C2(n,9)[/M F(@)]V¢\dM+e/M]V2¢]2dM+1—66/M\V<I>]2dM]

G- [ [vopau (34)



Substituting (12) and (33) into (9), we have
/ \V2p|?dM = / \V2h|?dM
M M
< / [(S —2n — 3)|VhA* + gyvsﬁ + aS|Vh|* - 3nHC|dM
M
< / [(a+143vnH)S —2n — 3||Vo|>dM + g / |VS|?dM. (35)
M M

Combining (16) and (17), we have

/%\V(I)]QdM = /@F(cb)dM—/ c1>yv¢\2dM+50(n,H)/ |Vo|?dM
M M M M

—50(n,H)/ F(®)dM

M

- / ( — Bo(n, H))F(®)dM + / (Bo(n, H) — @)|VdM. (36)
M M

Hence

0 < /M { [3 4 3VRH — 0 + eCo(n,0)(a + 1+ 3\/HH)} (® — Bo(n, H))

+B(n, H) [3 +3vnH — 0+ eCo(n,0)(a +1 + 3\/HH)}

0 Cy(n,6 Cy(n, 0
ERE e

—2n — 3+ % —eC3(n,0)(2n + 3)}|V¢|2dM

w3 - 24 Gt SO [ (0 o, H)F (@)

+C(n, 0) /M F()[Vo|dM

= [ Dt )]s+ 3vmH — 0+ cCan.0)(a+ 1+ 33/

+(1-0)n—-3+ % +3n0H + eCy(n,0)(an + 3n2H —n— 3)}|V¢|2dM

_(Z n 02(8”’ O) g/l + eCo(n,0)(2 — a— 3v/nH)) / (@ = Bo(n, H))|Vo[*dM
€ M
+(3 — % + C2(8279) + 3eCa(n, 9)) /M((I) — Po(n, H))F(®)dM

+Cafn,8) [ P@)Vd, (1)
M
where 3(n, H) = By(n, H) + nH? and D(n, H) = B(n, H) — n.

Note that
02 (nv 9)

o 3V +€Ca(n,0)(2 — a—3ynH) >0, (38)

b
4
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for all € € (0,¢;], where ¢; is some positive constant. When B(n, H) < S < f(n, H) + €
we obtain

0 < [ (=0 =3+ 4 3nbH + Do H)(3 + 3V —6) + O(e.0, H)|[ Vol a
M
1 Cy(n, 0) / F(@)[VoldM, (39)
M
where

O(e,0,H) = eD(n, H)Cy(n,0)(a+ 1+ 3vnH) + eCo(n,0)(an + 3n2 H — n — 3)

360 Cg(n, 9)
7 S + 3eCs(n, 0)).

(3 -
On the other hand, we have
2
cg(n,e)/ F(®)[Vo|dM < §/ F(®)AM + 2(32‘(7"9)/ F(®)Vo2dM.  (40)
M 8 Jm 3 M

Using Lemma 1, we drive an upper bound for F(®).

n(n—2)H<I>%
F(® % —n® —nH?*®+ 2
(®) =< * n(n—1)
n(n—2)H<I>%
= olo+ ﬁ—n(l—l—Hz)}

_®(D2 + By(n, H)2)(® — ag(n, H)) (41)
@% —|—()40(’I’L,H)% ’

—n(n—2)H+n\/m] 2
2\/n(n—1) ’

When §(n) < € and € < 1, we choose positive constant v;(n) such that n < ® < 2n and
x1 < 2y/n for all H < ;(n). We obtain

where ag(n, H) =

n(n — 2)
(n—1)

Let 0 = 6(n) = 1 — 5. We choose positive constants 72(n) and y3(n) such that 3n:H +

D(n,H)(3 +3ynH) < % for all H < 75(n), and %\/nzw(n)‘l +4(n —1)y3(n)? <
9
16C2(n,0(n))? "

Take €3(n) = ["(EL" 12 Vn2ys(n)t +4(n — 1)ys(n )2] > (0. Combining (39), (40) and
(42), we obtain

F(®) < 8n(® — ap(n, H)) < 8n (e2 + PH T 4(n — 1)H2). (42)

[N

/ [—% + Oe, 8(n), H)][Vo[2dM > 0, (43)
M

for all H < v(n) = min{y1(n),v2(n),v3(n)} and € < min{ey, e2(n)}.
For e <1, we have

O(e,0(n), H) < €D(n,7(n))Ca(n,0(n))(a+ 1+ 3vny(n))
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+eCo(n, 0(n))(an + 3n2~(n))
30(n) n Ca(n,6(n))

+e(3 - = < +3C32(n,0(n)))
= en(n), (44)
where a = YIT+L.
For € < ex(n), where €1(n) = gpmrrremdt arsvmm ] > O @ = Y, we have
Gl I 5 3 ir(n) + Cotn, 0 + 3yr(m) —2) — 20 (45)
> o) Colm,6(n)
T » —3vnH + €C3(n,0(n))(2 —a — 3v/nH) > 0.
Taking §(n) = e(n)?, where e(n) = min{1,¢;(n),e2(n),e3(n)} and e3(n) = T%n)’ we have
§(n) > 0. From (43) and the assumption that 3(n, H) < S < B(n, H) + 6(n), we obtain

V¢ = 0. This implies F(®) =0 and ® = Sy(n, H).
By Lemma 1, we have

B B B B(n,H) —nH?
Al—...—)\n_l—H—\/W,

N \/<n— (B(n, H) —nH?)
n
Therefore M is the Clifford hypersurface

n—

)
V14 p?

. This completes the proof of Main Theorem.

Sl —L )«
V14 p?
nH++/n2H2+4(n—1)
2

in S, where p =
Finally we would like to propose the following problems.

Open Problem A. Let M be an n-dimensional compact hypersurface with constant mean
curvature H in the unit sphere S"*1. Does there exist a positive constant §(n) depending
only on n such that if B(n, H) < S < B(n,H) + d(n), then S = (n,H)?

Open Problem B. For an n-dimensional compact hypersurface M™ with constant mean

curvature H in ST, set uy, = nlHITy/n 212 Fak(nk) Suppose that a(n, H) < S < B(n, H).
Is it possible to prove that M must be the isoparametric hypersurface S¥(—L—)x S F (L),

V1+p? Vi+p?
k=1,2,---,n—17

When H = 0, the rigidity theorem due to Lawson [9], Chern, do Carmo and Kobayashi
[2] provides an affirmative answer for Open Problem B.

Acknowledgement. We would like to thank Dr. En-Tao Zhao for his helpful discus-
sions. Thanks also to Professor Y. L. Xin for sending us the reference [§].
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