EXPONENTIAL DECAY OF SEMIGROUPS FOR SECOND ORDER NON-SELFADJOINT LINEAR DIFFERENTIAL EQUATIONS

NIKITA ARTAMONOV

Abstract

The Cauchy problem for second order linear differential equation

$$
u^{\prime \prime}(t)+D u^{\prime}(t)+A u(t)=0
$$

in Hilbert space H with a sectorial operator A and an accretive operator D is studied. Sufficient conditions for exponential decay of the solutions are obtained.

Many linearized equations of mechanics and mathematical physics can be reduced to a linear differential equation

$$
\begin{equation*}
u^{\prime \prime}(t)+D u^{\prime}(t)+A u(t)=0 \tag{0.1}
\end{equation*}
$$

where $u(t)$ is a vector-valued function in an appropriate (finite or infinite dimensional) Hilbert space H, D and A are linear (bounded or unbounded) operators on H. Properties of the differential equation (0.1) are closely connected with spectral properties of a quadric pencil

$$
L(\lambda)=\lambda^{2}+\lambda D+A, \quad \lambda \in \mathbb{C}
$$

which is obtained by substituting exponential functions $u(t)=\exp (\lambda t) x, x \in H$ into (0.1). In many applications A is a self-adjoint positive definite operator, D is a self-adjoint positive definite or an accretive operator (see definition in section 1). In this case the differential equation (0.1) and spectral properties of the related quadric pencil $L(\lambda)$ are well-studied, see [2, 6, 7, 8, 10, 11, 12, 13, 15] and references therein. It was obtained a localization of the pencil's spectrum, sufficient conditions of the completeness of eigen- and adjoint vectors of the pencil $L(\lambda)$ and it was proved, that all solutions of (0.1) exponentially decay. The exponential decay means, that the total energy exponentially decreases and corresponding mechanical system is stable. In paper [16] was studied spectral properties of the pencil $L(\lambda)$ for a self-adjoint non-positive definite operator A and an accretive operator D.

But some models of continuous mechanics are reduced to differential equation (0.1) with sectorial operator A, see [1, 9, 17] and references therein. In this cases methods, developed for self-adjoint operator A, cannot be applied.

The aim of this paper is the study of a Cauchy problem for second-order linear differential equation (0.1) in a Hilbert space H with initial conditions

$$
\begin{equation*}
u(0)=u_{0} \quad u^{\prime}(0)=u_{1} \tag{0.2}
\end{equation*}
$$

[^0]The shiffness operator A is assumed to be a sectorial operator, the damping operator D is assumed to be an accretive operator.

By $\mathcal{L}\left(H^{\prime}, H^{\prime \prime}\right)$ denote a space of bounded operators acting from a Hilbert space H^{\prime} to a Hilbert space $H^{\prime \prime} . \mathcal{L}(H)=\mathcal{L}(H, H)$ is an algebra of bounded operators acting on Hilbert space H.

1. Preliminary Results

First let us recall some definitions [4, 14].
Definition 1.1. Linear operator B with dense domain $\mathcal{D}(B)$ is called accretive if $\operatorname{Re}(B x, x) \geq 0$ for all $x \in \mathcal{D}(B)$ and m-accretive, if the range of operator $B+\omega I$ is dense in H for some $\omega>0$.

An accretive operator B is m-accretive iff B has not accretive extensions [14]. For m-accretive operator

$$
\rho(B) \supset\{\lambda \in \mathbb{C}: \operatorname{Re} \lambda<0\} .
$$

Definition 1.2. An accretive operator B is called sectorial or ω-accretive if for some $\omega \in[0, \pi / 2)$

$$
|\operatorname{Im}(B x, x)| \leq \tan (\omega) \operatorname{Re}(B x, x) \quad x \in \mathcal{D}(B)
$$

If a sectorial operator has not sectorial extensions, then it's called m-sectorial or $m-\omega$-accretive.

The sectorial property means that the numerical range of the operator B belongs to a sector

$$
\{z \in \mathbb{C}||\operatorname{Im} z| \leq \tan (\omega) \operatorname{Re} z\}
$$

For a sectorial operator B there exist [14] a self-adjoint non-negative operator T_{B} and a self-adjoint operator $S_{B} \in \mathcal{L}(H),\left\|S_{B}\right\| \leq \tan (\omega)$ such that

$$
\operatorname{Re}(B x, x)=\left(T_{B}^{1 / 2} x, T_{B}^{1 / 2} x\right), \quad B \subset T_{B}^{1 / 2}\left(I+i S_{B}\right) T_{B}^{1 / 2}
$$

and $B=T_{B}^{1 / 2}\left(I+i S_{B}\right) T_{B}^{1 / 2}$ iff B is m-sectorial.
Throughout this paper we will assume, that
(A) Operator $A: \mathcal{D}(A) \subset H \rightarrow H$ is m-sectorial and for some positive a_{0}

$$
\operatorname{Re}(A x, x) \geq a_{0}(x, x) \quad x \in \mathcal{D}(A)
$$

Since A is m-sectorial there exist a self-adjoint positive definite operator T and a self-adjoint $S \in \mathcal{L}(H)$, such that

$$
\begin{gathered}
\operatorname{Re}(A x, x)=\left(T^{1 / 2} x, T^{1 / 2} x\right) \geq a_{0}(x, x), \quad x \in \mathcal{D}(A) \\
A=T^{1 / 2}(I+i S) T^{1 / 2}
\end{gathered}
$$

The operator A is invertible and

$$
A^{-1}=T^{-1 / 2}(I+i S)^{-1} T^{-1 / 2}
$$

By $H_{s}(s \in \mathbb{R})$ denote a collection of Hilbert spaces generated by a self-adjoint operator $T^{1 / 2}$:

- for $s \geq 0 H_{s}=\mathcal{D}\left(T^{s / 2}\right)$ endowed with a norm $\|x\|_{s}=\left\|T^{s / 2} x\right\|$;
- for $s<0 H_{s}$ is a closure of H with respect to the norm $\|\cdot\|_{s}$.

Obviously $H_{0}=H$. The operator $T^{1 / 2}$ can be considered now as an unitary operator mapping H_{s} on H_{s-1}. A is a bounded operator $A \in \mathcal{L}\left(H_{2}, H_{0}\right)$ and it can be extended to a bounded operator $\tilde{A} \in \mathcal{L}\left(H_{1}, H_{-1}\right)$. The inverse operator A^{-1} can be extended to a bounded operator $\tilde{A}^{-1} \in \mathcal{L}\left(H_{-1}, H_{1}\right)$.

By $(\cdot, \cdot)_{-1,1}$ denote a duality pairing on $H_{-1} \times H_{1}$. Note, that for all $x \in H_{-1}$ and $y \in H_{1}$ we have

$$
\left|(x, y)_{-1,1}\right| \leq\|x\|_{-1} \cdot\|y\|_{1}
$$

and $(x, y)_{-1,1}=(x, y)$ if $x \in H$. Further,

$$
\operatorname{Re}(\tilde{A} x, x)_{-1,1}=(T x, x)_{-1,1}=\left(T^{1 / 2} x, T^{1 / 2} x\right)=\|x\|_{1}^{2}, \quad x \in H_{1}=\mathcal{D}\left(T^{1 / 2}\right)
$$

Denote $\tilde{S}=T^{1 / 2} S T^{1 / 2} \in \mathcal{L}\left(H_{1}, H_{-1}\right)$. Then, for the operator \tilde{A} we have a representation $\tilde{A}=T+i \tilde{S}$ and

$$
\operatorname{Im}(\tilde{A} x, x)_{-1,1}=(\tilde{S} x, x)_{-1,1} \quad x \in H_{1}
$$

Also $(\tilde{S} x, y)_{-1,1}=\overline{(\tilde{S} y, x)}_{-1,1}$ for all $x, y \in H_{1}$.
Following paper [11] we will assume
(B) D is a bounded operator $D \in \mathcal{L}\left(H_{1}, H_{-1}\right)$, and

$$
\begin{equation*}
\beta=\inf _{x \in H_{1}, x \neq 0} \frac{\operatorname{Re}(D x, x)_{-1,1}}{\|x\|^{2}}>0 \tag{1.1}
\end{equation*}
$$

Operator $T^{-1 / 2}$ is an unitary operator mapping H_{s} on H_{s+1}, therefore an operator $D^{\prime}=T^{-1 / 2} D T^{-1 / 2}$, acting on H, is bounded. Let

$$
D_{1}=\frac{1}{2} T^{1 / 2}\left(D^{\prime}+\left(D^{\prime}\right)^{*}\right) T^{1 / 2} \quad D_{2}=\frac{1}{2 i} T^{1 / 2}\left(D^{\prime}-\left(D^{\prime}\right)^{*}\right) T^{1 / 2}
$$

Obviously $D_{1}, D_{2} \in \mathcal{L}\left(H_{1}, H_{-1}\right), D=D_{1}+i D_{2}$ and for all $x \in H_{1}$

$$
\operatorname{Re}(D x, x)_{-1,1}=\left(D_{1} x, x\right)_{-1,1} \geq \beta\|x\|^{2}, \quad \operatorname{Im}(D x, x)_{-1,1}=\left(D_{2} x, x\right)_{-1,1} .
$$

Also $\left(D_{j} x, y\right)_{-1,1}={\overline{\left(D_{j} y, x\right)}}_{-1,1}$ for all $x, y \in H_{1}(j=1,2)$.

2. Main Result

Definition 2.1. A vector-valued function $u(t) \in H_{1}$ is called a solution of the differential equation (0.1) if $u^{\prime}(t) \in H_{1}, u^{\prime \prime}(t) \in H, D u^{\prime}(t)+\tilde{A} u(t) \in H$ and

$$
\begin{equation*}
u^{\prime \prime}(t)+D u^{\prime}(t)+\tilde{A} u(t)=0 \tag{2.1}
\end{equation*}
$$

If $u(t)$ is a solution of (2.1), then a vector-function

$$
\mathbf{x}(t)=\binom{u^{\prime}(t)}{u(t)}
$$

(formally) satisfies a first-order differential equation

$$
\begin{equation*}
\mathbf{x}^{\prime}(t)=\mathbf{A} \mathbf{x}(t) \tag{2.2}
\end{equation*}
$$

with a block operator matrix

$$
\mathbf{A}=\left(\begin{array}{cc}
-D & -\tilde{A} \\
I & 0
\end{array}\right)
$$

From mechanical viewpoint it is most natural to consider the equation (2.2) in an "energy" space $\mathcal{H}=H \times H_{1}$ with a dense domain of the operator \mathbf{A} [6, 7, 11, 16,

$$
\mathcal{D}(\mathbf{A})=\left\{\left.\binom{x_{1}}{x_{2}} \right\rvert\, x_{1}, x_{2} \in H_{1}, D x_{1}+\tilde{A} x_{2} \in H\right\}
$$

An inverse of \mathbf{A} is formally defined by a block operator matrix

$$
\mathbf{A}^{-1}=\left(\begin{array}{cc}
0 & I \\
-\tilde{A}^{-1} & -\tilde{A}^{-1} D
\end{array}\right)
$$

Let $\mathbf{y}=\left(y_{1}, y_{2}\right)^{\top} \in \mathcal{H}=H \times H_{1}$, then

$$
\mathbf{A}^{-1} \mathbf{y}=\binom{y_{2}}{-\tilde{A}^{-1} y_{1}-\tilde{A}^{-1} D y_{2}}=\binom{x_{1}}{x_{2}}
$$

Since $\tilde{A}^{-1} \in \mathcal{L}\left(H_{-1}, H_{1}\right)$ and $D \in \mathcal{L}\left(H_{1}, H_{-1}\right)$, then $\tilde{A}^{-1} D \in \mathcal{L}\left(H_{1}, H_{1}\right)$. Therefore $-\tilde{A}^{-1} y_{1}-\tilde{A}^{-1} D y_{2} \in H_{1}$ and $\mathbf{A}^{-1} \mathbf{y} \in H_{1} \times H_{1}$. Moreover,

$$
D x_{1}+\tilde{A} x_{2}=D y_{2}+\tilde{A}\left(-\tilde{A}^{-1} y_{1}-\tilde{A}^{-1} D y_{2}\right)=-y_{1} \in H
$$

Thus $\mathbf{A}^{-1} \mathbf{y} \in \mathcal{D}(\mathbf{A})$. Since $I \in \mathcal{L}\left(H_{1}, H\right)$ the operator \mathbf{A}^{-1} is bounded and therefore the operator \mathbf{A} is closed and $0 \in \rho(\mathbf{A})$.

Let $(\mathbf{x}, \mathbf{y})_{\mathcal{H}}$ be a natural scalar product on $\mathcal{H}=H \times H_{1}$ and $\|\mathbf{x}\|_{\mathcal{H}}^{2}=(\mathbf{x}, \mathbf{y})_{\mathcal{H}}$.
If operator A is self-adjoint, the spectral properties of operator \mathbf{A} are wellstudied: $-\mathbf{A}$ is an m-accretive operator in the Hilbert space $\mathcal{H}=H \times H_{1}$ (see [2, 6, 7, 8, 10, 11] and references therein) and, consequently, \mathbf{A} is a generator of a C_{0}-semigroup. Thus, differential equation (2.2) (and equation (2.1)) is correctly solvable in the space \mathcal{H} for all $\mathbf{x}(0)=\left(u_{1}, u_{0}\right)^{\top} \in \mathcal{D}(\mathbf{A})$. Moreover, in this case operator \mathbf{A} is a generator of a contraction semigroup [7]. It implies, that all solutions of (2.2) (and (2.1)) exponentially decay, i.e. for some $C, \omega>0$

$$
\|\mathbf{x}(t)\|_{\mathcal{H}} \leq C \exp (-\omega t)\|\mathbf{x}(0)\|_{\mathcal{H}} \quad t \geq 0
$$

For non-selfadjoint A operator $(-\mathbf{A})$ is not longer accretive in the space \mathcal{H} with respect to the standard scalar product. But, under some assumptions, one can define a new scalar product on \mathcal{H}, which is topologically equivalent to the given one, such that an operator $(-\mathbf{A}-q I)$ (for some $q \geq 0)$ is m-accretive and therefore the operator \mathbf{A} is a generator of a C_{0}-semigroup on \mathcal{H}. If $q>0$, then \mathbf{A} is a generator of a contraction semigroup and all solutions of (2.2) exponentially decay.

Let $k \in(0, \beta)$ (β is defined by (1.1)). Consider on the space \mathcal{H} a sesquilinear form

$$
\begin{aligned}
& {[\mathbf{x}, \mathbf{y}]_{\mathcal{H}}=} \\
& \qquad \begin{aligned}
&\left(T^{1 / 2} x_{2}, T^{1 / 2} y_{2}\right)+k\left(D_{1} x_{2}, y_{2}\right)_{-1,1}-k^{2}\left(x_{2}, y_{2}\right)+\left(x_{1}+k x_{2}, y_{1}+k y_{2}\right) \\
& \mathbf{x}=\left(x_{1}, x_{2}\right)^{\top}, \mathbf{y}=\left(y_{1}, y_{2}\right)^{\top} \in \mathcal{H} .
\end{aligned}
\end{aligned}
$$

Obviously, $[\mathbf{x}, \mathbf{y}]=\overline{[\mathbf{y}, \mathbf{x}]}$ and

$$
[\mathbf{x}, \mathbf{x}]_{\mathcal{H}}=\left\|x_{2}\right\|_{1}^{2}+k\left(D_{1} x_{2}, x_{2}\right)_{-1,1}+\left\|x_{1}\right\|^{2}+2 k \operatorname{Re}\left(x_{1}, x_{2}\right)
$$

Since $\left(D_{1} x, x\right)_{-1,1}=\operatorname{Re}(D x, x)_{-1,1} \geq \beta\|x\|^{2}$ and

$$
2\left|\operatorname{Re}\left(x_{1}, x_{2}\right)\right| \leq 2\left|\left(x_{1}, x_{2}\right)\right| \leq 2\left\|x_{1}\right\| \cdot\left\|x_{2}\right\| \leq \frac{\left\|x_{1}\right\|^{2}}{\beta}+\beta\left\|x_{2}\right\|^{2}
$$

then

$$
\begin{aligned}
& {[\mathbf{x}, \mathbf{x}]_{\mathcal{H}} \geq\left\|x_{2}\right\|_{1}^{2}+k\left(\left(D_{1} x, x\right)_{-1,1}-\beta\left\|x_{2}\right\|^{2}\right)+\left(1-\frac{k}{\beta}\right)\left\|x_{1}\right\|^{2} \geq} \\
& \left\|x_{2}\right\|_{1}^{2}+\left(1-\frac{k}{\beta}\right)\left\|x_{1}\right\|^{2}
\end{aligned}
$$

Inequatlities $\left|\left(D_{1} x, x\right)_{-1,1}\right| \leq\left\|D_{1} x\right\|_{-1} \cdot\|x\|_{1} \leq\left\|D_{1}\right\| \cdot\|x\|_{1}^{2}$ and $\|x\|_{1}^{2} \geq a_{0}\|x\|^{2}$ imply

$$
\begin{aligned}
{[\mathbf{x}, \mathbf{x}]_{\mathcal{H}} \leq\left(1+k\left\|D_{1}\right\|\right)\left\|x_{2}\right\|_{1}^{2}+} & k \beta\left\|x_{2}\right\|^{2}+\left(1+\frac{k}{\beta}\right)\left\|x_{1}\right\|^{2} \\
& \leq\left(1+k\left\|D_{1}\right\|+\frac{k \beta}{a_{0}}\right)\left\|x_{2}\right\|_{1}^{2}+\left(1+\frac{k}{\beta}\right)\left\|x_{1}\right\|^{2}
\end{aligned}
$$

Thus,

$$
\left(1-\frac{k}{\beta}\right)\|\mathbf{x}\|_{\mathscr{H}}^{2} \leq[\mathbf{x}, \mathbf{x}]_{\mathscr{H}} \leq \mathrm{const}\|\mathbf{x}\|_{\mathscr{H}}^{2}
$$

and $[\cdot, \cdot]_{\mathcal{H}}$ is a scalar product on \mathcal{H}, which is topologically equivalent to the given one. Denote $|\mathbf{x}|_{\mathcal{H}}^{2}=[\mathbf{x}, \mathbf{x}]_{\mathcal{H}}$.

Theorem 2.2. Let the assumptions (A) and (B) hold and for some $k \in(0, \beta)$ and $m \in(0,1]$

$$
\begin{equation*}
\omega_{1}=\inf _{x \in H_{1}, x \neq 0} \frac{\frac{1}{k}\left(D_{1} x, x\right)_{-1,1}-\|x\|^{2}-\frac{1}{4 m}\left\|\left(\frac{1}{k} \tilde{S}-D_{2}\right) x\right\|_{-1}}{\|x\|^{2}} \geq 0 \tag{2.3}
\end{equation*}
$$

Then the operator \mathbf{A} is a generator of a C_{0}-semigroup $\mathcal{T}(t)=\exp \{t \mathbf{A}\}(t \geq 0)$ and

$$
\|\mathcal{T}(t)\|_{\mathcal{H}} \leq \text { const } \cdot \exp (-t k \theta)
$$

where

$$
\theta=\min \left\{\frac{\omega_{1}}{2}, \frac{1-m}{\omega_{2}}\right\} \geq 0
$$

$a n d^{2}$

$$
\begin{equation*}
\omega_{2}=\sup _{x \in H_{1}, x \neq 0} \frac{\|x\|_{1}^{2}+k\left(D_{1} x, x\right)_{-1,1}+k^{2}\|x\|^{2}}{\|x\|_{1}^{2}} \tag{2.4}
\end{equation*}
$$

Proof. For $\mathbf{x}=\left(x_{1}, x_{2}\right)^{\top} \in \mathcal{D}(\mathbf{A})$ let us consider a quadric form

$$
\begin{aligned}
& {[\mathbf{A x}, \mathbf{x}]_{\mathcal{H}}=\left(T^{1 / 2} x_{1}, T^{1 / 2} x_{2}\right)+k\left(D_{1} x_{1}, x_{2}\right)_{-1,1}-k^{2}\left(x_{1}, x_{2}\right)+} \\
& \left(-D x_{1}-\tilde{A} x_{2}+k x_{1}, x_{1}+k x_{2}\right)= \\
& \left(T x_{1}, x_{2}\right)_{-1,1}+k\left(D_{1} x_{1}, x_{2}\right)_{-1,1}-\left(D x_{1}, x_{1}\right)_{-1,1} \\
& -\left(\tilde{A} x_{2}, x_{1}\right)_{-1,1}+k\left(x_{1}, x_{1}\right)-k\left(D x_{1}, x_{2}\right)_{-1,1}-k\left(\tilde{A} x_{2}, x_{2}\right)_{-1,1}= \\
& -\left(D x_{1}, x_{1}\right)_{-1,1}+k\left(x_{1}, x_{1}\right)-k\left(\tilde{A} x_{2}, x_{2}\right)_{-1,1}-i k\left(D_{2} x_{1}, x_{2}\right)_{-1,1}+ \\
& \quad\left(T x_{1}, x_{2}\right)_{-1,1}-\left(T x_{2}, x_{1}\right)_{-1,1}-i\left(\tilde{S} x_{2}, x_{1}\right)_{-1,1}
\end{aligned}
$$

[^1]We used decompositions $\tilde{A}=T+i \tilde{S}$ and $D=D_{1}+i D_{2}$. Consequently,

$$
\begin{gathered}
\operatorname{Re}[\mathbf{A x}, \mathbf{x}]_{\mathcal{H}}=-\left(D_{1} x_{1}, x_{1}\right)_{-1,1}+k\left(x_{1}, x_{1}\right)-k\left(T x_{2}, x_{2}\right)_{-1,1}- \\
\operatorname{Re}\left(i k\left(D_{2} x_{1}, x_{2}\right)_{-1,1}+i\left(\tilde{S} x_{2}, x_{1}\right)_{-1,1}\right)= \\
-\left(D_{1} x_{1}, x_{1}\right)_{-1,1}+k\left\|x_{1}\right\|^{2}-k\left\|x_{2}\right\|_{1}^{2}- \\
\operatorname{Im}\left(\left(\tilde{S} x_{1}, x_{2}\right)_{-1,1}-k\left(D_{2} x_{1}, x_{2}\right)_{-1,1}\right)
\end{gathered}
$$

and

$$
-\frac{1}{k} \operatorname{Re}[\mathbf{A x}, \mathbf{x}]_{\mathcal{H}}=\frac{1}{k}\left(D_{1} x_{1}, x_{1}\right)_{-1,1}-\left\|x_{1}\right\|^{2}+\left\|x_{2}\right\|_{1}^{2}+\operatorname{Im}\left(\left(\frac{1}{k} \tilde{S}-D_{2}\right) x_{1}, x_{2}\right)_{-1,1}
$$

Since

$$
\begin{aligned}
\left|\left(\left(\frac{1}{k} \tilde{S}-D_{2}\right) x_{1}, x_{2}\right)_{-1,1}\right| \leq\left\|\left(\frac{1}{k} \tilde{S}-D_{2}\right) x_{1}\right\|_{-1} \cdot\left\|x_{2}\right\|_{1} \leq \\
\frac{1}{4 m}\left\|\left(\frac{1}{k} \tilde{S}-D_{2}\right) x_{1}\right\|_{-1}^{2}+m\left\|x_{2}\right\|_{1}^{2}
\end{aligned}
$$

then

$$
\begin{array}{r}
-\frac{1}{k} \operatorname{Re}[\mathbf{A} \mathbf{x}, \mathbf{x}]_{\mathcal{H}} \geq \frac{1}{k}\left(D_{1} x_{1}, x_{1}\right)_{-1,1}-\left\|x_{1}\right\|^{2}-\frac{1}{4 m}\left\|\left(\frac{1}{k} \tilde{S}-D_{2}\right) x_{1}\right\|_{-1}^{2}+ \\
(1-m)\left\|x_{2}\right\|_{1}^{2} \geq \omega_{1}\left\|x_{1}\right\|^{2}+(1-m)\left\|x_{2}\right\|_{1}^{2}
\end{array}
$$

Further, an inequality

$$
2 k\left|\operatorname{Re}\left(x_{1}, x_{2}\right)\right| \leq 2\left|\left(x_{1}, k x_{2}\right)\right| \leq 2\left\|x_{1}\right\| \cdot\left\|k x_{2}\right\| \leq\left\|x_{1}\right\|^{2}+k^{2}\left\|x_{2}\right\|^{2}
$$

implies

$$
\begin{equation*}
[\mathbf{x}, \mathbf{x}]_{\mathcal{H}} \leq 2\left\|x_{1}\right\|^{2}+\left\|x_{2}\right\|_{1}^{2}+k\left(D_{1} x_{2}, x_{2}\right)_{-1,1}+k^{2}\left\|x_{2}\right\|^{2} \leq 2\left\|x_{1}\right\|^{2}+\omega_{2}\left\|x_{2}\right\|_{1}^{2} \tag{2.5}
\end{equation*}
$$

Thus

$$
-\frac{1}{k} \operatorname{Re}[\mathbf{A} \mathbf{x}, \mathbf{x}]_{\mathcal{H}} \geq \omega_{1}\left\|x_{1}\right\|^{2}+(1-m)\left\|x_{2}\right\|_{1}^{2} \geq \theta\left(2\left\|x_{1}\right\|^{2}+\omega_{2}\left\|x_{2}\right\|_{1}^{2}\right) \geq \theta[\mathbf{x}, \mathbf{x}]_{\mathcal{H}}
$$

and an operator $(-\mathbf{A}-k \theta I)$ is accretive. Moreover, the operator $(-\mathbf{A}-k \theta I)$ is m-accretive (since $0 \in \rho(\mathbf{A})$) and 3^{3}

$$
\rho(-\mathbf{A}-k \theta I) \subset\{\lambda \in \mathbb{C}, \operatorname{Re} \lambda<0\} \Rightarrow \rho(-\mathbf{A}) \supset\{\lambda \in \mathbb{C}, \operatorname{Re} \lambda<k \theta\}
$$

Therefore, the operator \mathbf{A} is a generator of a C_{0}-semigroup [4, 5] $\mathcal{T}(t)=\exp \{t \mathbf{A}\}$, $t \geq 0$ and

$$
|\mathcal{T}(t)|_{\mathcal{H}} \leq \exp (-k \theta t), \quad t \geq 0
$$

On the space \mathcal{H} norms $|\mathbf{x}|_{\mathcal{H}}$ and $\|\mathbf{x}\|_{\mathcal{H}}$ are equivalent and the inequality

$$
\|\mathcal{T}(t)\|_{\mathcal{H}} \leq \text { const } \cdot \exp (-k \theta t), \quad t \geq 0
$$

holds for some positive constant.

[^2]Corollary 2.3. Under the conditions of the theorem 2.2 for all $\mathbf{x}_{0}=\left(u_{1}, u_{0}\right)^{\top} \in$ $\mathcal{D}(\mathbf{A})$ vector-function

$$
\mathbf{x}(t)=\binom{w(t)}{u(t)}=\mathcal{T}(t) \mathbf{x}_{0} \in \mathcal{D}(\mathbf{A})
$$

satisfies the first order differential equation (2.2). $u(t)$ satisfies the second-order differential equation (2.1) with the initial conditions (0.2) and an inequality

$$
\|u(t)\|_{1}^{2}+\left\|u^{\prime}(t)\right\|^{2} \leq \mathrm{const} \cdot \exp \{-2 k \theta t\}\left(\left\|u_{0}\right\|_{1}^{2}+\left\|u_{1}\right\|^{2}\right)
$$

holds for all $t \geq 0$.
Consider now a more strong assumption on the operator D :
(C) $D \in \mathcal{L}\left(H_{1}, H_{-1}\right)$ and

$$
\delta=\inf _{x \in H_{1}, x \neq 0} \frac{\operatorname{Re}(D x, x)_{-1,1}}{\|x\|_{1}^{2}}>0
$$

It is easy to show that the assumption (C) implies (B) and $\beta>a_{0} \delta$.
By $\|\tilde{S}\|$ and $\left\|D_{2}\right\|$ denote norms of the bounded operators $\tilde{S} \in \mathcal{L}\left(H_{1}, H_{-1}\right)$ and $D_{2} \in \mathcal{L}\left(H_{1}, H_{-1}\right)$. Then for all $x \in H_{1}$

$$
\|\tilde{S} x\|_{-1} \leq\|\tilde{S}\| \cdot\|x\|_{1}, \quad\left\|D_{2} x\right\|_{-1} \leq\left\|D_{2}\right\| \cdot\|x\|_{1}
$$

Theorem 2.4. Let the assumptions (A) and (C) are fulfilled and for some $k \in$ $(0, \beta)$ and some $p, q>0$ with $p+q \leq 1$

$$
\omega_{1}^{\prime}=a_{0}\left(\frac{\delta}{k}-\frac{1}{4 p k^{2}}\|\tilde{S}\|^{2}-\frac{1}{4 q}\left\|D_{2}\right\|^{2}\right) \geq 1
$$

Then the operator \mathbf{A} is a generator of a C_{0}-semigroup $\mathcal{T}(t)=\exp \{t \mathbf{A}\}(t \geq 0)$ and

$$
\|\mathcal{T}(t)\|_{\mathcal{H}} \leq \text { const } \cdot \exp \left(-t k \theta^{\prime}\right)
$$

where

$$
\theta^{\prime}=\min \left\{\frac{\omega_{1}^{\prime}-1}{2}, \frac{1-p-q}{\omega_{2}}\right\} \geq 0
$$

and ω_{2} is defined by (2.4).
Proof. Consider on Hilbert space $\mathcal{H}=H \times H_{1}$ the scalar product $[\mathbf{x}, \mathbf{y}]_{\mathcal{H}}$. Then

$$
\begin{aligned}
-\frac{1}{k} \operatorname{Re}[\mathbf{A} \mathbf{x}, \mathbf{x}]_{\mathcal{H}}=\frac{1}{k}\left(D_{1} x_{1}, x_{1}\right)_{-1,1}- & \left\|x_{1}\right\|^{2}+\left\|x_{2}\right\|_{1}^{2}+ \\
& \frac{1}{k} \operatorname{Im}\left(\tilde{S} x_{1}, x_{2}\right)_{-1,1}-\operatorname{Im}\left(D_{2} x_{1}, x_{2}\right)_{-1,1}
\end{aligned}
$$

(see the proof of the theorem (2.2). Since

$$
\begin{aligned}
& \left|\operatorname{Im}\left(D_{2} x_{1}, x_{2}\right)_{-1,1}\right| \leq\left|\left(D_{2} x_{1}, x_{2}\right)_{-1,1}\right| \leq\left\|D_{2} x_{1}\right\|_{-1} \cdot\left\|x_{2}\right\|_{1} \leq \\
& \frac{1}{4 q}\left\|D_{2} x_{1}\right\|_{-1}^{2}+q\left\|x_{2}\right\|_{1}^{2} \leq \frac{1}{4 q}\left\|D_{2}\right\|^{2} \cdot\left\|x_{1}\right\|_{1}^{2}+q\left\|x_{2}\right\|_{1}^{2} \\
& \frac{1}{k}\left|\operatorname{Im}\left(\tilde{S} x_{1}, x_{2}\right)_{-1,1}\right| \leq\left|\left(\frac{1}{k} \tilde{S} x_{1}, x_{2}\right)_{-1,1}\right| \leq\left\|\frac{1}{k} \tilde{S} x_{1}\right\|_{-1} \cdot\left\|x_{2}\right\|_{1} \leq \\
& \frac{1}{4 p}\left\|\frac{1}{k} \tilde{S} x_{1}\right\|_{-1}^{2}+p\left\|x_{2}\right\|_{1}^{2} \leq \frac{1}{4 p k^{2}}\|\tilde{S}\|^{2} \cdot\left\|x_{1}\right\|_{1}^{2}+p\left\|x_{2}\right\|_{1}^{2}
\end{aligned}
$$

and taking into account $\left(D_{1} x, x\right)_{-1,1} \geq \delta\|x\|_{1}^{2}$ and $\|x\|_{1}^{2} \geq a_{0}\|x\|^{2}$ we obtain

$$
\begin{aligned}
& -\frac{1}{k} \operatorname{Re}[\mathbf{A x}, \mathbf{x}]_{\mathcal{H}} \geq \frac{1}{k}\left(D_{1} x_{1}, x_{1}\right)_{-1,1}-\left\|x_{1}\right\|^{2}- \\
& \frac{\|\tilde{S}\|^{2}}{4 p k^{2}} \cdot\left\|x_{1}\right\|_{1}^{2}-\frac{\left\|D_{2}\right\|^{2}}{4 q} \cdot\left\|x_{1}\right\|_{1}^{2}+(1-p-q)\left\|x_{2}\right\|_{1}^{2} \geq \\
& \left(\begin{array}{c}
\left.\frac{\delta}{k}-\frac{\|\tilde{S}\|^{2}}{4 p k^{2}}-\frac{\left\|D_{2}\right\|^{2}}{4 q}\right)\left\|x_{1}\right\|_{1}^{2}-\left\|x_{1}\right\|^{2}+(1-p-q)\left\|x_{2}\right\|_{1}^{2} \geq \\
\left(\omega_{1}^{\prime}-1\right)\left\|x_{1}\right\|^{2}+(1-p-q)\left\|x_{2}\right\|_{1}^{2}
\end{array}\right.
\end{aligned}
$$

Using (2.5) we finally have

$$
-\frac{1}{k} \operatorname{Re}[\mathbf{A} \mathbf{x}, \mathbf{x}]_{\mathcal{H}} \geq \theta^{\prime}[\mathbf{x}, \mathbf{x}]_{\mathcal{H}} .
$$

Thus an operator $\left(-\mathbf{A}-k \theta^{\prime} I\right)$ in m-accretive (since $0 \in \rho(\mathbf{A})$) and

$$
\rho(-\mathbf{A}) \supset\left\{\lambda \in \mathbb{C}, \operatorname{Re} \lambda<k \theta^{\prime}\right\}
$$

Therefore, the operator \mathbf{A} is a generator of a C_{0}-semigroup [4, 5] $\mathcal{T}(t)=\exp \{t \mathbf{A}\}$ $(t \geq 0)$ and

$$
|\mathcal{T}(t)|_{\mathcal{H}} \leq \exp \left(-k \theta^{\prime} t\right), \quad t \geq 0
$$

Since the norms $|\mathbf{x}|_{\mathcal{H}}$ and $\|\mathbf{x}\|_{\mathcal{H}}$ are equivalent then we have an inequality

$$
\|\mathcal{T}(t)\|_{\mathcal{H}} \leq \text { const } \cdot \exp \left(-k \theta^{\prime} t\right), \quad t \geq 0
$$

for some positive constant.
Corollary 2.5. Under the conditions of the theorem 2.4 for all $\mathbf{x}_{0}=\left(u_{1}, u_{0}\right)^{\top} \in$ $\mathcal{D}(\mathbf{A})$ a vector-valued function

$$
\mathbf{x}(t)=\binom{w(t)}{u(t)}=\mathcal{T}(t) \mathbf{x}_{0} \in \mathcal{D}(\mathbf{A})
$$

satisfies the first order differential equation (2.2). $u(t)$ satisfies the second-order differential equation (2.1) with an initial conditions (0.2) and the inequality

$$
\|u(t)\|_{1}^{2}+\left\|u^{\prime}(t)\right\|^{2} \leq \text { const } \cdot \exp \left\{-2 k \theta^{\prime} t\right\}\left(\left\|u_{0}\right\|_{1}^{2}+\left\|u_{1}\right\|^{2}\right)
$$

holds for all $t \geq 0$.

3. Related spectral problem

Let us consider a quadric pencil associated with the differential equation (0.1)

$$
L(\lambda)=\lambda^{2} I+\lambda D+A \quad \lambda \in \mathbb{C}
$$

Since $D: H_{1} \rightarrow H_{-1}$ it is more naturally to consider an extension of pencil

$$
\tilde{L}(\lambda)=\lambda^{2} I+\lambda D+\tilde{A}
$$

mapping H_{1} to H_{-1}. Moreover, $\tilde{L}(\lambda) \in \mathcal{L}\left(H_{1}, H_{-1}\right)$ for all $\lambda \in \mathbb{C}$.
Definition 3.1. The resolvent set of the pencil $\tilde{L}(\lambda)$ is defined as

$$
\rho(\tilde{L})=\left\{\lambda \in \mathbb{C}: \exists \tilde{L}^{-1}(\lambda) \in \mathcal{L}\left(H_{-1}, H_{1}\right)\right\}
$$

The spectrum of the pencil is $\sigma(\tilde{L})=\mathbb{C} \backslash \rho(\tilde{L})$.

In [7, [16] it was proved that $\sigma(\tilde{L})=\sigma(\mathbf{A})$ and for $\lambda \neq 0$

$$
(\mathbf{A}-\lambda I)^{-1}=\left(\begin{array}{cc}
\lambda^{-1}\left(\tilde{L}^{-1}(\lambda) \tilde{A}-I\right) & -\tilde{L}^{-1}(\lambda) \\
\tilde{L}^{-1}(\lambda) \tilde{A} & -\lambda \tilde{L}^{-1}(\lambda)
\end{array}\right)
$$

This result allows to obtain a localization of the pencil's spectrum in a half-plane.
Proposition 3.2. 1. Under the conditions of the theorem 2.2 the spectrum of the pencil $\tilde{L}(\lambda)$ belongs to a half-plane

$$
\sigma(\tilde{L}) \subseteq\{\operatorname{Re} \leq-k \theta\}
$$

2. Under the conditions of the theorem 2.4 the spectrum of the pencil $\tilde{L}(\lambda)$ belongs to a half-plane

$$
\sigma(\tilde{L}) \subseteq\left\{\operatorname{Re} \leq-k \theta^{\prime}\right\}
$$

Acknowledgement: the author thanks Prof. Carsten Trunk for fruitful discussions during IWOTA 2009 and Prof. A.A. Shkalikov for discussions.

References

[1] S. D. Aglazin, I. A. Kiiko, Numerical-analytic investigation of the flutter of a panel of arbitrary shape in a desighn. J. Appl. MAth. Mech. 61 (1997), 171-174
[2] S. Chen, R. Triggiani, Proof of extensions of two conjectures on structural damping for elastic systems. Pac. J. Math. 136(1) (1989), 15-55
[3] K. Engel, R. Nagel, One-Parameter Semigroups for Linear Evolution Equations. Graduate Texts in Mathematics, vol. 194. Springer, New York, 2000
[4] M. Haase, The Functional Calculus for Sectorial Operators. Birkhäuser, Basel (2006)
[5] E. Hille, R. S. Phillips, Functional analysis and semigroups AMS, 1957
[6] R. O. Hryniv, A. A. Shkalikov, Operator models in elasticity theory and hydrodynamics and associated analytic semigroups. Mosc. Univ. Math. Bull. 54(5) (1999), 1-10
[7] R. O. Hryniv, A. A. Shkalikov, Exponential stability of semigroups related to operator models in mechanics. Math. Notes 73(5) (2003), 618-624
[8] F. Huang, Some problems for linear elastic systems with damping. Acta Math. Sci. 10(3) (1990), 319-326
[9] A. A. Ilyushin, I. A. Kiiko, Vibrations of a rectangle plate in a supersonic aerodynamics and the problem of panel flutter. Moscow Univ. Mech, Bull., 49 (1994), 40-44
[10] B. Jacob, C. Trunk, Location of the spectrum of operator matrices which are associated to second order equations. Oper. Matrices 1 (2007), 45-60
[11] B. Jacob, C. Trunk, Spectrum and analyticity of semigroups arising in elasticity theory and hydromechanics. Semigroup Forum 79 (2009), 79-100
[12] B. Jacob, K. Morris, C. Trunk, Minimum-phase infinite-dimensional second-order systems. IEEE Trans. Autom. Control 52 (2007), 1654-1665
[13] B. Jacob, C. Trunk, M. Winklmeier, Analyticity and Riesz basis property of semigroups associated to damped vibrations. J. Evol. Equ. 8(2) (2008), 263-281
[14] T. Kato, Perturbation theory for linear operators. Springer-Verlag, Berlin, 1966
[15] A.S. Markus, Introduction to the spectral theory of polynomial operator pencils. Russian Math. Survey 26 (1972) 88 (2000), 100-120.
[16] A. A. Shkalikov, Operator pencils arising in elastisity and hydrodynamics: the instability index formula In: Operator Theory: Adv. and Appl., Vol. 87, Birkhäuser, 1996, pp. 358-385.
[17] N. Artamonov, Estimates of solutions of certain classes of second-order differential equaitons ina Hilbert space. Sbornik Mathematics, 194:8 (2003), 1113-1123

Dept. for Econometric and Mathematical methods in economics, Moscow State Institute of International Relations (University), 119454 AV. Vernadskogo 76, Moscow, Russia

E-mail address: nikita.artamonov@gmail.com

[^0]: Date: February 26, 2010.
 1991 Mathematics Subject Classification. Primary 47D06, 34G10; Secondary 47B44, 35G15.
 Key words and phrases. Accretive operator, sectorial operator, C_{0}-semigroup, second order linear differential equation, spectrum.

 This paper is supported by the Russian Foundation of Basic Research (project No 08-01-00595).

[^1]: ${ }^{1}\left\|D_{1}\right\|$ is a norm of operator $D_{1} \in \mathcal{L}\left(H_{1}, H_{-1}\right)$, i.e. $\left\|D_{1}\right\|=\sup _{x \in H_{1}, x \neq 0}\left\|D_{1} x\right\|_{-1} /\|x\|_{1}$
 ${ }^{2}$ Obviously, $\omega_{2} \leq 1+k\left\|D_{1}\right\|+k^{2} / a_{0}$

[^2]: ${ }^{3}$ Obviously, the operator $(-\mathbf{A})$ is m-accretive as well.

