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EXPONENTIAL DECAY OF SEMIGROUPS FOR SECOND

ORDER NON-SELFADJOINT LINEAR DIFFERENTIAL

EQUATIONS

NIKITA ARTAMONOV

Abstract. The Cauchy problem for second order linear differential equation

u′′(t) +Du′(t) +Au(t) = 0

in Hilbert space H with a sectorial operator A and an accretive operator D
is studied. Sufficient conditions for exponential decay of the solutions are
obtained.

Many linearized equations of mechanics and mathematical physics can be re-
duced to a linear differential equation

(0.1) u′′(t) +Du′(t) +Au(t) = 0,

where u(t) is a vector-valued function in an appropriate (finite or infinite dimen-
sional) Hilbert space H , D and A are linear (bounded or unbounded) operators on
H . Properties of the differential equation (0.1) are closely connected with spectral
properties of a quadric pencil

L(λ) = λ2 + λD +A, λ ∈ C

which is obtained by substituting exponential functions u(t) = exp(λt)x, x ∈ H
into (0.1). In many applications A is a self-adjoint positive definite operator, D is a
self-adjoint positive definite or an accretive operator (see definition in section 1). In
this case the differential equation (0.1) and spectral properties of the related quadric
pencil L(λ) are well-studied, see [2, 6, 7, 8, 10, 11, 12, 13, 15] and references therein.
It was obtained a localization of the pencil’s spectrum, sufficient conditions of the
completeness of eigen- and adjoint vectors of the pencil L(λ) and it was proved, that
all solutions of (0.1) exponentially decay. The exponential decay means, that the
total energy exponentially decreases and corresponding mechanical system is stable.
In paper [16] was studied spectral properties of the pencil L(λ) for a self-adjoint
non-positive definite operator A and an accretive operator D.

But some models of continuous mechanics are reduced to differential equation
(0.1) with sectorial operator A, see [1, 9, 17] and references therein. In this cases
methods, developed for self-adjoint operator A, cannot be applied.

The aim of this paper is the study of a Cauchy problem for second-order linear
differential equation (0.1) in a Hilbert space H with initial conditions

(0.2) u(0) = u0 u′(0) = u1.
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The shiffness operatorA is assumed to be a sectorial operator, the damping operator
D is assumed to be an accretive operator.

By L(H ′, H ′′) denote a space of bounded operators acting from a Hilbert space
H ′ to a Hilbert space H ′′. L(H) = L(H,H) is an algebra of bounded operators
acting on Hilbert space H .

1. Preliminary results

First let us recall some definitions [4, 14].

Definition 1.1. Linear operator B with dense domain D(B) is called accretive if
Re(Bx, x) ≥ 0 for all x ∈ D(B) and m-accretive, if the range of operator B +ωI is
dense in H for some ω > 0.

An accretive operator B is m-accretive iff B has not accretive extensions [14].
For m-accretive operator

ρ(B) ⊃ {λ ∈ C : Reλ < 0}.

Definition 1.2. An accretive operator B is called sectorial or ω-accretive if for
some ω ∈ [0, π/2)

∣

∣Im(Bx, x)
∣

∣ ≤ tan(ω)Re(Bx, x) x ∈ D(B).

If a sectorial operator has not sectorial extensions, then it’s called m-sectorial or
m-ω-accretive.

The sectorial property means that the numerical range of the operator B belongs
to a sector

{z ∈ C | | Im z| ≤ tan(ω)Re z}.

For a sectorial operator B there exist [14] a self-adjoint non-negative operator TB

and a self-adjoint operator SB ∈ L(H), ‖SB‖ ≤ tan(ω) such that

Re(Bx, x) = (T
1/2
B x, T

1/2
B x), B ⊂ T

1/2
B (I + iSB)T

1/2
B

and B = T
1/2
B (I + iSB)T

1/2
B iff B is m-sectorial.

Throughout this paper we will assume, that

(A) Operator A : D(A) ⊂ H → H is m-sectorial and for some positive a0

Re(Ax, x) ≥ a0(x, x) x ∈ D(A).

Since A is m-sectorial there exist a self-adjoint positive definite operator T and a
self-adjoint S ∈ L(H), such that

Re(Ax, x) = (T 1/2x, T 1/2x) ≥ a0(x, x), x ∈ D(A)

A = T 1/2(I + iS)T 1/2.

The operator A is invertible and

A−1 = T−1/2(I + iS)−1T−1/2.

By Hs (s ∈ R) denote a collection of Hilbert spaces generated by a self-adjoint
operator T 1/2:

• for s ≥ 0 Hs = D(T s/2) endowed with a norm ‖x‖s = ‖T s/2x‖;
• for s < 0 Hs is a closure of H with respect to the norm ‖ · ‖s.
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Obviously H0 = H . The operator T 1/2 can be considered now as an unitary
operator mapping Hs on Hs−1. A is a bounded operator A ∈ L(H2, H0) and it can

be extended to a bounded operator Ã ∈ L(H1, H−1). The inverse operator A−1

can be extended to a bounded operator Ã−1 ∈ L(H−1, H1).
By (·, ·)−1,1 denote a duality pairing on H−1 ×H1. Note, that for all x ∈ H−1

and y ∈ H1 we have
∣

∣

∣
(x, y)−1,1

∣

∣

∣
≤ ‖x‖−1 · ‖y‖1

and (x, y)−1,1 = (x, y) if x ∈ H . Further,

Re(Ãx, x)−1,1 = (Tx, x)−1,1 = (T 1/2x, T 1/2x) = ‖x‖21, x ∈ H1 = D(T 1/2).

Denote S̃ = T 1/2ST 1/2 ∈ L(H1, H−1). Then, for the operator Ã we have a repre-

sentation Ã = T + iS̃ and

Im(Ãx, x)−1,1 = (S̃x, x)−1,1 x ∈ H1.

Also (S̃x, y)−1,1 = (S̃y, x)−1,1 for all x, y ∈ H1.

Following paper [11] we will assume

(B) D is a bounded operator D ∈ L(H1, H−1), and

(1.1) β = inf
x∈H1,x 6=0

Re(Dx, x)−1,1

‖x‖2
> 0.

Operator T−1/2 is an unitary operator mapping Hs on Hs+1, therefore an operator
D′ = T−1/2DT−1/2, acting on H , is bounded. Let

D1 =
1

2
T 1/2

(

D′ + (D′)∗
)

T 1/2 D2 =
1

2i
T 1/2

(

D′ − (D′)∗
)

T 1/2,

Obviously D1, D2 ∈ L(H1, H−1), D = D1 + iD2 and for all x ∈ H1

Re(Dx, x)−1,1 = (D1x, x)−1,1 ≥ β‖x‖2, Im(Dx, x)−1,1 = (D2x, x)−1,1.

Also (Djx, y)−1,1 = (Djy, x)−1,1 for all x, y ∈ H1 (j = 1, 2).

2. Main result

Definition 2.1. A vector-valued function u(t) ∈ H1 is called a solution of the

differential equation (0.1) if u′(t) ∈ H1, u
′′(t) ∈ H , Du′(t) + Ãu(t) ∈ H and

(2.1) u′′(t) +Du′(t) + Ãu(t) = 0

If u(t) is a solution of (2.1), then a vector-function

x(t) =

(

u′(t)
u(t)

)

(formally) satisfies a first-order differential equation

(2.2) x′(t) = Ax(t)

with a block operator matrix

A =

(

−D −Ã
I 0

)

.



4 NIKITA ARTAMONOV

From mechanical viewpoint it is most natural to consider the equation (2.2) in an
”energy” space H = H ×H1 with a dense domain of the operator A [6, 7, 11, 16]

D(A) =

{(

x1

x2

)∣

∣

∣

∣

x1, x2 ∈ H1, Dx1 + Ãx2 ∈ H

}

.

An inverse of A is formally defined by a block operator matrix

A−1 =

(

0 I

−Ã−1 −Ã−1D

)

.

Let y = (y1, y2)
⊤ ∈ H = H ×H1, then

A−1y =

(

y2
−Ã−1y1 − Ã−1Dy2

)

=

(

x1

x2

)

.

Since Ã−1 ∈ L(H−1, H1) andD ∈ L(H1, H−1), then Ã−1D ∈ L(H1, H1). Therefore

−Ã−1y1 − Ã−1Dy2 ∈ H1 and A−1y ∈ H1 ×H1. Moreover,

Dx1 + Ãx2 = Dy2 + Ã
(

−Ã−1y1 − Ã−1Dy2

)

= −y1 ∈ H.

Thus A−1y ∈ D(A). Since I ∈ L(H1, H) the operator A−1 is bounded and
therefore the operator A is closed and 0 ∈ ρ(A).

Let (x,y)H be a natural scalar product on H = H ×H1 and ‖x‖2
H

= (x,y)H .
If operator A is self-adjoint, the spectral properties of operator A are well-

studied: −A is an m-accretive operator in the Hilbert space H = H × H1 (see
[2, 6, 7, 8, 10, 11] and references therein) and, consequently, A is a generator of
a C0-semigroup. Thus, differential equation (2.2) (and equation (2.1)) is correctly
solvable in the space H for all x(0) = (u1, u0)

⊤ ∈ D(A). Moreover, in this case op-
erator A is a generator of a contraction semigroup [7]. It implies, that all solutions
of (2.2) (and (2.1)) exponentially decay, i.e. for some C, ω > 0

‖x(t)‖H ≤ C exp(−ωt)‖x(0)‖H t ≥ 0.

For non-selfadjoint A operator (−A) is not longer accretive in the space H with
respect to the standard scalar product. But, under some assumptions, one can
define a new scalar product on H, which is topologically equivalent to the given
one, such that an operator (−A− qI) (for some q ≥ 0) is m-accretive and therefore
the operator A is a generator of a C0-semigroup on H. If q > 0, then A is a
generator of a contraction semigroup and all solutions of (2.2) exponentially decay.

Let k ∈ (0, β) (β is defined by (1.1)). Consider on the space H a sesquilinear
form

[x,y]H =

(T 1/2x2, T
1/2y2) + k(D1x2, y2)−1,1 − k2(x2, y2) + (x1 + kx2, y1 + ky2),

x = (x1, x2)
⊤, y = (y1, y2)

⊤ ∈ H.

Obviously, [x,y] = [y,x] and

[x,x]H = ‖x2‖
2
1 + k(D1x2, x2)−1,1 + ‖x1‖

2 + 2kRe(x1, x2).

Since (D1x, x)−1,1 = Re(Dx, x)−1,1 ≥ β‖x‖2 and

2|Re(x1, x2)| ≤ 2|(x1, x2)| ≤ 2‖x1‖ · ‖x2‖ ≤
‖x1‖

2

β
+ β‖x2‖

2,
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then

[x,x]H ≥ ‖x2‖
2
1 + k

(

(D1x, x)−1,1 − β‖x2‖
2
)

+

(

1−
k

β

)

‖x1‖
2 ≥

‖x2‖
2
1 +

(

1−
k

β

)

‖x1‖
2.

Inequatlities1 |(D1x, x)−1,1| ≤ ‖D1x‖−1 · ‖x‖1 ≤ ‖D1‖ · ‖x‖21 and ‖x‖21 ≥ a0‖x‖
2

imply

[x,x]H ≤
(

1 + k‖D1‖
)

‖x2‖
2
1 + kβ‖x2‖

2 +

(

1 +
k

β

)

‖x1‖
2

≤

(

1 + k‖D1‖+
kβ

a0

)

‖x2‖
2
1 +

(

1 +
k

β

)

‖x1‖
2.

Thus,
(

1−
k

β

)

‖x‖2
H

≤ [x,x]H ≤ const ‖x‖2
H

and [·, ·]H is a scalar product on H, which is topologically equivalent to the given
one. Denote |x|2

H
= [x,x]H.

Theorem 2.2. Let the assumptions (A) and (B) hold and for some k ∈ (0, β) and
m ∈ (0, 1]

(2.3) ω1 = inf
x∈H1,x 6=0

1
k (D1x, x)−1,1 − ‖x‖2 − 1

4m

∥

∥( 1k S̃ −D2)x
∥

∥

−1

‖x‖2
≥ 0.

Then the operator A is a generator of a C0-semigroup T(t) = exp{tA} (t ≥ 0) and
∥

∥T(t)
∥

∥

H
≤ const · exp(−tkθ)

where

θ = min

{

ω1

2
,
1−m

ω2

}

≥ 0

and2

(2.4) ω2 = sup
x∈H1,x 6=0

‖x‖21 + k(D1x, x)−1,1 + k2‖x‖2

‖x‖21

Proof. For x = (x1, x2)
⊤ ∈ D(A) let us consider a quadric form

[Ax,x]H = (T 1/2x1, T
1/2x2) + k(D1x1, x2)−1,1 − k2(x1, x2)+

(−Dx1 − Ãx2 + kx1, x1 + kx2) =

(Tx1, x2)−1,1 + k(D1x1, x2)−1,1 − (Dx1, x1)−1,1

− (Ãx2, x1)−1,1 + k(x1, x1)− k(Dx1, x2)−1,1 − k(Ãx2, x2)−1,1 =

− (Dx1, x1)−1,1 + k(x1, x1)− k(Ãx2, x2)−1,1 − ik(D2x1, x2)−1,1+

(Tx1, x2)−1,1 − (Tx2, x1)−1,1 − i(S̃x2, x1)−1,1

1‖D1‖ is a norm of operator D1 ∈ L(H1,H−1), i.e. ‖D1‖ = supx∈H1,x 6=0 ‖D1x‖−1/‖x‖1
2Obviously, ω2 ≤ 1 + k‖D1‖+ k2/a0
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We used decompositions Ã = T + iS̃ and D = D1 + iD2. Consequently,

Re[Ax,x]H = −(D1x1, x1)−1,1 + k(x1, x1)− k(Tx2, x2)−1,1−

Re
(

ik(D2x1, x2)−1,1 + i(S̃x2, x1)−1,1

)

=

− (D1x1, x1)−1,1 + k‖x1‖
2 − k‖x2‖

2
1−

Im
(

(S̃x1, x2)−1,1 − k(D2x1, x2)−1,1

)

and

−
1

k
Re[Ax,x]H =

1

k
(D1x1, x1)−1,1−‖x1‖

2+‖x2‖
2
1+Im

((

1

k
S̃ −D2

)

x1, x2

)

−1,1

.

Since
∣

∣

∣

∣

∣

((

1

k
S̃ −D2

)

x1, x2

)

−1,1

∣

∣

∣

∣

∣

≤

∥

∥

∥

∥

(

1

k
S̃ −D2

)

x1

∥

∥

∥

∥

−1

· ‖x2‖1 ≤

1

4m

∥

∥

∥

∥

(

1

k
S̃ −D2

)

x1

∥

∥

∥

∥

2

−1

+m‖x2‖
2
1,

then

−
1

k
Re[Ax,x]H ≥

1

k
(D1x1, x1)−1,1 − ‖x1‖

2 −
1

4m

∥

∥

∥

∥

(

1

k
S̃ −D2

)

x1

∥

∥

∥

∥

2

−1

+

(1 −m)‖x2‖
2
1 ≥ ω1‖x1‖

2 + (1−m)‖x2‖
2
1.

Further, an inequality

2k|Re(x1, x2)| ≤ 2|(x1, kx2)| ≤ 2‖x1‖ · ‖kx2‖ ≤ ‖x1‖
2 + k2‖x2‖

2

implies

(2.5) [x,x]H ≤ 2‖x1‖
2 + ‖x2‖

2
1 + k(D1x2, x2)−1,1 + k2‖x2‖

2 ≤ 2‖x1‖
2 + ω2‖x2‖

2
1.

Thus

−
1

k
Re[Ax,x]H ≥ ω1‖x1‖

2 + (1 −m)‖x2‖
2
1 ≥ θ(2‖x1‖

2 + ω2‖x2‖
2
1) ≥ θ[x,x]H

and an operator (−A − kθI) is accretive. Moreover, the operator (−A − kθI) is
m-accretive (since 0 ∈ ρ(A)) and3

ρ (−A− kθI) ⊂ {λ ∈ C, Reλ < 0} ⇒ ρ(−A) ⊃ {λ ∈ C, Reλ < kθ}.

Therefore, the operator A is a generator of a C0-semigroup [4, 5] T(t) = exp{tA},
t ≥ 0 and

∣

∣T(t)
∣

∣

H
≤ exp(−kθt), t ≥ 0.

On the space H norms |x|H and ‖x‖H are equivalent and the inequality
∥

∥T(t)
∥

∥

H
≤ const · exp(−kθt), t ≥ 0

holds for some positive constant. �

3Obviously, the operator (−A) is m-accretive as well.
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Corollary 2.3. Under the conditions of the theorem 2.2 for all x0 = (u1, u0)
⊤ ∈

D(A) vector-function

x(t) =

(

w(t)
u(t)

)

= T(t)x0 ∈ D(A)

satisfies the first order differential equation (2.2). u(t) satisfies the second-order
differential equation (2.1) with the initial conditions (0.2) and an inequality

‖u(t)‖21 + ‖u′(t)‖2 ≤ const · exp{−2kθt}
(

‖u0‖
2
1 + ‖u1‖

2
)

holds for all t ≥ 0.

Consider now a more strong assumption on the operator D:

(C) D ∈ L(H1, H−1) and

δ = inf
x∈H1,x 6=0

Re(Dx, x)−1,1

‖x‖21
> 0.

It is easy to show that the assumption (C) implies (B) and β > a0δ.

By ‖S̃‖ and ‖D2‖ denote norms of the bounded operators S̃ ∈ L(H1, H−1) and
D2 ∈ L(H1, H−1). Then for all x ∈ H1

‖S̃x‖−1 ≤ ‖S̃‖ · ‖x‖1, ‖D2x‖−1 ≤ ‖D2‖ · ‖x‖1

Theorem 2.4. Let the assumptions (A) and (C) are fulfilled and for some k ∈
(0, β) and some p, q > 0 with p+ q ≤ 1

ω′
1 = a0

(

δ

k
−

1

4pk2
‖S̃‖2 −

1

4q
‖D2‖

2

)

≥ 1

Then the operator A is a generator of a C0-semigroup T(t) = exp{tA} (t ≥ 0) and
∥

∥T(t)
∥

∥

H
≤ const · exp(−tkθ′)

where

θ′ = min

{

ω′
1 − 1

2
,
1− p− q

ω2

}

≥ 0

and ω2 is defined by (2.4).

Proof. Consider on Hilbert space H = H ×H1 the scalar product [x,y]H. Then

−
1

k
Re[Ax,x]H =

1

k
(D1x1, x1)−1,1 − ‖x1‖

2 + ‖x2‖
2
1+

1

k
Im(S̃x1, x2)−1,1 − Im(D2x1, x2)−1,1

(see the proof of the theorem 2.2). Since

| Im(D2x1, x2)−1,1| ≤ |(D2x1, x2)−1,1| ≤ ‖D2x1‖−1 · ‖x2‖1 ≤

1

4q
‖D2x1‖

2
−1 + q‖x2‖

2
1 ≤

1

4q
‖D2‖

2 · ‖x1‖
2
1 + q‖x2‖

2
1

1

k
| Im(S̃x1, x2)−1,1| ≤ |(

1

k
S̃x1, x2)−1,1| ≤

∥

∥

∥

∥

1

k
S̃x1

∥

∥

∥

∥

−1

· ‖x2‖1 ≤

1

4p

∥

∥

∥

∥

1

k
S̃x1

∥

∥

∥

∥

2

−1

+ p‖x2‖
2
1 ≤

1

4pk2
‖S̃‖2 · ‖x1‖

2
1 + p‖x2‖

2
1



8 NIKITA ARTAMONOV

and taking into account (D1x, x)−1,1 ≥ δ‖x‖21 and ‖x‖21 ≥ a0‖x‖
2 we obtain

−
1

k
Re[Ax,x]H ≥

1

k
(D1x1, x1)−1,1 − ‖x1‖

2−

‖S̃‖2

4pk2
· ‖x1‖

2
1 −

‖D2‖
2

4q
· ‖x1‖

2
1 + (1− p− q)‖x2‖

2
1 ≥

(

δ

k
−

‖S̃‖2

4pk2
−

‖D2‖
2

4q

)

‖x1‖
2
1 − ‖x1‖

2 + (1− p− q)‖x2‖
2
1 ≥

(ω′
1 − 1)‖x1‖

2 + (1− p− q)‖x2‖
2
1.

Using (2.5) we finally have

−
1

k
Re[Ax,x]H ≥ θ′[x,x]H.

Thus an operator (−A− kθ′I) in m-accretive (since 0 ∈ ρ(A)) and

ρ(−A) ⊃ {λ ∈ C, Reλ < kθ′}.

Therefore, the operator A is a generator of a C0-semigroup [4, 5] T(t) = exp{tA}
(t ≥ 0) and

∣

∣T(t)
∣

∣

H
≤ exp(−kθ′t), t ≥ 0.

Since the norms |x|H and ‖x‖H are equivalent then we have an inequality
∥

∥T(t)
∥

∥

H
≤ const · exp(−kθ′t), t ≥ 0

for some positive constant. �

Corollary 2.5. Under the conditions of the theorem 2.4 for all x0 = (u1, u0)
⊤ ∈

D(A) a vector-valued function

x(t) =

(

w(t)
u(t)

)

= T(t)x0 ∈ D(A)

satisfies the first order differential equation (2.2). u(t) satisfies the second-order
differential equation (2.1) with an initial conditions (0.2) and the inequality

‖u(t)‖21 + ‖u′(t)‖2 ≤ const · exp{−2kθ′t}
(

‖u0‖
2
1 + ‖u1‖

2
)

holds for all t ≥ 0.

3. Related spectral problem

Let us consider a quadric pencil associated with the differential equation (0.1)

L(λ) = λ2I + λD +A λ ∈ C.

Since D : H1 → H−1 it is more naturally to consider an extension of pencil

L̃(λ) = λ2I + λD + Ã

mapping H1 to H−1. Moreover, L̃(λ) ∈ L(H1, H−1) for all λ ∈ C.

Definition 3.1. The resolvent set of the pencil L̃(λ) is defined as

ρ(L̃) = {λ ∈ C : ∃L̃−1(λ) ∈ L(H−1, H1)}

The spectrum of the pencil is σ(L̃) = C\ρ(L̃).
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In [7, 16] it was proved that σ(L̃) = σ(A) and for λ 6= 0

(A− λI)−1 =

(

λ−1
(

L̃−1(λ)Ã − I
)

−L̃−1(λ)

L̃−1(λ)Ã −λL̃−1(λ)

)

This result allows to obtain a localization of the pencil’s spectrum in a half-plane.

Proposition 3.2. 1. Under the conditions of the theorem 2.2 the spectrum of the
pencil L̃(λ) belongs to a half-plane

σ(L̃) ⊆ {Re ≤ −kθ}.

2. Under the conditions of the theorem 2.4 the spectrum of the pencil L̃(λ) belongs
to a half-plane

σ(L̃) ⊆ {Re ≤ −kθ′}.

Acknowledgement: the author thanks Prof. Carsten Trunk for fruitful discus-
sions during IWOTA 2009 and Prof. A.A. Shkalikov for discussions.
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