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OBSTRUCTIONS TO POSITIVE CURVATURE

LUIGI VERDIANI AND WOLFGANG ZILLER

There are few known examples of manifolds with positive sectional curvature in Riemannian
geometry. Until recently, they were all homogeneous spaces [Be, Wa, AW] and biquotients [E1,
E2, Ba], i.e., quotients of compact Lie groups G, equipped with a biinvariant metric, by a free
isometric “two sided” action of a subgroup H ⊂ G × G. See [Zi1] for a survey of the known
examples. New methods for constructing examples with positive curvature have been proposed
in [PW] on the Gromoll-Meyer exotic 7-sphere and in [GVZ] on a 7-manifold homeomorphic but
not diffeomorphic to T1S

4, see also [De] for a different approach.

The example in [GVZ] arose from a systematic study of cohomogeneity one manifolds, i.e.,
manifolds with an isometric action whose orbit space is one dimensional, or equivalently the
principal orbits have codimension one. A classification of positively curved cohomogeneity one
manifolds was carried out in even dimensions in [V1, V2] and in odd dimensions an exhaustive
description was given in [GWZ] of all simply connected cohomogeneity one manifolds that can
possibly support an invariant metric with positive curvature. In addition to some of the known
examples of positive curvature which admit isometric cohomogeneity one actions, two infinite
families, P 7

k , Q
7
k and one exceptional manifold R7, all of dimension seven, appeared as the only

possible new candidates, See Section 3 for a more detailed description. They all support an
almost effective action by S3 × S3 with finite principal isotropy group. Here P 7

1 is the 7-sphere
and Q7

1 is the normal homogeneous positively curved Aloff-Wallach space. The manifold P 7
2 is

the new example of positive curvature in [GVZ].
The exceptional manifold R7 is very similar to the family Qk, as far as the group action is

concerned and the topological properties of the manifold itself. There is also such a companion
to the P 7

k family, which is the 7-dimensional Berger space with a natural cohomogeneity one
action which is quite similar to those for P 7

k . Since the Berger space has an invariant metric with
positive curvature, it was expected that R7 does so as well. We will show though that this is not
the case.

Theorem A. The manifold R7 does not carry a cohomogeneity one metric with positive sec-
tional curvature invariant under S3 × S3.

The proof relies on a new convexity property of Jacobi fields in non-negative curvature that
holds without the presence of a group action. To describe it, consider a geodesic c on a Riemannian
manifold Mn+1. An n-dimensional family of Jacobi fields V is called self adjoint if 〈X ′, Y 〉 =
〈X,Y ′〉 for all X,Y ∈ V . A point c(t0) is called regular if span{X(t0) | X ∈ V } is n-dimensional.
One associates to V a Jacobi operator Jt : Tc(t0) → Tc(t) with Jt(u) = X(t) where X ∈ V with
X(t0) = u. If V is self adjoint, then J ′ = S ◦ J with S self adjoint. At regular points S satisfies
the Riccati equation S′ + S2 + R = 0 where R is the curvature along the geodesic. We study a
new self adjoint operator Lt := J∗

t ◦ Jt : Tc(t0) → Tc(t0) where J∗ is the adjoint. We show that at
a regular point it satisfies the differential equation

J(L−1)′′J∗ = 6S2 + 2R.

The second named author was supported by a grant from the National Science Foundation and the Max Planck
Institute in Bonn.
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Thus, if R ≥ 0 (respectively R > 0), then 〈L−1
t u, u〉 is a convex (resp. strictly convex) function

along c for any u ∈ Tc(t0). This gives rise to obstructions and rigidity properties. For example:

Theorem B. Let Mn+1 be a manifold with non-negative sectional curvature and V a self
adjoint family of Jacobi fields along the geodesic c : [t1, t2] → M . Assume there exists an X ∈ V
such that

(a) X(ti) 6= 0 and |X|′(ti) = 0 for i = 1, 2,
(b) There exists a basis X,Y2, . . . Yn of V such that 〈X,Yk〉c(ti) = 0 for i = 1, 2; k = 2, . . . n,
(c) If Y ∈ V with Y (t) = 0 for some t ∈ (t1, t2), then 〈X,Y 〉c(ti) = 0 for i = 1, 2,

Then X is a parallel Jacobi field along c.

In particular, we allow interior points of the geodesic to be singular. Notice that all 3 conditions
are necessary forX to be parallel since in a self adjoint family of Jacobi fields, 〈X,Y 〉′ = 〈X,Y ′〉 =
〈X ′, Y 〉 = 0 for all X,Y ∈ V with X parallel. Furthermore, (a) and (c) alone are not sufficient
since there are Jacobi fields of constant length which are not parallel. If there are no interior
singular points, (b) is the only global condition and relates the Jacobi fields at t1 and t2 since it
can be equivalently formulated as follows: If Y ∈ V with 〈X,Y 〉c(t1) = 0 then 〈X,Y 〉c(t2) = 0 and
vice versa.

The differential equation is reminiscent of the transverse Jacobi field equation due to B.Wilking
[Wi], although they do not seem to be directly related. One can view Theorem B as a local version
of a rigidity Theorem in non-negative curvature in [Wi], which holds along an infinite geodesic
in M . The convexity property is also reminiscent of another observation by B.Wilking. It says
that in the presence of a cohomogeneity one group action, the inverse of the homogeneous metric
along the orbits is convex.

In positive curvature we can view Theorem B as an obstruction. This is what we will use to
prove Theorem A. For a cohomogeneity one manifold there is a natural family V of self adjoint
Jacobi fields coming from the group action, which we will consider along a minimal geodesic
between the two singular orbits. Condition (b) will follow by studying the metric tangent to
the singular orbits and equivariance properties of their second fundamental form will be used
to satisfy (a). It turns out that for R7 there exists a unique vector X ∈ V with the properties
required in Theorem B.

The differential equation and its applications also hold if we consider Jacobi fields only in
a subbundle invariant under parallel translation. This arises frequently in the presence of an
isometric group action. For example, if the group action is polar, it gives rise to a self adjoint
family of Jacobi fields in the parallel subbundle orthogonal to the section. Thus the analogue of
Theorem B holds here as well.

In Section 1 we recall properties of the Riccati equation and derive the differential equation
for L and its implication for convexity properties. In Section 2 we discuss rigidity and prove
Theorem B. In Section 3 we describe the geometry of R7 and prove Theorem A.

This work was done while the first author was visiting the University of Pennsylvania and he
would like to thank the Institute for their hospitality.

1. Convexity

In this section we present a new convexity result about Jacobi fields, and first recall some
standard notation, see e.g. [E3],[EH].

Let c be a geodesic in a Riemannian manifold Mn+1 defined on an interval t1 ≤ t ≤ t2 and ċ⊥

the orthogonal complement of ċ(t) ⊂ Tc(t)M . We identify ċ⊥ via parallel translation with a fixed
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n-dimensional vector space E := ċ(t0)
⊥ ⊂ Tc(t0)M . Thus a vector field X along c, orthogonal to

ċ, becomes, via parallel translation, a curve in E and covariant derivative ∇ċX becomes ordinary
derivative X ′ in E.

Let V be an n-dimensional vector space of Jacobi fields along c orthogonal to ċ. Along the
geodesic we have that 〈X ′, Y 〉 − 〈X,Y ′〉 is constant for any X,Y ∈ V . If this constant is 0, V is
called self adjoint, i.e.

(1.1) 〈X ′, Y 〉 = 〈X,Y ′〉, for all X,Y ∈ V

We call t regular if X(t), X ∈ V span E and singular otherwise. The singular points are isolated
and we will assume from now on that t0 is regular. We can then equivalently describe the set of
Jacobi fields V by a (smooth) family of linear maps

(1.2) Jt : E → E where Jt(u) = X(t) for X ∈ V with X(t0) = u

and thus t is regular if and only if Jt is invertible. At regular points t one defines the Riccati
operator:

(1.3) St : E → E where St(u) = X ′(t) for X ∈ V with X(t) = u, i.e. J ′
t = StJt

Thus condition 1.1 is equivalent to St being self adjoint. Jt satisfies the Riccati equation, which
reduces the differential equation for Jacobi fields into two uncoupled first order equations:

(1.4) A′′ +RA = 0 if and only if S′ + S2 +R = 0 and A′ = SA

where R = Rt : E → E is the parallel translate of the self adjoint curvature operator R( · , ċ), ċ :
ċ(t)⊥ → ċ(t)⊥. We call any solution At of (1.4) with S self adjoint a self adjoint Jacobi tensor.
Notice that if At is self adjoint, then At ◦ F , for any fixed linear isomorphism F , is also a self
adjoint Jacobi tensor, in fact with the same tensor S.

The solutions At = Jt, defined in terms of a fixed V as above, are special since A(t0) = Id.
Notice that if we choose a different regular point t∗0, then we obtain another self adjoint Jacobi
tensor A∗ with A∗(t∗0) = Id but they just differ by a linear isomorphism F : E → E. Indeed, define
F by Fu = J(t0) where J ∈ V with J(t∗0) = u. Then (1.2) implies that A∗

t (u) = J(t) = At(F (u)),
i.e. A∗ = A ◦ F .

From now on let A be a self adjoint Jacobi tensor. Thus for any v ∈ E, Atv is a Jacobi field, t
is regular if and only if At is invertible, and singular points are isolated. Furthermore, At is self
adjoint if and only if

(1.5) 〈A′
tv,Atw〉 = 〈Atv,A

′
tw〉 for all t and v,w ∈ E.

When clear from context we simply use A = At, S = St.

We will study a new self adjoint operator, defined for all t, by:

(1.6) Lt = A∗
tAt : E → E where 〈A∗

t v,w〉 = 〈v,Atw〉 for all v,w ∈ E

Thus we have

(1.7) 〈Lv,w〉 = 〈Av,Aw〉, for all v,w ∈ E.

and hence at a regular point L determines A up to an orthogonal transformation F .

Remark. In the case where At arises from a family of Jacobi fields V as in (1.2), we can view
〈Lv,w〉 as the metric tensor along c in the following sense. Regard, via parallel translation,
At : ċ(t0)

⊥ → ċ(t)⊥ so that Atv is a Jacobi field along c with A0v = v. Then (1.7) says that at
a regular point 〈Ltv,w〉 is the pullback of the metric at c(t) to c(t0) via the linear isomorphism
At.

If we change A by a linear isomorphism F to Ā = A ◦F (e.g. choosing a different initial point
t0), we obtain a new operator L̄ such that L̄ = F ∗LF and hence 〈L̄u, u〉 = 〈L(Fu), Fu〉. Since F
is an isomorphism, properties of L are shared by properties of L̄.
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Our main tool is the following differential equation for L−1:

Proposition 1.8. Let A be a self adjoint Jacobi tensor and S = A′A−1, L = A∗ A. Then at
a regular point we have

(a) A(L−1)′A∗ = −2S.
(b) A(L−1)′′A∗ = 6S2 + 2R.

Proof. For part (a) we observe that A∗′ = A′∗ and hence

(L−1)′ = (A−1(A∗)−1)′ = (A−1)′(A∗)−1 +A−1((A∗)−1)′

= (−A−1A′A−1)(A∗)−1 +A−1(−(A∗)−1A′∗(A∗)−1)

= −A−1S(A∗)−1 −A−1(A′A−1)∗(A∗)−1

= −2A−1S(A∗)−1.

Thus

(L−1)′′ = −2(A−1S(A∗)−1)′

= −2(−A−1A′A−1)S(A∗)−1 − 2A−1S′(A∗)−1 − 2A−1S(−A−1A′A−1)∗

= 2A−1S2(A∗)−1 − 2A−1(−S2 −R)(A∗)−1 + 2A−1S(A−1S)∗

= 6A−1S2(A∗)−1 + 2A−1R(A∗)−1.

�

This implies convexity properties in non-negative curvature.

Corollary 1.9. Let A be a self adjoint Jacobi tensor. If R ≥ 0 (resp. R > 0), then at a
regular point we have

(a) L−1 is convex, i.e. (L−1)′′ is positive semi-definite (resp. positive definite).
(b) For any v ∈ E, F (t) = 〈L−1

t v, v〉 is a convex (resp. strictly convex) function.

Proof. Since S2 ≥ 0, Proposition 1.8 (b) implies that 〈A(L−1)′′A∗v, v〉 = 〈(L−1)′′A∗v,A∗v〉 ≥ 0
for all v. At a regular point A has no kernel and hence A∗ is onto. This implies (a), and (a)
clearly implies (b). �

Notice on the other hand that in general 〈Lv, v〉 is neither convex not concave since 〈Lv, v〉′′ =
2|A′v|2 − 2〈R(Av), Av〉.

One of the issues is differentiability of L−1 at singular points. For this we have

Proposition 1.10. If t∗ is a singular point, then F (t) = 〈L−1
t v, v〉 has a smooth extension at

t = t∗ if and only if v is orthogonal to kerLt∗ .

Proof. For simplicity assume t∗ = 0. Choose an orthonormal basis {e1, . . . , en} of E such that
{ek+1, . . . , en} is a basis of kerL0 and let

gij(t) = 〈Ltei, ej〉 = 〈Atei, Atej〉

be the matrix of L with respect to the basis ei, defined on an interval I = (−ǫ, ǫ) in which 0 is
the only singular point. The power series expansion of gij at t = 0 is given by

gij(t) = 〈Aei, Aej〉+ 2〈Aei, A
′ej〉t+ (〈Aei, A

′′ej〉+ 〈A′ei, A
′ej〉)t

2 + o(t2).

For t = 0 and i > k we have Aei = 0 and hence

gij =< A′ei, A
′ej > t2 + o(t2) for i > k or j > k
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Thus, close to t = 0, we may represent G = (gij) as a block matrix

G ≃

(

X t2Y
t2Y t2Z

)

Here X is non-singular at t = 0 since otherwise there exists a linear combination e =
∑i=k

i=1 ei
such that 0 = Xe =

∑

i〈Aei, Aej〉aiei = 〈Ae,Aej〉 = 〈Le, ej〉 for all j = 1, . . . , k and hence
e ∈ kerL0 which implies e = 0. Similarly, Z is non-singular since otherwise there exists a linear
combination e =

∑i=n
i=k+1 ei such that 0 = Ze = 1

t2
〈Le, ej〉 for all j = k + 1, . . . , n and t 6= 0 and

hence e ∈ (kerL0)
⊥ which again implies e = 0. There is a general formula for the inverse of a

block matrix, which implies that for t 6= 0 we have

G−1 ≃

(

(X − t2Y Z−1Y )−1 −X−1Y (Z − t2Y X−1Y )−1

−X−1Y (Z − t2Y X−1Y )−1 1
t2
(Z − t2Y X−1Y )−1

)

.

Thus 〈L−1
t v, v〉 = G−1v · v is smooth at t = 0 if and only if v is a linear combination of e1, . . . , ek.

�

2. Rigidity

We now use the results in the previous section to prove the existence of parallel Jacobi fields
in non-negative curvature, i.e. vectors w ∈ E with A′

tw = 0. We allow endpoints and interior
points of the geodesic to be singular.

Proposition 2.1. Let A be a self adjoint Jacobi tensor along the geodesic c : [t1, t2] → M
with L = A∗A. If R ≥ 0 and if there exists a non-zero vector v ∈ E such that

(a) 〈(L−1)′tiv, v〉 = 0 for i = 1, 2,
(b) v is orthogonal to kerLt for all t1 ≤ t ≤ t2,

then w := L−1
t v is constant and A′

tw = 0 for all t.

Proof. Let F (t) = 〈L−1
t v, v〉. By Proposition 1.10, assumption (b) implies that F is smooth for

all t1 ≤ t ≤ t2. Assumption (a) says that F ′(ti) = 0 and by Corollary 1.9, F is convex and hence
constant.

Let I be a connected component of the regular set of [t1, t2]. Since F is constant 〈(L−1)′′v, v〉 =
0 and by convexity we have, for all ǫ, w:

0 ≤ 〈(L−1)′′(v + ǫw), v + ǫw〉 = 2ǫ〈(L−1)′′v,w〉 + ǫ2〈(L−1)′′w,w〉 for all w ∈ E.

and thus

(L−1)′′v = 0.

Using (1.8) (b) this implies A−1S2(A∗)−1v = 0 in I and hence

0 = 〈A−1S2(A∗)−1v, v〉 = 〈S2(A∗)−1v, (A∗)−1v〉 = 〈S(A∗)−1v, S(A∗)−1v〉

and thus

S(A∗)−1v = 0.

Using (1.8) (a) we conclude that

(L−1)′v = −2A−1S(A∗)−1v = 0

so that (L−1)v is constant in I. Taking the limit at boundary points of I we can conclude that
L−1v is constant everywhere and we set w = L−1v. Thus, for any z ∈ E,

〈Aw,Az〉 = 〈Lw, z〉 = 〈v, z〉
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does not depend on t. Since the Jacobi tensor is self-adjoint, we have

0 = 〈Aw,Az〉′ = 2〈A′w,Az〉.

The points in I consist of regular points and hence the image of A spans E which implies A′
tw = 0

for t ∈ I. Taking limits again at the boundary points of I finishes the proof. �

If one assumes that v is an eigenvector of L at the endpoints, one obtains a simple formulation
in terms of the Jacobi tensor A:

Corollary 2.2. Let Mn+1 be a manifold with non-negative sectional curvature and A a self
adjoint Jacobi tensor along the geodesic c : [t1, t2] → M . If there exists a vector v ∈ E such that

(a) Atv 6= 0 and |Atv|
′ = 0 for t = ti,

(b) At(v
⊥) ⊂ (Atv)

⊥, for t = ti,
(c) v is orthogonal to kerAt for all t1 < t < t2,

then A′
tv = 0 for all t.

Proof. First observe that kerLt = kerAt since Ltz = 0 is equivalent to 〈Lz, x〉 = 〈Az,Ax〉 for all
x ∈ E. Assumption (b) says that if 〈v, z〉 = 0 then 〈Av,Az〉 = 〈Lv, z〉 = 0 and hence Ltiv = αiv
and αi 6= 0 since Ativ 6= 0. Since L is self adjoint, v is orthogonal to kerAti . Together with
assumption (c) this implies that 〈L−1

t v, v〉 is differentiable for all t ∈ [t1, t2].
For t = ti we have

〈(L−1)′v, v〉 = −〈L−1L′L−1v, v〉 = −〈L′L−1v, L−1v〉 = −
1

α2
i

〈L′v, v〉.

Furthermore,

〈L′v, v〉 = 〈(A∗′A+A∗A′)v, v〉 = 〈Av,A′v〉+ 〈A′v,Av〉 = 2〈A′v,Av〉 = (|Av|2)′ = 0.

Thus 〈(L−1)′tiv, v〉 = 0 and the claim follows from Proposition 2.1. �

We are now ready for Theorem B.

Proof of Theorem B. Recall that V defines a Jacobi tensor Jt after we choose a regular point
t0. Let v ∈ E be such that X(t0) = v and thus X(t) = Jtv. Then (b) implies

given w ∈ E, 〈Jt1(v), Jt1(w)〉 = 0 ⇐⇒ 〈Jt2(v), Jt2(w)〉 = 0.

Since Jti(v) 6= 0 there exists a (n− 1)-dimensional subspace W of E such that

〈Jti(v), Jti (w)〉 = 0 ⇐⇒ w ∈ W.

By (c), if z is such that Jt(z) = 0 for some t in (t1, t2), then z ∈ W i.e. the span of the
kernels of Jt is a subspace of W . Let F : E → E be a linear isomorphism such that F (v) = v and
F (v⊥) = W . Then At = Jt ·F is a self-adjoint Jacobi operator and we claim that the assumptions
of Corollary 2.2 are satisfied. (a) is clear since F does not depend on t. (b) is satisfied thanks to the
definition of F . Indeed, if 〈v, z〉 = 0, then F (z) ∈ W and thus 〈Ativ,Atiz〉 = 〈Jtiv, Jti(Fz)〉 = 0
which says that Ati(v

⊥) ⊂ (Ativ)
⊥. Furthermore, since ker(At) = F−1(ker Jt) and ker(Jt) ⊂ W ,

we have ker(At) ⊂ v⊥ and (c) follows. �

Theorem B can be viewed as a local version of a result by B.Wilking [Wi], which states:

Proposition 2.3 (Wilking). Let M be a manifold with non-negative sectional curvature and
c : (−∞,∞) → M a geodesic in M . If V a self adjoint family of Jacobi fields along c, one has
an orthogonal splitting

E = span{J ∈ V | J(t) = 0 for some t ∈ R} ⊕ {J ∈ V | J is parallel for all t ∈ R}
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Well known self adjoint Jacobi operators are the ones related to the two Rauch comparison
theorems. For the first one, A(0) = 0, A′(0) = Id, and for the second one A(0) = Id, A′(0) = 0.
In the first case, one can choose a regular point t1 = ǫ and let ǫ → 0. In both cases, Corollary B
does not seem to follow from standard Jacobi field estimates since c can have interior conjugate
or focal points.

The results in this Section have obvious generalizations if there exists a subbundle W ⊂ ċ⊥

invariant under parallel translation. This arises naturally in the presence of group actions, for
example polar manifolds.

3. Proof of Theorem A

We now use the results in the previous section to prove that the manifold R cannot have an
invariant metric with positive curvature. Since there cannot be any parallel Jacobi fields, we use
Theorem B to obtain a contradiction. We start by describing the manifold R more explicitly.

A cohomogeneity one manifold is the union of two homogeneous disc bundles. Given compact
Lie groupsH, K−, K+ and G with inclusionsH ⊂ K± ⊂ G satisfyingK±/H = S

ℓ±, the transitive
action of K± on S

ℓ± extends to a linear action on the disc D
ℓ±+1. We can thus define M =

G×K− D
ℓ−+1∪G×K+ D

ℓ++1 glued along the boundary ∂(G×K± D
ℓ±+1) = G×K± K±/H = G/H

via the identity. G acts on M on each half via left action in the first component. This action
has principal isotropy group H and singular isotropy groups K±. One possible description of a
cohomogeneity one manifold is thus simply in terms of the Lie groups H ⊂ {K−,K+} ⊂ G.

The candidates for positive curvature in [GWZ] are cohomogeneity one under an action of
S3 × S3. The group diagram for Pk is

∆Q ⊂ {(eit, eit) ·H , (ej(1+2k)t, ej(1−2k)t) ·H} ⊂ S3 × S3,

and for Qk it is

{(±1,±1), (±i,±i)} ⊂ {(eit, eit) ·H , (ejkt, ej(k+1)t) ·H} ⊂ S3× S3,

whereas for R we have

{(±1,±1), (±i,±i)} ⊂ {(e3it, eit) ·H , (ejt, e2jt) ·H} ⊂ S3 × S3 .

The isolated manifold R can thus be viewed as associated to the family Qk, and indeed shares
many of its properties. The positively curved Berger space B7 with its cohomogeneity one action
can be viewed as associated to the family Pk since its group diagram is

∆Q ⊂ {(e3it, eit) ·H , (ejt, e3jt) ·H} ⊂ S3× S3,

We now describe the geometry of a general cohomogeneity one action. A G invariant metric
is determined by its restriction to a geodesic c normal to all orbits. At the points c(t) which are
regular with respect to the action of G, the isotropy is constant and we denote it by H. In terms
of a fixed biinvariant inner product Q on the Lie algebra g and corresponding Q-orthogonal
splitting g = h ⊕ h⊥ we identify, at regular points, ċ⊥ ⊂ Tc(t)M with h⊥ via action fields:

X ∈ h⊥ → X∗(c(t)).

Since G acts by isometries, X∗, X ∈ g is a Killing field on M and hence the restriction to
a geodesic is a Jacobi field. This gives rise to an (n − 1)-dimensional family of Jacobi fields
along c defined by V := {X∗(c(t)) | X ∈ h⊥}. The self adjoint shape operator St of the regular
hypersurface orbit G/H at c(t) satisfies ∇ċ(t)X

∗ = ∇X∗ ċ = St(X
∗(c(t))), i.e. X ′ = St(X), X ∈

h⊥. Hence V is self adjoint.
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A singular point of V is a point c(t0) such that there exists an X∗ ∈ V with X∗(c(t0)) = 0, i.e.
the isotropy group Kc(t0) satisfies dimKc(t0) > dimH and is thus a singular point of the action.
For simplicity set K := Kc(t0) and define a Q-orthogonal decompositions

g = k⊕m, k = h⊕ p and thus h⊥ = p⊕m.

Here m can be viewed as the tangent space to the singular orbit G/K at c(t0) and p as the
tangent space to K/H, which, since the action is cohomogeneity one, must be a sphere. Thus
D := ċ(t0) ⊕ p is a the slice of the action, i.e. the normal space to the orbit G/K at c(t0)
and hence 〈k, p〉c(t0) = 0. K acts via the isotropy action Ad(K)|m of G/K on m and via the slice
representation on D. The second fundamental form of the singular orbit can be viewed as a linear
map B : D → S2(m), N → SN . Since K acts by isometries, B is equivariant with respect to the
slice representation of K on D and the action on S2(m) induced by its isotropy representation
on m. An Ad(K) invariant irreducible splitting m = m1 ⊕ · · · ⊕mr inducing a splitting of S2(m)
into irreducible summands. The action of K on D is special since it is one of the few transitive
actions on a sphere, and in particular irreducible. If for some i, D is not a subrepresentation of
S2(mi), this implies that Sċ(t0)|mi

= 0, i.e. 〈X ′,X〉c(t0) = 0 for X ∈ mi.

This is especially useful if c, 0 ≤ t ≤ L, is a minimal geodesic from the singular orbit G/K− to
G/K+ with tangent space m± and slice D± = ċ⊕ p±. In this case condition (c) in Proposition B
is automatically satisfied since there are no singular points for 0 < t < L.

We now apply this to the manifold R. Since H is finite, we have m = h⊥ = g. Regarding S3 as
the unit quaternions, we choose the basis of g given by the left invariant vector fields Xi and Yi

on G = S3 × S3 corresponding to i, j and k in the Lie algebras of the first and second S3 factor of
G. Then the Jacobi fields Xi, Yi are a basis of the self adjoint family V along a minimal geodesic
from G/K− to G/K+.

The tangent spaces p± to the circles K±/H are given by p− = span{3X1 + Y1} and p+ =
span{X2 + 2Y2}. Thus the tangent spaces m± to the singular orbits split up into K± irre-
ducible subspaces as follows: At t = 0, m− is the direct sum of W

0
= span{−X1 + 3Y1}, W1 =

span{X2,X3} and W2 = span{Y2, Y3}. At t = L, m+ is the direct sum of W̄
0
= span{−2X2+Y2},

W̄1 = span{X1,X3} and W̄2 = span{Y1, Y3}.
The non-trivial irreducible representations of K0 = S1 = {eiθ | θ ∈ R} consist of two dimen-

sional representations given by multiplication by einθ on C, called a weight n representation. If
K

0
⊂ S3× S3 has slope (p1, p2) with gcd(p1, p2) = 1, its action, which is given by conjugation on

imaginary quaternions in each component, is trivial on W
0
and has weight 2pi on Wi. If p1 6= p2,

all representations in m are inequivalent and hence orthogonal by Schur’s Lemma. This holds for
R since (p1, p2) = (3, 1) at t = 0 and (p1, p2) = (1, 2) at t = L.

Furthermore, the weight is 0 and 4pi on S2Wi. The action on the slice V = R
2 has weight

k if H ∩ K0 = Zk, since Zk is necessarily the ineffective kernel. Thus if 4pi 6= k, the second
fundamental form vanishes on S2Wi.

At t = 0 we have H ∩K−

0
= {±(1, 1),±(−i, i)} and hence k = 4, which implies that the second

fundamental form vanishes on S2(W1) (but not necessarily on S2(W2)).
At t = L we have H ∩K+

0
= {(1, 1), (−1, 1)} and hence k = 2. Thus the second fundamental

form vanishes on S2(W̄1) and S2(W̄2). Since X3 ∈ W1∩W̄1, it satisfies 〈X
′
3,X3〉 = 0 at t = 0 and

t = L. Furthermore, X3 6= 0 since it is orthogonal to p±. Thus condition (a) in Theorem B is
satisfied. Finally, we need to check that condition (b) is satisfied as well. But X3 is orthogonal to
Xi, Yi, i = 1, 2 since the modules at the end points are irreducible, inequivalent, and orthogonal
to p±. It is orthogonal to Y3 as well, since X3, Y3 are orthogonal in the Killing form of g, and
Schur’s Lemma implies that the metric is a multiple of the Killing form. Thus we can apply
Theorem B to obtain a contradiction. �
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The arguments in the proof also give a simple classification of positively curved cohomogeneity
one manifolds in the case G = S3 × S3 and H finite. For example, consider the cohomogeneity
one manifolds which have a group diagram as the one for Qk and R, where k = 4 on the left
and k = 2 on the right, but with slopes (p−, q−) on the left and (p+, q+) on the right. The
above obstruction immediately implies that (p−, q−) = (1, 1) up to sign. On the right the second
fundamental form of G/K+ vanishes unless |p+ ± q+| = 1, which one sees by examining all the
weights on S2m+. But the singular orbit cannot be totally geodesic since the homogeneous space
G/K+ does not carry a homogeneous metric with positive curvature. Thus only the family Qk

remains.
A similar argument holds for the Pk family. But now one has as an exceptional case the Berger

space with (p−, q−) = (3, 1) and (p+, q+) = (1, 3). Since in this case k = 4 on both sides, the
argument only implies that B− vanishes on W1 and B+ vanishes on W̄2, but W1 ∩ W̄2 = 0 .

Furthermore, it follows that if H is finite and dimK±/H = 1, either k = 4 on both sides or
k = 2 on one side and k = 4 on the other. One then easily shows that the only possibility for H
is as in the Pk and Qk family.

Notice though that for the remaining families Pk, Qk such arguments do not give rise to a
contradiction since at t = 0 the module W1 does not have to be orthogonal to W2, and S2Wi is
not necessarily 0 either since k = 4.
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