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Abstract

In this paper we shall study smooth submanifolds immersed in a k-step Carnot group G
of homogeneous dimension Q. Our main result is an isoperimetric inequality for the case of
a C2-smooth compact hypersurface S with - or without - boundary ∂S; see Theorem 4.1.
Note that S and ∂S are endowed with their homogeneous measures σn−1

H , σn−2
H , actually

equivalent (up to bounded densities) to the (Q − 1)-dimensional and (Q − 2)-dimensional
spherical Hausdorff measures with respect to a given homogeneous metric ̺ on G. This
generalizes a classical inequality, involving the mean curvature of the hypersurface, proven
by Michael and Simon [43] and Allard [1], independently. In particular, from this result we
deduce some related Sobolev-type inequalities; see Section 5. The strategy of the proof is
inspired by the classical one. In particular, we shall begin by proving a linear inequality;
see Proposition 4.7. By using this inequality we can prove a global monotonicity formula;
see Theorem 4.9. These results allow us to study the asymptotic behavior of σn−1

H ; see
Section 4.4. By using blow-up results and some homogeneity arguments, we can prove local
estimates of the right-hand side of the global monotonicity formula. In this way we get a
local monotonicity formula (see Corollary 4.20) which becomes the starting point to apply the
classical strategy of the proof. At this point, one concludes the proof by a Calculus Lemma
(which can be proved, via a contradiction argument based on local monotonicity formula; see
Lemma 4.22) and a Vitali-type covering argument. We stress however that there are many
differences, due to our different geometric setting. For instance, we shall discuss a blow-
up theorem which also holds for characteristic points; see Section 3.4. Another simple but
fundamental result is the smooth Coarea Formula for the HS-gradient; see Section 3.1. Other
tools are the horizontal divergence theorem and the 1st variation of the H -perimeter, already
developed in [48], and here generalized to hypersurfaces having non-empty characteristic set.
Moreover, we will need some other results and, in particular, estimates on the sizes of the
characteristic sets (of S and its boundary ∂S) and blow-up estimates at the boundary; see
Section 3.5. These results can be used in the study of minimal and constant horizontal
mean curvature hypersurfaces; see, for instance, Corollary 4.2. Finally, we shall discuss some
natural generalizations; see Section 5.1. This paper is a new (revised and improved) version
of some results obtained in the unpublished manuscript [49].
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1 Introduction

In the last decades considerable efforts have been made to extend to the general setting of
metric spaces the methods of Analysis and Geometric Measure Theory. This philosophy, in a
sense already contained in Federer’s treatise [22], has been pursued, among other authors, by
Ambrosio [2], Ambrosio and Kirchheim [3], Capogna, Danielli and Garofalo [8], Cheeger [11],
Cheeger and Kleiner [12], David and Semmes [20], De Giorgi [21], Gromov [31], Franchi, Gallot
and Wheeden [25], Franchi and Lanconelli [26], Franchi, Serapioni and Serra Cassano [27, 28],
Garofalo and Nhieu [29], Heinonen and Koskela [32], Korany and Riemann [36], Pansu [51, 52],
but the list is far from being complete.

In this respect, sub-Riemannian or Carnot-Carathéodory geometries have become a subject
of great interest also because of their connections with many different areas of Mathematics
and Physics, such as PDE’s, Calculus of Variations, Control Theory, Mechanics and Theoretical
Computer Science. For references, comments and other perspectives, we refer the reader to
Montgomery’s book [50] and the surveys by Gromov, [31], and Vershik and Gershkovich, [61].
We also mention, specifically for sub-Riemannian geometry, [59] and [53]. More recently, the
so-called Visual Geometry has also received new impulses from this field; see [56], [15] and
references therein.

The setting of the sub-Riemannian geometry is that of a smooth manifold N , endowed with
a smooth non-integrable distribution H ⊂ TN of h-planes, or horizontal subbundle (h ≤ dimN).
Such a distribution is endowed with a positive definite metric gH , defined only on the subbundle
H . The manifold N is said to be a Carnot-Carathéodory space or CC-space when one introduces
the so-called CC-metric dCC (see Definition 2.2). With respect to such a metric, the only paths
on the manifold which have finite length are tangent to the distribution H and therefore called
horizontal. Roughly speaking, in connecting two points we are only allowed to follow horizontal
paths joining them.

Throughout this paper we shall extensively study hypersurfaces immersed in Carnot groups
which, for this reason, form the underlying ambient space. A k-step Carnot group (G, •) is an
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n-dimensional, connected, simply connected, nilpotent and stratified Lie group (with respect to
the group multiplication •) whose Lie algebra g ∼= Rn satisfies:

g = H1 ⊕ ...⊕ Hk, [H1,Hi−1] = Hi (i = 2, ..., k), Hk+1 = {0}.
The horizontal bundle H is generated by a frame XH := {X1, ...,Xh} of left-invariant vector
fields. The horizontal frame can be completed to a global left-invariant frame X := {X1, ...,Xn}
for TG. Note that the standard basis {ei : i = 1, ..., n} of Rn can be relabelled to be graded
or adapted to the stratification. Any Carnot group G on Rn is endowed with a one-parameter
family of dilations (adapted to the grading) that makes it a homogeneous group with homo-

geneous dimension Q :=
∑k

i=1 i hi, in the sense of Stein’s definition; see [58]. Note that Q
coincides with the Hausdorff dimension of (G, dCC) as a metric space. Carnot groups are of
special interest for many reasons and, in particular, because they constitute a wide class of
examples of sub-Riemannian geometries. Note that, by a well-know result due to Mitchell [45]
(see also Montgomery’s book [50]), the Gromov-Hausdorff tangent cone at any regular point of
a sub-Riemannian manifold is a suitable Carnot group. This motivates the interest towards the
study of Carnot groups which play for sub-Riemannian geometries an analogous role to that of
Euclidean spaces in Riemannian geometry. The initial development of Analysis in this setting
was motivated by some works published in the first eighties. Among others, we cite the paper
by Fefferman and Phong [24] about the so-called “subelliptic estimates” and that of Franchi
and Lanconelli [26], where a Hölder regularity theorem was proven for a class of degenerate
elliptic operators in divergence form. Meanwhile, the beginning of Geometric Measure Theory
was perhaps an intrinsic isoperimetric inequality proven by Pansu in his Thesis [51], for the
case of the Heisenberg group H1. For more results about isoperimetric inequalities on Lie groups
and Carnot-Carathéodory spaces, see also [60], [31], [53], [29], [8], [25], [32]. For results on these
topics, and for more detailed bibliographic references, we shall refer the reader to [2], [8], [27, 28],
[19], [30], [29], [37, 38], [47, 48], [35]. We also quote [13], [30], [54], [55], [9] for some results
about minimal and constant mean-curvature hypersurfaces immersed in the Heisenberg group.

In this paper we shall try to give some contributions to the study of both analytic and
differential-geometric properties of hypersurfaces immersed in Carnot groups, endowed with the
so-called H -perimeter measure σn−1

H ; see Definition 2.13. To this aim we will preliminarily study
some technical tools and among other things we shall extend to hypersurfaces with non-empty
characteristic set, the horizontal Divergence Theorem and the 1st-variation of σn−1

H , proved in
[46, 48] for the non-characteristic case; see Section 3.2 and Section 3.3. We shall discuss a
blow-up theorem, which also holds for characteristic points, and a horizontal Coarea Formula
for smooth functions on hypersurfaces; see Section 3.4 and Section 3.1. Together with those
of Section 3.5, these results are used in Section 4 to investigate the validity in this context of
an isoperimetric inequality, proved by Michael and Simon in [43] for a general setting including
Riemannian geometries and, independently, by Allard in [1] for varifolds; see below for a more
precise statement. In Section 5, we shall deduce some related Sobolev inequalities, following a
classical pattern by Federer-Fleming [23] and Mazja [42]. Finally in Section 5.1 we will discuss
an immediate generalization to the natural BV space for functions defined on any C2-smooth
hypersurface. Very recently, some similar results in this direction have also been obtained by
Danielli, Garofalo and Nhieu in [19], where a monotonicity estimate for the H -perimeter has
been proven for graphical strips in the Heisenberg group H1.

Now we would like to make a short comment about the Isoperimetric Inequality for compact
hypersurfaces immersed in the Euclidean space Rn.

Theorem 1.1 (Euclidean Isoperimetric Inequality for S ⊂ Rn). Let S ⊂ Rn (n > 2) be a
C2-smooth compact hypersurface with -or without- piecewise C1-boundary. Then

(
σn−1

R (S)
)n−2

n−1 ≤ CIsop

(∫

S
|HR |σn−1

R + σn−2
R (∂S)

)

where CIsop > 0 is a dimensional constant.
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In the previous statement, HR is the mean curvature of S and σn−1
R , σn−2

R are the Riemannian
measures on S and ∂S, respectively. The first step in the proof is a linear isoperimetric inequality.
More precisely, one has

σn−1
R (S) ≤ r

(∫

S
|HR |σn−1

R + σn−2
R (∂S)

)
,

where r is the radius of a Euclidean ball B(x, r) containing S. From this linear inequality and
Coarea Formula, one gets the so-called monotonicity inequality, which says that, at every interior
point x ∈ IntS, one has

− d

dt

σn−1
R

(St)

tn−1
≤ 1

tn−1

(∫

St

|HR |σn−1
R + σn−2

R (∂S ∩B(x, t))

)

for L1-a.e. t > 0, where St = S ∩ B(x, t). Note that every interior point of a C2-smooth
hypersurface S turns out to be a density-point1

By the monotonicity inequality, via a contradiction argument, one deduces a calculus lemma
which, together with a standard Vitali-type covering theorem, allows to achieve the proof.

The importance of the monotonicity estimate can also be understood through one of its
immediate consequences, that is an asymptotic exponential estimate, i.e.

σn−1
R (St) ≥ ωn−1 t

n−1e−H0t

as t→ 0+, where x ∈ IntS and H0 is any constant such that |HR | ≤ H0. Note that for minimal
hypersurfaces this implies that

σn−1
R (St) ≥ ωn−1 t

n−1

as t → 0+. A great part of this paper is concerned about the generalization of these results to
hypersurfaces immersed in Carnot groups.

Section 2 is largely devoted to introduce the subject of Carnot groups and the study of
hypersurfaces (and, more generally, submanifolds) immersed in Carnot groups. In particular,
we shall describe the main geometric structures useful in this setting from many points of
views, including basic facts about stratified and homogeneous Lie groups, Riemannian and sub-
Riemannian geometries, intrinsic measures and connections.

Now let us give a quick overview of some basic facts.
If S ⊂ G is a hypersurface of class C1, then x ∈ S is a characteristic point if Hx ⊂ TxS.

If S is non-characteristic, the unit H -normal along S is given by ν
H

:= PH ν
|PH ν| , where ν is the

Riemannian unit normal of S. By making use of the contraction operator on differential forms2

we may define a (Q− 1)-homogeneous measure σn−1
H ∈ ∧n−1(T ∗S) by

σn−1
H S := (ν

H
σnR )|S .

Note that σnR :=
∧n

i=1 ωi ∈
∧n(T ∗G) is the Riemannian (left-invariant) volume form on G which

is built by wedging together the dual basis ω = {ω1, ..., ωn} of T ∗G, where ωi = X∗
i for every

i = 1, ..., n. Analogously, we may define a (Q − 2)-homogeneous measure σn−2
H on any (n − 2)-

dimensional smooth submanifold N of G. So the only difference is that ν
H

“becomes” (i.e. it

must be replaced by) a unit horizontal 2-vector ν
H
= ν1

H
∧ ν2

H
∈ ∧2(H ); see Definition 2.21. We

1By definition, x ∈ IntS is a density-point if limtց0+
σn−1

R
(St)

tn−1 = ωn−1 where ωn−1 denotes the Lebesgue

measure of the unit ball in Rn−1.
2Remind that :

∧k(T ∗G) → ∧k−1(T ∗G) is defined, for X ∈ TG and α ∈ ∧k(T ∗G), by

(X α)(Y1, ..., Yk−1) := α(X, Y1, ..., Yk−1);

see [34], [22].
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remark that σn−1
H and σn−2

H are actually equivalent (up to bounded densities functions called
metric factors) to the (Q−1)-dimensional and (Q−2)-dimensional spherical Hausdorff measures

SQ−1
̺ and SQ−2

̺ , respectively, associated to any homogeneous distance ̺ on G; see Section 3.4
and Section 3.5.

In Section 3.2 we recall the horizontal Divergence Theorem and a related integration by parts
formula for smooth hypersurfaces, with piecewise smooth boundary. Clearly we are assuming
that S and ∂S are endowed with the homogeneous measures σn−1

H and σn−2
H , respectively; see

Theorem 3.3 and Corollary 3.4. Moreover, in Section 3.3 we state the 1st variation of σn−1
H

.
A great part of this material can be found in [46, 48]. However, there is some novelty in the
presentation given here, because the results are generalized to hypersurfaces having possibly
non-empty characteristic set.

Section 3.4 contains a blow-up theorem for the horizontal perimeter σn−1
H

. In other words,
we shall study the limit

lim
r→0+

σn−1
H (S ∩B̺(x, r))

rQ−1
,

where B̺(x, r) is a ̺-ball of center x ∈ S and radius r. Note that this limit is just the density

of σn−1
H at x ∈ S. More precisely, after reminding the well-known blow-up procedure for non-

characteristic points of a C1-smooth hypersurface S (see, for instance, [27, 28], [4], [37, 38]), we
shall generalize it, under some regularity assumptions on S, also to the case of characteristic
points of S; see Theorem 3.14. A similar result was proven in [39] for 2-step groups. Note
that the characteristic set CS of S can be seen as the set of all points at which the horizontal
projection of the unit normal vanishes, i.e. CS = {x ∈ S : |PH ν| = 0}. More precisely, let
x ∈ CS ∩ S and assume that, locally around x, S can be represented as a Ci-smooth Xα-graph,
for some vertical direction Xα ∈ V := H⊥. By hypothesis the integer i = 2, ..., k, coincides with
the homogeneous “order” of α; see Notation 2.3. For the sake of simplicity, let x = 0 ∈ G and
assume that near x = 0 one has

S ∩B̺(x, r) ⊂ exp

{
(ζ1, ..., ζα−1, ψ(ζ), ζα+1, ..., ζn) ∈ g : ζ = (ζ1, ..., ζα−1, 0, ζα+1, ..., ζn) ∈ e⊥α

}
,

where ψ : e⊥α ⊂ g −→ R is a Ci-function satisfying

∂(l)ψ

∂ζj1 ...∂ζjl
(0) = 0 whenever ord(j1) + ...+ ord(jl) < i.

Then, we shall show that3

σn−1
H (S ∩B̺(x, r)) ∼ κ̺(CS(x))r

Q−1 for r → 0+,

where the constant κ̺(CS(x)) can be explicitly computed by integrating σn−1
H along a polynomial

hypersurface of homogeneous order i = ord(α); see Theorem 3.14, Case (2).
In Section 3.1 we shall state and discuss another important tool, i.e. the Coarea Formula

for the HS-gradient, that is an equivalent for smooth functions of the classical Fleming-Rischel
formula. More precisely, let S ⊂ G be a C2-smooth hypersurface and let ϕ ∈ C1(S). Then

∫

S
|gradHSϕ(x)|σn−1

H (x) =

∫

R

σn−2
H (ϕ−1[s] ∩ S) ds.

In Section 3.5 there are some other important results quoted from the literature.
As already said, Section 4 contains the main result of this paper, i.e. an isoperimetric

inequality for compact hypersurfaces with - or without- boundary, depending on the horizontal
mean curvatureHH of the hypersurface, which generalizes to Carnot groups a classical inequality
by Michael and Simon [43] and Allard [1]. We now state our main result.

3Henceforth, the symbol ∼ will mean “asymptotic”.
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Theorem 1.2 (Isoperimetric Inequality). Let G be a k-step Carnot group and let us fix a
homogeneous metric ̺ on G as in Definition 2.5. Let S ⊂ G be a C2-smooth hypersurface with
boundary ∂S -at least- piecewise C2-smooth. Let HH denote the horizontal mean curvature of
S. Then there exists a positive constant CIsop, only dependent on G and on the homogeneous
metric ̺, such that

(
σn−1

H (S)
)Q−2

Q−1 ≤ CIsop

(∫

S
|HH |σn−1

H + σn−2
H (∂S)

)
.

The proof of this result is heavily inspired from the classical one, for which we refer the
reader to the book by Burago and Zalgaller [7]. A similar strategy can also be used in proving
isoperimetric and Sobolev inequalities in abstract metric setting such as weighted Riemannian
manifolds and graphs; see [14]. Nevertheless, we have to say that there are many non-trivial
modifications to be done, due to the sub-Riemannian setting.

Roughly speaking, the starting point will be again a linear inequality; see Proposition 4.7.
This one is used to obtain a global monotonicity formula for the H -perimeter; see Theorem 4.9.
As in the Euclidean/Riemannian case, the monotonicity inequality is an ordinary differential
inequality, expressing the local behavior of the first derivative of the quotient

σn−1
H (S ∩B̺(x, t))

tQ−1

for tց 0+, whenever x ∈ IntS; see Section 4.1. We will also discuss the characteristic case.
Then, in Section 4.2 we shall prove local estimates dependent on blow-up results. Roughly

speaking, these estimates require, in the general case, a certain amount of regularity at the
boundary. They constitute a key-point in the proof of the Isoperimetric Inequality, since they
allow to make more intrinsic the right-hand side of the global monotonicity inequality (20).

Section 4.3 is then devoted to the proof our main result. In Section 4.4 we shall discuss
a straightforward application of the monotonicity estimate. More precisely, let S ⊂ G be a
C2-smooth hypersurface and assume that the horizontal mean curvature HH is bounded by a
positive constant H0

H . Then, for every x ∈ Int(S \ CS), we shall show that

σn−1
H (St) ≥ κ̺(νH (x)) t

Q−1e−tH0
H

for tց 0+, where κ̺(νH (x)) denotes the “density” of σn−1
H at x, the so-called metric factor; see

Corollary 4.25. We shall also consider the more general case in which x ∈ CS ; see Corollary 4.26.
In Section 5 we shall discuss the equivalent Sobolev-type inequalities which can be deduced by
the previous isoperimetric inequality, following a well-known and classical argument by Federer-
Fleming [23] and Mazja [42]; see Theorem 5.1. Some corollaries will be proven, and among
others, we shall show the following:

Theorem 1.3. Let G be a k-step Carnot group. Let S ⊂ G be a C2-smooth closed hypersurface.
Then, for every ψ ∈ C∞

0 (S) one has

(∫

S
|ψ|

Q−1
Q−2 σn−1

H

)Q−2
Q−1

≤ CIsop

∫

S
(|ψ| |HH |+ |gradHSψ|) σn−1

H .

Note that CIsop is the same constant appearing in Theorem 1.2. Finally, in Section 5.1 we
shall discuss and state the equivalent versions of our main results in the BVHS setting. More
precisely, we shall discuss how a natural notion of HS-variation can be given for functions
supported on a C2-smooth hypersurface S. Indeed, starting from the horizontal divergence
Theorem 3.3, it becomes natural to mimic the original Euclidean definition of variation and so
defining the space of functions having bounded HS-variation.

6



2 Carnot groups, submanifolds and measures

2.1 Sub-Riemannian Geometry of Carnot groups

In this section we will introduce the definitions and the main features concerning the sub-
Riemannian geometry of Carnot groups. References for this large subject can be found, for
instance, in [8], [29], [31], [37], [45], [50], [51, 52, 53], [59]. Let N be a C∞-smooth connected
n-dimensional manifold and let H ⊂ TN be an h-dimensional smooth subbundle of TN . For
any x ∈ N , let T k

x denote the vector subspace of TxN spanned by a local basis of smooth vector
fields X1(x), ...,Xh(x) for H around x, together with all commutators of these vector fields of
order ≤ k. The subbundle H is called generic if, for all x ∈ N , dimT k

x is independent of the
point x and horizontal if T k

x = TN , for some k ∈ N. The pair (N,H ) is a k-step CC-space if is
generic and horizontal and if k = inf{r : T r

x = TN}. In this case

0 = T 0 ⊂ H = T 1 ⊂ T 2 ⊂ ... ⊂ T k = TN

is a strictly increasing filtration of subbundles of constant dimensions ni := dimT i (i = 1, ..., k).
Setting (Hi)x := T i

x \ T i−1
x , then gr(TxN) = ⊕k

i=1(Hk)x is the associated graded Lie algebra at
x ∈ N , with respect to the Lie product [·, ·]. We set hi := dimHi = ni−ni−1 (n0 = h0 = 0) and,
for simplicity, h := h1 = dimH . The k-vector h = (h, h2, ..., hk) is the growth vector of H .

Definition 2.1. X = {X1, ...,Xn} is a graded frame for N if {Xij (x) : nj−1 < ij ≤ nj} is a
basis for Hjx for all x ∈ N and all j ∈ {1, ..., k}.

Definition 2.2. A sub-Riemannian metric gH = 〈·, ·〉H on N is a symmetric positive bilinear
form on H . If (N,H ) is a CC-space, the CC-distance dCC(x, y) between x, y ∈ N is defined by

dCC(x, y) := inf

∫ √
〈γ̇, γ̇〉H dt,

where the infimum is taken over all piecewise-smooth horizontal paths γ joining x to y.

In fact, Chow’s Theorem implies that dCC is a true metric on N and that any two points
can be joined with at least one horizontal path. The topology induced on N by the CC-metric
is equivalent to the standard manifold topology; see [31], [50].

The general setting introduced above is the starting point of sub-Riemannian geometry. A
nice and very large class of examples of these geometries is represented by Carnot groups which,
for many reasons, play in sub-Riemannian geometry an analogous role to that of Euclidean spaces
in Riemannian geometry. Below we will introduce their main features. For the geometry of Lie
groups we refer the reader to Helgason’s book [34] and Milnor’s paper [44], while, specifically
for sub-Riemannian geometry, to Gromov, [31], Pansu, [51, 53], and Montgomery, [50].

A k-step Carnot group (G, •) is an n-dimensional, connected, simply connected, nilpotent and
stratified Lie group (with respect to the multiplication •) whose Lie algebra g(∼= Rn) satisfies:

g = H1 ⊕ ...⊕ Hk, [H1,Hi−1] = Hi (i = 2, ..., k), Hk+1 = {0}.

We denote by 0 the identity on G and so g ∼= T0G. The smooth subbundle H1 of the tangent
bundle TG is said to be horizontal and henceforth denoted by H . We set V := H2 ⊕ ... ⊕ Hk

and call V the vertical subbundle of TG. As for CC-spaces, we set hi = dimHi, i = 1, ..., k.
Moreover nl := h + ... + hl, h = h1 and nk = n. We assume that H is generated by a frame
XH := {X1, ...,Xh} of left-invariant vector fields. This one can be completed to a global graded

and left-invariant frame X := {Xi : i = 1, ..., n} in a way that Hl = spanR
{
Xi : nl−1 < i ≤ nl

}
.

The standard basis {ei : i = 1, ..., n} of Rn ∼= g can be relabelled to be graded or adapted to the
stratification. Any left-invariant vector field of X is given by Xi(x) = Lx∗ei (i = 1, ..., n), where
Lx∗ denotes the differential of the left-translation at x.
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Notation 2.3. We shall set IH := {1, ..., h}, IH2 := {n1+1, ..., n2},..., and IV := {h+1, ..., n}.
Unless otherwise specified, we will use Latin letters i, j, k, ..., for indices belonging to IH and
Greek letters α, β, γ, ..., for indices belonging to IV . The function ord : {1, ..., n} −→ {1, ..., k}
is defined by ord(a) := i whenever ni−1 < a ≤ ni for some i = 1, ..., k.

We shall use the so-called exponential coordinates of 1st kind and so G will be identified with
its Lie algebra g, via the (Lie group) exponential map exp : g −→ G.

As for any nilpotent Lie group, the Baker-Campbell-Hausdorff formula uniquely determines
the group multiplication • of G, from the “structure” of its own Lie algebra g. Using expo-
nential coordinates, the group multiplication • on G turns out to be polynomial and explicitly
computable; see [16]. Moreover, 0 = exp (0, ..., 0) and the inverse of x = exp (x1, ..., xn) ∈ G is
just x−1 = exp (−x1, ...,−xn).

If H is endowed with a metric gH = 〈·, ·〉H , we say that G has a sub-Riemannian structure.
It is always possible to define a left-invariant Riemannian metric g = 〈·, ·〉 on G such that
X is orthonormal and g|H = gH . If we fix a Euclidean metric on g = T0G (which makes
{ei : i = 1, ..., n} an orthnormal basis), this metric naturally extends to the whole tangent
bundle, by means of left-translations.

Since Chow’s Theorem holds true for Carnot groups, the Carnot-Carathéodory distance dCC

associated with gH can be defined. The pair (G, dCC) turns out to be a complete metric space
on which every couple of points can be joined by - at least - one dCC-geodesic.

Carnot groups are homogeneous groups, in the sense that they admit a 1-parameter group
of automorphisms δt : G −→ G (t ≥ 0) defined by

δtx := exp



∑

j,ij

tj xijeij


 ,

where x = exp

(∑
j,ij

xijeij

)
∈ G. The homogeneous dimension of G is the integer

Q :=
k∑

i=1

i hi

coinciding with the Hausdorff dimension of (G, dCC) as a metric space; see [45], [50], [31].

Definition 2.4. A continuous distance ̺ : G×G −→ R+ is called homogenous if

(i) ̺(x, y) = ̺(z • x, z • y) for every x, y, z ∈ G;

(ii) ̺(δtx, δty) = t̺(x, y) for all t ≥ 0.

The CC-distance dCC is an example of homogeneous distance. Another interesting example
can be found in [28]. On every Carnot group there exists a smooth, subadditive and homogeneous
norm; see [33]. In other words there exists a function ‖ · ‖̺ : G×G −→ R+ ∪ {0} such that:

(i) ‖x • y‖̺ ≤ ‖x‖̺ + ‖y‖̺;

(ii) ‖δtx‖̺ = t‖x‖̺ (t ≥ 0);

(iii) ‖x‖̺ = 0 ⇔ x = 0;

(iv) ‖x‖̺ = ‖x−1‖̺;

(v) ‖ · ‖̺ is continuous and smooth on G \ {0}.
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For instance, a homogeneous norm ̺ which is smooth on G \ {0}, can be defined by

‖x‖̺ := (|xH |λ + |xH2 |λ/2 + |xH3 |λ/3 + ...+ |xHk |λ/k)1/λ,

where λ is a positive number evenly divisible by i, for i = 1, ..., k. Here |xHi | denotes the
Euclidean norm of the projection of x onto the i-th layer Hi of the stratification of g (i = 1, ..., k).

For later purposes we will need the following:

Definition 2.5. Let ̺ : G×G −→ R+ be a homogeneous distance such that

(i) ̺ is piecewise C1-smooth;

(ii) |gradH ̺| ≤ 1 at each regular point of ̺;

(iii) |xH | ≤ ̺(x), where ̺(x) = ̺(0, x) = ‖x‖̺. Furthermore, we shall assume that there exist
ci ∈ R+ such that

|xHi | ≤ ci̺
i(x) i = 2, ..., k.

Example 2.6. It can be proved that the CC-distance dCC satisfies all the previous assumptions.
Another example can be found for the case of the Heisenberg group Hn; see Example 2.11. Indeed,
the Korany norm, defined by

‖x‖̺ := ̺(x) = 4
√

|xH |4 + 16t2 (x = exp (xH , t) ∈ Hn),

turns out to be homogeneous and C∞-smooth out of the identity 0 ∈ Hn. By direct computation,
one can show that ̺ satisfies (ii) and (iii) of Definition 2.5.

Having a Riemannian metric, we may define the left-invariant co-frame ω := {ωi : i = 1, ..., n}
dual toX. In particular, the left-invariant 1-forms 4 ωi are uniquely determined by the condition:

ωi(Xj) = 〈Xi,Xj〉 = δji (i, j = 1, ..., n)

where δji denotes the Kronecker delta. Remind that the structural constants of the Lie algebra
g associated with the left invariant frame X are defined by

Cgr
ij := 〈[Xi,Xj ],Xr〉 for i, j, r = 1, ..., n.

They satisfy

(i) Cgr
ij + Cgr

ji = 0, (skew-symmetry)

(ii)
∑n

j=1C
gi
jlC

gj
rm + Cgi

jmC
gj
lr + Cgi

jrC
gj
ml = 0 (Jacobi’s identity).

The stratification hypothesis on the Lie algebra implies that

Xi ∈ Hl, Xj ∈ Hm =⇒ [Xi,Xj ] ∈ Hl+m.

Definition 2.7 (Matrices of structural constants). We shall set

(i) Cα
H := [Cgα

ij ]i,j∈IH ∈ Mh×h(R) (α ∈ IH2 );

(ii) Cα := [Cgα
ij ]i,j=1,...,n ∈ Mn×n(R) (α ∈ IV ).

The linear operators associated with these matrices will be denoted in the same way.

4That is, L∗
pωI = ωI for every p ∈ G.
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Definition 2.8. We shall denote by ∇ the unique left-invariant Levi-Civita connection on G
associated with g. Moreover, if X,Y ∈ X(H ) := C∞(G,H ), we shall set

∇H

XY := PH (∇XY ).

Remark 2.9. We stress that ∇H is a partial connection, called horizontal H -connection; see
[48] and references therein. Using Definition 2.8 and the properties of the structural constants of
the Levi-Civita connection, we get that ∇H is flat, i.e. ∇H

Xi
Xj = 0 for every i, j ∈ IH . Moreover

∇H is compatible with the sub-Riemannian metric gH , i.e.

X〈Y,Z〉 = 〈∇H

XY,Z〉+ 〈Y,∇H

XZ〉 for all X,Y,Z ∈ X(H ).

This follows immediately from the very definition of ∇H and the corresponding properties of the
Levi-Civita connection ∇ on G. Finally, ∇H is torsion-free, i.e.

∇H

XY −∇H

YX − PH [X,Y ] = 0 for all X,Y ∈ X(H ).

For the global left-invariant frame X = {X1, ...,Xn} it turns out that

∇XiXj =
1

2

n∑

r=1

(
Cgr

ij − Cgi
jr +Cgj

ri

)
Xr (i, j = 1, ..., n).

Definition 2.10. If ψ ∈ C∞(G) we define the horizontal gradient of ψ as the unique horizontal
vector field gradH ψ such that

〈gradH ψ,X〉 = dψ(X) = Xψ for all X ∈ X(H ).

The horizontal divergence of X ∈ X(H ), divHX, is defined, at each point x ∈ G, by

divHX(x) := Trace
(
Y −→ ∇H

YX
)
(x) (Y ∈ Hx).

Example 2.11 (Heisenberg group Hn). Let hn := T0H
n = R2n+1 denote the Lie algebra of the

Heisenberg group Hn, perhaps the most important 2-step example. Its Lie algebra hn is defined
by the rules

[ei, ei+1] = e2n+1

for i = 2k +1, k = 0, ..., n− 1, where all other commutators vanish. One has hn = H ⊕Re2n+1,
where H = spanR{ei : i = 1, ..., 2n}. The second layer of the grading is the center of hn.
These rules determine the group law • via the Baker-Campbell-Hausdorff formula. For every

x = exp

(∑2n+1
i=1 xiXi

)
, y = exp

(∑2n+1
i=1 yiXi

)
∈ Hn one has

x • y = exp

(
x1 + y1, ..., x2n + y2n, x2n+1 + y2n+1 +

1
2

∑n
k=1(x2k−1y2k − x2ky2k−1)

)
.

We also stress that

C2n+1
H :=

∣∣∣∣∣∣∣∣∣

0 1 0 0 ·
−1 0 0 0 ·
0 0 0 1 ·
0 0 −1 0 ·
· · · · ·

∣∣∣∣∣∣∣∣∣
.
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2.2 Hypersurfaces, homogeneous measures and geometric structures

In the sequel Hm
̺ and Sm

̺ will denote, respectively, the Hausdorff measure and the spherical

Hausdorff measure associated with a homogeneous distance ̺ on G5. In the case ̺ = dCC we
use the notation Hm

CC and Sm
CC .

The Riemannian left-invariant volume form on G is defined as σnR :=
∧n

i=1 ωi ∈
∧n(T ∗G).

The measure σnR is the Haar measure of G and equals the push-forward of the n-dimensional
Lebesgue measure Ln on g ∼= Rn.

In the study of hypersurfaces of Carnot groups we need the notion of characteristic point.

Definition 2.12. Let S ⊂ G be a C1-smooth hypersurface. Then we say that x ∈ S is a
characteristic point of S if dimHx = dim(Hx ∩ TxS) or, equivalently, if Hx ⊂ TxS. The
characteristic set of S is denoted by CS. One has

CS := {x ∈ S : dimHx = dim(Hx ∩ TxS)}.
So a hypersurface S ⊂ G, oriented by its unit normal vector ν, is non-characteristic if, and

only if, the horizontal subbundle H is transversal to S.
We stress that the (Q − 1)-dimensional CC-Hausdorff measure of the characteristic set CS

vanishes, i.e. HQ−1
CC (CS) = 0; see [37]. The (n− 1)-dimensional Riemannian measure along S is

defined by

σn−1
R S := (ν σnR )|S ,

where denotes the “contraction” operator on differential forms; see footnote 2. Just as in
[46, 48], [13], [35], [55], since we are studying smooth hypersurfaces, instead of the variational
definition of the H -perimeter measure à la De Giorgi (see, for instance, [27, 28], [29], [46] and
bibliographies therein) we shall define an (n−1)-differential form which, by integration, coincides
with the usual variational H -perimeter measure.

Definition 2.13 (σn−1
H

-measure on hypersurfaces). Let S ⊂ G be a C1-smooth non-characteristic
hypersurface and denote by ν its unit normal vector. We call unit H -normal along S, the nor-
malized projection of ν onto H , i.e.

ν
H
:=

PH ν

|PH ν| .

We define the (n− 1)-dimensional measure σn−1
H along S to be the measure associated with the

(n − 1)-differential form σn−1
H ∈ Λn−1(T ∗S) defined as the contraction of the volume form σnR

by the horizontal unit normal ν
H
, i.e. σn−1

H S := (ν
H

σnR )|S .
If we allow S to have characteristic points, we may extend the definition of σn−1

H
by setting

σn−1
H CS = 0. For every C1-smooth hypersurface S ⊂ G, it turns out that

σn−1
H S = |PH ν|σn−1

R S

5We remind that:

(i) Hm
̺ (S) = limδ→0+ Hm

̺,δ(S) where, up to a constant multiple,

Hm
̺,δ(S) = inf

{

∑

i

(

diam̺(Ci)
)m

: S ⊂
⋃

i

Ci; diam̺(Ci) < δ
}

and the infimum is taken with respect to any non-empty family of closed subsets {Ci}i ⊂ G;

(ii) Sm
̺ (S) = limδ→0+ Sm

̺,δ(S) where, up to a constant multiple,

Sm
̺,δ(S) = inf

{

∑

i

(

diam̺(Bi)
)m

: S ⊂
⋃

i

Bi; diam̺(Bi) < δ
}

and the infimum is taken with respect to closed ̺-balls Bi.
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and that CS = {x ∈ S : |PH ν| = 0}. It is also important to remark that

σn−1
H (S ∩B) = k̺(νH )SQ−1

̺ (S ∩B),

for all B ∈ Bor(G), where the (bounded) density-function k̺(νH ), called metric factor, depends
on ν

H
and on the fixed homogeneous metric ̺ on G; see [37]. Later we shall discuss these aspects

in Section 3.4.

Definition 2.14. For every x ∈ S \ CS let HxS = Hx ∩ TxS be the horizontal tangent space at
x. Obviously Hx = HxS ⊕ ν

H
(x). We then define in the usual way the subbundles HS and ν

H
S,

called, respectively, horizontal tangent bundle and horizontal normal bundle of S. One has

H = HS ⊕ ν
H
S.

Let S ⊂ G be a C2-smooth hypersurface. We stress that if ∇TS is the connection induced
on TS from the Levi-Civita connection ∇ on TG6, then ∇TS induces a partial connection ∇HS

on HS ⊂ TS defined by7

∇HS
X Y := PHS (∇TS

X Y ) for every X,Y ∈ X(HS) := C∞(S,HS).

Starting from the orthogonal decomposition H = HS⊕ν
H
S, we could also define ∇HS by making

use of the classical definition of “connection on submanifolds”; see [10]. It turns out that

∇HS
X Y = ∇H

XY − 〈∇H

XY, νH 〉 νH for every X,Y ∈ X(HS).

Definition 2.15. We call HS- gradient of ψ ∈ C∞(S) the unique horizontal tangent vector field
gradHSψ satisfying

〈gradHSψ,X〉 = dψ(X) = Xψ for all X ∈ HS.

We denote by divHS the divergence operator on HS, i.e. if X ∈ HS and x ∈ S, then

divHSX(x) := Trace
(
Y −→ ∇HS

Y X
)
(x) (Y ∈ HxS).

The horizontal 2nd fundamental form of S is the map given by

BH (X,Y ) := 〈∇H

XY, νH 〉 for every X,Y ∈ X(HS).

The horizontal mean curvature HH is the trace of BH , i.e.

HH := TrBH = −divH ν
H
.

Definition 2.16. Let S ⊂ G be a C2-smooth hypersurace oriented by ν. We shall set

(i) ̟α := να
|PH ν| (α ∈ IV );

(ii) ̟ :=
∑

α∈IV
̟αXα;

(iii) CH :=
∑

α∈IH2
̟α C

α
H .

In particular, from (i) it follows that ν
|PH ν| = ν

H
+ ̟. We stress that the horizontal 2nd

fundamental form BH (X,Y ) is a C∞(S)-bilinear form in X and Y . In general, BH is not
symmetric and so it is a sum of two matrices, one symmetric and the other skew-symmetric,
i.e. BH = SH + AH , where the skew-symmetric matrix AH satisfies AH = 1

2 CH

∣∣
HS

; see [48].
Moreover, the following identities hold true:

BH (Y,X) −BH (X,Y ) = 〈PH [Y,X], ν
H
〉 = 〈[X,Y ],̟〉 = −〈CHX,Y 〉

for every X, Y ∈ X(HS).

6Therefore, ∇TS

is the Levi-Civita connection on S; see [10].
7The map PHS : TS −→ HS denotes the orthogonal projection of TS onto HS.
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Remark 2.17 (Induced stratification on TS; see [31]). The stratification of g induces a “natural”
decomposition of the tangent space of any smooth submanifold of G. Let us analyze the case of
a hypersurface S ⊂ G. So let us intersect, at each point x ∈ S, the tangent spaces TxS with
T i
x = ⊕i

j=1(Hj)x. We shall set T iS := TS ∩ T iG, n′i := dimT iS, HiS := T iS \ T i−1S and,

for simplicity, HS = H1S. It follows that TS := ⊕k
i=1HiS and that

∑k
i=1 n

′
i = n − 1. We also

set VS := ⊕k
i=2HiS. It turns out that the Hausdorff dimension of a smooth hypersurface S is

Q − 1 =
∑k

i=1 i n
′
i; see [31], [53], [28], [37, 41], [35]. If the horizontal tangent bundle HS is

generic and horizontal, then the couple (S,HS) is actually a k-step CC-space; see Section 2.1.

Example 2.18. Let us consider the case of a smooth hypersurface S ⊂ Hn. If n = 1, then the
horizontal tangent bundle HS of S cannot be a 2-step CC-space because HS is 1-dimensional.
Nevertheless, if n > 1, this is no longer true, since along any non-characteristic domain U ⊆ S,
HS turns out to be generic and horizontal.

Definition 2.19. We say that a (n−2)-dimensional submanifold N of G is H -regular or non-
characteristic at x ∈ N if there exist two linearly independent vectors ν1

H
, ν2

H
∈ Hx transversal to

N at x. Without loss of generality, these vectors can be taken orthonormal at that point. The
horizontal tangent space at x is defined by

HxN := Hx ∩ TxN.

When this condition is independent of x ∈ N , we say that N is H -regular or non-characteristic.
In this case, we define the associated vector bundles HN(⊂ TN) and ν

H
N , called, respectively,

horizontal tangent bundle and horizontal normal bundle. One has

H := HN ⊕ ν
H
N, ν

H
N = Rν1

H
⊕ Rν2

H
.

Definition 2.20 (Characteristic set of N). The characteristic set CN of a C1-smooth (n− 2)-
dimensional submanifold N of G is defined by

CN := {x ∈ N : dimHx − dim(Hx ∩ TxN) ≤ 1}.
This definition of CN has been used in [37], where it was shown that the (Q−2)-dimensional

Hausdorff measure (with respect to any homogeneous metric ̺ on G) of aC1-smooth submanifold

N ⊂ G vanishes, i.e. HQ−2
̺ (CN ) = 0.

Definition 2.21 (σn−2
H -measure). Let N ⊂ G be a (n− 2)-dimensional, H -regular submanifold

and let ν1
H
, ν2

H
∈ ν

H
N as in Definition 2.19. Set ν

H
:= ν1

H
∧ ν2

H
∈ ∧2(TG|N ) and define the

homogeneous measure σn−2
H along N by

σn−2
H S := (ν

H
σnR )|S .

In other words, σn−2
H

is the (Q − 2)-homogeneous measure defined by contraction8 of the top-
dimensional volume form σnR by the horizontal 2-vector ν

H
= ν1

H
∧ ν2

H
.

As in the case of the H -perimeter, σn−2
H can explicitly be represented by using the (n− 2)-

dimensional Riemannian measure σn−2
R along N . More precisely, for every x ∈ N , let ν1, ν2 ∈

νxN , where νN denotes the Riemannian normal bundle along N . We also assume that they
are orthonormal at that point. In other words, the (decomposable) 2-vector ν1 ∧ ν2 ∈

∧2(TxG)

is a unit 2-normal vector along N at x. We may assume that ν1 ∧ ν2 ∈ ∧2(TG|N ) is the unit
2-vector field which determines the orientation of N . By standard Linear Algebra, we get

ν
H
=

PH ν1 ∧ PH ν2
|PH ν1 ∧ PH ν2|

.

8For the most general definition of , see [22], Ch.1.
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If CN 6= ∅ we extend the definition of σn−2
H by setting σn−2

H CN = 0. So for every C1-smooth
(n− 2)-dimensional submanifold N ⊂ G, it turns out that

σn−2
H = |PH ν1 ∧ PH ν2|σn−2

R

and one has CN = {x ∈ N : |PH ν1 ∧ PH ν2| = 0}. The measure σn−2
H

is (Q − 2)-homogeneous,

with respect to Carnot dilations {δt}t>0, i.e. δ
∗
t σ

n−2
H = tQ−2σn−2

H . It can be shown that σn−2
H

is equivalent, up to a bounded density-function, to the (Q− 2)-dimensional Hausdorff measure
associated to a homogeneous distance ̺ on G; see [41].

3 Preliminary tools

3.1 Coarea Formula for the HS-gradient

Theorem 3.1. Let S ⊂ G be a C2-smooth hypersurface and let ϕ ∈ C1(S). Then

∫

S
|gradHSϕ(x)|σn−1

H (x) =

∫

R

σn−2
H (ϕ−1[s] ∩ S) ds (1)

and ∫

S
ψ(x)|gradHSϕ(x)|σn−1

H (x) =

∫

R

ds

∫

ϕ−1[s]∩S
ψ(y)σn−2

H (y)

for every ψ ∈ L1(S, σn−1
H

).

Proof. The theorem can be deduced by using the Riemannian Coarea Formula. Indeed, let
S ⊂ G be a C2-smooth hypersurface and ϕ ∈ C1(S). Then

∫

S
φ(x)|gradTSϕ(x)|σn−1

R (x) =

∫

R

ds

∫

ϕ−1[s]∩S
φ(y)σn−2

R (y)

for every ψ ∈ L1(S, σn−1
R

); see [7], [22]. Choosing

φ = ψ
|gradHSϕ|
|gradTSϕ|

|PH ν|,

for some ψ ∈ L1(S, σn−1
H ), yields

∫

S
φ|gradTSϕ|σn−1

R =

∫

S
ψ
|gradHSϕ|
|gradTSϕ|

|PH ν|σn−1
R︸ ︷︷ ︸

=σn−1
H

=

∫

S
|gradHSϕ|σn−1

H .

Along ϕ−1[s] it turns out that η = gradTS ϕ
|gradTS ϕ| . Therefore |PHS η| = |gradHS ϕ|

|gradTS ϕ| and it follows that

∫

R

ds

∫

ϕ−1[s]∩S
φ(y)σn−2

R =

∫

R

ds

∫

ϕ−1[s]∩S
ψ
|gradHSϕ|
|gradTSϕ|

|PH ν|σn−2
R

=

∫

ϕ−1[s]∩S
ψ |PHS η||PH ν|σn−2

R︸ ︷︷ ︸
=σn−2

H

=

∫

ϕ−1[s]∩S
ψ σn−2

H .
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3.2 Horizontal Diverge Theorem and Integration by Parts

Let S ⊂ G be a C2-smooth hypersurface and let U ⊂ S be a relatively compact open set with
C1-smooth boundary (or, smooth enough for Stokes’ Theorem). If X ∈ X(S), by definition of
σn−1

H , using the “infinitesimal” Riemannian Divergence Formula (see [57]), one gets

d(X σn−1
H )|U = d(|PH ν|X σn−1) = divTS (|PH ν|X)σn−1

R (2)

=

(
divTSX +

〈
X,

gradTS |PH ν|
|PH ν|

〉)
σn−1

H
U ,

where gradTS and divTS are, respectively, the tangential gradient and the tangential divergence
operators. By integrating (2) and using Stokes’ formula one gets the integration by parts formula
for the H -perimeter measure in the case of general vector fields. In this sub-Riemannian setting,
there are however more intrinsic tools.

At this regard, let us discuss the horizontal integration by parts formulas for hypersurfaces
immersed in a k-step Carnot group G; see [46, 48] or [18].

Remark 3.2 (Homogeneous measure σn−2
H along ∂S). Assume that ∂S is a (n−2)-dimensional

manifold, oriented by the unit normal vector η and denote by σn−2
R the Riemannian measure on

∂S, which can be written out as

σn−2
R ∂S = (η σn−1

R )|∂S .
So if X ∈ X(S), then

(X σn−1
H )|∂S = 〈X, η〉|PH ν|σn−2

R ∂S.

Denote by C∂S the characteristic set of ∂S, which turns out to be given by

C∂S = {p ∈ ∂S : |PH ν| |PHS η| = 0}.
Using Definition 2.21 yields that

σn−2
H ∂S =

( PHS η

|PHS η| σn−1
H

) ∣∣∣∣
∂S

,

or, equivalently
σn−2

H ∂S = |PH ν| |PHS η|σn−2
R ∂S.

Setting

ηHS :=
PHS η

|PHS η| ,

we say that ηHS is the unit horizontal normal along ∂S. One has

(X σn−1
H )|∂S = 〈X, ηHS 〉σn−2

H ∂S for all X ∈ C1(S,HS).

Theorem 3.3 (Horizontal Divergence Theorem ). Let G be a k-step Carnot group. Let S ⊂ G
be an immersed hypersurface and U ⊂ S \CS be a non-characteristic relatively compact open set.
Assume that ∂U is a smooth, (n − 2)-dimensional manifold oriented by its unit normal vector
η. Then, for every X ∈ C1(S,HS) one has

∫

U
(divHSX + 〈CH ν

H
,X〉) σn−1

H
=

∫

∂U
〈X, ηHS 〉σn−2

H
.

Corollary 3.4 (Horizontal Integration by Parts). Under the hypotheses Theorem 3.3, for every
X ∈ C1(S,H ) one has

∫

U
(divHSX + 〈CH ν

H
,X〉) σn−1

H = −
∫

U
HH 〈X, ν

H
〉σn−1

H +

∫

∂U
〈X, ηHS 〉σn−2

H .
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The proof of these results can be found in [48]. From Corollary 3.4 we get the next:

Corollary 3.5 (Integral Minkowsky-type formula). Under the hypotheses of Theorem 3.3, let
xH :=

∑
i∈IH

xiXi be the “horizontal position vector”. Then

∫

U
((h− 1) +HH 〈xH , ν

H
〉+ 〈CH ν

H
, xH 〉) σn−1

H =

∫

∂U
〈xH , ηHS 〉σn−2

HS . (3)

Proof. Apply Corollary 3.5 to the horizontal position vector field xH =
∑

i∈IH
xiXi.

Remark 3.6. Let S ⊂ G be a compact C2-smooth hypersurface with boundary and let {Uǫ}ǫ>0

be a family of open subsets of S with piecewise C2-smooth boundaries such that:

(i) CS ⊂ Uǫ for every ǫ > 0;

(ii) σn−1
R (Uǫ) −→ 0 for ǫ→ 0+;

(iii)
∫
Uǫ

|PH ν|σn−2
R −→ 0 for ǫ→ 0+.

Note that (iii) implies that σn−2
H (∂Uǫ) → 0 as ǫ→ 0+. By means of the family {Uǫ}ǫ>0 we may

extend the previous formulae to hypersurfaces having non-empty characteristic set. Indeed, by
applying Theorem 3.3 to S \ Uǫ, we get that

∫

S\Uǫ

(divHSX + 〈CH ν
H
,X〉) σn−1

H =

∫

∂S
〈X, ηHS 〉σn−2

H −
∫

∂Uǫ

〈X, ηHS 〉σn−2
H . (4)

Since CS is a null set for the σn−1
H -measure, letting ǫ → 0+ yields

lim
ǫ→0+

∫

S\Uǫ

(divHSX + 〈CH ν
H
,X〉) σn−1

H =

∫

S
(divHSX + 〈CH ν

H
,X〉) σn−1

H .

By using (iii), the third integral in (4) vanishes. It follows that Theorem 3.3 and Corollary 3.4
hold true for hypersurfaces having non-empty characteristic set.

Remark 3.7. Let B̺(0, t) be the ̺-ball of radius t centered at 0 ∈ G and circumscribed about
S. Using (3) and |〈xH , ν

H
〉| ≤ |xH | ≤ ‖x‖̺, yields

(h− 1)σn−1
H

(S) ≤ t

(∫

S
(|HH |+ |CH ν

H
|) σn−1

H
+ σn−2

H
(∂S)

)
. (5)

If S is minimal, i.e. HH = 0, it follows that

(h− 1)σn−1
H (S) ≤ t

(∫

S
|CH ν

H
|σn−1

H + σn−2
H (∂S)

)
.

Set St := S ∩ B̺(x, t) for x ∈ Int(S \ CS). Starting from (5) it is possible to prove the validity
of a horizontal monotonicity inequality. More precisely, one has

− d

dt

σn−1
H (St)

th−1
≤ 1

th−1

(∫

St

(|HH |+ |CH ν
H
|) σn−1

H + σn−2
H (∂S ∩B̺(x, t))

)

for L1-a.e. t > 0; see [49]. The proof of this inequality is mainly based on the Coarea Formula;
see Theorem 3.1. The strategy of the proof is the same as in the classical setting. Nevertheless,
from the last inequality we cannot deduce the “right” isoperimetric inequality. Note indeed that
the power (h− 1) is not the right one, which should be (Q− 1); see also Section 4.1.
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3.3 1st variation of σn−1
H up to CS

We recall the 1st variation formula of σn−1
H along the lines of [48], but with a further analysis of

the characteristic case; see also [18], [46], [13], [55], [35].
Let G be a k-step Carnot group and let S ⊂ G be a C2-smooth hypersurface oriented by

its unit normal vector ν. Moreover, let U ⊂ S \ CS be a non-characteristic relatively compact
open set and assume that ∂U is a (n − 2)-dimensional C1-smooth submanifold oriented by its
outward unit normal vector η.

Definition 3.8. Let ı : U → G denote the inclusion of U in G and let ϑ :] − ǫ, ǫ[×U → G be a
smooth map. We say that ϑ is a smooth variation of ı if

(i) every ϑt := ϑ(t, ·) : U → G is an immersion;

(ii) ϑ0 = ı.

The variation vector of ϑ is given by W := ∂ϑ
∂t

∣∣
t=0

= ϑ∗
∂
∂t

∣∣
t=0

.

For any t ∈]− ǫ, ǫ[ let νt be the unit normal vector along Ut := ϑt(U) and let
(
σn−1

H

)
t
be the

Riemannian measure on Ut. Let us define the differential (n− 1)-form
(
σn−1

H

)
t
along Ut, by

(
σn−1

H

)
t

U t = (νtH σnR ) U t ∈ Λn−1(TU t) t ∈ (−ǫ, ǫ)

where νtH := PH νt

|PH νt| . Moreover set Γ(t) := ϑ∗t
(
σn−1

H

)
t
∈ Λn−1(TU), t ∈]− ǫ, ǫ[. The 1st variation

IU (W,σ
n−1
H ) of σn−1

H is given by

IU (W,σ
n−1
H ) =

d

dt

(∫

U
Γ(t)

) ∣∣∣∣
t=0

=

∫

U
Γ̇(0).

Theorem 3.9 (1st variation of σn−1
H ). Under the previous assumptions, we have

IU (W,σ
n−1
H ) = −

∫

U
HH

〈
W,

ν

|PH ν|

〉
σn−1

H +

∫

∂U
〈W,η〉 |PH ν|σn−2

R . (6)

For a proof, see [48]. It is clear that if W is horizontal, then (6) becomes more “intrinsic”.

Theorem 3.10 (Horizontal 1st variation of σn−1
H ). Under the previous assumptions, let W be

horizontal. Then

IU (W,σ
n−1
H ) = −

∫

U
HH 〈W,ν

H
〉σn−1

H +

∫

∂U
〈W,ηHS 〉σn−2

H . (7)

Proof. Use Theorem 3.9 and Remark 3.2.

Therefore, in the case of horizontal variations, remembering Corollary 3.4, we get that

IU(W,σ
n−1
H ) =

∫

U
(divHSW + 〈CH ν

H
,W 〉) σn−1

H .

We stress that the horizontal 1st variation formula (7) is the sum of two terms, the first
of whose only depends on the horizontal normal component of W , while the second one, only
depends on its horizontal tangential component.

The previous formulae provide the 1st variation of σn−1
H on regular non-characteristic subsets

of S containing spt(W ). In the following remark we explain how one can extend the previous
results to include the case in which the hypersurface has a possibly non-empty characteristic
set CS . A similar remark in the case of the Heisenberg group H1 was done in a recent work by
Ritoré and Rosales [55]; see also [35].
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Remark 3.11 (1st variation: case CS 6= ∅). Let S ⊂ G be a compact C2-smooth hypersurface
and let W ∈ C1(S,TG) be the variation vector field of ϑt. Note that |PH ν| vanishes along CS.
Furthermore, |PH ν| is Lipschitz continuous at CS and of class C1 out of CS. Let {Uǫ}ǫ>0 be a
family of open neighborhoods of CS; see Remark 3.6. For every ǫ > 0 one computes

IS(W,σ
n−1
H ) = IS\Uǫ

(W,σn−1
H ) + IUǫ(W,σ

n−1
H ). (8)

The first addend is given by Theorem 3.9 and one has

IS\Uǫ
(W,σn−1

H ) = −
∫

S\Uǫ

HH

〈
W,

ν

|PH ν|

〉
σn−1

H +

∫

∂S
〈W,η〉 |PH ν|σn−2

R +

∫

∂Uǫ

〈W,η−〉 |PH ν|σn−2
R ,

where η− denotes the outward unit normal along ∂Uǫ. The second addend in (8) is given by

IUǫ(W,σ
n−1
H ) =

d

dt

(∫

Uǫ

(
σn−1

H

)
t

) ∣∣∣∣
t=0

=

∫

Uǫ

d

dt

(
σn−1

H

)
t

∣∣∣
t=0

.

Note that
d

dt

(
σn−1

H

)
t

∣∣∣
t=0

=
d

dt
|PH νt|

∣∣∣
t=0

σn−1
R

+ |PH ν| d
dt

(
σn−1

H

)
t

∣∣∣
t=0

.

Now the first addend is bounded, since the function |PH νt| is Lipschitz along ϑtS, while the
second one, up to the bounded function |PH ν|, is just the (n − 1)-form which expresses the
“infinitesimal” Riemannian 1st variation formula of σn−1

R ; see [57]. Note that term can be
written by means of a Lie derivative; see [46, 48]. More precisely, it turns out that

d

dt

(
σn−1

H

)
t

∣∣∣
t=0

= ı∗Uǫ
LW

(
σn−1

H

)
t
.

From this formula, Cartan’s identity and a simple computation, it follows that

IUǫ(W,σ
n−1
H

) =

∫

Uǫ

(
d

dt
|PH νt|

∣∣∣
t=0

− |PH ν|HR

)〈
W,

ν

|PH ν|

〉
σn−1

H

︸ ︷︷ ︸
IInt.
Uǫ

(W,σn−1
H

)

+

∫

∂Uǫ

〈W,η+〉|PH ν|σn−2
R

︸ ︷︷ ︸
IBound.
Uǫ

(W,σn−1
H

)

,

where η+ denotes the inward unit normal along ∂Uǫ. Since HR is bounded 9, by using (ii) of
Remark 3.6, we get that IInt.Uǫ

(W,σn−1
H ) → 0 as ǫ→ 0+. Moreover, since10 η+ = −η− along ∂Uǫ,

we have

IS(W,σ
n−1
H ) = −

∫

S\Uǫ

HH

〈
W,

ν

|PH ν|

〉
σn−1

H + IInt.Uǫ
(W,σn−1

H ) +

∫

∂S
〈W,η〉 |PH ν|σn−2

R

for every ǫ > 0. By letting ǫ → 0+, we get that

IS(W,σ
n−1
H ) = −

∫

S
HH

〈
W,

ν

|PH ν|

〉
σn−1

H +

∫

∂S
〈W,η〉 |PH ν|σn−2

R ,

which generalizes (6) to the characteristic case; compare with [55], [35].

9Since S is of class C
2, the Riemannian mean curvature HR is continuous along S.

10We stress that ∂Uǫ is the common boundary of Uǫ and S \ Uǫ.
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Remark 3.12. By arguing as in the previous Remark 3.11, we also get that

−HH =
d

dt
|PH νt|

∣∣∣
t=0

− |PH ν|HR ,

at each non-characteristic point x ∈ S \CS. We stress that the right-hand side of this identity is
well-defined for every x ∈ S, even if x ∈ CS, and it is locally bounded whenever S is any close
hypersurface of class C2.

The previous Remark 3.11 enables us to state the following:

Corollary 3.13 (1st variation of σn−1
H

). Let S ⊂ G be a C2-smooth hypersurface having possibly
non-empty characteristic set CS. Then, the 1st variation formula (6) holds true.

3.4 Blow-up of the horizontal perimeter σ
n−1
H up to CS

Let S ⊂ G be a smooth hypersurface. In this section we shall discuss the behavior of the
horizontal perimeter σn−1

H at any point x ∈ Int(S). More precisely, we shall study the limit

κ̺(νH (x)) := lim
r→0+

σn−1
H (S ∩B̺(x, r))

rQ−1
, (9)

where B̺(x, r) is the ̺-ball of center x and radius r. The point x ∈ IntS is not necessarily
non-characteristic. For a very similar analysis, we refer the reader to [37, 41, 40] and to [39],
for what concerns the characteristic case in the setting of 2-step Carnot groups; see also [4, 5],
[27, 28].

Theorem 3.14. Let G be a k-step Carnot group.

Case (i) Let S be a C1-smooth hypersurface and x ∈ Int(S \ CS); then

σn−1
H

(S ∩B̺(x, r)) ∼ κ̺(νH (x)) r
Q−1 for r → 0+, (10)

where the constant κ̺(νH (x)) is called metric factor and is given by

κ̺(νH (x)) = σn−1
H (I(ν

H
(x)) ∩B̺(x, 1)) ,

where I(ν
H
(x)) denotes the vertical hyperplane 11 orthogonal to ν

H
(x).

Case (ii) Let x ∈ Int(S ∩ CS) and let α ∈ IV , ord(α) = i be such that S can be represented, locally
around x, as the exponential image of an Xα-graph of class Ci. Without loss of generality,
we may assume that x = 0 ∈ G. In such case, one has

S∩B̺(x, r) ⊂ exp

{
(ζ1, ..., ζα−1, ψ(ζ), ζα+1, ..., ζn} : ζ := (ζ1, ..., ζα−1, 0, ζα+1, ..., ζn) ∈ e⊥α

}
,

where ψ : e⊥α
∼= Rn−1 → R is a function of class Ci . If ψ satisfies

∂(l)ψ

∂ζj1 ...∂ζjl
(0) = 0 whenever ord(j1) + ...+ ord(jl) < i, (11)

then

σn−1
H (S ∩B̺(x, r)) ∼ κ̺(CS(x)) r

Q−1 for r → 0+ (12)

11Note that I(ν
H
(x)) corresponds to an ideal of the Lie algebra g. We also remark that the H -perimeter on a

vertical hyperplane equals the Euclidean-Hausdorff measure Hn−1
Eu on the hyperplane.
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where the constant κ̺(CS(x)) can be computed by integrating σn−1
H along a polynomial

hypersurface which is the graph of the Taylor’s expansion up to order i = ord(α) of ψ at
ζ = 0 ∈ e⊥α . More precisely, it turns out that

κ̺(CS(x)) = σn−1
H (S∞ ∩B̺(x, 1)),

where the limit-set S∞ is given by

S∞ =
{(
ζ1, ..., ζα−1, ψ̃(ζ), ζα+1, ..., ζn

)
: ζ ∈ e⊥α

}

and

ψ̃(ζ) =
∑

j1
ord(j1)=i

∂ψ

∂ζj1
(0) ζj1 + . . .+

∑

j1,...,jl
ord(j1)+...+ord(jl)=i

∂(l)ψ

∂ζj1 ...∂ζjl
(0) ζj1 · ... · ζjl .

If (11) does not hold, then S∞ degenerates into a subset of the vertical Xα-line. Therefore,
it turns out that κ̺(CS(x)) = 0 and we have

lim
t→0+

σn−1
H

(S ∩B̺(x, r))

rQ−1
= 0.

Remark 3.15. The rescaled hypersurfaces δ 1
r
S locally converge to a limit-set S∞, i.e.

δ 1
r
S −→ S∞ for r → 0+,

where the convergence is understood with respect the Hausdorff convergence of sets; see also
[41, 39]. If x ∈ Int(S \CS) then the limit-set S∞ coincides with the vertical hyperplane I(ν

H
(x)).

Otherwise S∞ is the polynomial hypersurface described in Theorem 3.14, Case (ii).

Remark 3.16 (Order of x ∈ CS). Assume S to be smooth enough near its characteristic set
CS, say of class Ck. Then there must exist a minimum i = ord(α) such that (11) holds true.
The integer ord(x) = Q− ord(α) is called the order of the characteristic point x ∈ CS.

Proof of Theorem 3.14. Let us preliminarily note that the limit (9) can be computed, without
loss of generality, at the identity 0 ∈ G, just by left-translating S. Indeed, one has

σn−1
H (S ∩B̺(x, r)) = σn−1

H

(
x−1 • (S ∩B̺(x, r))

)
= σn−1

H

((
x−1 • S

)
∩B̺(0, r)

)

for any x ∈ IntS, where the second equality follows from the additivity of the group law •.
Notation 3.17. Throughout this proof, we shall set:

(i) Sr(x) := S ∩B̺(x, r);

(ii) S̃ := x−1 • S;

(iii) S̃r := x−1 • Sr(x) = S̃ ∩B̺(0, r).

By using the homogeneity of ̺ and the invariance of σn−1
H under positive Carnot dilations12,

it follows that
σn−1

H (S̃r) = rQ−1σn−1
H

(
δ1/rS̃ ∩B̺(0, 1)

)

12This means that δ∗t σ
n−1
H

= tQ−1σn−1
H

, t ∈ R+; see Section 2.1.
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for all r ≥ 0. Therefore
σn−1

H (S̃r)

rQ−1
= σn−1

H

(
δ1/rS̃ ∩B̺(0, 1)

)

and hence we have to compute the limit

lim
r→0+

σn−1
H

(
δ1/rS̃ ∩B̺(0, 1)

)
. (13)

We begin by studying the non-characteristic case; see also [39, 40].

Case (1). Blow-up for non-characteristic points. Let S ⊂ G be a hypersurface of class C1 and
let x ∈ IntS be non-characteristic. In such a case the hypersurface S is oriented at x by the
horizontal unit normal vector ν

H
(x), i.e. ν

H
(x) is transversal to S at x. Thus, at least locally

around x, we may think of S as the (exponential image of a) C1-graph with respect to the
horizontal direction ν

H
(x). Moreover, at the level of the Lie algebra g ∼= T0G, we can find an

orthonormal change of coordinates such that

e1 = X1(0) = (Lx−1)∗νH (x).

With no loss of generality, by the Implicit Function Theorem we can write S̃r = x−1 •Sr(x), for
some (small enough) r > 0, as the exponential image in G of a C1-graph13

Ψ = {(ψ(ξ), ξ) : ξ ∈ Rn−1} ⊂ g,

where ψ : e⊥1
∼= Rn−1 −→ R is a C1-function satisfying:

(i) ψ(0) = 0;

(ii) ∂ψ/∂ξj(0) = 0 for every j = 2, ..., h (= dimH ),

where ξ ∈ e⊥1
∼= Rn−1. In this way S̃r = expΨ ∩B̺(0, r), for all (small enough) r > 0. Clearly,

this remark can be used to compute (13). So let us us fix a positive r0 satisfying the previous
assumptions and let 0 ≤ r ≤ r0. Then

δ1/rS̃ ∩B̺(0, 1) = exp

(
δ̂1/rΨ

)
∩B̺(0, 1), (14)

where {δ̂t}t≥0 are the induced dilations on g, i.e. δt = exp ◦ δ̂t for t ∈ R+. Henceforth, we

shall often consider the restriction of δ̂t to the hyperplane e⊥1
∼= Rn−1. For this reason and with

a slight abuse of notation, instead of (δ̂t)
∣∣
e⊥1
(ξ) we shall simply write δ̂tξ. Moreover, we shall

assume Rn−1 = Rh−1⊕Rn−h. Note that the induced dilations {δ̂t}t≥0 make e⊥1
∼= Rn−1 a graded

vector space whose grading respects that of g. We have

δ̂1/rΨ = δ̂1/r
{
(ψ(ξ), ξ) : ξ ∈ Rn−1

}
=

{(
ψ(ξ)

r
, δ̂1/rξ

)
: ξ ∈ Rn−1

}
.

By using the change of variables ζ := δ̂1/rξ, we get that

δ̂1/rΨ =







ψ
(
δ̂rζ
)

r
, ζ


 : ζ ∈ Rn−1



 .

13Actually, since the argument is local, ψ can be defined just on a suitable neighborhood of 0 ∈ e⊥1 ∼= Rn−1.
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By hypothesis ψ ∈ C1(U0), where U0 is a suitable open neighborhood of 0 ∈ Rn−1. Using a
Taylor’s expansion of ψ at 0 ∈ Rn−1 and the assumptions (i) and (ii), yields

ψ(ξ) = ψ(0) + 〈gradRn−1ψ(0), ξ〉Rn−1 + o(‖ξ‖Rn−1)

= 〈gradRn−hψ(0), ξRn−h〉Rn−h + o(‖ξ‖Rn−1),

for ξ → 0 ∈ Rn−1. Note that δ̂rζ → 0 ∈ Rn−1 as r → 0+. By applying into ψ the previous
change of variables we get

ψ
(
δ̂rζ
)
=
〈
gradRn−hψ(0), δ̂r (ζRn−h)

〉
Rn−h

+ o (r)

as r → 0+. Since
〈
gradRn−hψ(0), δ̂r (ζRn−h)

〉
Rn−h

= o(r) as r → 0+, we easily get that the

limit-set (obtained by blowing-up S̃ at the non-characteristic point 0) is given by

Ψ∞ = lim
r→0+

δ̂1/rΨ = exp (e⊥1 ) = I(X1(0)). (15)

We stress that I(X1(0)) is the vertical hyperplane through the identity 0 ∈ G and orthogonal
to X1(0). Thus we have shown that (13) can be computed by means of (14) and (15). More
precisely

lim
r→0+

σn−1
H

(
δ1/rS̃ ∩B̺(0, 1)

)
= σn−1

H (I(X1(0)) ∩B̺(0, 1))

By remembering the change of variables, it follows that S∞ = I(ν
H
(x)) and that

κ̺(νH (x)) = lim
r→0+

σn−1
H (S ∩B̺(x, r))

rQ−1
= σn−1

H (I(ν
H
(x)) ∩B̺(x, 1)) ,

which was to be proven.

Case (2). Blow-up at the characteristic set. We are now assuming that S ⊂ G is a Ci-smooth
hypersurface (i ≥ 2) and that x ∈ Int(S ∩ CS). Near x the hypersurface S is then oriented by
some vertical vector. Hence, at least locally around x, we may think of S as the (exponential
image of a) Ci-graph with respect to a some vertical direction Xα transversal to S at x, i.e.
〈Xα, ν〉 6= 0 at x, where ν is a unit normal vector to S. Note that Xα is a vertical left-invariant
vector field of the fixed left-invariant frame X = {X1, ...,Xn} on G and α ∈ IV = {h+ 1, ..., n}
is any “vertical” index; see Notation 2.3. Furthermore, we are assuming that

ord(α) := i for i = 2, .., k.

To the sake of simplicity, as in the non-characteristic case, we left-translate the hypersurface
in such a way that x will coincide with the identity 0 ∈ G. To this end, it suffices to replace S

by S̃ = x−1 • S. At the level of the Lie algebra g, we consider the hyperplane e⊥α through the
origin 0 ∈ g ∼= Rn and orthogonal to eα = Xα(0). Clearly e⊥α is the “natural” domain of a graph
along the direction eα. By the classical Implicit Function Theorem, for some (small enough)

r > 0, we may write S̃r = x−1 • Sr(x) as the exponential image in G of a Ci-graph. We have

Ψ =






ξ1, ..., ξα−1 , ψ(ξ),︸ ︷︷ ︸

α−th place

ξα+1, ..., ξn


 : ξ := (ξ1, ..., ξα−1, 0, ξα+1, ..., ξn) ∈ e⊥α

∼= Rn−1





where ψ : e⊥α
∼= Rn−1 −→ R is a Ci-smooth function satisfying:
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(j) ψ(0) = 0;

(jj) ∂ψ/∂ξj(0) = 0 for every j = 1, ..., h (= dimH ).

Thus we get that S̃r = expΨ ∩B̺(0, r), for every (small enough) r > 0. Clearly we may apply
the previous considerations to compute (13) and, by arguing as in the non-characteristic case,
we can use (14). So let us compute

δ̂1/rΨ = δ̂1/r

{
(ξ1, ..., ξα−1, ψ(ξ), ξα+1, ..., ξn) : ξ ∈ e⊥α

}

=

{(
ξ1
r
, ...,

ξα−1

rord(α−1)
,
ψ(ξ)

ri
,

ξα+1

rord(α+1)
, ...,

ξn
rk

)
: ξ ∈ e⊥α

}
.

By setting

ζ := δ̂1/rξ =

(
ξ1
r
, ...,

ξα−1

rord(α−1)
, 0,

ξα+1

rord(α+1)
, ...,

ξn
rk

)
,

where ζ = (ζ1, ..., ζα−1, 0, ζα+1, ..., ζn) ∈ e⊥α , we therefore get that

δ̂1/rΨ =






ζ1, ..., ζα−1,

ψ
(
δ̂rζ
)

ri
, ζα+1, ..., ζn


 : ζ ∈ e⊥α



 .

By hypothesis ψ ∈ Ci(U0), where U0 is an open neighborhood of 0 ∈ e⊥α
∼= Rn−1. Obviously,

one has δ̂rζ → 0 as r → 0+. So we have to study the limit

ψ̃(ζ) := lim
r→0+

ψ
(
δ̂rζ
)

ri
, (16)

whenever exists. The first remark is that if this limit equals +∞, we have

lim
r→0+

σn−1
H

(S̃r)

rQ−1
= lim

r→0+
σn−1

H

(
exp

(
δ̂1/rΨ

)
∩B̺(0, 1)

)
= 0,

since δ̂1/rΨ ∩B̺(0, 1) degenerates into a subset of the Xα-line as long as r → 0+.
Making use of a Taylor’s expansion of ψ together with (j) and (jj), yields

ψ
(
δ̂rζ
)

= ψ(0) +
∑

j1

rord(j1)
∂ψ

∂ζj1
(0) ζj1 +

∑

j1,j2

rord(j1)+ord(j2) ∂(2)ψ

∂ζj1∂ζj2
(0) ζj1ζj2

+...+
∑

j1,...,ji

rord(j1)+...+ord(ji)
∂(i)ψ

∂ζj1 ...∂ζji
(0) ζj1 · ... · ζji + o

(
ri
)

=
∑

j1

rord(j1)
∂ψ

∂ζj1
(0) ζj1 +

∑

j1,j2

rord(j1)+ord(j2) ∂(2)ψ

∂ζj1∂ζj2
(0) ζj1ζj2

+...+
∑

j1,...,ji

rord(j1)+...+ord(jl)
∂(l)ψ

∂ζj1 ...∂ζji
(0) ζj1 · ... · ζjl + o

(
ri
)

as r → 0+. Therefore

ψ
(
δ̂rζ
)

ri
=

∑

j1

rord(j1)−i ∂ψ

∂ζj1
(0) ζj1 +

∑

j1,j2

rord(j1)+ord(j2)−i ∂(2)ψ

∂ζj1∂ζj2
(0) ζj1ζj2

+...+
∑

j1,...,jl

rord(j1)+...+ord(jl)−i ∂(l)ψ

∂ζj1 ...∂ζjl
(0) ζj1 · ... · ζjl + o (1)
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as r → 0+. By hypothesis

∂(l)ψ

∂ζj1 ...∂ζjl
(0) = 0 whenever ord(j1) + ...+ ord(jl) < i.

This shows that (16) exists. Moreover, setting

Ψ∞ = lim
r→0+

δ̂1/rΨ =
{(
ζ1, ..., ζα−1, ψ̃(ζ), ζα+1, ..., ζn

)
: ζ ∈ e⊥α

}
,

where ψ̃ is the polynomial function of homogeneous order i = ord(α) given by

ψ̃(ζ) =
∑

j1
ord(j1)=i

∂ψ

∂ζj1
(0) ζj1 + . . .+

∑

j1,...,jl
ord(j1)+...+ord(jl)=i

∂(l)ψ

∂ζj1 ...∂ζjl
(0) ζj1 · ... · ζjl,

yields S∞ = x •Ψ∞ and the thesis easily follows.

Remark 3.18. The metric factor k̺(νH ) turns out to be constant for instance by assuming that
̺ be symmetric on all layers; see, for instance, [41]. Anyway, it is uniformly bounded by two
positive constants K1 and K2. This can be easily deduced by making use of the so-called ball-box
metric14 and by a homogeneity argument. Indeed, for any given ̺-ball B̺(x, r), there exist two
boxes Box(x, r1), Box(x, r2) (r1 ≤ r ≤ r2) such that

Box(x, r1) ⊆ B̺(x, r) ⊆ Box(x, r2).

Remind that

k̺(νH (x)) = σn−1
H (I(ν

H
(x)) ∩B̺(x, 1)) = Hn−1

Eu (I(ν
H
(x)) ∩B̺(x, 1)).

where I(ν
H
(x) denotes the vertical hyperplane orthogonal to ν

H
(x). So let us fix r1, r2 in a way

that 0 < r1 ≤ 1 ≤ r2 and
Box(x, r1) ⊆ B̺(x, 1) ⊆ Box(x, r2).

Since δtBox(x, 1/2) = Box(x, t/2) for every t ≥ 0, by a simple computation15 we get that

(2r1)
Q−1 ≤ k̺(νH (x)) ≤

√
n− 1 (2r2)

Q−1.

In particular, we may put K1 := (2r1)
Q−1 and K2 :=

√
n− 1 (2r2)

Q−1.

14By definition one has

Box(x, r) =







y = exp





∑

i=1,...,k

yHi



 ∈ G : ‖yHi − xHi ‖∞ ≤ ri







,

where yHi =
∑

ji∈IHi

yjieji and ‖yHi ‖∞ is the sup-norm on the i-th layer of g; see, for instance, [31], [50].
15The unit box Box(x, 1/2) is the left-translated at x of Box(0, 1/2) and so, by left-invariance of σn−1

H
, the

computation can be done at 0 ∈ G. Since Box(0, 1/2) is the unit hypercube of Rn ∼= g, it remains to show how
we can estimate the σn−1

H
-measure of the intersection of Box(0, 1/2) with a generic vertical hyperplane through

the origin 0 ∈ Rn. This can be done as follows: If I(X) denotes the vertical hyperplane through the origin of Rn

and orthogonal to X ∈ H , we get that

1 ≤ Hn−1
Eu (Box(0, 1/2) ∩ I(X)) ≤

√
n− 1,

where we notice that
√
n− 1 is just the diameter of any face of the unit hypercube of Rn. Therefore

(

δ2r1Box(0, 1/2) ∩ I(X)
)

⊆
(

B̺(0, 1) ∩ I(X)
)

⊆
(

δ2r2Box(x, 1/2) ∩ I(X)
)

and so

(2r1)
Q−1 ≤ (2r1)

Q−1Hn−1
Eu (Box(0, 1/2) ∩ I(X)) ≤ Hn−1

Eu (B̺(0, 1) ∩ I(X))

= κ̺(X) ≤ (2r2)
Q−1Hn−1

Eu (Box(0, 1/2) ∩ I(X)) ≤
√
n− 1(2r2)

Q−1.
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Therefore, for every homogeneous metric ̺ on G one can choose two positive constants
K1, K2 independent of S such that

K1 ≤ κ̺(νH (x)) ≤ K2 (17)

for every x ∈ S \ CS .

3.5 Other important tools

In this section we collect some useful results which will be used later on. As a first thing, we
apply to our setting a recent result by Balogh, Pintea and Rohner (see [6]) about the size of
horizontal tangencies to non-involutive distributions.

Theorem 3.19 (Generalized Derridj’s Theorem; see Theorem 4.5 in [6]). Let G be a k-step
Carnot group.

(i) If S ⊂ G is a hypersurface of class C2, then the Euclidean-Hausdorff dimension of the
caracteristic set CS of S satisfies

dimEu−Hau(CN ) ≤ n− 2.

(ii) If V = H⊥ ⊂ TG satisfies dimV ≥ 2 and if N ⊂ G is a (n−2)-dimensional submanifold of
class C2, then the Euclidean-Hausdorff dimension of the caracteristic set CN of N satisfies

dimEu−Hau(CN ) ≤ n− 3.

Remark 3.20. The previous C2-smoothness condition is sharp, see [6]. Moreover, we stress
that dimV = 1 just in the following cases:

(i) Heisenberg groups Hn;

(ii) 2-step Carnot groups G having 1-dimensional center T and Lie algebra g such that:

g = H ⊕ T, H ∼= Rh = spanR{e1, ..., eh}, en = T

with bracket-relations:

[ei, ej ] = Cgn
ij i, j = 1..., h, [ei, en] = 0 for i = 1..., h.

In the case of Heisenberg groups Hn, n > 1, by applying Frobenious’ Theorem it follows that

dimEu−Hau(CN ) ≤ n

where n = dimH
2 ; see also [6]. On the contrary, in the first Heisenberg group H1, 1-dimensional

curves can be either horizontal or transversal to H . For the general case (ii), by applying
Frobenious’ Theorem it follows that there exist horizontal submanifolds of dimension at most
ĥ
2 , where ĥ is the greatest number of commutative-pairs of the left-invariant basis {e1, ..., eh} of

H ∼= Rh. This implies that

dimEu−Hau(CN ) ≤ ĥ

2
.

Note that dimtopG = h + 1, where h = dimH . Clearly N ⊂ G can be a horizontal submanifold

if, and only if, ĥ
2 = n− 2. So there must exist (n− 2) commutative pairs of left-invariant vector

fields among (n − 1) left-invariant vector fields of any basis of H . But this can happen only
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if there exists one, and only one, non-commutative pair. We stress that the matrix Cn
H of the

structural constants of g, up to a linear change of basis, has the following simple form:

Cn
H =




0 1 0h−2

−1 0 0h−2

0h−2 0h−2 0h−2
h−2


 ∈ Mh×h(R),

where 0h−2 is a (n− 2)-row vector, 0h−2 is a (n− 2)-column vector and 0h−2
h−2 is a square matrix

of order (h− 2).

In the case that N ⊂ G is a (n−2)-dimensional submanifold of class C2, we may apply some
general blow-up theorems by Magnani and Vittone [41] and Magnani [39]. For later purposes,
we record some consequences of their results in the next:

Theorem 3.21 (Blow-up for (n − 2)-dimensional submanifolds; see [41]). Let N ⊂ G be a
(n− 2)-dimensional submanifold of class C1,1 and let x ∈ N be non-characteristic. Then

δ 1
r
(x−1 •N) ∩B̺(0, 1) −→ I2(ν

H
(x)) ∩B̺(0, 1)

as long as r → 0+, where I2(ν
H
(x)) denotes the (n− 2)-dimensional subgroup of G defined by

I2(ν
H
(x)) := {y ∈ G : y = exp (Y ), Y ∧ ν

H
(x) = 0}

where ν
H

= ν1
H
∧ ν2

H
is the unit horizontal normal 2-vector that determines the orientation of

N . We stress that the convergence is understood with respect to the Hausdorff distance of sets.
Moreover, if ν = ν1 ∧ ν2 denotes the unit normal 2-vector field orienting N , it turns out that

lim
r→0+

σn−2
R (N ∩B̺(x, r))

rQ−2
=
κ(ν

H
(x))

|PH ν(x)| ,

where
κ(ν

H
(x)) := σn−2

H (B̺(0, 1) ∩ I2(ν
H
(x)))

is a strictly positive and bounded density-function, called metric factor. Finally, if we have

HQ−2
̺ (CN ) = 0, then the following representation formula holds

σn−2
H (N) =

∫

N
κ(ν

H
(x)) dSQ−2

̺ .

For the 2-step case there is a more precise statement. Indeed, in this case any x ∈ N can
have only two different “orders”16, that are (Q− 2) and (Q− 3); see Definition 2.6 in [39].

Theorem 3.22 (2-step case; see [39]). Let G be 2-step Carnot group and let N ⊂ G be a
(n−2)-dimensional submanifold of class C1,1. Then, for every x ∈ N there exists a neighborhood
Ux ⊂ G of x and there exist positive constants C1, C2 and r0 depending on Ux ∩N such that

C1r
ord(x) ≤ σn−2

R (N ∩B̺(z, r)) ≤ C2r
ord(x)

for every z ∈ N ∩ Ux with ord(z) = ord(x) and every r < r0. Moreover HQ−2
̺ (CN ) = 0 and

σn−2
H (N) =

∫

N
κ(ν

H
) dSQ−2

̺ .

If N is of class C2, for every x ∈ N the rescaled sets δ 1
r
(x−1•N) locally converge, with respect to

the Hausdorff distance of sets, to an algebraic variety N∞ which is the graph of a homogeneous
polynomial function.

16Roughly speaking, the order of a point x ∈ N is (Q− 2) if x is non-characteristic and (Q− 3) otherwise.
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Actually, if the order of x ∈ N is (Q−3), the homogeneous order of this polynomial function
must be 2.

We end this section by remembering a classical fact. In his treatise [22], Federer proved
an important result which allows to represent a regular measure µ of an abstract metric space
(X, ̺) in terms of the intrinsic spherical Hausdorff measure Sq

̺ of the space; see Theorem 2.10.17
in [22]. A simplified version of his result reads as follows:

Lemma 3.23. Let (X, ̺) be a locally compact, separable metric space and let µ be a regular
measure on X. If A ⊂ X, k > 0 and

lim sup
r→0+

µ(A ∩B̺(x, r))

rq
≤ t

whenever x ∈ A, then µ(A) ≤ k Sq
̺(A).

4 Isoperimetric Inequality on hypersurfaces

The main result of this paper is the following:

Theorem 4.1 (Isoperimetric Inequality). Let G be a k-step Carnot group and let us fix a
homogeneous metric ̺ on G as in Definition 2.5. Let S ⊂ G be a C2-smooth hypersurface with
boundary ∂S -at least- piecewise C2-smooth. Let HH denote the horizontal mean curvature of
S. Then there exists a positive constant CIsop, only dependent on G and on the homogeneous
metric ̺, such that

(
σn−1

H (S)
)Q−2

Q−1 ≤ CIsop

(∫

S
|HH |σn−1

H + σn−2
H (∂S)

)
. (18)

The next sections are devoted to prove this theorem. Furthermore, in Section 5 we shall show
some related Sobolev-type inequalities. In particular some generalizations will be discussed at
Section 5.1.

Nevertheless, we would like to state an immediate but interesting corollary of this theorem,
which holds true in some special cases. Among them the Heisenberg group H1 is the more
important one; see Remark 4.15 and footnote 19.

Corollary 4.2. Let G be a 2-step Carnot group and assume17 that its horizontal bundle H ⊂ TG
is of codimension 1. Furthermore, let S ⊂ G be a compact hypersurface of class C2 with smooth
boundary ∂S. If ∂S is horizontal, then S cannot be H -minimal.

Note that if ∂S is horizontal this means that ∂S = C∂S .

Proof. Under these assumptions one has σn−2
H (∂S) = 0. If HH = 0 along S, the right-hand side

of (18) vanishes identically.

4.1 Linear isoperimetric inequality and Global Monotonicity formula

Let S ⊂ G be a C2-smooth compact hypersurface with boundary ∂S smooth enough for the
validity of the Riemannian Divergence Theorem. As usual ν denotes the unit normal along S

and ̟ = PV ν
|PH ν| . We shall set

̟Hi := PHi̟ =
∑

α∈IHi

̟αXα

for i = 2, ..., k. We have ν
|PH ν| = ν

H
+
∑k

i=2̟Hi .

17In this case, it can happen that there exist (n− 2)-dimensional horizontal submanifolds; see Section 3.5.
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Definition 4.3. Let η be the unit normal vector η along ∂S18. In the sequel, we shall set

(i) χ := PVS η
|PHS η| ;

(ii) χHiS := PHiSχ, i = 2, ..., k;

see Remark 2.17. Using this notation and the very definition of ηHS yields χ =
∑k

i=2 χHiS and
η

|PHS η| = ηHS + χ; see Remark 3.2.

Definition 4.4. Fix a point x ∈ G and consider the Carnot homothety centered at x, i.e.
ϑx(t, y) := x • δt(x−1 • y). The variational vector field of ϑxt (y) := ϑx(t, y) at t = 1 is given by

Zx :=
∂ϑxt
∂t

∣∣∣∣
t=1

.

Definition 4.5. Let G be a k-step Carnot group and S ⊂ G be a C2-smooth hypersurface with
boundary ∂S, at least, piecewise C1-smooth. Moreover, let Sr := S ∩B̺(x, r), where B̺(x, r) is
the open ̺-ball centered at x ∈ G and of radius r > 0. We shall set

A(r) :=

∫

Sr

|HH |
(
1 +

k∑

i=2

i ci̺
i−1
x |̟Hi |

)
σn−1

H ,

B0(r) :=

∫

∂Sr

1

̺x

∣∣∣
〈
Zx,

η

|PHS η|
〉∣∣∣ σn−2

H ,

B(r) :=

∫

∂Sr

(
1 +

k∑

i=2

i ci̺
i−1
x |χHiS |

)
σn−2

H ,

B1(r) :=

∫

∂B̺(x,r)∩S

(
1 +

k∑

i=2

i ci̺
i−1
x |χHiS |

)
σn−2

H ,

B2(r) :=

∫

∂S∩B̺(x,r)

(
1 +

k∑

i=2

i ci̺
i−1
x |χHiS |

)
σn−2

H ,

where ̺x(y) := ̺(x, y) for y ∈ S, i.e. ̺x denotes the ̺-distance from the fixed point x ∈ G.

Remark 4.6. By Cauchy-Schwartz inequality it follows that B0(r) ≤ B(r) for every r > 0.

In the sequel we shall apply the 1st variation of σn−1
H (see Theorem 3.9 and Corollary 3.13),

with a “special” choice of the variational vector field. More precisely, let us fix a point x ∈ G
and consider the Carnot homothety ϑxt (y) := x • δt(x−1 • y) centered at x. Without loss of
generality, by using group translations, we may choose x = 0 ∈ G. One has

ϑ0(t, y) := exp (tyH , t2yH2 , t
3yH3 , ..., t

iyHi , ..., t
kyHk ) for every t ∈ R,

where yHi =
∑

ji∈IHi
yjieji and exp denotes the Carnot exponential mapping; see Section 2.1.

Thus the variational vector field related to ϑ0t (y) := ϑ0(t, y) = δty, at t = 1, is just

Z0 :=
∂ϑ0t
∂t

∣∣∣
t=1

=
∂δt
∂t

∣∣∣
t=1

= yH + 2yH2 + ...+ kyHk .

As it is well known, by invariance of σn−1
H under Carnot dilations, one has

d

dt
δ∗t σ

n−1
H

∣∣∣
t=1

= (Q− 1)σn−1
H (S).

18Note that, at each point x ∈ ∂S, η(x) ∈ TxS
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Furthermore, by using the 1st variation formula (see Corollary 3.13), one gets

(Q− 1)σn−1
H (S) = −

∫

S
HH

〈
Z0,

ν

|PH ν
H
|

〉
σn−1

H +

∫

∂S

〈
Z0,

η

|PHS η|

〉
|PH ν

H
| |PHS η|σn−2

R︸ ︷︷ ︸
=σn−2

H

.

Note that 〈
Z0,

ν

|PH ν
H
|

〉
= 〈Z0, (νH +̟)〉 = 〈yH , ν

H
〉+

k∑

i=2

〈yHi ,̟Hi 〉.

Analogously 〈
Z0,

η

|PHS η|

〉
= 〈Z0, (ηHS + χ)〉 = 〈yH , ηHS 〉+

k∑

i=2

〈yHi , χHiS 〉.

By Cauchy-Schwartz inequality we immediately get the following estimates:

∣∣∣
〈
Z0,

ν

|PH ν
H
|
〉∣∣∣ ≤ |yH |+

k∑

i=2

i |yHi ||̟Hi |,

∣∣∣
〈
Z0,

η

|PHS η|
〉∣∣∣ ≤ |yH |+

k∑

i=2

i |yHi ||χHiS |.

According with Definition 2.5, let ci ∈ R+ be constants such that |yHi | ≤ ci̺
i(y) for i = 2, ..., k.

Using the previous estimates together with these assumptions on ̺ yields:

∣∣∣∣
〈
Z0,

ν

|PH ν
H
|

〉∣∣∣∣ ≤ ̺

(
1 +

k∑

i=2

i ci̺
i−1|̟Hi |

)
,

∣∣∣∣
〈
Z0,

η

|PHS η|

〉∣∣∣∣ ≤ ̺

(
1 +

k∑

i=2

i ci̺
i−1|χHiS |

)
.

Proposition 4.7. Let S ⊂ G be a C2-smooth compact hypersurface with piecewise C1-smooth
boundary ∂S. Let r be the radius of a ̺-ball centered at x ∈ G and circumscribed about S. Then

(Q− 1)σn−1
H (S) ≤ r (A(r) + B0(r)) ≤ r (A(r) + B(r)) .

Proof. Immediate by the previous discussion and the invariance of σn−1
H under left-translations.

Remark 4.8. The proof of the monotonicity inequality will follow from the next inequality:

∫

∂B̺(x,r)∩S

1

̺x

∣∣∣∣
〈
Zx,

η

|PHS η|

〉∣∣∣∣ σ
n−2
H ≤ d

dr
σn−1

H (Sr)

for L1-a.e. r > 0. Roughly speaking, in the classical setting this inequality follows from the
Coarea Formula together with a key-property: the Euclidean metric satisfies the Ikonal equation.
We observe that if we followed the classical pattern, then we would assume that:

• There exists a smooth homogeneous norm ̺ : G×G −→ R+ such that:

|〈Zx, gradTS ̺x〉|
̺x

≤ 1 (19)

for every x, y ∈ S.
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Clearly (19) turns out to be trivially true in the Euclidean setting. Indeed, ̺x(y) = |y − x|,
Zx(y) = y − x and gradRn |y − x| = y−x

|y−x| . Therefore,

|〈Zx(y), gradTS ̺x(y)〉|
̺x(y)

= 1−
〈
y − x

|y − x| ,ne
〉2

≤ 1,

where ne is the Euclidean unit normal of S. Moreover (19) would be “natural” in the Riemannian
setting and at this regard we quote the paper by Chung, Grigor’jan and Yau [14], where this
hypothesis is the starting points of a general theory about isoperimetric inequalities on weighted
Riemannian manifolds and graphs. Unlike [49], here we will not follow this approach but rather
a much more direct computation.

By using Proposition 4.7 we may prove a global monotonicity formula for the H -perimeter
σn−1

H . Henceforth, we shall set set St := S ∩B̺(x, t), for t > 0.

Theorem 4.9 (Global Monotonicity of σn−1
H ). Let S ⊂ G be a C2-smooth hypersurface. For

every x ∈ IntS the following ordinary differential inequality holds

− d

dt

σn−1
H (St)

tQ−1
≤ A(t) + B2(t)

tQ−1
(20)

for L1-a.e. t ∈ R+.

Proof. By applying Sard’s Theorem we get that St is a C2-smooth manifold with boundary for
L1-a.e. t > 0. From the first inequality in Proposition 4.7 we have

(Q− 1)σn−1
H (St) ≤ t (A(t) + B0(t))

for L1-a.e. t > 0, where t is the radius of a ̺-ball centered at x ∈ IntS. Since

∂St = {∂B̺(x, t) ∩ S} ∪ {∂S ∩B̺(x, t)}

we get that

(Q− 1)σn−1
H (St) ≤ t

(
A(t) + B1

0(t) + B2
0(t)

)
,

where we have set

B1
0(t) :=

∫

∂B̺(x,t)∩S

1

̺x

∣∣∣∣
〈
Zx,

η

|PHS η|

〉∣∣∣∣ σ
n−2
H ,

B2
0(t) :=

∫

∂S∩B̺(x,t)

1

̺x

∣∣∣∣
〈
Zx,

η

|PHS η|

〉∣∣∣∣ σ
n−2
H .

Exactly as in Proposition 4.7 and Remark 4.6, the second integral B2
0(t) can be estimated by

Cauchy-Schwartz inequality and we get that

B2
0(t) ≤ B2(t).

However the crucial point of this proof is the estimate of the first integral B1
0(t). To this end we

have to use Coarea Formula. By Definition 2.5 and the explicit form of the variational vector
field Zx, we get that

1

̺x

∣∣∣∣
〈
Zx,

η

|PHS η|

〉∣∣∣∣ ≤ 1 +
2c2̺x(1 +O(̺x))

|PHS η|
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as long as y → x or, equivalently, ̺x → 0+. For any h > 0, let us compute

∫ t+h

t
B1
0(s) ds =

∫ t+h

t
ds

∫

∂B̺(x,s)∩S

1

̺x

∣∣∣∣
〈
Zx,

η

|PHS η|

〉∣∣∣∣ σ
n−2
H

≤
∫ t+h

t
ds

∫

∂B̺(x,s)∩S

(
1 +

2c2̺x(1 +O(̺x))

|PHS η|

)
σn−2

H

≤
∫ t+h

t
σn−2

H (∂B̺(x, s) ∩ S) ds+ 2c2

∫ t+h

t
s (1 +O(s)) ds

∫

∂B̺(x,s)∩S

1

|PHS η| σ
n−2
H

≤
∫ t+h

t
σn−2

H (∂B̺(x, s) ∩ S) ds+ 2c2 h (1 +O(h))

∫ t+h

t
ds

∫

∂B̺(x,s)∩S

1

|PHS η| σ
n−2
H

≤
∫

St+h\St

|gradHS ̺x|σn−1
H + 2c2 h (1 +O(h)) σn−1

H (St+h \ St)

as h→ 0+. We stress that the last inequality follows from Coarea formula (1) and the fact that

ηHS = gradHS ̺x
|gradHS ̺x|

along ∂B̺(x, s) ∩ S for L1-a.e. s ∈]t, t+ h[. By Definition 2.5 we have

|gradHS ̺| ≤ |gradH ̺| ≤ 1.

Therefore
∫ t+h
t B1

0(s) ds

h
≤ σn−1

H (St+h \ St)
h

(1 + o(1))

as long as h→ 0+. Hence

B1
0(t) ≤

d

dt
σn−1

H (St)

for L1-a.e. t > 0. Therefore

(Q− 1)σn−1
H (St) ≤ t

(
A(t) + B2(t) +

d

dt
σn−1

H (St)

)

which is easily seen to be equivalent to (20).

In the sequel, we shall shaw that the right-hand side of previous global monotonicity formula
can be made more intrinsic whenever the radius t of the ̺-ball B̺(x, t) goes to 0+. Taking into
account the results of Section 3.5, in order to estimate B2(t) we shall assume more regularity on
the boundary.

4.2 Local estimates dependent on blow-up results

This section is devoted to show how estimating the integrals A(t) and B2(t) which appear in the
right-hand side of the global monotonicity formula (20).

Estimate of A(t).

Lemma 4.10. Let S ⊂ G be a Ck-smooth hypersurface. Let x ∈ IntS and St = S ∩B̺(x, t) for
t > 0. Then there exists a constant b̺ > 0, only dependent on ̺ and G, such that

lim
t→0+

∫
St
|̟Hi |σn−1

H

tQ−i
≤ hi b̺ (21)

for every i = 2, ..., k, where hi = dimHi.

31



Remark 4.11. As we shall see below, if S is just of class C2, then (21) holds true for every
x ∈ S \ CS. Moreover, if x ∈ CS has order (Q− i), i = 2, ..., k, the same claim holds true if S
is of class Ci.

Proof of Lemma 4.10. For any α = h+ 1, ..., n, we have

(Xα σnR )
∣∣
S
=
(
〈Xα, ν〉σn−1

R

) ∣∣
S
= (∗ωα)|S ,

where ∗ denotes the Hodge star operation on T ∗G; see [34]. Moreover

δ∗t (∗ωα) = tQ−ord(α)(∗ωα)

for every t > 0. So we get that
∫

St

|̟Hi |σn−1
H =

∫

St

|PHi ν|σn−1
R ≤

∑

ord(α)=i

∫

St

|Xα σnR | =
∑

ord(α)=i

tQ−i

∫

ϑx
1/t

S∩B̺(x,1)
|(∗ωα) ◦ ϑxt | .

Now since ∫

ϑx
1/t

S∩B̺(x,1)
|(∗ωα) ◦ ϑxt | ≤ σn−1

R

(
ϑx1/tS ∩B̺(x, 1)

)
,

by using Theorem 3.14 we may pass to the limit as t→ 0+ the right-hand side. More precisely, if
x ∈ Int(S \CS) the rescaled hypersurfaces ϑx1/tS converge to the vertical hyperplane I(ν

H
(x)) as

t→ 0+. Otherwise we may assume that x ∈ Int(S ∩CS) has order (Q− i), for some i = 2, ..., k.
In this case the limit-set is a polynomial hypersurface of homogeneous order i passing through x;
see Remark 3.15. We remind that the convergence is understood with respect to the Hausdorff
distance of sets. So let us set

b1 := sup
X∈H , |X|=1

σn−1
R (I(X) ∩B̺(0, 1)), (22)

where I(X) denotes the vertical hyperplane through 0 ∈ G and orthogonal to X. Furthermore,
in order to study the characteristic case, we may define another useful constant, i.e.

b2 := sup
Ψ∈Polk0

σn−1
R (Ψ ∩B̺(0, 1)), (23)

where Polk0 denotes the class of all graphs of polynomial functions passing through 0 ∈ G and
of homogeneous order ≤ k. Setting

b̺ := max{b1, b2} (24)

and using the left-invariance of σn−1
R , yields

lim
t→0+

σn−1
R

(
ϑx1/tS ∩B̺(x, 1)

)
≤ b̺.

Therefore
∫
St
|̟Hi |σn−1

H

tQ−i
≤ hi σ

n−1
R

(
ϑx1/tS ∩B̺(x, 1)

)
≤ hi b̺.

This achieves the proof of (21).

Let S ⊂ G be of class C2, let x ∈ Int(S \ CS) and A(t) as in Definition 4.5. By applying
Theorem 3.19, we get that

dimEu−Hau(CS) ≤ n− 2.

In particular σn−1
R -a.e. interior point of S is non-characteristic.
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Lemma 4.12. Under the previous assumptions, one has

A(t) ≤
(∫

St

|HH |σn−1
H

)
(1 + o(1)) (25)

as long as t → 0+, where St = S ∩B̺(x, t).

Proof. We have

A(t) =

∫

St

|HH |
(
1 +

k∑

i=2

i ci̺
i−1
x |̟Hi |

)
σn−1

H

≤
∫

St

|HH |σn−1
H + ‖HH ‖L∞(St)

k∑

i=2

∫

St

i ci̺
i−1
x |̟Hi |σn−1

H

≤
∫

St

|HH |σn−1
H

+ ‖HH ‖L∞(St)

∫

St

2c2̺x (1 + o(1))

|PH ν| σn−1
H

as long as t → 0+. Indeed note that ̺x(y) = ̺(x, y) → 0+ as t → 0+. Since 1
|PH ν| is continous

near x ∈ Int(S \ CS), by standard results in Measure Theory we easily ge that

lim
t→0+

∫
St

1
|PH ν| σ

n−1
H

σn−1
H (St)

=
1

|PH ν(x)| .

Therefore ∫

St

2c2̺x (1 + o(1))

|PH ν| σn−1
H ≤ 2c2t (1 + o(1))

|PH ν(x)|
as t→ 0+ and so

lim
t→0+

∫
St

2c2̺x(1+o(1))
|PH ν| σn−1

H

σn−1
H (St)

= 0.

Since HH turns out to be continuous near every non-characteristic point, then ‖HH ‖L∞(St) is
bounded and (25) easily follows.

Actually, a similar result holds true even if x ∈ Int(S ∩ CS), at least whenever S is smooth
enough near CS . In the sequel, we shall make heavy use of Theorem 3.14, Case (2).

Lemma 4.13. Let x ∈ Int(S ∩ CS), be an interior characteristic point of S of order (Q − i)
for some i = 2, ..., k and assume that, there exists α = h + 1, ..., n, ord(α) = i, such that S can
be represented, locally around x, as the Xα-graph of a Ci-smooth function for which (11) holds
true. Then there exists a constant d̺ > 0, only dependent on ̺ and G, such that

A(t) ≤ ‖HH ‖L∞(S) (1 + d̺) σ
n−1
H (St)

as long as t → 0+.

Proof. Using Lemma 4.10 yields

∑k
i=2

∫
St
i ci̺

i−1
x |̟Hi |σn−1

H

tQ−1
≤

k∑

i=2

i cihi b̺

as t → 0+, where b̺ is the constant defined by (24). Set now d̺ :=
∑k

i=2 i cihi b̺. By arguing
as in the proof of Lemma 4.12, the proof easily follows.
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Estimate of B2(t).

Warning 4.14. From now on we shall assume that ∂S be -at least piecewise- C2-smooth.

Remark 4.15. Since ∂S is assumed to be piecewise C2-smooth, we may apply Theorem 3.19.
In particular, if dimV ≥ 2 it follows that dimEu−Hau(C∂S) ≤ n − 3 and σn−2

R -a.e. x ∈ ∂S is
non-characteristic. The same holds true for the Heisenberg groups Hn, n > 1, and for those

2-step Carnot groups G, described at (ii) of Remark 3.20, which satisfy the condition ĥ
2 < n− 2.

Nevertheless, in the remaining cases19, by using Theorem 3.22 we get that for any x ∈ ∂S, there
exist an open neighborhood Ux ⊂ G and positive constants C1, C2 and r0 dependent on Ux ∩ ∂S,
such that

C1r
ord(x) ≤ σn−2

R (∂S ∩B̺(z, r)) ≤ C2r
ord(x)

for every z ∈ ∂S ∩ Ux with ord(z) = ord(x) and every r < r0. Note that in this case, the order
ord(x) of x ∈ ∂S can be (Q − 2), if the point x is non-characteristic, or (Q − 3) otherwise.
Furthermore for every smooth point x ∈ ∂S the rescaled sets δ 1

r
(x−1 • ∂S) locally converge,

with respect to the Hausdorff distance of sets, to the (n − 2)-dimensional plane I2(ν
H
(x)), if

x ∈ ∂S \ C∂S. Otherwise, the limit set ∂S∞ is an algebraic variety and, more precisely, the
2-graph of a polynomial function of homogeneous order 2.

Remark 4.16. Since we have to estimate B2(t) for t small, it is clear that ̺(x, ∂S) must be
comparable with t, where ̺(x, ∂S) denotes the ̺-distance from x and ∂S.

The key-point is the following one:

Lemma 4.17. Assume that dimEu−Hau(C∂S) ≤ n− 3. Then

B2(t) ≤ σn−2
H (∂S ∩B̺(x, t)) (1 + o(1)) (26)

as long as t → 0+.

Proof. Let x0 ∈ ∂S ∩B̺(x, t) be a non-characteristic point20. One has

∂S ∩B̺(x, t) ⊂ ∂S ∩B̺(x0, 2t).

We therefore get that

B2(t) =

∫

∂S∩B̺(x,t)

(
1 +

k∑

i=2

i ci̺
i−1
x |χHiS |

)
σn−2

H

= σn−2
H (∂S ∩B̺(x, t)) +

∫

∂S∩B̺(x,t)

(
k∑

i=2

i ci̺
i−1
x |χHiS |

)
σn−2

H

≤ σn−2
H

(∂S ∩B̺(x, t)) +

∫

∂S∩B̺(x0,2t)

(
k∑

i=2

i ci̺
i−1
x |χHiS |

)
σn−2

H
.

By using again standard results in Measure Theory it is not difficult to show that

f(x0) = lim
t→0+

∫
∂S∩B̺(x0,2t)

f σn−2
H

σn−2
H (∂S ∩B̺(x0, 2t))

. (27)

19They are, up to isomorphisms, H1 and those 2-step Carnot groups G, introduced at (ii) of Remark 3.20, for

which ĥ
2
= n− 2.

20We stress that if x0 is a non-characteristic point of the boundary ∂S, then |PHS η(x0)| 6= 0.
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for every f ∈ C(∂S ∩ Ux0), where Ux0 ⊂ G is an open neighborhood of x0. So let us set

f(y) :=
k∑

i=2

i ci̺(x, y)
i−1|χHiS (y)|.

Since x0 ∈ ∂S ∩ B̺(x, t) is a non-characteristic boundary point, then |PHS η(x0)| 6= 0. Hence
the function f turns out to be continuous in an open neighborhood of x0 and we may therefore
apply (27). Note that

f(x0) =

k∑

i=2

i ci̺(x, x0)
i−1|χHiS (x0)| ≤

2c2
|PHS η(x0)|

̺(x, x0) (1 + o(1)) = O(̺(x, x0))

as long as x→ x0. By construction if t→ 0+, then ̺(x, x0) → 0+. Therefore

lim
t→0+

∫
∂S∩B̺(x0,2t)

(∑k
i=2 i ci̺

i−1
x |χHiS |

)
σn−2

H

σn−2
H (∂S ∩B̺(x0, 2t))

= 0.

By applying Theorem 3.21, we easily get that

lim
t→0+

σn−2
H (∂S ∩B̺(x0, 2t))

σn−2
H (∂S ∩B̺(x0, t))

= 2Q−2.

It follows that

lim
t→0+

∫
∂S∩B̺(x0,2t)

(∑k
i=2 i ci̺

i−1
x |χHiS |

)
σn−2

H

σn−2
H (∂S ∩B̺(x0, t))

= 0

which implies the thesis.

Lemma 4.18. Let G be 2-step Carnot group G and let ∂S be piecewise C2-smooth. Then there
exists a constant k > 0, only dependent on ̺ and G, such that

B2(t) ≤ (1 + k)σn−2
H (∂S ∩B̺(x, t)) (28)

as long as t → 0+.

Proof. We shall show that (28) turns out to be true near any characteristic point x0 ∈ ∂S. This
will be done by using Theorem 3.22; see also Remark 4.15. Let G be any 2-step Carnot group
and assume that x0 ∈ ∂S ∩B̺(x, t) be such that

ord(x0) = Q− 3,

see footnote 16. Note that we only need to estimate the integral
∫

∂S∩B̺(x0,t)
2 c2̺x|χH2S |σn−2

H

as t→ 0+. By Theorem 3.22, for any x0 ∈ C∂S , the rescaled sets δ 1
r
(x−1

0 • ∂S) locally converge,

with respect to the Hausdorff distance of sets, to an algebraic variety which is the graph of a
polynomial function of homogeneous order 2. So let us consider the quotient

∫
∂S∩B̺(x0,t)

̺(x0, y) σ
n−2
R (y)

tQ−2
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for t→ 0+. In fact, estimating this integral by a dimensional constant is the key point in order to
achieve the estimate of B2(t), even near characteristic points. This can be done as follows. Since,
at this moment, we are working in a 2-step Carnot group G, we easily see that δ∗t σ

n−2
R splits

into two homogeneous components of (homogeneous) degree (Q− 2) and (Q− 3), respectively.
In other words, there exist C1-smooth (n− 1)-forms, say (σn−2

R )Q−2, (σ
n−2
R )Q−3, such that

δ∗t σ
n−2
R = tQ−2(σn−2

R )Q−2 + tQ−3(σn−2
R )Q−3.

Using this, together with the left-invariance of σn−2
R and the 1-homogeneity of ̺, yields

∫
∂S∩B̺(x0,t)

̺(x0, y) σ
n−2
R (y)

tQ−2
=

tQ−2 (1 + o(1))
∫
δ 1
t
(x−1

0 •∂S)∩B̺(0,1)
̺(y) (σn−2

R )Q−3(y)

tQ−2

=

∫

δ 1
t
(x−1

0 •∂S)∩B̺(0,1)
̺ (σn−2

R
)Q−3 (1 + o(1))

≤ σn−2
R

(
δ 1

t
(x−1

0 • ∂S) ∩B̺(0, 1)
)
(1 + o(1))

as t→ 0+. Set now
∂S∞ := lim

t→0+
δ 1

t
(x−1

0 • ∂S),

where the limit is understood with respect to the Hausdorff convergence of sets. As already
said, ∂S∞ is an algebraic variety and turns out to be the 2-graph of a polynomial function of
homogeneous degree 2. So let us set

k1 := sup
Ψ∈Pol20

σn−2
R (Ψ ∩B̺(0, 1)), (29)

where Pol20 denotes the family of all 2-graph of homogeneous polynomial functions of degree 2
which vanish at 0 ∈ G. Obviously, k1 is a finite constant which only depends on ̺. Remind that
if t→ 0+, then ̺(x, x0) → 0+. Therefore

lim
t→0+

∫
∂S∩B̺(x0,t)

2 c2̺x|χH2S |σn−2
H

tQ−2
≤ 2 c2 k1︸ ︷︷ ︸

=:k2

.

By applying Claim 4.17, we see that this estimate holds true even if x0 ∈ ∂S \ C∂S . By using
Lemma 3.23 we therefore get that

∫

∂S∩B̺(x0,t)
2 c2̺x|χH2S |σn−2

H ≤ k2 SQ−2
̺ (∂S ∩B̺(x0, t)).

By means of Theorem 3.22 we can estimate the right-hand side in terms of the measure σn−2
H .

Indeed, at the characteristic set, both measures vanish. Moreover, near non-characteristic points,

the measures σn−2
H and SQ−2

̺ are locally equivalent, up to the metric-factor κ(ν
H
) which is a

bounded density-function. So let us define the constant:

κ̺ := sup
X∈Λ2(H )

σn−2
H (B̺(0, 1) ∩ I2(X)}

where Λ2(H ) := {X1 ∧ X2 ∈ Λ2(TG) : X1,X2 ∈ H , |X1 ∧X2| = 1}. Clearly κ̺ bounds from
above the metric factor κ(ν

H
). Setting k := k2 κ̺, the thesis easily follows.
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Remark 4.19 (The constant k1 for C1-smooth transversal curves in H1). In this example one
has n = 3 and Q = 4. In particular, ∂S is 1-dimensional and it can be characteristic. In such
a case, the order of any characteristic point is 1. So let γx :]− ǫ, ǫ[⊆ R −→ H1 be a C1-smooth
curve which parametrizes ∂S locally around x ∈ ∂S ∩ C∂S. In this case, one can show that the
limit-set at x = exp (xH , t) is an interval of the vertical line

x • exp (T ) = {exp (yH , s) ∈ H1 : xH = yH }

over the point x. The proof can be done by using a Taylor’s expansion of γx at 0 and Heisenberg
dilations; see, for instance, [51]. As a consequence, we can show that

k1 ≤ diam̺(B̺(0, 1)) = 2

where the constant k1 is that given by (29).

4.3 Proof of Theorem 4.1

By applying the results of Section 4.2 and Theorem 4.9 we get the following local version of the
monotonicity inequality:

Corollary 4.20 (Local Monotonicity). Let S ⊂ G be a C2-smooth hypersurface and let ∂S be
piecewise C2-smooth. Then there exists a constant C̺ ≥ 1, only dependent on ̺ and G, such
that the following statement holds: for every x ∈ Int(S \ CS) there exists r(x) > 0 such that

− d

dt

σn−1
H (St)

tQ−1
≤ C̺

tQ−1

(∫

St

|HH |σn−1
H + σn−2

H (∂S ∩B̺(x, t))

)
(30)

for L1-a.e. t ∈]0, r(x)[.
Proof. The corollary is an immediate consequence of Theorem 4.9, Lemma 4.12, Lemma 4.17
and Lemma 4.18. We stress that if dimEu−Hau(CS) ≤ n − 2 (as, for instance, for every Carnot
group G such that dimV ≥ 2, or for the Heisenberg groups Hn with n > 1; see Remark 4.15)
we may take, for example, C̺ = 2. Otherwise, we are necessarily in a 2-step Carnot group. We
may therefore apply Lemma 4.18 and take C̺ = 2(1 + k).

Notation 4.21. Let t ≥ 0. Henceforth, shall set

D(t) := C̺

(∫

St

|HH |σn−1
H + σn−2

H (∂S ∩B̺(x, t))

)
.

Lemma 4.22. Let x ∈ Int (S \ CS) and set21 r0(x) := min

{
r(x), 2

(
σn−1
H

(S)

k̺(νH (x))

)1/Q−1
}
. Then,

for every λ ≥ 2 there exists r ∈]0, r0(x)] such that

σn−1
H (Sλr) ≤ λQ−1 r0(x)D(r).

Proof of Lemma 4.22. Fix r ∈]0, r0(x)] and note that σn−1
H (St) is a monotone non-decreasing

function of t on ]r, r0(x)]. So let us write the identity

σn−1
H (St)/t

Q−1 =
{
σn−1

H (St)− σn−1
H

(
Sr0(x)

)}
/tQ−1 + σn−1

H

(
Sr0(x)

)
/tQ−1.

The first addend is an increasing function of t, while the second one is an absolutely continuous
function of t. Therefore, by integrating the differential inequality (20), we get that

21The quantity r(x) is that in Corollary 4.20.
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σn−1
H (Sr)

rQ−1
≤ σn−1

H

(
Sr0(x)

)

(r0(x))
Q−1

+

∫ r0(x)

r
D(t) t−(Q−1)dt. (31)

Therefore

β := sup
r∈]0,r0(x)]

σn−1
H (Sr)

rQ−1
≤ σn−1

H

(
Sr0(x)

)

(r0(x))
Q−1

+

∫ r0(x)

0
D(t) t−(Q−1)dt.

Now we argue by contradiction. If the lemma is false, it follows that for every r ∈]0, r0(x)]

σn−1
H (Sλr) > λQ−1r0(x)D(t).

From the last inequality we infer that

∫ r0(x)

0
D(t) t−(Q−1)dt ≤ 1

λQ−1r0(x)

∫ r0(x)

0
σn−1

H (Sλt) t
−(Q−1)dt

=
1

λ r0(x)

∫ λr0(x)

0
σn−1

H (Ss) s
−(Q−1)ds

=
1

λ r0(x)

∫ r0(x)

0
σn−1

H (Ss) s
−(Q−1)ds+

1

λr0(x)

∫ λr0(x)

r0(x)
σn−1

H (Ss) s
−(Q−1)ds

≤ β

λ
+
λ− 1

λ

σn−1
H (S)

(r0(x))
Q−1

.

Therefore, using (31) yields

β ≤
σn−1

H

(
Sr0(x)

)

(r0(x))
Q−1

+
β

λ
+
λ− 1

λ

σn−1
H (S)

(r0(x))
Q−1

and so
λ− 1

λ
β ≤ 2λ− 1

λ

(
σn−1

H (S)

(r0(x))
Q−1

)
=

2λ− 1

λ

(
k̺(νH (x))

2Q−1

)
.

By its own definition, one has

k̺(νH (x)) = lim
rց0+

σn−1
H (Sr)

rQ−1
≤ β.

Furthermore, since22 Q− 1 ≥ 3, we get that

λ− 1 ≤ 2λ− 1

8
,

or equivalently λ ≤ 7
6 , which contradicts the hypothesis λ ≥ 2.

The next covering lemma is well-known and can be found in [7]; see also [22].

22Indeed, the first non-abelian Carnot group is the Heisenberg group H1 for which Q = 4. Moreover, since the
theory of Carnot groups also contains as a special case the theory of Euclidean spaces, in the previous argument
we can also use the estimate Q − 1 ≥ 2 which is relative to the case of a surface in R3. In such a case Q = 3,
since the homogeneous dimension coincides with the topological one.

38



Lemma 4.23 (Vitali’s Covering Lemma). Let (X, ̺) be a compact metric space and let A ⊆ X.
Moreover, let C be a covering of A by closed ̺-balls with centers in A. We also assume that
each point x of A is the center of at least one closed ̺-ball belonging to C and that the radii of
the balls of the covering C are uniformly bounded by some positive constant. Then, for every
λ > 2 there exists a no more than countable subset Cλ ( C of pairwise non-intersecting closed
balls B̺(xk, rk), k ∈ N, such that

A ⊂
⋃

k∈N

B̺(xk, λ rk).

Notation 4.24. Henceforth, we shall set r0(S) := supx∈S\CS
r0(x).

We are now in a position to prove our main result.

Proof of Theorem 4.1. Fist we shall apply Lemma 4.22. To this aim, let λ > 2 be fixed and, for
every x ∈ Int(S \ CS), let r(x) ∈]0, r0(S)[ be such that

σn−1
H (Sr(x)) ≤ λQ−1 r0(S)D(r(x)). (32)

So let us consider the covering C =
{
B̺(x, r(x)) : x ∈ (S \ CS)

}
of the (relatively compact) set

S \CS ( G. By Lemma 4.23, there exists a non more than countable subset Cλ ( C of pairwise
non-intersecting closed balls B̺(xk, rk), where we have set rk := r(xk), k ∈ N, such that

S \ CS ⊂
⋃

k∈N

B̺(xk, λ rk).

We therefore get

σn−1
H (S) ≤

∑

k∈N

σn−1
H (S ∩B̺(xk, λ rk))

≤ λQ−1 r0(S)
∑

k∈N

D(rk) (by (32))

= λQ−1 r0(S)
∑

k∈N

C̺

(∫

Srk

|HH |σn−1
H + σn−2

H (∂S ∩B̺(xk, rk))

)

≤ λQ−1 r0(S)C̺

(∫

S
|HH |σn−1

H + σn−2
H (∂S)

)
.

By letting λց 2, we get that

σn−1
H (S) ≤ 2Q−1r0(S)C̺

(∫

S
|HH |σn−1

H + σn−2
H (∂S)

)
.

Since

2Q−1r0(S) ≤ 2Q−1 sup
x∈(S\CS)

2

(
σn−1

H (S)

k̺(νH (x))

) 1
Q−1

= 2Q sup
x∈(S\CS)

(
σn−1

H (S)
) 1

Q−1

(k̺(νH (x)))
1

Q−1

,

using (17) yields

2Q−1r0(S) ≤ 2Q
(
σn−1

H (S)
) 1

Q−1

K
1

Q−1

1

.
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Therefore

(
σn−1

H
(S)
)Q−2

Q−1 ≤ 2Q C̺

K
1

Q−1

1

(∫

S
|HH |σn−1

H
+ σn−2

H
(∂S)

)
.

The proof of (18) is achieved by setting

CIsop :=
2Q C̺

K
1

Q−1

1

,

where K1 and C̺ have been defined in Remark 3.18 and Corollary 4.20, respectively. Note that
these constants only depend on the group G and on the homogeneous metric ̺.

4.4 An application of the monotonicity formula: asymptotic behavior of σn−1
H

The global monotonicity formula (20) (see Theorem 4.9) can be formulated as follows:

d

dt

[
σn−1

H (St)

tQ−1
exp

(∫ t

0

A(s) + B2(s)

σn−1
H (Ss)

ds

)]
≥ 0 (33)

for L1-a.e. t > 0 and for every x ∈ IntS. For sake of simplicity, let S be closed (and hence
B2(s) = 0, identically) and let us first restrict ourselves to consider non-characteristic points.
By Theorem 3.14, Case (1), we may pass to the limit as t ց 0+ in the previous inequality; see
Section 3.4. Hence

σn−1
H (St) ≥ κ̺(νH (x)) t

Q−1exp

(
−
∫ t

0

A(s)

σn−1
H (Ss)

ds

)
, (34)

for every x ∈ Int(S \ CS).

Corollary 4.25. Let G be a k-step Carnot group and let S ⊂ G be a hypersurface of class C2.
Assume that ∂S ∩ B̺(x, t) = ∅ for some t > 0 and that |HH | ≤ H0

H < +∞. Then, for every
x ∈ Int(S \ CS), one has

σn−1
H (St) ≥ κ̺(νH (x)) t

Q−1e−tH0
H (35)

as long as t → 0+.

Proof. We just have to bound
∫ t
0

A(s)

σn−1
H

(Ss)
ds from above. Using Lemma 4.12 yields

∫ t

0

A(s)

σn−1
H (Ss)

ds ≤ H0
H (1 + o(1))

as long as t→ 0+ and (35) follows from (34).

If S is smooth enough near its characteristic set CS, the previous result can be generalized
by applying some results of Section 4.2.

Corollary 4.26. Let x ∈ Int(S ∩CS), be an interior characteristic point of S of order (Q− i),
for some i = 2, ..., k. Assume that there exists α = h + 1, ..., n, ord(α) = i, such that S can be
represented, locally around x, as the Xα-graph of a Ci-smooth function satisfying (11). Assume
that ∂S ∩B̺(x, t) = ∅ for some t > 0 and that |HH | ≤ H0

H < +∞. Then

σn−1
H (St) ≥ κ̺(CS(x)) t

Q−1e−tH0
H
(1+d̺) (36)

as long as t → 0+.

40



We remind that κ̺(CS(x)) has been defined in Theorem 3.14, Case (2). We also stress that

d̺ =
k∑

i=2

i cihi b̺,

where b̺ is the constant, only depends on ̺ and G, defined by (24).

Proof. By arguing as above, we may pass to the limit in (33) as tց 0+ and we get that

σn−1
H (St) ≥ κ̺(CS(x)) t

Q−1exp

(
−
∫ t

0

A(s)

σn−1
H (Ss)

ds

)
.

By applying Lemma 4.13 we get that
∫ t

0

A(s)

σ2nH (Ss)
≤ H0

H (1 + d̺)

as t→ 0+. This achieves the proof.

In particular, in the case of Heisenberg groups Hn, the following holds:

Corollary 4.27. Let (Hn, ̺) be the Heisenberg group endowed with its Korany distance; see
Example 2.6. Let S ⊂ Hn be a C2-smooth hypersurface. Assume that ∂S∩B̺(x, t) = ∅ for some
t > 0 and that |HH | ≤ H0

H < +∞. Then, for every x ∈ S ∩ CS, one has

σ2nH (St) ≥ κ̺(CS(x)) t
Q−1e−tH0

H
(1+b̺) (37)

as long as t → 0+.

The constant κ̺(CS(x)) has been defined in Theorem 3.14, Case (2). Even in this case the
constant b̺ is that defined by (24).

Proof. By arguing as for the non-characteristic case, we may pass to the limit in (33) as tց 0+.
As above, we have

σ2nH (St) ≥ κ̺(CS(x)) t
Q−1exp

(
−
∫ t

0

A(s)

σ2nH (Ss)
ds

)
,

as tց 0+, for every x ∈ S ∩ CS . By applying Lemma 4.10 we get

A(s)

σ2nH (Ss)
≤ H0

H (1 + 2 c2 b̺) = H0
H (1 + b̺) ,

for every small enough s > 0, since in this case c2 =
1
2 .

Example 4.28. Consider (Hn, ̺) where ̺ is the Korany distance and remind that Q = 2n+ 2.
Let S = {exp (xH , t) ∈ Hn : t = 0}. One has CS = 0 ∈ Hn. Furthermore HH = 0, since
ν
H
= −1

2C
2n+1
H xH and

divH ν
H
=

1

2
divR2n(−x2, x1, ...,−x2n−1, x2n) = 0.

By a little computation we see that κ̺(CS) = O2n
4n , where O2n−1 is the surface measure of the

unit sphere S2n−1 ⊂ R2n. Thus (37) says that

σ2nH (St) ≥
O2n

4n
tQ−1.

In this elementary case, the claim can easily be verified by using σ2nH = |xH |
2 dL2n and then

spherical coordinates on R2n.
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5 Sobolev-type inequalities on hypersurfaces

The isoperimetric inequality (18) is actually equivalent to a Sobolev-type inequality. The proof
is analogous to that of the equivalence between the Euclidean Isoperimetric Inequality and the
Sobolev one; see [7].

Theorem 5.1. Let G be a k-step Carnot group. Let S ⊂ G be a C2-smooth closed hypersurface.
Then

(∫

S
|ψ|

Q−1
Q−2 σn−1

H

)Q−2
Q−1

≤ CIsop

∫

S
(|ψ| |HH |+ |gradHSψ|) σn−1

H (38)

for every ψ ∈ C∞
0 (S), where CIsop is the constant appearing in Theorem 4.1.

Proof. The proof follows a classical argument; see [23], [42]. Since |gradHSψ| ≤ |gradHS |ψ||,
without loss of generality, we may assume ψ ≥ 0. Set

St := {x ∈ S : ψ(x) > t}.

Since ψ has compact support, the set St is a bounded open subset of S and, by applying Sard’s
Lemma, one sees that its boundary ∂St is smooth for L1-a.e. t ≥ 0. Furthermore, St = ∅
for each (large enough) t > 0. The main tools we are going to use are, in order, Cavalieri’s
principle23 and Coarea Formula; see Theorem 1. We start by the identity

∫

S
|ψ|

Q−1
Q−2σn−1

H =
Q− 1

Q− 2

∫ +∞

0
t

1
Q−2 σn−1

H (St) dt (39)

which follows from Lemma 5.2 with α = Q−1
Q−2 . We also remind that, if ϕ : R+ −→ R+ is a

positive decreasing function and α ≥ 1, then

α

∫ +∞

0
tα−1ϕα dt ≤

(∫ +∞

0
ϕ(t) dt

)α

.

Using (39) and the last inequality yields

∫

S
ψ

Q−1
Q−2 σn−1

H =
Q− 1

Q− 2

∫ +∞

0
t

1
Q−2 σn−1

H (St) dt

≤
[∫ +∞

0

(
σn−1

H (St)
)Q−2

Q−1 dt

]Q−1
Q−2

≤
[∫ +∞

0
CIsop

(∫

St

|HH |σn−1
H + σn−2

H (∂St)

)
dt

]Q−1
Q−2

(by (18) with S = St)

=

[
CIsop

∫

S
(|ψ| |HH |+ |gradHSψ|) σn−1

H

]Q−1
Q−2

,

where we have used Cavalieri’s principle and Coarea Formula. The thesis easily follows.

23The following lemma, also known as Cavalieri’s principle, is an easy consequence of Fubini’s Theorem:

Lemma 5.2. Let X be an abstract space, µ a measure on X, α > 0, ϕ ≥ 0 and At = {x ∈ X : ϕ > t}. Then

∫ +∞

0

tα−1µ(At) dt =
1

α

∫

A0

ϕα dµ.

42



Notation 5.3. As in the standard theory of Sobolev spaces, for any p > 0, we shall set

1

p∗
=

1

p
− 1

Q− 1
.

Moreover, we will denote by p′ the Hölder conjugate of p, i.e. 1
p +

1
p′ = 1. In the sequel, any Lp

norm will be understood with respect to the measure σn−1
H .

Warning 5.4. Henceforth, we shall assume that HH is globally bounded along S. Furthermore
we shall set

ε := max{‖HH ‖L∞(S), 0}.
Corollary 5.5. Under the previous assumptions, one has

‖ψ‖Lp∗ (S) ≤ CIsop

(
ε‖ψ‖Lp(S) + cp∗ ‖gradHSψ‖Lp(S)

)

for every ψ ∈ C∞
0 (S), where cp∗ := p∗Q−2

Q−1 . Thus, there exists Cp∗ = Cp∗(ε, ̺,G) such that

‖ψ‖Lp∗ (S) ≤ Cp∗
(
‖ψ‖Lp(S) + ‖gradHSψ‖Lp(S)

)

for every ψ ∈ C∞
0 (S).

Proof. Let us apply (38) with ψ replaced by ψ|ψ|t−1, for some t > 0. It follows that

(∫

S
|ψ|t

Q−1
Q−2 σn−1

H

)Q−2
Q−1

≤ CIsop

∫

S

(
ε |ψ|t + t|ψ|t−1|gradHSψ|

)
σn−1

H
. (40)

If we put (t− 1)p′ = p∗, one gets p∗ = t Q−1
Q−2 . Using Hölder inequality yields

(∫

S
|ψ|p∗σn−1

H

)Q−2
Q−1

≤ CIsop

(∫

S
|ψ|p∗σn−1

H

) 1
p′ (

ε ‖ψ‖Lp(S) + t ‖gradHSψ‖Lp(S)

)
,

which is equivalent to the thesis.

Corollary 5.6. Under the previous assumptions, let p ∈ [1, Q − 1[. For all q ∈ [p, p∗] one has

‖ψ‖Lq(S) ≤ (1 + εCIsop) ‖ψ‖Lp(S) + cp∗ CIsop ‖gradHSψ‖Lp(S)

for every ψ ∈ C∞
0 (S). In particular, there exists Cq = Cq(ε, ̺,G) such that

‖ψ‖Lq(S) ≤ Cq

(
‖ψ‖Lp(S) + ‖gradHSψ‖Lp(S)

)

for every ψ ∈ C∞
0 (S).

Proof. For any given q ∈ [p, p∗] there exists α ∈ [0, 1] such that 1
q = α

p + 1−α
p∗ . Hence

‖ψ‖Lq(S) ≤ ‖ψ‖αLp(S)‖ψ‖1−α
Lp∗ (S)

≤ ‖ψ‖Lp(S) + ‖ψ‖Lp∗ (S),

where we have used the usual interpolation inequality and Young’s inequality. The thesis follows
from Corollary 5.5.

Corollary 5.7 (Limit case: p = Q − 1). Under the previous assumptions, let p = Q − 1. For
every q ∈ [Q− 1,+∞[ there exists Cq = Cq(ε, ̺,G) such that

‖ψ‖Lq(S) ≤ Cq

(
‖ψ‖Lp(S) + ‖gradHSψ‖Lp(S)

)

for every ψ ∈ C∞
0 (S).
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Proof. By using (40) we easily get that there exists C1 = C1(ε, t, ̺,G) > 0 such that

(∫

S
|ψ|t

Q−1
Q−2σn−1

H

)Q−2
Q−1

≤ C1

∫

S

(
|ψ|t + |ψ|t−1|gradHSψ|

)
σn−1

H

for every ψ ∈ C∞
0 (S). From now on we assume that t ≥ 1. Using Hölder inequality with

p = Q− 1, yields

‖ψ‖t
L
t
Q−1
Q−2 (S)

≤ C1

(
‖ψ‖tLt(S) + ‖ψ‖t−1

L
(t−1)(Q−1)

Q−2 (S)

‖ψ‖LQ−1(S)

)

for every ψ ∈ C∞
0 (S) and t ≥ 1. By means of Young’s inequality, we get there that there exists

another constant C2 = C2(ε, t, ̺,G) such that

‖ψ‖
L
t
Q−1
Q−2 (S)

≤ C2

(
‖ψ‖Lt(S) + ‖ψ‖

L
(t−1)(Q−1)

Q−2 (S)
+ ‖gradHSψ‖LQ−1(S)

)
.

By setting t = Q− 1 in the last inequality we get that

‖ψ‖
L

(Q−1)2

Q−2 (S)

≤ C2

(
‖ψ‖LQ−1(S) + ‖gradHSψ‖LQ−1(S)

)
.

By reiterating this procedure for t = Q,Q+1, ... one can show that for all q ≥ Q−1 there exists
Cq = Cq(ε, ̺,G) such that

‖ψ‖Lq(S) ≤ Cq

(
‖ψ‖LQ−1(S) + ‖gradHSψ‖LQ−1(S)

)

for every ψ ∈ C∞
0 (S).

5.1 Final remarks and generalizations

Since Carnot groups are endowed with natural and rich geometric structures, we may easily give
the notion of horizontal variation. More precisely, if U ⊆ G is an open set and ψ : U → R, the
H -variation of ψ in U is defined by

V arH ψ(U) := sup

{∫

U
ψdivH φσnR : φ ∈ C1

0(U,H ), |φ| ≤ 1

}
. (41)

If ψ ∈ C1
H (U), by using an integration by parts, one can show that

V arH ψ(U) =

∫

U
|gradH ψ|σnR ,

where we stress that σnR = dLn. If U = G we also set V arH ψ. Starting from (41) we may define
the space of functions of bounded horizontal variation on U as follows:

BVH (U) := {ψ ∈ L1(U) : V arH ψ(U) < +∞}.

By definition, E ⊂ G is a set of finite H -perimeter in U if 1E ∈ BVH (U). We also set
|∂E|H (U) := V arH 1E(U) and just |∂E|H , if U = G. Note that the previous notions are based
on the validity of a Divergence Theorem for horizontal vector fields on G.

Analogous remarks can be done when we define horizontal Sobolev spaces. For the theory of
(horizontal) Sobolev and BVH spaces in Carnot groups we refer the reader to [18], [8], [27, 28],
[29], [37], [47], [60] and bibliographies therein.
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The results of this paper and, in particular the validity of a horizontal Divergence Theorem
(see Theorem 3.3) enable us to define the HS-variation (i.e. horizontal tangent variation, denoted
by V arHS ) for functions defined on any C2-smooth hypersurface S ⊂ G. More precisely, let
S ⊂ G be a C2-smooth closed hypersurface and let U ⊆ S be any open subset of S. We denote
by DHS the differential operator DHS : X(HS) −→ R given by

DHSφ := divHSφ+ 〈CH ν
H
, φ〉 for every φ ∈ X(HS).

By the results of Section 3.2, for every φ ∈ X1
0(HU) = C1

0(U ,HU), the following holds:

∫

U
ψDHSφσn−1

H = −
∫

U
〈gradHSψ, φ〉σn−1

H

whenever ψ ∈ C1(U).

Definition 5.8. The HS-variation of ψ : U ⊆ S → R is defined by

V arHSψ(U) := sup

{∫

U
ψDHSφσn−1

H
: φ ∈ C1

0(U ,HU), |φ| ≤ 1

}
. (42)

The space of functions of bounded HS-variation on U is given by

BVHS (U) := {ψ ∈ L1(U , σn−1
H ) : V arHSψ(U) < +∞}.

Any subset E ⊂ S is said to have finite HS-perimeter in U if 1E ∈ BVHS (U). We denote by
|∂E|HS (U) := V arHS1E(U) the HS-perimeter of E in U . If U = S we also set |∂E|H .

Starting from this definition, a complete theory of BVHS spaces and of finite HS-perimeter
sets can be developed, in particular, by adapting to this context some standard approximation
tools24. The same observation applies for horizontal tangent Sobolev spaces on hypersurfaces.

The Isoperimetric Inequality (see Theorem 4.1) and the related Sobolev-type inequalities
(see Theorem 5.1 and its corollaries proved throughout Section 5) can easily be generalized for
the weakly-differentiable function spaces introduced above.

More precisely, we state without proof, the following:

Theorem 5.9 (Generalized Isoperimetric and Sobolev inequalities). Let G be a k-step Carnot
group and fix a homogeneous metric ̺ on G just as in Definition 2.5. Let S ⊂ G be a C2-smooth
closed hypersurface and let HH be its horizontal mean curvature. Then there exists a positive
constant CIsop, only dependent on G and on the homogeneous metric ̺, such that

(
σn−1

H (E)
)Q−2

Q−1 ≤ CIsop

(∫

E
|HH |σn−1

H + |∂E|HS

)
(43)

for every set E of finite HS-perimeter in S. Furthermore, for every ψ ∈ BVHS (S) one has

‖ψ‖
L

Q−1
Q−2(S)

≤ CIsop

(∫

S
|ψ| |HH |σn−1

H + V arHSψ

)
. (44)

24In particular, it is not difficult to define mollifiers on smooth submanifolds of Carnot groups. Actually this
can be done by studying mollifiers on graded vector spaces.
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[52] , Métriques de Carnot-Carathéodory et quasi-isométries des espaces symmétriques de rang un, Ann. of Math.
2, 129 (1989) 1-60.

[53] , Submanifolds and differential forms in Carnot manifolds, after M. Gromov et M. Rumin, preprint (2005) 41
pages.

[54] S.D. Pauls, Minimal surfaces in the Heisenberg group, Geom. Dedicata, 104 (2004) 201-231.
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