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Abstract

In this paper we shall study smooth submanifolds immersed in a k-step Carnot group G
of homogeneous dimension (). Our main result is an isoperimetric inequality for the case of
a C2-smooth compact hypersurface S with - or without - boundary 9S; see Theorem 1l
Note that S and 0S5 are endowed with their homogeneous measures o %, o2, actually
equivalent (up to bounded densities) to the (@ — 1)-dimensional and (@ — 2)-dimensional
spherical Hausdorff measures with respect to a given homogeneous metric ¢ on G. This
generalizes a classical inequality, involving the mean curvature of the hypersurface, proven
by Michael and Simon [43] and Allard [1], independently. In particular, from this result we
deduce some related Sobolev-type inequalities; see Section The strategy of the proof is
inspired by the classical one. In particular, we shall begin by proving a linear inequality;
see Proposition .71 By using this inequality we can prove a global monotonicity formula;
see Theorem These results allow us to study the asymptotic behavior of o7~ !; see
Section 4.4l By using blow-up results and some homogeneity arguments, we can prove local
estimates of the right-hand side of the global monotonicity formula. In this way we get a
local monotonicity formula (see Corollary[4.20) which becomes the starting point to apply the
classical strategy of the proof. At this point, one concludes the proof by a Calculus Lemma
(which can be proved, via a contradiction argument based on local monotonicity formula; see
Lemma 22]) and a Vitali-type covering argument. We stress however that there are many
differences, due to our different geometric setting. For instance, we shall discuss a blow-
up theorem which also holds for characteristic points; see Section B.4l Another simple but
fundamental result is the smooth Coarea Formula for the HS-gradient; see Section3.Jl Other
tools are the horizontal divergence theorem and the 1st variation of the H-perimeter, already
developed in [48], and here generalized to hypersurfaces having non-empty characteristic set.
Moreover, we will need some other results and, in particular, estimates on the sizes of the
characteristic sets (of S and its boundary 95) and blow-up estimates at the boundary; see
Section These results can be used in the study of minimal and constant horizontal
mean curvature hypersurfaces; see, for instance, Corollary[£.2] Finally, we shall discuss some
natural generalizations; see Section [B.Il1 This paper is a new (revised and improved) version
of some results obtained in the unpublished manuscript [49].
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1 Introduction

In the last decades considerable efforts have been made to extend to the general setting of
metric spaces the methods of Analysis and Geometric Measure Theory. This philosophy, in a
sense already contained in Federer’s treatise [22], has been pursued, among other authors, by
Ambrosio [2], Ambrosio and Kirchheim [3], Capogna, Danielli and Garofalo [8], Cheeger [11],
Cheeger and Kleiner [12], David and Semmes [20], De Giorgi [21], Gromov [31], Franchi, Gallot
and Wheeden [25], Franchi and Lanconelli [26], Franchi, Serapioni and Serra Cassano [27, 28],
Garofalo and Nhieu [29], Heinonen and Koskela [32], Korany and Riemann [36], Pansu [51] 52],
but the list is far from being complete.

In this respect, sub-Riemannian or Carnot-Carathéodory geometries have become a subject
of great interest also because of their connections with many different areas of Mathematics
and Physics, such as PDE’s, Calculus of Variations, Control Theory, Mechanics and Theoretical
Computer Science. For references, comments and other perspectives, we refer the reader to
Montgomery’s book [50] and the surveys by Gromov, [31], and Vershik and Gershkovich, [61].
We also mention, specifically for sub-Riemannian geometry, [59] and [53]. More recently, the
so-called Visual Geometry has also received new impulses from this field; see [56], [15] and
references therein.

The setting of the sub-Riemannian geometry is that of a smooth manifold N, endowed with
a smooth non-integrable distribution H C T'N of h-planes, or horizontal subbundle (h < dimN).
Such a distribution is endowed with a positive definite metric gn, defined only on the subbundle
H. The manifold N is said to be a Carnot-Carathéodory space or CC-space when one introduces
the so-called CC-metric doc (see Definition [2.2]). With respect to such a metric, the only paths
on the manifold which have finite length are tangent to the distribution H and therefore called
horizontal. Roughly speaking, in connecting two points we are only allowed to follow horizontal
paths joining them.

Throughout this paper we shall extensively study hypersurfaces immersed in Carnot groups
which, for this reason, form the underlying ambient space. A k-step Carnot group (G, e) is an



n-dimensional, connected, simply connected, nilpotent and stratified Lie group (with respect to
the group multiplication e) whose Lie algebra g = R" satisfies:

g=H & ... H, [HlyHi—l] = H, (Z =2, ...,k), Hy = {0}

The horizontal bundle H is generated by a frame Xu := {X1,..., X},} of left-invariant vector
fields. The horizontal frame can be completed to a global left-invariant frame X := {X1, ..., X, }
for TG. Note that the standard basis {e; : i = 1,...,n} of R™ can be relabelled to be graded
or adapted to the stratification. Any Carnot group G on R" is endowed with a one-parameter
family of dilations (adapted to the grading) that makes it a homogeneous group with homo-
geneous dimension @ := Zleihi, in the sense of Stein’s definition; see [58]. Note that @
coincides with the Hausdorff dimension of (G,dcc) as a metric space. Carnot groups are of
special interest for many reasons and, in particular, because they constitute a wide class of
examples of sub-Riemannian geometries. Note that, by a well-know result due to Mitchell [45]
(see also Montgomery’s book [50]), the Gromov-Hausdorff tangent cone at any regular point of
a sub-Riemannian manifold is a suitable Carnot group. This motivates the interest towards the
study of Carnot groups which play for sub-Riemannian geometries an analogous role to that of
Euclidean spaces in Riemannian geometry. The initial development of Analysis in this setting
was motivated by some works published in the first eighties. Among others, we cite the paper
by Fefferman and Phong [24] about the so-called “subelliptic estimates” and that of Franchi
and Lanconelli [26], where a Holder regularity theorem was proven for a class of degenerate
elliptic operators in divergence form. Meanwhile, the beginning of Geometric Measure Theory
was perhaps an intrinsic isoperimetric inequality proven by Pansu in his Thesis [51], for the
case of the Heisenberg group H'. For more results about isoperimetric inequalities on Lie groups
and Carnot-Carathéodory spaces, see also [60], [31], [53], [29], [8], [25], [32]. For results on these
topics, and for more detailed bibliographic references, we shall refer the reader to [2], [8], [27, 28],
[19], [30], [29], [37, [38], [47, [48], [35]. We also quote [13], [30], [54], [55], [9] for some results
about minimal and constant mean-curvature hypersurfaces immersed in the Heisenberg group.

In this paper we shall try to give some contributions to the study of both analytic and
differential-geometric properties of hypersurfaces immersed in Carnot groups, endowed with the
so-called H -perimeter measure 0%~ '; see Definition 2131 To this aim we will preliminarily study
some technical tools and among other things we shall extend to hypersurfaces with non-empty
characteristic set, the horizontal Divergence Theorem and the Ist-variation of ¢ *, proved in
[46, [48] for the non-characteristic case; see Section and Section 3.3l We shall discuss a
blow-up theorem, which also holds for characteristic points, and a horizontal Coarea Formula
for smooth functions on hypersurfaces; see Section B.4] and Section .1l Together with those
of Section B0 these results are used in Section Ml to investigate the validity in this context of
an isoperimetric inequality, proved by Michael and Simon in [43] for a general setting including
Riemannian geometries and, independently, by Allard in [I] for varifolds; see below for a more
precise statement. In Section Bl we shall deduce some related Sobolev inequalities, following a
classical pattern by Federer-Fleming [23] and Mazja [42]. Finally in Section 5.1 we will discuss
an immediate generalization to the natural BV space for functions defined on any C?-smooth
hypersurface. Very recently, some similar results in this direction have also been obtained by
Danielli, Garofalo and Nhieu in [19], where a monotonicity estimate for the H-perimeter has
been proven for graphical strips in the Heisenberg group H!.

Now we would like to make a short comment about the Isoperimetric Inequality for compact
hypersurfaces immersed in the Euclidean space R".

Theorem 1.1 (Euclidean Isoperimetric Inequality for S C R™). Let S C R"(n > 2) be a
C2-smooth compact hypersurface with -or without- piecewise C'-boundary. Then

n—2
(7 1(8)) ™ < Crsop < /S |Hr| ot + 02‘2(85)>

where Crgop > 0 is a dimensional constant.



In the previous statement, Hx is the mean curvature of S and 6!, 672 are the Riemannian

measures on S and 05, respectively. The first step in the proof is a linear isoperimetric inequality.
More precisely, one has

o1 l(S) < v ( [l + az—2<as>) ,
S

where r is the radius of a Euclidean ball B(x,r) containing S. From this linear inequality and
Coarea Formula, one gets the so-called monotonicity inequality, which says that, at every interior
point x € IntS, one has

oS
dt  tn—1

1
) < pro) </ |Hr|ow ! —i—ag_z(aSﬂB(az,t))>
St

for Ll-a.e. t > 0, where S; = SN B(z,t). Note that every interior point of a C2-smooth
hypersurface S turns out to be a density-poin

By the monotonicity inequality, via a contradiction argument, one deduces a calculus lemma
which, together with a standard Vitali-type covering theorem, allows to achieve the proof.

The importance of the monotonicity estimate can also be understood through one of its
immediate consequences, that is an asymptotic exponential estimate, i.e.

O_g—l(St) 2 Wn1 tn—le—HOt

as t — 01, where z € IntS and H" is any constant such that |Hz| < H°. Note that for minimal
hypersurfaces this implies that
o H(Sy) > wyog t

ast — 0T. A great part of this paper is concerned about the generalization of these results to
hypersurfaces immersed in Carnot groups.

Section ] is largely devoted to introduce the subject of Carnot groups and the study of
hypersurfaces (and, more generally, submanifolds) immersed in Carnot groups. In particular,
we shall describe the main geometric structures useful in this setting from many points of
views, including basic facts about stratified and homogeneous Lie groups, Riemannian and sub-
Riemannian geometries, intrinsic measures and connections.

Now let us give a quick overview of some basic facts.

If S C G is a hypersurface of class C!, then z € S is a chamctem’sticppOmt if H, C T,S.

H 14

If S is non-characteristic, the unit H-normal along S is given by v, = P where v is the

Riemannian unit normal of S. By making use of the contraction operator | on differential formd?
we may define a (Q — 1)-homogeneous measure o2~ ' € A" 1(T*S) by

oS = (v, Jop)ls.

Note that o} := A, w; € A"(T*G) is the Riemannian (left-invariant) volume form on G which
is built by wedging together the dual basis w = {w1,...,w,} of T*G, where w; = X} for every
i =1,...,n. Analogously, we may define a (Q — 2)-homogeneous measure o~ 2 on any (n — 2)-
dimensional smooth submanifold N of G. So the only difference is that v, “becomes” (i.e. it
must be replaced by) a unit horizontal 2-vector v, = v} Av2 € A%(H); see Definition 2211 We

or T (S)

!By definition, = € IntS is a density-point if lim,\ o+ %=t~ = wn—1 where wy,_1 denotes the Lebesgue

measure of the unit ball in R" 1.
*Remind that _I : A*(T*G) = A* ' (T*G) is defined, for X € TG and a € A\*(T*G), by

(XJ Oé)(Yl, ceey kal) = a(X, Yl, ceey kal)Q
see [34], [22].



remark that o ! and o772 are actually equivalent (up to bounded densities functions called

metric factors) to the (Q —1)-dimensional and (@ — 2)-dimensional spherical Hausdorff measures

Sg_l and 53_2, respectively, associated to any homogeneous distance ¢ on G; see Section [3.4]
and Section

In Section [3:2] we recall the horizontal Divergence Theorem and a related integration by parts
formula for smooth hypersurfaces, with piecewise smooth boundary. Clearly we are assuming
that S and 0S are endowed with the homogeneous measures oV and o772, respectively; see
Theorem 3.3 and Corollary B4l Moreover, in Section 3.3 we state the 1st variation of o™ .
A great part of this material can be found in [46] [48]. However, there is some novelty in the
presentation given here, because the results are generalized to hypersurfaces having possibly
non-empty characteristic set.

Section B.4] contains a blow-up theorem for the horizontal perimeter 02_1. In other words,
we shall study the limit
o (S N B,(x,r))

r—0t r@-1

)

where B,(z,7) is a g-ball of center 2 € S and radius r. Note that this limit is just the density
of o1 at z € S. More precisely, after reminding the well-known blow-up procedure for non-
characteristic points of a C'-smooth hypersurface S (see, for instance, [27, 28], [4], [37, 38]), we
shall generalize it, under some regularity assumptions on S, also to the case of characteristic
points of S; see Theorem BI4l A similar result was proven in [39] for 2-step groups. Note
that the characteristic set C's of S can be seen as the set of all points at which the horizontal
projection of the unit normal vanishes, i.e. Cs = {x € S : [Puv| = 0}. More precisely, let
x € CsgN S and assume that, locally around z, S can be represented as a C’-smooth X,-graph,
for some vertical direction X, € V := H+. By hypothesis the integer i = 2, ..., k, coincides with
the homogeneous “order” of a; see Notation 2.3l For the sake of simplicity, let x = 0 € G and
assume that near x = 0 one has

SN BQ(.’I',T) C exp {(Clu "'7CO¢-17¢(C)7CO¢+17 7Cn) €g: C = (Clu "'7Ca—1707 Ca+17 7Cn) € e(J;u_} )
where ¢ : ef C g — R is a C'-function satisfying

W)
9¢j, ...0¢j,

Then, we shall show thatf]

o (S N By(x,1)) ~ ky(Cs(x))r9! for r— 0T,

(0)=0 whenever ord(j1) + ... + ord(j;) < i.

where the constant x,(Cs(x)) can be explicitly computed by integrating o7~ ! along a polynomial
hypersurface of homogeneous order i = ord(«); see Theorem B.14] Case (2).

In Section 3] we shall state and discuss another important tool, i.e. the Coarea Formula
for the HS-gradient, that is an equivalent for smooth functions of the classical Fleming-Rischel
formula. More precisely, let S C G be a C2-smooth hypersurface and let ¢ € C!(S). Then

radys o(z)| o ) = | o7 2(pYs s.
/S|gd¢<>| () /R (¢ 's]n S)d

In Section there are some other important results quoted from the literature.

As already said, Section Ml contains the main result of this paper, i.e. an isoperimetric
inequality for compact hypersurfaces with - or without- boundary, depending on the horizontal
mean curvature Hy of the hypersurface, which generalizes to Carnot groups a classical inequality
by Michael and Simon [43] and Allard [1I]. We now state our main result.

3Henceforth, the symbol ~ will mean “asymptotic”.



Theorem 1.2 (Isoperimetric Inequality). Let G be a k-step Carnot group and let us fix a
homogeneous metric o on G as in Definition[Z5. Let S C G be a C%-smooth hypersurface with
boundary 0S -at least- piecewise C%-smooth. Let Hu denote the horizontal mean curvature of
S. Then there exists a positive constant Crsop, only dependent on G and on the homogeneous
metric o, such that

Q-2

(o7 1(9)) T < Clsop </s M| o+ 02_2(85)> .

The proof of this result is heavily inspired from the classical one, for which we refer the
reader to the book by Burago and Zalgaller [7]. A similar strategy can also be used in proving
isoperimetric and Sobolev inequalities in abstract metric setting such as weighted Riemannian
manifolds and graphs; see [14]. Nevertheless, we have to say that there are many non-trivial
modifications to be done, due to the sub-Riemannian setting.

Roughly speaking, the starting point will be again a linear inequality; see Proposition 1]
This one is used to obtain a global monotonicity formula for the H-perimeter; see Theorem
As in the Euclidean/Riemannian case, the monotonicity inequality is an ordinary differential
inequality, expressing the local behavior of the first derivative of the quotient

o (S N By(x, 1))
t@-1

for t \, 0T, whenever z € IntS; see Section Il We will also discuss the characteristic case.

Then, in Section we shall prove local estimates dependent on blow-up results. Roughly
speaking, these estimates require, in the general case, a certain amount of regularity at the
boundary. They constitute a key-point in the proof of the Isoperimetric Inequality, since they
allow to make more intrinsic the right-hand side of the global monotonicity inequality (20]).

Section [4.3] is then devoted to the proof our main result. In Section B4l we shall discuss
a straightforward application of the monotonicity estimate. More precisely, let S C G be a
C2-smooth hypersurface and assume that the horizontal mean curvature Hy is bounded by a
positive constant HY . Then, for every = € Int(S \ Cs), we shall show that

ouH(Sh) > kol (2)) 19 L M

for t \, 0", where £, (v, (x)) denotes the “density” of on~ 1 at x, the so-called metric factor; see
Corollary [£.251 We shall also consider the more general case in which x € Cg; see Corollary
In Section [ we shall discuss the equivalent Sobolev-type inequalities which can be deduced by
the previous isoperimetric inequality, following a well-known and classical argument by Federer-
Fleming [23] and Mazja [42]; see Theorem [5.Il Some corollaries will be proven, and among
others, we shall show the following;:

Theorem 1.3. Let G be a k-step Carnot group. Let S C G be a C?-smooth closed hypersurface.
Then, for every i € CF(S) one has

%
Q-1 .\ Qo o
( /S & o ) < Claop /S (101 [ | + lgrads v]) 0.

Note that Crsp is the same constant appearing in Theorem Finally, in Section [B.1] we
shall discuss and state the equivalent versions of our main results in the BVus setting. More
precisely, we shall discuss how a natural notion of HS-wvariation can be given for functions
supported on a C?-smooth hypersurface S. Indeed, starting from the horizontal divergence
Theorem B3] it becomes natural to mimic the original Euclidean definition of variation and so
defining the space of functions having bounded HS-variation.



2 Carnot groups, submanifolds and measures

2.1 Sub-Riemannian Geometry of Carnot groups

In this section we will introduce the definitions and the main features concerning the sub-
Riemannian geometry of Carnot groups. References for this large subject can be found, for
instance, in [8], [29], [31], [37], [45], [50], [51), B2, B3], [59]. Let N be a C*°-smooth connected
n-dimensional manifold and let H C TN be an h-dimensional smooth subbundle of T'N. For
any x € N, let T gf denote the vector subspace of T, N spanned by a local basis of smooth vector
fields Xi(x),..., Xp(z) for H around =z, together with all commutators of these vector fields of
order < k. The subbundle H is called generic if, for all z € N, dim T:{? is independent of the
point x and horizontal if T¥ = TN, for some k € N. The pair (N, H) is a k-step CC-space if is
generic and horizontal and if £ = inf{r : T), = T N}. In this case

0=T'cH=T'cT?c..cTF=TN

is a strictly increasing filtration of subbundles of constant dimensions n; := dimT" (i = 1, ..., k).
Setting (H;), := Ti\ T:7Y, then gr(T,N) = @®k_|(Hy), is the associated graded Lie algebra at
x € N, with respect to the Lie product [-,-]. We set h; := dimH; = n; — n;—1 (ng = ho = 0) and,
for simplicity, h := hy = dimH. The k-vector h = (h, ha, ..., hy) is the growth vector of H.

Definition 2.1. X = {Xy,..., X,,} is a graded frame for N if {X;,(x) : nj_1 <i; < n;} is a
basis for Hj for all x € N and all j € {1,...,k}.

Definition 2.2. A sub-Riemannian metric gu = (-,-)n on N is a symmetric positive bilinear
form on H. If (N, H) is a CC-space, the CC-distance doc(x,y) between x,y € N is defined by

deca.y) i=inf [ /G,

where the infimum is taken over all piecewise-smooth horizontal paths v joining x to y.

In fact, Chow’s Theorem implies that do¢ is a true metric on N and that any two points
can be joined with at least one horizontal path. The topology induced on N by the CC-metric
is equivalent to the standard manifold topology; see [31], [50].

The general setting introduced above is the starting point of sub-Riemannian geometry. A
nice and very large class of examples of these geometries is represented by Carnot groups which,
for many reasons, play in sub-Riemannian geometry an analogous role to that of Euclidean spaces
in Riemannian geometry. Below we will introduce their main features. For the geometry of Lie
groups we refer the reader to Helgason’s book [34] and Milnor’s paper [44], while, specifically
for sub-Riemannian geometry, to Gromov, [31], Pansu, [51l [53], and Montgomery, [50].

A k-step Carnot group (G, e) is an n-dimensional, connected, simply connected, nilpotent and
stratified Lie group (with respect to the multiplication e) whose Lie algebra g(= R™) satisfies:

g=H & ... ® Hy, [H17Hi—1] = H, (Z = 2, ...,k), Hy = {0}

We denote by 0 the identity on G and so g = TpG. The smooth subbundle H; of the tangent
bundle T'G is said to be horizontal and henceforth denoted by H. We set V := Hy & ... & Hg
and call V the wvertical subbundle of TG. As for CC-spaces, we set h; = dimH;, i = 1,..., k.
Moreover n; := h+ ... + h;, h = hy and ni = n. We assume that H is generated by a frame
Xu = {X1,..., Xp,} of left-invariant vector fields. This one can be completed to a global graded
and left-invariant frame X := {X; : i = 1,...,n} in a way that H; = spanR{X,- o <1< nl}.
The standard basis {e; : i = 1,...,n} of R™ 2 g can be relabelled to be graded or adapted to the
stratification. Any left-invariant vector field of X is given by X;(x) = L,.e; (i = 1,...,n), where
L, denotes the differential of the left-translation at x.



Notation 2.3. We shall set Iy :={1,....;h}, I, :={n1+1,....,n2},..., and Iv :=={h+1,...,n}.
Unless otherwise specified, we will use Latin letters i,7j,k, ..., for indices belonging to In and
Greek letters o, 3,7, ..., for indices belonging to Iv. The function ord : {1,....,n} — {1,...,k}
is defined by ord(a) := i whenever n;—1 < a < n; for some i =1,..., k.

We shall use the so-called exponential coordinates of 1st kind and so G will be identified with
its Lie algebra g, via the (Lie group) exponential map exp : g — G.

As for any nilpotent Lie group, the Baker-Campbell-Hausdorff formula uniquely determines
the group multiplication e of G, from the “structure” of its own Lie algebra g. Using expo-
nential coordinates, the group multiplication e on G turns out to be polynomial and explicitly
computable; see [16]. Moreover, 0 = exp (0, ...,0) and the inverse of x = exp (x1,...,x,) € G is

just 271 = exp (=21, ..., —p).

If H is endowed with a metric gu = (-,-)n, we say that G has a sub-Riemannian structure.
It is always possible to define a left-invariant Riemannian metric ¢ = (-,-) on G such that
X is orthonormal and gy = gu. If we fix a Euclidean metric on g = ToG (which makes

{e; : i = 1,...,n} an orthnormal basis), this metric naturally extends to the whole tangent
bundle, by means of left-translations.

Since Chow’s Theorem holds true for Carnot groups, the Carnot-Carathéodory distance doc
associated with g can be defined. The pair (G, dc¢) turns out to be a complete metric space
on which every couple of points can be joined by - at least - one dcoc-geodesic.

Carnot groups are homogeneous groups, in the sense that they admit a 1-parameter group
of automorphisms §; : G — G (¢t > 0) defined by

04T := exp E txie |,

where x = exp (Zm xije,-j) € G. The homogeneous dimension of G is the integer

k
Q:= Zihi
i=1

coinciding with the Hausdorff dimension of (G, dcc) as a metric space; see [45], [50], [31].
Definition 2.4. A continuous distance 9 : G x G — R is called homogenous if

(i) o(z,y) = o(z @ x,z 0y) for every z, y, z € G;

(i) o(dtx,0ry) = to(z,y) for all t > 0.

The CC-distance do¢ is an example of homogeneous distance. Another interesting example
can be found in [28]. On every Carnot group there exists a smooth, subadditive and homogeneous
norm; see [33]. In other words there exists a function | - ||, : G x G — R4 U {0} such that:

(1) llzeylly < llzllo + llyllo;
(ii) [lozzllo = tllzll, (¢ =0);

)
)
(iii) ||z|l, =0« = = 0;
(iv) llzllg = llz="llgs
)

(v) || - |lo is continuous and smooth on G \ {0}.



For instance, a homogeneous norm p which is smooth on G \ {0}, can be defined by
lzllg := (jn * + |wm M2 4 fan M2 4, MR,

where \ is a positive number evenly divisible by 4, for ¢ = 1,...,k. Here |xm, | denotes the
Euclidean norm of the projection of x onto the i-th layer H; of the stratification of g (i =1, ..., k).
For later purposes we will need the following;:

Definition 2.5. Let p: G x G — R4 be a homogeneous distance such that
(i) o is piecewise C'-smooth;
(ii) |grady o] <1 at each regular point of o;

(iii) |zr| < o(x), where o(x) = p(0,z) = ||z||,. Furthermore, we shall assume that there exist
¢ € Ry such that '
lzw, | < cidl(x)  i=2,..,k.

Example 2.6. It can be proved that the CC-distance doo satisfies all the previous assumptions.
Another example can be found for the case of the Heisenberg group H"; see Example[2.11]. Indeed,
the Korany norm, defined by

2lle == o(x) = V]wa|* +16t*  (x = exp(zn,t) € H"),

turns out to be homogeneous and C*>°-smooth out of the identity 0 € H". By direct computation,
one can show that o satisfies (i) and (iii) of Definition 2.

Having a Riemannian metric, we may define the left-invariant co-frame w := {w; : i = 1,...,n}
dual to X. In particular, the left-invariant 1- formsH w; are uniquely determined by the condition:

wi(X;) = (X, X;) = 67 (i,j=1,...n)

where 5{ denotes the Kronecker delta. Remind that the structural constants of the Lie algebra
g associated with the left invariant frame X are defined by

ngj = ([X;, X, X;) for i,j,7r =1,...,n.
They satisfy

(i) C%; + C?%; =0, (skew-symmetry)

(i) S0, C%,CY,, + C%5,,CY + C% C%¥ | =0 (Jacobi’s identity).

ml =
The stratification hypothesis on the Lie algebra implies that
X; € H, X; € Hy, = [Xi, Xj] € Hiym.
Definition 2.7 (Matrices of structural constants). We shall set
(i) Cf == [C%lijery € Muxn(R) (a € Tny );
(i) C* = [C%]ij=1,..n € Mnxn(R) (e Iv).

The linear operators associated with these matrices will be denoted in the same way.

4That is, Lywr = wy for every p € G.



Definition 2.8. We shall denote by V the unique left-invariant Levi-Civita connection on G
associated with g. Moreover, if X,Y € X(H) := C>(G, H), we shall set

VLY = Py (VxY).

Remark 2.9. We stress that V¥E is a partial connection, called horizontal H -connection; see
[48] and references therein. Using Definition[2.8 and the properties of the structural constants of
the Levi-Civita connection, we get that V1 is flat, i.e. Vi X; =0 for every i,j € In. Moreover
VH is compatible with the sub-Riemannian metric gu, i.e.

X(Y,Z) = (VLY,Z)+ (Y,VLZ)  forall X,Y,Z € X(H).

This follows immediately from the very definition of VH and the corresponding properties of the
Levi-Civita connection V on G. Finally, V¥ is torsion-free, i.e.

VLY - VEX —Py[X,Y]=0  forall X,Y € X(H).
For the global left-invariant frame X = {X1,..., X;,} it turns out that
VX, = LS (cor _eni o) x ,j=1
X; ]—§Z< ij — GV + m‘) r (i,j=1,..,n).
r=1

Definition 2.10. If ¢ € C*(G) we define the horizontal gradient of ¢ as the unique horizontal
vector field grady 1 such that

(grady v, X) = dyp(X) = X forall X € X(H).
The horizontal divergence of X € X(H), diva X, is defined, at each point x € G, by
divy X (z) := Trace(Y — VEX)(z) (Y € Hy).

Example 2.11 (Heisenberg group H"). Let b, := ToH" = R?"*! denote the Lie algebra of the
Heisenberg group H"™, perhaps the most important 2-step example. Its Lie algebra b, is defined
by the rules

lei,€ip1] = eans1

fori=2k+1, k=0,...n—1, where all other commutators vanish. One has h, = H ® Reogy11,
where H = spang{e; : i = 1,...,2n}. The second layer of the grading is the center of by,.
These rules determine the group law e via the Baker-Campbell-Hausdorff formula. For every

T = exp <Z?2fl :EZ'XZ-> , Y = exp (Zf:fl inZ-) € H"™ one has

T ey =exp (361 Y1y eos Ton + Y2ns T2nt1 + Yol + 5 Doy (Tok—1Y2k — $2ky2k—1)>-

We also stress that

0 1 0 0
-10 0 0

chtl.—1 0 0 0 1
0 0
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2.2 Hypersurfaces, homogeneous measures and geometric structures

In the sequel Hy' and S, will denote, respectively, the Hausdorff measure and the spherical
Hausdorff measure associated with a homogeneous distance ¢ on GH. In the case 0 = doo we
use the notation H¢%~ and Sf.

The Riemannian left-invariant volume form on G is defined as o} := A, w; € A" (T*G).
The measure o is the Haar measure of G and equals the push-forward of the n-dimensional
Lebesgue measure L™ on g = R™.

In the study of hypersurfaces of Carnot groups we need the notion of characteristic point.

Definition 2.12. Let S C G be a C'-smooth hypersurface. Then we say that x € S is a
characteristic point of S if dim H, = dim(H, N 1,S) or, equivalently, if H, C T,S. The
characteristic set of S is denoted by C's. One has

Cg:={x € S:dim H; = dim(H, N T,,5)}.

So a hypersurface S C G, oriented by its unit normal vector v, is non-characteristic if, and
only if, the horizontal subbundle H is transversal to S.

We stress that the (@ — 1)-dimensional CC-Hausdorff measure of the characteristic set Cg
vanishes, i.e. Hgal(Cs) = 0; see [37]. The (n — 1)-dimensional Riemannian measure along S is
defined by

UZ_II_ S:=(vdo})ls,

where _| denotes the “contraction” operator on differential forms; see footnote 2. Just as in
[46l 48], [13], [35], [55], since we are studying smooth hypersurfaces, instead of the variational
definition of the H-perimeter measure a la De Giorgi (see, for instance, [27) 28], [29], [46] and
bibliographies therein) we shall define an (n—1)-differential form which, by integration, coincides
with the usual variational H-perimeter measure.

Definition 2.13 (¢~ '-measure on hypersurfaces). Let S C G be a C'-smooth non-characteristic
hypersurface and denote by v its unit normal vector. We call unit H-normal along S, the nor-
malized projection of v onto H, i.e.

- Puv

e ”PHI/“

We define the (n — 1)-dimensional measure oy ' along S to be the measure associated with the
(n — 1)-differential form o' € A"~1(T*S) defined as the contraction of the volume form o
by the horizontal unit normal v,,, i.e. o 'L S = (v, 1o%)|s.

If we allow S to have characteristic points, we may extend the definition of o7~ ! by setting
o~ 1L Cg = 0. For every Cl-smooth hypersurface S C G, it turns out that

oIS = [Puv|oIL S

SWe remind that:
(i) Hgp'(S) =lims o+ Hy'5(S) where, up to a constant multiple,

Hys(S) = inf{z (diamg(C’i))m : ScC UC’i; diam, (C;) < 5}

and the infimum is taken with respect to any non-empty family of closed subsets {C;}; C G;

(if) Sg*(S) = lims_ o+ S;'5(S) where, up to a constant multiple,
S,5(9) = inf{z (diamQ(Bi))m ;S C UB“ diam, (B;) < 6}

and the infimum is taken with respect to closed p-balls B;.
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and that Cg = {z € S: |Puv| = 0}. It is also important to remark that
o (SN B) = ky(v,) ST'L(SN B),

for all B € Bor(G), where the (bounded) density-function k,(v,), called metric factor, depends
on v, and on the fixed homogeneous metric g on G; see [37]. Later we shall discuss these aspects

in Section [3.4

Definition 2.14. For every x € S\ Cg let H,S = H, N TS be the horizontal tangent space at
x. Obviously Hy = Hp,S @ v, (x). We then define in the usual way the subbundles HS and v, S,
called, respectively, horizontal tangent bundle and horizontal normal bundle of S. One has

H=HS®y,S.

Let S C G be a C2-smooth hypersurface. We stress that if V' is the connection induced

on TS from the Levi-Civita connection V on TG@, then V™ induces a partial connection V#5
on HS C TS defined bym

VY :=Pus (VYY)  forevery X,Y € X(HS) := C™(S, HS).

Starting from the orthogonal decomposition H = HS ®1,S, we could also define V#5 by making
use of the classical definition of “connection on submanifolds”; see [10]. It turns out that

VEY =VLEY — (VLY v,) v, for every X,Y € X(HS).

Definition 2.15. We call HS- gradient of 1 € C*(S) the unique horizontal tangent vector field
gradys vy satisfying

(gradyst, X) = dip(X) = X9 for all X € HS.
We denote by divus the divergence operator on HS, i.e. if X € HS and x € S, then

divis X (x) := Trace(Y — VIFX)(z) (Y € H,S).
The horizontal 2nd fundamental form of S is the map given by

Bu(X,Y) = (VLY,v,) for every X,Y € X(HS).
The horizontal mean curvature Hu is the trace of By, i.e.
Hu = TrBy = —divuv,.

Definition 2.16. Let S C G be a C%-smooth hypersurace oriented by v. We shall set

(i) @a = oy (aelv);
(i) w:= Zaelv WaXa;
(iii) Cy = ZaEIH2 wa CF.

In particular, from (i) it follows that IPTVV\ = v, +w. We stress that the horizontal 2nd

fundamental form Bg (X,Y) is a C°°(S)-bilinear form in X and Y. In general, Bx is not
symmetric and so it is a sum of two matrices, one symmetric and the other skew-symmetric,
i.e. By = Su + An, where the skew-symmetric matrix Ay satisfies Ay = %CH ‘HS3 see [48].
Moreover, the following identities hold true:

By (Y,X)—Bu(X,Y)=(PulY,.X]|,y,) = (X,Y],w) = —(Cu X,Y)
for every X, Y € X(HS).

STherefore, V™ is the Levi-Civita connection on S; see [10].
"The map Pus : TS — HS denotes the orthogonal projection of T'S onto HS.
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Remark 2.17 (Induced stratification on TS; see [31]). The stratification of g induces a “natural”
decomposition of the tangent space of any smooth submanifold of G. Let us analyze the case of
a hypersurface S C G. So let us intersect, at each point x € S, the tangent spaces T,S with
T} = @5_y(Hj)z. We shall set T'S := TSN T'G, nj := dimT"*S, H;S := T'S\ T'"'S and,
for simplicity, HS = H1S. It follows that TS := @leHiS and that Zle n, =n— 1. We also
set VS = EB?:QHZ-S. It turns out that the Hausdorff dimension of a smooth hypersurface S is
Q—1=SF in; see [31], [53], [28], [37, 1], [35]. If the horizontal tangent bundle HS is
generic and horizontal, then the couple (S, HS) is actually a k-step CC-space; see Section [2]

Example 2.18. Let us consider the case of a smooth hypersurface S C H*. If n =1, then the
horizontal tangent bundle HS of S cannot be a 2-step CC-space because HS is 1-dimensional.
Nevertheless, if n > 1, this is no longer true, since along any non-characteristic domain U C S,
HS' turns out to be generic and horizontal.

Definition 2.19. We say that a (n—2)-dimensional submanifold N of G is H-regular or non-

characteristic at x € N if there exist two linearly independent vectors V;, 1/13 € H, transversal to

N at x. Without loss of generality, these vectors can be taken orthonormal at that point. The
horizontal tangent space at x is defined by

HN:=H,NT,N.

When this condition is independent of x € N, we say that N is H-regular or non-characteristic.
In this case, we define the associated vector bundles HN(C TN) and v, N, called, respectively,
horizontal tangent bundle and horizontal normal bundle. One has

H:=HN&y,N, v, N=Ry &R

Definition 2.20 (Characteristic set of N). The characteristic set Cy of a Ct-smooth (n — 2)-
dimensional submanifold N of G is defined by

Cn:={z € N :dimH, —dim(H, N T,N) < 1}.

This definition of Cy has been used in [37], where it was shown that the (@ —2)-dimensional
Hausdorff measure (with respect to any homogeneous metric o on G) of a C'-smooth submanifold

N C G vanishes, i.e. 7—[?—2(0]\/) =0.

Definition 2.21 (¢ 2-measure). Let N C G be a (n — 2)-dimensional, H-regular submanifold
and let v, v2 € v, N as in Definition 219, Set v, = v ANv? € AA(TG|y) and define the
homogeneous measure o%~2 along N by

o 2L S = (v, dop)ls.

In other words, o™ 2 is the (Q — 2)-homogeneous measure defined by contractiont) of the top-
dimensional volume form o} by the horizontal 2-vector v, = Vbl( A VIE.

As in the case of the H-perimeter, 0% 2 can explicitly be represented by using the (n — 2)-
dimensional Riemannian measure 62 along N. More precisely, for every x € N, let vi, 15 €
vz N, where vN denotes the Riemannian normal bundle along N. We also assume that they
are orthonormal at that point. In other words, the (decomposable) 2-vector v; A vy € /\2(TxG)

is a unit 2-normal vector along N at z. We may assume that v A vy € A?(TG|y) is the unit

2-vector field which determines the orientation of N. By standard Linear Algebra, we get
U= Puvi A Puvy

o |PHV1 /\PHI/2|.

8For the most general definition of _I, see [22], Ch.1.
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If Cy # 0 we extend the definition of 622 by setting 6% *L Cy = 0. So for every C'-smooth
(n — 2)-dimensional submanifold N C G, it turns out that

0’2_2 = |Puvy A Pl 02_2
and one has Cy = {x € N : |Puvi A Purs| = 0}. The measure o2 i
with respect to Carnot dilations {&;}s~o, i.e. dfoh ? =t 207~ 2. It can be shown that o
is equivalent, up to a bounded density—function, to the (Q — ) dlmensional Hausdorff measure
associated to a homogeneous distance g on G; see [41].

is (Q — 2)-homogeneous,
-2

3 Preliminary tools

3.1 Coarea Formula for the HS-gradient
Theorem 3.1. Let S C G be a C2-smooth hypersurface and let o € C(S). Then

/ |gradys (@) o (z) = / o2 2(p V5] N §) ds (1)
S R

and

z)|gradys o(x)| ov Hx) = [ ds on2
[ p@lmise@iai e = [ [ vweio)

for every ¥ € L'(S, o7 1).

Proof. The theorem can be deduced by using the Riemannian Coarea Formula. Indeed, let
S C G be a C%-smooth hypersurface and p € C'(S). Then

/gb )| grad,s p(z)|oh ™ /ds/ y)on 2(y)
s]f"lS

for every 1 € L'(S,0%'); see [7], [22]. Choosing

lgradus |

¢ =1
|grad s ¢

‘ HV’?
for some ¢ € L'(S, 071, yields

d
/¢|gdeS<p|0 /w]gm s | |Puv|oy™ /|gdeS<p|JH
S ‘gradTS(P’

O_nl
~YH

Along ¢~ ![s] it turns out that n = mimg Therefore |Pusn| = % and it follows that

d
/ds/ bly)oh? = /ds/ Pl sty ) o2
R e~ 1[s]nS R e~ 1[s|NS ‘gradTS 90‘
2

= / TZJ‘PHSWHPHV’O'
p~1s]NS

_ n—2
_O'H

— / 1/10’” 2'
e~ 1sInS
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3.2 Horizontal Diverge Theorem and Integration by Parts

Let S C G be a C?-smooth hypersurface and let & C S be a relatively compact open set with
C!-smooth boundary (or, smooth enough for Stokes’ Theorem). If X € X(S), by definition of

o', using the “infinitesimal” Riemannian Divergence Formula (see [57]), one gets

d(XJ 02_1)|u = d(|PH I/| X Un_l) = dZ"UTS(|PHI/| X) O_z—l (2)

_ (dwTsX + <X, 7gmf7§i|f|w|>> oL U,

where grad;s and divrs are, respectively, the tangential gradient and the tangential divergence
operators. By integrating (2]) and using Stokes’ formula one gets the integration by parts formula
for the H-perimeter measure in the case of general vector fields. In this sub-Riemannian setting,
there are however more intrinsic tools.

At this regard, let us discuss the horizontal integration by parts formulas for hypersurfaces
immersed in a k-step Carnot group G; see [46], 48] or [1§].

Remark 3.2 (Homogeneous measure o 2 along 0S). Assume that dS is a (n— 2)-dimensional

manifold, oriented by the unit normal vector nn and denote by o"~2 the Riemannian measure on
0S8, which can be written out as

R 2L 98 = (ndonhas-

So if X € X(S), then
(X 108 Yos = (X,)[Puv| oh 2L 05,

Denote by Cyg the characteristic set of 0S, which turns out to be given by
Cos = {p €0S: |PH l/| |PHS77| = 0}.
Using Definition [2.21] yields that

o2 98 = 77)]{5?7 Lot !
|PHS77|

o 2L 3S = |Puv||Pusn| o 2L 9S.

Y

oS

or, equivalently

Setting

L PHSU
s |PHS77|7

we say that nus s the wunit horizontal normal along 0S. One has
(X 1o Vog = (X, nus) 02 DS forall X € C'(S, HS).

Theorem 3.3 (Horizontal Divergence Theorem ). Let G be a k-step Carnot group. Let S C G
be an immersed hypersurface and U C S\ Cg be a non-characteristic relatively compact open set.
Assume that OU is a smooth, (n — 2)-dimensional manifold oriented by its unit normal vector
n. Then, for every X € C'(S, HS) one has

| divns X+ (Comy ) 047 = [ (X o,
u ou

Corollary 3.4 (Horizontal Integration by Parts). Under the hypotheses Theorem[3.3, for every
X € CY(S, H) one has

/ (d’iUHsX—l- <CHVH,X>) O'Z_l = —/ Hu <X,I/H>O'Z_l —l—/ <X,T]Hs>0'z_2.
u u ou
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The proof of these results can be found in [48]. From Corollary 3.4 we get the next:

Corollary 3.5 (Integral Minkowsky-type formula). Under the hypotheses of Theorem [3.3, let
Ty = ZieIH x; X; be the “horizontal position vector”. Then

/ (h = 1)+ Ho (wn, 1) + (Coyy o)) o :/ (T, s ) 072, (3)
u ou
Proof. Apply Corollary to the horizontal position vector field zn =} _,c; i Xi. O

Remark 3.6. Let S C G be a compact C%-smooth hypersurface with boundary and let {U.}e>o
be a family of open subsets of S with piecewise C?-smooth boundaries such that:

(i) Cs C U, for every e > 0;
(ii) o1 (U) — 0 for e — 0F;
(iti) [, [Puv| o2 — 0 fore — 07,

Note that (iii) implies that o7~ 2(0U.) — 0 as € — 0T. By means of the family {U.}eso we may
extend the previous formulae to hypersurfaces having non-empty characteristic set. Indeed, by
applying Theorem to S\ Ue, we get that

[ tdivwsX 4 oy X0 o7 = [ (X)) oy (4)
S\Ue a8 OUe

Since Cg is a null set for the o ‘-measure, letting ¢ — 07 yields

lim (dZ"UHSX‘i’ <CHVH,X>) O'Z_l = / (dZ"UHSX + <CHVH,X>) O'Z_l-
e—0t S\U. S

By using (i), the third integral in ({dl) vanishes. It follows that Theorem [3.3 and Corollary
hold true for hypersurfaces having non-empty characteristic set.

Remark 3.7. Let B,(0,t) be the o-ball of radius t centered at 0 € G and circumscribed about
S. Using @) and [(zu,v,)| <|zu| < |z|,, yields

(h—1)op 1(S) <t </ ([Hu |+ |Cry,]) ot + 02—2(85)> : (5)
s
If S is minimal, i.e. Hp = 0, it follows that
(h—1)on 1(S) <t </ |Cuy, o™t + 02—2(65)> .
s

Set Sy := SN By(x,t) for x € Int(S \ Cg). Starting from (Bl) it is possible to prove the validity
of a horizontal monotonicity inequality. More precisely, one has

d O_’n—l S 1 n— n—

for L'-a.e. t > 0; see [J9]. The proof of this inequality is mainly based on the Coarea Formula;
see Theorem [31. The strategy of the proof is the same as in the classical setting. Nevertheless,
from the last inequality we cannot deduce the “right” isoperimetric inequality. Note indeed that
the power (h — 1) is not the right one, which should be (Q — 1); see also Section[{.1]
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3.3 1st variation of o7 ! up to Cg

We recall the 1st variation formula of o7~ 1 along the lines of [48], but with a further analysis of
the characteristic case; see also [18], [46], [13], [55], [35].

Let G be a k-step Carnot group and let S C G be a C?-smooth hypersurface oriented by
its unit normal vector v. Moreover, let U C S\ Cs be a non-characteristic relatively compact
open set and assume that Ol is a (n — 2)-dimensional C'-smooth submanifold oriented by its
outward unit normal vector 7.

Definition 3.8. Let v : U — G denote the inclusion of U in G and let ¥ :] — €, ¢[xU — G be a
smooth map. We say that 9 is a smooth variation of v if

(i) every ¥ :=¥(t,-) : U — G is an immersion;
(11) 190 =1.
The wvariation vector of ¥ is given by W = %‘t:e = 19*%‘#0‘
For any t €] — ¢, €[ let v be the unit normal vector along U := ¥;(U) and let (JZ_l)t be the
Riemannian measure on U;. Let us define the differential (n — 1)-form (02_1) , along Uy, by

(UZ_I)tI_Z/{t =W do)LU; € A"_l(TZ/lt) t € (—ee€)

where v, := ZLY Moreover set L(t) := 95 (Uz_l)t € A""Y(TU), t €] — ¢, ¢[. The 1st variation

H = TPt
:/F(O).
t=0 u

I (W, 02_1) of o7~ 1 is given by
. Under the previous assumptions, we have

o = 5 ([ 1)

Theorem 3.9 (1st variation of o ')

(W0 ) = — / Ha <W —> onl 4 / (W, ) [Par | 2. (6)
u |Pu v au

For a proof, see [48]. It is clear that if TV is horizontal, then (€) becomes more “intrinsic”.

Theorem 3.10 (Horizontal 1st variation of JZ_l). Under the previous assumptions, let W be

horizontal. Then

(W05 ") = — / Hu (W,v,) oy +/ (W,nus ) oy 2. (7)
u ou
Proof. Use Theorem and Remark O

Therefore, in the case of horizontal variations, remembering Corollary B4, we get that

(W, 071 :/ (divas W + (Cu vy, W) o2
U

We stress that the horizontal 1st variation formula (7 is the sum of two terms, the first
of whose only depends on the horizontal normal component of W, while the second one, only
depends on its horizontal tangential component.

The previous formulae provide the 1st variation of o7~ on regular non-characteristic subsets
of S containing spt(WW). In the following remark we explain how one can extend the previous
results to include the case in which the hypersurface has a possibly non-empty characteristic
set Cs. A similar remark in the case of the Heisenberg group H' was done in a recent work by
Ritoré and Rosales [55]; see also [35].
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Remark 3.11 (1st variation: case Cg # ). Let S C G be a compact C?-smooth hypersurface
and let W € CY(S, TG) be the variation vector field of ¥;. Note that |Pyv| vanishes along Cs.
Furthermore, |Puv| is Lipschitz continuous at Cs and of class C' out of Cs. Let {U.}e>o be a
family of open neighborhoods of Cg; see Remark[3.4. For every e > 0 one computes

Is(W,o3™") = Iou. (W, 05" + Iy (W, 057 1). (8)

The first addend is given by Theorem [3.9 and one has
oWy == [ (W) ot [ v Palat 2 [ v (Pavi el
S\Ue | Puv| a5 U,

where n~ denotes the outward unit normal along OU.. The second addend in (8)) is given by

o d o d , ,_
Ty (W, o7 1) = dt (/z,{ (JH 1)t> t=0 :/Z/{ dt (JH l)t ‘t:o'

d , .1 o d
dt (i) ‘t:O Cdt
Now the first addend is bounded, since the function |Puvt| is Lipschitz along ¥;S, while the
second one, up to the bounded function |Puv|, is just the (n — 1)-form which expresses the

“infinitesimal” Riemannian 1st variation formula of o7 1; see [57]. Note that term can be
written by means of a Lie derivative; see [0, [48]. More precisely, it turns out that

Note that

d
n—1 n—1
PHVt|‘t:00'R + |Pu l/|% (UH )t ‘t:o'

d

= (), | = w5,

t=0

From this formula, Cartan’s identity and a simple computation, it follows that

d v
T n—1y _ el t‘ _ n—1 / + n—2
Wy = [ (GPart] = Paritn ) (Wogls) i [ty ipuva

IZ{{:L(W70271) I[/B;éound(W’UZ*l)

where n* denotes the inward unit normal along OU.. Since Hr is bounded A, by using (ii) of
Remark[3.0, we get that Izﬂ?t'(W, o1 = 0 as e — 0F. Moreover, sincdd nt = —n~ along OU.,
we have

1%

W) =~ [ <w, >az—1+ﬂ?t~<w,az—1>+ | W pasl oy
S\Ue |Puv| oS

for every e > 0. By letting e — 0%, we get that

Is(W,on ) = — / Ho <W —> oy / (W) P ] o2,
s | P v| as

which generalizes (@) to the characteristic case; compare with [55]], [35].

9Since S is of class C?, the Riemannian mean curvature Hz is continuous along S.
10We stress that O, is the common boundary of U and S\ Ue.
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Remark 3.12. By arguing as in the previous Remark[311, we also get that
Ha = Lipustl|  — |PaviH
~Hu = —|Puv — |Puv|Hr,

at each non-characteristic point x € S\ Cg. We stress that the right-hand side of this identity is
well-defined for every x € S, even if x € Cg, and it is locally bounded whenever S is any close
hypersurface of class C2.

The previous Remark B.I1] enables us to state the following:

Corollary 3.13 (1st variation of JZ_l). Let S C G be a C?-smooth hypersurface having possibly
non-empty characteristic set Cs. Then, the 1st variation formula (6l) holds true.

3.4 Blow-up of the horizontal perimeter o ! up to Cg

Let S C G be a smooth hypersurface. In this section we shall discuss the behavior of the
horizontal perimeter o7~ at any point € Int(S). More precisely, we shall study the limit

n—1
.o SN By(x,r
ol (@) = 1 T B

; (9)

where By(x,r) is the p-ball of center x and radius 7. The point z € IntS is not necessarily
non-characteristic. For a very similar analysis, we refer the reader to [37), [41] [40] and to [39],
for what concerns the characteristic case in the setting of 2-step Carnot groups; see also [4] [5],
[27, 28].

Theorem 3.14. Let G be a k-step Carnot group.
Case (i) Let S be a C'-smooth hypersurface and x € Int(S \ Cs); then
o (S N By(x,1)) ~ Ky(vy () r@1 for r— 0T, (10)
where the constant k,(v, (z)) is called metric factor and is given by
k(v () = i (Z(v, (2)) N By(x, 1)) ,
where (v, (x)) denotes the vertical hyperplane [ orthogonal to v, ().

Case (ii) Let x € Int(S N Cg) and let o € Iv, ord(a) = i be such that S can be represented, locally
around x, as the exponential image of an X -graph of class C*. Without loss of generality,
we may assume that x =0 € G. In such case, one has

SNBy(,) € exp {(C1y s Cam1s B Gt s G} + €= (Crvons Cam, 02 Gt o Ga) € 1

where 1 : ex 2 R = R is a function of class C' . If 1 satisfies

oW
——(0)=0 whenever ord(j1)+ ... +ord(y;) <, 11
5Cj1---3le( ) (J1) (1) (11)
then
n—1 Q-1 +
gy (SN By(x,1)) ~ ke(Cg(x))r for r—0 (12)

"'Note that Z(y, (x)) corresponds to an ideal of the Lie algebra g. We also remark that the H-perimeter on a
vertical hyperplane equals the Euclidean-Hausdorff measure H%;l on the hyperplane.
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where the constant rko(Cg(x)) can be computed by integrating o along a polynomial
hypersurface which is the graph of the Taylor’s expansion up to order i = ord(«a) of ¥ at
¢ =0 € ex. More precisely, it turns out that

ko(Cs(x)) = o5 (Soo N By(a, 1)),

where the limit-set S is given by

So = {(gl, s Car 1, D(C)s Cat1 gn) (e eg}

and
~ o oWy
= Y O .+ ) L (0)G, G
w(C) J1 ale ( ) C] J1r-sdl 8@'1...8@'1 ( ) le C]l
ord(j1)=1 ord(j1)+...+ord(j;)=t

If (M) does not hold, then So, degenerates into a subset of the vertical X -line. Therefore,
it turns out that k,(Cg(x)) =0 and we have

JZ_l(S N By(z, 1))

= 0.
t—0t r@-1

Remark 3.15. The rescaled hypersurfaces 615 locally converge to a limit-set S, i.e.

6185 — S for r—0",

where the convergence is understood with respect the Hausdorff convergence of sets; see also
[41,139]. If x € Int(S\ Cg) then the limit-set Soo coincides with the vertical hyperplane Z (v, (z)).
Otherwise S is the polynomial hypersurface described in Theorem [3.17), Case (i1).

Remark 3.16 (Order of z € Cg). Assume S to be smooth enough near its characteristic set
Cs, say of class CF. Then there must exist a minimum i = ord(a) such that (II)) holds true.
The integer ord(z) = Q — ord(«) is called the order of the characteristic point x € Cg.

Proof of Theorem [3.17] Let us preliminarily note that the limit (@) can be computed, without
loss of generality, at the identity 0 € G, just by left-translating S. Indeed, one has

on~! (SN By(z, 1)) = ont (x_l o (SN Bg(a:,r))) = o1 ((:v_1 ° S) N BQ(O,T))
for any x € IntS, where the second equality follows from the additivity of the group law e.
Notation 3.17. Throughout this proof, we shall set:
(i) Sr(x) := SN By(x,r);
(i) S:=a"'eS;
(iii) S, =21 e 8,.(z) = SN B,0,r).

By using the homogeneity of ¢ and the invariance of 6! under positive Carnot dilationﬂ,
it follows that

o515 = 197 ol (8105 0 By(0, 1)

2This means that 6;o7 ! = 97171 t € Ry; see Section 211
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for all r > 0. Therefore _
o (Sy)
r@-1

and hence we have to compute the limit

_ gl (51 150 B, (0, 1))

lim o™ (51/,5‘ N B,0, 1)) : (13)

r—0t

We begin by studying the non-characteristic case; see also [39] [40].

Case (1). Blow-up for non-characteristic points. Let S C G be a hypersurface of class C' and
let x € IntS be mon-characteristic. In such a case the hypersurface S is oriented at x by the
horizontal unit normal vector v, (z), i.e. v, (x) is transversal to S at x. Thus, at least locally
around z, we may think of S as the (exponential image of a) C!-graph with respect to the
horizontal direction v, (z). Moreover, at the level of the Lie algebra g = TyG, we can find an
orthonormal change of coordinates such that

e1 = X1(0) = (Ly1)uvy ().

With no loss of generality, by the Implicit Function Theorem we can write S, =z1e Sy(z), for
some (small enough) r > 0, as the exponential image in G of a Cl—graphlg

U= {(y(¢),¢) : EeR"} Cy,
where 1 : ef- =~ R*» ! 3 R is a C!-function satisfying:

(i) (0) =0;
(i) 0v/0¢;(0) =0 for every j =2,...,h (= dimH),

where ¢ € e 2 R"1. In this way S, =exp¥ N B,(0,7), for all (small enough) r > 0. Clearly,
this remark can be used to compute (I3]). So let us us fix a positive ry satisfying the previous
assumptions and let 0 < r < ry. Then

5108 N B,(0,1) = exp (31/7&) N B,(0,1), (14)

where {gt}tzo are the induced dilations on g, i.e. & = exp o o for t € R, . Henceforth, we

shall often consider the restriction of d; to the hyperplane ell =~ R L. For this reason and with

a slight abuse of notation, instead of (5t)|e 1 (&) we shall simply write 6;£. Moreover, we shall
1

assume R"~1 = R*~1 @ R"~". Note that the induced dilations {&;};>0 make e{- = R"~! a graded

vector space whose grading respects that of g. We have

)
T

Bup® = By {(0(6),6) - €€ R™1) = {(7/’(5) Sm) te R"—l} |

By using the change of variables ¢ := 31 /r€, we get that

51y = o) @C) <) s cer

13 Actually, since the argument is local, 1) can be defined just on a suitable neighborhood of 0 € ef = R™ .
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By hypothesis 1 € C!(Up), where Uy is a suitable open neighborhood of 0 € R*~!. Using a
Taylor’s expansion of 1 at 0 € R"~! and the assumptions (i) and (ii), yields

(&) = ¥(0)+ (gradgn-11(0), §)ra-1 + o([|¢]|lrn—1)
= (gradgn-n1)(0), Egnr)gn-n + O([[][Rn-1),

for € — 0 € R*!. Note that STC — 0 € R*™ 1! as r — 0F. By applying into v the previous
change of variables we get

¥ (3:¢) = (gradan19(0),3, (Gea-r))  _, +0(r)

Rn—h

as 7 — 0T. Since <gden7h1/J(O),3\r (CRn—h)>RL7h = o(r) as r — 0T, we easily get that the

limit-set (obtained by blowing-up S at the non-characteristic point 0) is given by

Voo = lim 3,/ ¥ = exp (ef) = Z(X1(0)). (15)
r—0t

We stress that Z(X71(0)) is the vertical hyperplane through the identity 0 € G and orthogonal

to X;1(0). Thus we have shown that (I3]) can be computed by means of (I4) and (I5). More

precisely

lim o7 (51 1250 B, (0, 1)) = o1 (Z(X1(0)) N B,(0,1))

r—0t

By remembering the change of variables, it follows that Soo = Z (v, (x)) and that

n—1
Ko(Vy (x)) = lim o (SN By(z,7))

e Q-1 = ol (Z(vy (2)) N By(x, 1)),

which was to be proven.

Case (2). Blow-up at the characteristic set. We are now assuming that S C G is a C*-smooth
hypersurface (i > 2) and that € Int(S N Cg). Near x the hypersurface S is then oriented by
some vertical vector. Hence, at least locally around x, we may think of S as the (exponential
image of a) Ci-graph with respect to a some vertical direction X, transversal to S at z, i.e.
(Xa,v) # 0 at x, where v is a unit normal vector to S. Note that X, is a vertical left-invariant
vector field of the fixed left-invariant frame X = {X1,..., X, on Gand o € Iv = {h+ 1,...,n}
is any “vertical” index; see Notation 23l Furthermore, we are assuming that

ord(a) :=1 for i =2,.. k.

To the sake of simplicity, as in the non-characteristic case, we left-translate the hypersurface
in such a way that x will coincide with the identity 0 € G. To this end, it suffices to replace S

by S = 2! eS. At the level of the Lie algebra g, we consider the hyperplane e_ through the
origin 0 € g = R™ and orthogonal to e, = X4(0). Clearly e is the “natural” domain of a graph
along the direction e,. By the classical Implicit Function Theorem, for some (small enough)

r > 0, we may write S,=z"1e S,.(x) as the exponential image in G of a Ci-graph. We have

\II = 517 ”'7501—1 71/}(5)7 §a+17 7671 : é. = (617 ”'7601—17076014-17 7671) S e(Jy— = Rn_l
h pl
a—th place

where 1) : ex 2 R"™! — R is a C’-smooth function satisfying:
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(3) ¥(0) =0;
(ji) 0v/0&;(0) = 0 for every j =1,...,h (= dimH).

Thus we get that S, = exp WU N B,(0,r), for every (small enough) r > 0. Clearly we may apply
the previous considerations to compute (I3]) and, by arguing as in the non-characteristic case,
we can use (I4). So let us compute

gl/r\ll = gl/r {(51,---,5a—1,¢(5),§a+1,---aﬁn) 1€ GL}
S fam1 P(E)  &a &n
— { (71, ceey rord(al—l)’ ’f’i ) rord(—;—li—l) 9. > 5 S e }

By setting

&1 a1 Sa+t1 &n
(= 61/7"§ - <7 7 pord(a—1) 7 77 pord(at1) 7Y T‘_k ’

where ¢ = ((1, .., Ca—1,0, Cas1s s Cn) € €L, we therefore get that

- v (0r¢
01/, ¥ = { (Cl,...,Cal,(TZ.),CQH,...,C,@) t (€ ei‘} .

By hypothesis ¢ € C¥(Up), where Uy is an open neighborhood of 0 € eZ = R"~!. Obviously,
one has §,¢ — 0 as r — 0". So we have to study the limit

$(Q) = Tim, @ (16)

whenever exists. The first remark is that if this limit equals +o00, we have

lim M lim of (exp (25\1/,,\1/) N B, (0, 1)) =0,

r—0t r@-1 r—0t

since 31 /r¥ N By(0,1) degenerates into a subset of the X,-line as long as r — 0.
Making use of a Taylor’s expansion of ¢ together with (j) and (jj), yields

- 0@
_ ord(j1) Y% ord(j1)+ord(j2) o
¢ <5r<> +Z aCJ le +]1§:‘727‘ acjlagjz( )CJIC]Z
ord(j ord(7; a(l)d} )
N Z pord(in)+..+ d(h)m(o) Gy + et Gy 0 (1Y)
J1se-sdi b g
) O . 0@y
= DS (0) Gy Y rer ) S (0) G G
Ji aC J1,J2 aleaCj2
ord(j ord(yj a(l)w i
ot Z pord(in)+...+ d(Jl)m(o) Cjy + e Cj, O (T)
JiseesJi ¢

as r — 01. Therefore

(0 <ng> O 92y
' _ } : ord(j1)— L+ 2 :rord(ﬁ +ord(j2)—i 0) ¢, G
ri jl 8le ( C] 8CJ1 64-]2 ( ) C] C]Z
. N O]
+.o.. + E Tord(]1)+"'+ord(m_la£71§6(0) Cjy - G, +0(1)
J1 e YN

J1,J2

Jiseesdi
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as r — 0. By hypothesis

FSL0N)
¢, ...0¢,
This shows that (6] exists. Moreover, setting

Voo = lim 3y = {(gl, s Car 1, D(C), Cas1s ¢n> (e eg;} :

(0)=0  whenever  ord(j;) + ... + ord(j;) < i.

where QZ is the polynomial function of homogeneous order ¢ = ord(«) given by

~ o oWy
= 20V, 4.+ T (0)¢, e G
(<) Z 5, (0 G Z 5e, o, OG- G
ord(j1)=1 ord(j1)+...4ord(j;)=t
yields Soo = x ® W, and the thesis easily follows. O

Remark 3.18. The metric factor ko(v,, ) turns out to be constant for instance by assuming that
0 be symmetric on all layers; see, for instance, [{1]. Anyway, it is uniformly bounded by two
positive constants K1 and Ko. This can be easily deduced by making use of the so-called ball-box
metrid¥ and by a homogeneity argument. Indeed, for any given p-ball By(x,r), there exist two
bores Box(x,r1), Box(x,r3) (r1 <1 < ry) such that

Box(z,r1) C By(z,r) C Box(x,12).
Remind that
ko(v, (2)) = i (Z(v, () N Byl 1)) = i, (Z(v, () N By(x, 1)).

where Z(v, (x) denotes the vertical hyperplane orthogonal to v, (x). So let us fix r1,72 in a way
that 0 <11 <1 <719 and
Box(z,71) € By(x,1) € Box(x,rg).

Since 0;Box(z,1/2) = Box(x,t/2) for every t >0, by a simple computation we get that
(2r1)Q_1 < ko(yy(x)) <vVn—1 (2r2)Q_1.

In particular, we may put Ky := (2r1)9! and Ky :=/n — 1 (2ry)9 L.

1By definition one has

Box(z,r) = {y—exp ( Z yHi) €G : |lyn;, —zm oo §7‘i},
i=1,...k

where ym; =32, ., yi.€;, and [lys; [l is the sup-norm on the i-th layer of g; see, for instance, [31], [50].

5The unit box Box(x,1/2) is the left-translated at z of Box(0,1/2) and so, by left-invariance of o2, the
computation can be done at 0 € G. Since Box(0,1/2) is the unit hypercube of R™ 2 g, it remains to show how
we can estimate the o7~ '-measure of the intersection of Box(0,1/2) with a generic vertical hyperplane through
the origin 0 € R™. This can be done as follows: If Z(X) denotes the vertical hyperplane through the origin of R™
and orthogonal to X € H, we get that

1< Hp (Box(0,1/2) NI(X)) < vVn—1,
where we notice that v/n — 1 is just the diameter of any face of the unit hypercube of R". Therefore
(62r, Box(0,1/2) N Z(X)) C (B,e(0,1) NZ(X)) C (d2r, Box(z,1/2) N I(X))
and so

(2r)®7!

IN

(2r1) 97 1, (Box(0,1/2) NZ(X)) < Hip, ' (B,(0,1) NZ(X))
= ko(X) < (2r2)? T H L (Box(0,1/2) N Z(X)) < v/ — 1(2r2)9 "
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Therefore, for every homogeneous metric ¢ on G one can choose two positive constants
K1, K5 independent of S such that

K < myluy (1)) < Ko (17)

for every z € S'\ Cs.

3.5 Other important tools

In this section we collect some useful results which will be used later on. As a first thing, we
apply to our setting a recent result by Balogh, Pintea and Rohner (see [6]) about the size of
horizontal tangencies to non-involutive distributions.

Theorem 3.19 (Generalized Derridj’s Theorem; see Theorem 4.5 in [6]). Let G be a k-step
Carnot group.

(i) If S € G is a hypersurface of class C?, then the Euclidean-Hausdorff dimension of the
caracteristic set C's of S satisfies

dimEu—Hau(CN) <n-—2.

(i) If V. = H+ C TG satisfies dimV > 2 and if N C G is a (n—2)-dimensional submanifold of
class C2, then the Euclidean-Hausdorff dimension of the caracteristic set Cy of N satisfies

dimEu—Hau(CN) <n-3.

Remark 3.20. The previous C%-smoothness condition is sharp, see [6]. Moreover, we stress
that dimV =1 just in the following cases:
(i) Heisenberg groups H™;

(ii) 2-step Carnot groups G having 1-dimensional center T and Lie algebra g such that:
g=HoT, H = R" = spang{e, ...,en }, en=T
with bracket-relations:

lei,e5] = C% 0,5 =1...,h, [ei,en] =0 fori=1...,h.

In the case of Heisenberg groups H™, n > 1, by applying Frobenious’ Theorem it follows that

dimEu—Hau(CN) <n
where n = dir;H ; see also [6]. On the contrary, in the first Heisenberg group H', 1-dimensional
curves can be either horizontal or transversal to H. For the general case (i), by applying

Frobenious’ Theorem it follows that there exist horizontal submanifolds of dimension at most

%, where h is the greatest number of commutative-pairs of the left-invariant basis {e1,...,ep} of

H =R, This implies that

dimEu—Hau (CN) <

| =)

Note that dimyo,G = h + 1, where h = dimH. Clearly N C G can be a horizontal submanifold

if, and only if, % =n—2. So there must exist (n — 2) commutative pairs of left-invariant vector
fields among (n — 1) left-invariant vector fields of any basis of H. But this can happen only
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if there exists one, and only one, non-commutative pair. We stress that the matriz C}; of the
structural constants of g, up to a linear change of basis, has the following simple form.:

0 1 0;,_o

ch=| -1 0 02—% € Mpxn(R),
h—2 h—2 h—
0h-2 oh-2 Qi3

where 0p,_y is a (n — 2)-row vector, 0"=2 is a (n — 2)-column vector and OZ:% is a square matrix
of order (h —2).

In the case that N C G is a (n — 2)-dimensional submanifold of class C2, we may apply some
general blow-up theorems by Magnani and Vittone [41] and Magnani [39]. For later purposes,
we record some consequences of their results in the next:

Theorem 3.21 (Blow-up for (n — 2)-dimensional submanifolds; see [41]). Let N C G be a
(n — 2)-dimensional submanifold of class C*! and let x € N be non-characteristic. Then

51 (x7' @ N) N By(0,1) — T%(1, (x)) N B,(0,1)

3=

as long as v — 07, where IT?(v, (z)) denotes the (n — 2)-dimensional subgroup of G defined by
(v, (x) ={y€G:y=exp(Y), Y Ay, (x) =0}

where v, = v: A V2 is the unit horizontal normal 2-vector that determines the orientation of
N. We stress that the convergence is understood with respect to the Hausdorff distance of sets.
Moreover, if v = 11 A vy denotes the unit normal 2-vector field orienting N, it turns out that

L CEAN O By(er) iy (2)
AT e [Pav(@)]

where
RV (1)) = o5 2(B,(0,1) N T (i, ()

is a strictly positive and bounded density-function, called metric factor. Finally, if we have
7—[?—2(01\/) = 0, then the following representation formula holds

i3 (N) = / k(v (2)) dS92.
N
For the 2-step case there is a more precise statement. Indeed, in this case any x € N can
have only two different “orders”[, that are (Q — 2) and (Q — 3); see Definition 2.6 in [39].

Theorem 3.22 (2-step case; see [39]). Let G be 2-step Carnot group and let N C G be a
(n—2)-dimensional submanifold of class CY*. Then, for every x € N there exists a neighborhood
U, C G of x and there exist positive constants C,Cs and ro depending on U, NN such that

Cyrerd@) < NN By(z,1)) < Cyrord(@)

for every z € N N U, with ord(z) = ord(z) and every r < ry. Moreover ”Hg_z(C’N) =0 and
12N = /N k(1) dSS2.

If N is of class C?, for every x € N the rescaled sets 1 (z~ e N) locally converge, with respect to

the Hausdorff distance of sets, to an algebraic vam’eteroo which is the graph of a homogeneous
polynomial function.

SRoughly speaking, the order of a point € N is (Q — 2) if x is non-characteristic and (Q — 3) otherwise.
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Actually, if the order of x € N is (Q — 3), the homogeneous order of this polynomial function
must be 2.

We end this section by remembering a classical fact. In his treatise [22], Federer proved
an important result which allows to represent a regular measure p of an abstract metric space
(X, 0) in terms of the intrinsic spherical Hausdorff measure S of the space; see Theorem 2.10.17
n [22]. A simplified version of his result reads as follows:

Lemma 3.23. Let (X, o) be a locally compact, separable metric space and let 1 be a regular
measure on X. If AC X, k>0 and

s A0 Bol.7)

r—0t rd

whenever x € A, then p(A) < kSZ(A).

<t

4 Isoperimetric Inequality on hypersurfaces

The main result of this paper is the following:

Theorem 4.1 (Isoperimetric Inequality). Let G be a k-step Carnot group and let us fix a
homogeneous metric o on G as in Definition[2.5. Let S C G be a C2-smooth hypersurface with
boundary 0S -at least- piecewise C%-smooth. Let Hu denote the horizontal mean curvature of
S. Then there exists a positive constant Crgop, only dependent on G and on the homogeneous
metric o, such that

(0’2_1(5))% < Crsop </s |Hu| ot + 0'2_2(85)> . (18)

The next sections are devoted to prove this theorem. Furthermore, in Section [§l we shall show
some related Sobolev-type inequalities. In particular some generalizations will be discussed at
Section 5.1

Nevertheless, we would like to state an immediate but interesting corollary of this theorem,
which holds true in some special cases. Among them the Heisenberg group H! is the more
important one; see Remark and footnote

Corollary 4.2. Let G be a 2-step Carnot group and assumd™ that its horizontal bundle H C TG
is of codimension 1. Furthermore, let S C G be a compact hypersurface of class C? with smooth
boundary 0S. If OS is horizontal, then S cannot be H-minimal.

Note that if 95 is horizontal this means that 95 = Cyg.

Proof. Under these assumptions one has 02_2(85 ) =0. If Hy = 0 along S, the right-hand side
of (I8) vanishes identically. O

4.1 Linear isoperimetric inequality and Global Monotonicity formula

Let S C G be a C%-smooth compact hypersurface with boundary 05 smooth enough for the
validity of the Riemannian Divergence Theorem. As usual v denotes the unit normal along S

and w = % We shall set

wh; = P, w = E WaXa

CVGIHi

for i = 2,...,k. We have w =1, + Zf:2 WH; .

"Tn this case, it can happen that there exist (n — 2)-dimensional horizontal submanifolds; see Section
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Definition 4.3. Let n be the unit normal vector n along 098, In the sequel, we shall set

: . Pysn .
(i) x = [Pusnl’

(il) xms = PusX, 1=2,...,k;

see Remark [2.17. Using this notation and the very definition of nus yields x = Zsz XHsS and
s = Nus + X; see Remark[32

Definition 4.4. Fiz a point x € G and consider the Carnot homothety centered at x, i.e.
V% (t,y) := x @ 6:(x~ @y). The variational vector field of 9 (y) := ¥%(t,y) at t = 1 is given by

oy
Zy = —L
ot

t=1

Definition 4.5. Let G be a k-step Carnot group and S C G be a C?-smooth hypersurface with
boundary S, at least, piecewise Ct-smooth. Moreover, let S, := SN B,y(x,r), where By(x,r) is
the open o-ball centered at x € G and of radius r > 0. We shall set

k
A(r) = /|HH|<1+ZZ'CZ-Q;_1|WHZ-|> ot
Sp

1=2
1
Bo(r) = /as -

e e 7

k
B(r) := / <1 + ZiCiQi_1|XHiS|> o2,
oSr

=2
k
Bir) = | 1+ o s | | o2,
OB, (z,r)NS i—2
k
Bar) = | 1+ it s | | o372,
0SNBy(x,r) i—2

where 0, (y) := o(x,y) fory € S, i.e. o, denotes the p-distance from the fized point x € G.
Remark 4.6. By Cauchy-Schwartz inequality it follows that Bo(r) < B(r) for every r > 0.

In the sequel we shall apply the 1st variation of o7~ ! (see Theorem and Corollary B.13),
with a “special” choice of the variational vector field. More precisely, let us fix a point z € G
and consider the Carnot homothety 9¥(y) := x @ §;(z~' @ y) centered at z. Without loss of
generality, by using group translations, we may choose £ = 0 € G. One has

9(t,y) == exp (tyu, t2yu, , t3yuy , ..., 'y, , ...,tkka) for every t € R,
where yu, = > el Yii€i and exp denotes the Carnot exponential mapping; see Section 2.1
Thus the variational vector field related to 99 (y) := 9°(¢,y) = 0y, at t = 1, is just

o a5,

Zom O Otk
0 Ot li=1 ot li=1 R

As it is well known, by invariance of 07! under Carnot dilations, one has

d * _n—1 _ _ n—1
EQUH ‘tzl—(Q 1oy (9).

'8Note that, at each point = € 95, n(z) € TS
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Furthermore, by using the 1st variation formula (see Corollary [3.13]), one gets

-1 n—1 - _ 7 v n—1 / <Z n > n—2'
@-oy(8) == [ (Z0 5ty ot [ (o) [Paral Pl o

_ . n—2
_O'H

Note that

k
(ot ) = o, (4 20) = )+ S )

i=2
Analogously

k
n
< 0, ’PHST]‘> < 05 (nHS + X)> <yH,T]HS> + izgz <yH1 5 XHZS>

By Cauchy-Schwartz inequality we immediately get the following estimates:

k
14
Z,7>‘< + 1\Yn; || @ |,
(%o )| < o 3 iyl

k
Ui .
Zo77>‘§ yu |+ > i|ym ||xHs |-
(20 gy )| < o §r s

According with Definition 2.5] let ¢; € R, be constants such that |ys, | < ¢;0'(y) for i = 2,..., k.
Using the previous estimates together with these assumptions on g yields:

k k
v . U SR, |
Zo,7>‘§g 14 g 1C;0 IWHZ- , ‘<Zo,7>‘§é7 1+ E 1C Q0 XHs| | -
‘< ’,PH VH‘ i=2 ’ ‘ ’,PHS??‘ i=2 ‘ ’

Proposition 4.7. Let S C G be a C%-smooth compact hypersurface with piecewise C'-smooth
boundary 0S. Let r be the radius of a o-ball centered at x € G and circumscribed about S. Then

(Q = 1)l (S) <7 (A(r) + Bo(r)) < r (A(r) + B(r)) .

Proof. Immediate by the previous discussion and the invariance of ¢~ under left-translations.
O

Remark 4.8. The proof of the monotonicity inequality will follow from the next inequality:

1
/ - <Zx7 77 >
OBy (,r)NS Ox |Pusn|

for L'-a.e. r > 0. Roughly speaking, in the classical setting this inequality follows from the
Coarea Formula together with a key-property: the Euclidean metric satisfies the Ikonal equation.
We observe that if we followed the classical pattern, then we would assume that:

n— d n—
Oy 2 S JUH 1(57“)

e There exists a smooth homogeneous norm ¢ : G x G — R, such that:

‘ <Z:c7 gradTS Q:c> ‘
Oz

<1 (19)

for every x,y € S.
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Clearly (I9) turns out to be trivially true in the Euclidean setting. Indeed, 0,(y) = |y — x|,
Zy(y) =y —x and gradgn|y — x| = 2==. Therefore,

= ly—a|”

(Za(y), grodus o) _ [/ y—z \’
0:(y) N <|y——x|v > <1

where ne is the Buclidean unit normal of S. Moreover (19) would be “natural” in the Riemannian
setting and at this regard we quote the paper by Chung, Grigor’jan and Yau [T]|], where this
hypothesis is the starting points of a general theory about isoperimetric inequalities on weighted
Riemannian manifolds and graphs. Unlike [[9], here we will not follow this approach but rather
a much more direct computation.

By using Proposition [£.71 we may prove a global monotonicity formula for the H-perimeter
0"~ Henceforth, we shall set set S; :== SN By(x,t), for t > 0.

Theorem 4.9 (Global Monotonicity of 02_1). Let S C G be a C?-smooth hypersurface. For
every x € IntS the following ordinary differential inequality holds
_ Ao (S
dt @1

A(t) + Ba(t)
t@-1

< (20)

for L'-a.e. t € R,

Proof. By applying Sard’s Theorem we get that S; is a C2-smooth manifold with boundary for
L'-a.e. t > 0. From the first inequality in Proposition A7 we have

(@ = 1) o5 (Se) < t(A(t) + Bo(t))
for £'-a.e. t > 0, where t is the radius of a p-ball centered at = € IntS. Since
05; = {0By(z,t) NS} U{0S N By(x,t)}
we get that
(Q — 1) af™H(S) < t (A() + By(t) + Bi(t))

where we have set

1 n _
Bit) = / — <Z$7> on2,
o(®) OBy (z,H)NS Ox [Pusn| /|

1 7 B
B3(t) = / — <Zx,7> o2
o) 9SNB,(z,t) Ox [Pusn| /| "

Exactly as in Proposition [.7 and Remark L6 the second integral B3(t) can be estimated by
Cauchy-Schwartz inequality and we get that

B3(t) < Ba(t).

However the crucial point of this proof is the estimate of the first integral B}(¢). To this end we
have to use Coarea Formula. By Definition and the explicit form of the variational vector

field Z,, we get that
2 i 1 O i

1
Zy,
v |Pus | |Pus |

0
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as long as y — x or, equivalently, o, — 07. For any h > 0, let us compute

t+h 1 t+h 1 n 5
By(s)ds = / ds/ — <Zm,7>‘ on
t 0( ) t B, (x,5)NS Ox ‘,PHSTN "

t+h

- / ds/ <1+ 2C2Qm(1+0(9m))> o2
t OB, (z,s)NS |PHS77|
t+h t+h 1

< / 12 (OB,(x,5) N ) ds + 25 / s(1+0(s)) ds / ;72
t t 0By (z,s5)NS ‘PHSU’
t+h t+h 1

< / o1 2(0B,(2,5) N S) ds + 2¢ h (1 + O(h)) / ds / 1 e
t t dB,(x,5)NS |Pus |

< / |gradys 0z %' + 2co h (14 O(R)) o (Seen \ Sp)
Srn\St

as h — 07. We stress that the last inequality follows from Coarea formula () and the fact that
nus = A4S0 along OB,(z,8) N S for L1-a.e. s €]t,t + h[. By Definition 2.5 we have

" |gradys 0|

|gradys o| < |grady o| < 1.
Therefore

ftHh By (s)ds < o (Sean \ Sh)
h - h

(I+0(1))
as long as h — 0. Hence
1 d n—1
Bi(t) < — o' (Sy)
for £L'-a.e. t > 0. Therefore

Q=150 < ¢ (AW + Balt) + 50371 (50) )

which is easily seen to be equivalent to (20)). O

In the sequel, we shall shaw that the right-hand side of previous global monotonicity formula
can be made more intrinsic whenever the radius ¢ of the g-ball B,(x,t) goes to 07. Taking into
account the results of Section [3.5] in order to estimate By(t) we shall assume more regularity on
the boundary.

4.2 Local estimates dependent on blow-up results

This section is devoted to show how estimating the integrals A(t) and By(t) which appear in the
right-hand side of the global monotonicity formula (20]).

Estimate of A(t).

Lemma 4.10. Let S C G be a CF-smooth hypersurface. Let z € IntS and S; = SN By(z,t) for
t > 0. Then there exists a constant b, > 0, only dependent on o and G, such that

lim fst ‘WHi ‘ 02_1

t—0+ t@—1 S (21)

for every i = 2, ..., k, where h; = dimH;.
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Remark 4.11. As we shall see below, if S is just of class C?, then ([ZI)) holds true for every
r € S\ Cs. Moreover, if x € Cg has order (Q —1i), i = 2,...,k, the same claim holds true if S
1s of class C".

Proof of Lemma[{.10, For any o = h+1,...,n, we have
(Xodop) ‘ ((Xa,u> ) |S (*wa)|ss

where * denotes the Hodge star operation on T*G; see [34]. Moreover
52*(*&}0{) — tQ—ord(a)(*wa)

for every t > 0. So we get that

/IWHZ.]U /\PHV] 1< Z /\X Jdo}| = Z t?- / |(*wq ) 0 V¥ .
St =i

ord(« ord(a) SmBQ (,1)

Now since

/ (swa) 0 95| < o™ (99,51 By, 1))
ﬁf/tSﬂBQ(m,l)
by using Theorem [3.14] we may pass to the limit as ¢ — 07 the right-hand side. More precisely, if
x € Int(S\ Cs) the rescaled hypersurfaces 97 5 converge to the vertical hyperplane 7 (v,(x)) as

t — 07. Otherwise we may assume that x € Int(S N Cs) has order (Q — ), for some i = 2,..., k.
In this case the limit-set is a polynomial hypersurface of homogeneous order i passing through x;
see Remark We remind that the convergence is understood with respect to the Hausdorff
distance of sets. So let us set

by = sup on 1(I(X) N BQ(O, 1)), (22)
XeH,|X|=1

where Z(X) denotes the vertical hyperplane through 0 € G and orthogonal to X. Furthermore,
in order to study the characteristic case, we may define another useful constant, i.e.

by:= sup op YW N B,0,1)), (23)
TePolf

where Polf denotes the class of all graphs of polynomial functions passing through 0 € G and
of homogeneous order < k. Setting

b, := max{by, b2} (24)

and using the left-invariance of 67!, yields

lim o4~ (95,5 0 By(w,1)) < by,

t—0t
Therefore
n—1
wn; | o
Eﬂ?gri—gmag (958 0 By(w,1)) < hiby.
This achieves the proof of (2I)). O

Let S C G be of class C?, let z € Int(S \ Cs) and A(t) as in Definition By applying
Theorem [3.19], we get that
dimEu—Hau(CS) <n-—2.

1

In particular o}~ “-a.e. interior point of S is non-characteristic.
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Lemma 4.12. Under the previous assumptions, one has

A(t) < </St !HH\JZ_1> (1+o0(1)) (25)

as long as t — 0T, where Sy = S N By(x,t).
Proof. We have

k
.A(t) = / ’HH‘ (1 +Zic,~gi_1]wm]> O’Z_l
St

=2

k
< ’HH‘O'Z_l + ”’HHHLoo(St)Z/ Z'CZ'Q;_IIWHi‘O'Z_l
St i=2 St
_ 20200 (1 +0(1)) -y
< [ Halol s | 7
Si : “ Js, [Pu v :
as long as t — 0. Indeed note that o,(y) = o(z,y) — 0" as t — 0F. Since “,le is continous

near x € Int(S \ Cg), by standard results in Measure Theory we easily ge that

1 -1
fSt [P v UZ 1
im — = .
t=0t oy (Sh) [Prv(z)|

Therefore

/ 2c20, (14 0(1)) o1 < 2¢9t (1 +0(1))
S, ‘PH V’ o= ‘PH V(x)’

as t — 07 and so
f 2¢20x(1+0(1)) o1
i 25 P 7H

=0.
t—0+ O'Z_I(St)

Since Hx turns out to be continuous near every non-characteristic point, then ||Hu ||z (s,) is
bounded and (23] easily follows. O

Actually, a similar result holds true even if x € Int(S N Cg), at least whenever S is smooth
enough near Cg. In the sequel, we shall make heavy use of Theorem B.14] Case (2).

Lemma 4.13. Let x € Int(S N Cg), be an interior characteristic point of S of order (Q — i)
for some i = 2, ...,k and assume that, there exists « = h+1,...,n, ord(a) = i, such that S can
be represented, locally around x, as the X,-graph of a C'-smooth function for which ([I)) holds
true. Then there exists a constant d, > 0, only dependent on ¢ and G, such that

A(t) < | Hullp(s) (1+dy) ol (Sy)

as long ast — 0.

Proof. Using Lemma 10 yields

k . _

Yy fg, icidi wn | of ! ko

Tomm < g 1cih; b,
=2

as t — 0T, where b, is the constant defined by ([24). Set now d, := Zszicihi b,. By arguing
as in the proof of Lemma [A.T2] the proof easily follows. O
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Estimate of By(t).
Warning 4.14. From now on we shall assume that 0S be -at least piecewise- C2-smooth.

Remark 4.15. Since 9S is assumed to be piecewise C2-smooth, we may apply Theorem [313.
In particular, if dimV > 2 it follows that dimg,_pau(Cos) < n — 3 and ot *-a.e. x € IS is
non-characteristic. The same holds true for the Heisenberg groups H", n > 1, and for those

2-step Carnot groups G, described at (ii) of Remark[3.20, which satisfy the condition % <n-—2.

Nevertheless, in the remaining case@, by using Theorem [3.29 we get that for any v € S, there
exist an open neighborhood U, C G and positive constants C1,Cs and ro dependent on U, NOS,
such that

Cyrord@) < o208 N By(z,r)) < Cyrord(®@)

for every z € 0S N U, with ord(z) = ord(z) and every r < ro. Note that in this case, the order
ord(z) of x € S can be (Q — 2), if the point x is non-characteristic, or (QQ — 3) otherwise.
Furthermore for every smooth point x € OS the rescaled sets 61 (x~" o 9S) locally converge,

with respect to the Hausdorff distance of sets, to the (n — 2)-dimensional plane T?(v,(z)), if
x € 05\ Cys. Otherwise, the limit set 0S~ is an algebraic variety and, more precisely, the
2-graph of a polynomial function of homogeneous order 2.

Remark 4.16. Since we have to estimate Ba(t) for t small, it is clear that o(x,0S) must be
comparable with t, where o(x,dS) denotes the o-distance from x and 0S.

The key-point is the following one:

Lemma 4.17. Assume that dimpy—pgau(Cas) < n — 3. Then
Bo(t) < o720 N By(x,t)) (1 +o(1)) (26)
as long ast — 0.
Proof. Let zg € 05 N B,(z,t) be a non-characteristic point?d. One has
0S5 N By(x,t) C 0S N By(xo, 2t).

We therefore get that

k
B - | 1> il s || o2
k
(zicig;—wxm)

= o30S N By(x,1)) +/
0SNBy(z,t)

=2
k .
< 02_2(65ﬂ39($,t))—|—/ > el xms| | on 2.
0SNBy(xo,2t) i=2

By using again standard results in Measure Theory it is not difficult to show that

n—2
flzo) = 1 faSmBQ(xo,zt) fou

i . 27
150+ o7-2(0S N By (w0, 2t)) @7)

Y They are, up to isomorphisms, H' and those 2-step Carnot groups G, introduced at (ii) of Remark [3:20] for
which % =n—-2.
20VWe stress that if 2o is a non-characteristic point of the boundary 05, then [Pusn(zo)| # 0.
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for every f € C(0S NUy,), where U, C G is an open neighborhood of z. So let us set

k

Fy) = iciol@,y) ™ xms (v)]-

=2

Since g € 95 N By(x,t) is a non-characteristic boundary point, then |Pusn(zo)| # 0. Hence
the function f turns out to be continuous in an open neighborhood of zy and we may therefore

apply (27). Note that

262

ety 220 (1+0(1) = Oe(a,x0))

k
o) = Y i cio(w,xo) ™ xns (2)] <
=2

as long as x — xo. By construction if ¢ — 07, then o(x,x¢) — 07. Therefore

-2

koo e
. faSmBg(xO,zt) <Zi=2wié)§c IIXHZSD o
1m
=0+ o 2(8S N By(xo,2t))

By applying Theorem B.2]], we easily get that

o0 N By(n0,2) _ o
=0+ o7 2(9S N By(xo, 1))

It follows that

koo o _
fasﬂBQ(:vo,%) (Zi 21 Ci0 1|XH-S|) o
1m _
=0+ ~%(05 N By(wo, )

which implies the thesis. O

Lemma 4.18. Let G be 2-step Carnot group G and let S be piecewise C?-smooth. Then there
exists a constant k > 0, only dependent on o and G, such that

Ba(t) < (1 + k) oy 2(0S N By(,t)) (28)
as long ast — 0.

Proof. We shall show that (28] turns out to be true near any characteristic point xg € 9S. This
will be done by using Theorem [3.22} see also Remark .15l Let G be any 2-step Carnot group
and assume that zo € 0S N B,(x,t) be such that

ord(zg) = Q — 3,

see footnote Note that we only need to estimate the integral

-2
/ 2 e300 xms | 07
0SNBy(xo,t)

as t — 07. By Theorem 3:22] for any x¢ € Cyg, the rescaled sets & 1 (xo ¢ 05) locally converge,

with respect to the Hausdorff distance of sets, to an algebraic Varlety which is the graph of a
polynomial function of homogeneous order 2. So let us consider the quotient

JoseB, (zo.0) €(T0: ¥) 01 2(y)
t@—2
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fort — 0%, In fact, estimating this integral by a dimensional constant is the key point in order to
achieve the estimate of Ba(t), even near characteristic points. This can be done as follows. Since,
at this moment, we are working in a 2-step Carnot group G, we easily see that ] o2 splits
into two homogeneous components of (homogeneous) degree (Q — 2) and (Q — 3), respectively.
In other words, there exist C'-smooth (n — 1)-forms, say (02_2)Q_2, (02_2)Q_3, such that

Sion 2 =192 (o) oo + 193 (0 D) g s

Using this, together with the left-invariance of 6”2 and the 1-homogeneity of o, yields

— n—2
Josraeon o) i 2) 197 (10N 5y i easinm, o W) (0 )-s(w)
Q=2 B Q=2
-/ 0 (02 g s (1+0(1))
5% (x5 '9S)NB,(0,1)

< on? (5% (x5! 8S) N B,(0, 1)) (1+ o(1))

ast — 07. Set now X

0Ss = tl_1>%1+ 5% (z, " ©089),
where the limit is understood with respect to the Hausdorff convergence of sets. As already
said, 0S4 is an algebraic variety and turns out to be the 2-graph of a polynomial function of
homogeneous degree 2. So let us set

ki:= sup o 2(¥ N B,0,1)), (29)
\11673018

where Polg denotes the family of all 2-graph of homogeneous polynomial functions of degree 2

which vanish at 0 € G. Obviously, k; is a finite constant which only depends on ¢. Remind that
if t — 0T, then o(x,zo) — 0%. Therefore

-2
fE)SmBQ (wo,t) 2¢200 ’XHQS ] oy

lim <2co k.
t—0+ tQ—2 - Rzz—/l
=:ko

By applying Claim [I7] we see that this estimate holds true even if zyp € 95 \ Cyg. By using
Lemma [3.23] we therefore get that

/ 2 ca0ulxinss | 2 < iy SS(DS N By, t)).
8SNB,(x0,t)

By means of Theorem 322l we can estimate the right-hand side in terms of the measure o2~ 2.
Indeed, at the characteristic set, both measures vanish. Moreover, near non-characteristic points,

the measures o722 and Sg 2 are locally equivalent, up to the metric-factor x(v,) which is a
bounded density-function. So let us define the constant:

ko= sup o 2(B,(0,1)NT*X)}
X€eAN2(H)

where A2(H) := {X1 A X5 € A2(TG) : X1,X5 € H, | X1 A Xo| = 1}. Clearly , bounds from
above the metric factor x(v,). Setting k := kg k,, the thesis easily follows. O
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Remark 4.19 (The constant k; for Cl-smooth transversal curves in H'). In this ezample one
has n =3 and Q = 4. In particular, S is 1-dimensional and it can be characteristic. In such
a case, the order of any characteristic point is 1. So let 7, :] — €,e[C R — H' be a C'-smooth
curve which parametrizes 05 locally around x € 0S N Cyg. In this case, one can show that the
limit-set at x = exp (xu,t) is an interval of the vertical line

zeexp(T) = {exp(yn,s) €EH' : xn = yn}

over the point x. The proof can be done by using a Taylor’s expansion of v, at 0 and Heisenberyg
dilations; see, for instance, [51l]. As a consequence, we can show that

k1 < diam,(B,(0,1)) =2

where the constant ky is that given by ([29)).

4.3 Proof of Theorem E.1]

By applying the results of Section and Theorem we get the following local version of the
monotonicity inequality:

Corollary 4.20 (Local Monotonicity). Let S C G be a C?-smooth hypersurface and let 3S be
piecewise C%-smooth. Then there exists a constant C, > 1, only dependent on o and G, such
that the following statement holds: for every x € Int(S\ Cs) there exists 7(x) > 0 such that

d O’?[_l(st) CQ n—1 n—9
T dt 191 = Q-1 /St |Hul|oy 4 on (05 N By(x,1)) (30)

for L'-a.e. t €]0,7(z)].

Proof. The corollary is an immediate consequence of Theorem 4.9 Lemma [£.12] Lemma [Z.17]
and Lemma [LI8 We stress that if dimpgy—pau(Cs) < n — 2 (as, for instance, for every Carnot
group G such that dimV > 2, or for the Heisenberg groups H" with n > 1; see Remark .15
we may take, for example, C, = 2. Otherwise, we are necessarily in a 2-step Carnot group. We
may therefore apply Lemma .18 and take C, = 2(1 + k). O

Notation 4.21. Lett > 0. Henceforth, shall set

D(t) == C, </S M| o™t + 0 2(0S N By(x, t))) .

n—1 1/Q_1
Lemma 4.22. Let z € Int (S \ Cs) and sef] ro(z) := min {?(m),2 (%) } Then,
H

for every X\ > 2 there exists r €]0,r¢(x)] such that
o (Sar) < A rg(x) D(r).

Proof of Lemma[f.29. Fix r €]0,79(z)] and note that of '(S;) is a monotone non-decreasing
function of ¢ on |r,ro(z)]. So let us write the identity

o ST = {0 () — ol (Sro) YT 0 (S ) /t9T

The first addend is an increasing function of ¢, while the second one is an absolutely continuous
function of ¢. Therefore, by integrating the differential inequality (20), we get that

2!The quantity 7(z) is that in Corollary E20]
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Therefore

ro(x)
f) +/ D(t) t~ @ V.
0

r€]0,ro(z)]
Now we argue by contradiction. If the lemma is false, it follows that for every r €]0, r(z)]
oV H(Sy) > A9 g (1) D(1).

From the last inequality we infer that

/Om(x)p(t)t—(cg—l)dt < m/OTO(I)UZ_I(SM)t‘(Q—Udt
) ATJ(:”) /orom 7 (5:) 57O Vs Aml@) /r::;m) o (Ss) (@ N ds
c BLASL ai(S)

o Snw) B A1 of(S)
)

’ (ro(a)?™" A (ro(a) !
and so
A — 15 -1 o 1 (S) N 2X—1 [(ky(v,(2))
AT A @)t A ( 2071 >
By its own definition, one has
n (S
ko(vy (7)) = Tl\%1+ d rQEl ) <B.

Furthermore, sincd?? Q — 1> 3, we get that

220 —-1
<

A—-1
— 8 )

or equivalently A\ < I, which contradicts the hypothesis A > 2.

The next covering lemma is well-known and can be found in [7]; see also [22].

22Indeed, the first non-abelian Carnot group is the Heisenberg group H' for which Q = 4. Moreover, since the
theory of Carnot groups also contains as a special case the theory of Euclidean spaces, in the previous argument
we can also use the estimate Q — 1 > 2 which is relative to the case of a surface in R®. In such a case Q = 3,
since the homogeneous dimension coincides with the topological one.
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Lemma 4.23 (Vitali’s Covering Lemma). Let (X, 0) be a compact metric space and let A C X.
Moreover, let C be a covering of A by closed p-balls with centers in A. We also assume that
each point x of A is the center of at least one closed p-ball belonging to C and that the radii of
the balls of the covering C are uniformly bounded by some positive constant. Then, for every

A > 2 there exists a no more than countable subset Cyx C C of pairwise non-intersecting closed
balls By(zk, 1), k € N, such that

A | Bolax, Are).
keN

Notation 4.24. Henceforth, we shall set ro(S) 1= sup,cg\ ¢y ro(T).
We are now in a position to prove our main result.

Proof of Theorem [{.1] Fist we shall apply Lemma To this aim, let A > 2 be fixed and, for
every x € Int(S \ Cg), let r(z) €]0,7¢(S)[ be such that

i (Sp(a)) < A9 ro(S) D(r(2)). (32)
So let us consider the covering C = {B,(z,7(z)) : x € (S\ Cg)} of the (relatively compact) set

S\ Cs € G. By Lemma [£.23] there exists a non more than countable subset Cy C C of pairwise
non-intersecting closed balls B, (x, ), where we have set 7, := r(z), k € N, such that

S\Cs - U BQ(:Ek,)\T‘k).
keN

We therefore get

o HS) < Do HS N By(wn, i)

keN
< A9rg(9)Y D) (by B2)
keN
= A%Tne(8) ) G, </ | o + o5 2(0S N By(ay, m>)>
keN Sry,

< MeTe(S)C, </ \%Hyaz—1+az—2(05)>.
S

By letting A \, 2, we get that

o 1(8) <297 1ry(S) C, < / [Hu oyt + 02‘2(85)> .
S

Since

using (7)) yields
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Therefore

Q-2 9@ C’

(o7 1(9) T < </ M| ot +az—2(65)>.

The proof of (I8)]) is achieved by setting

29 C
C(Isop - i’
-1
Ky
where K7 and C, have been defined in Remark [3.18 and Corollary [£.20] respectively. Note that
these constants only depend on the group G and on the homogeneous metric o. O

4.4 An application of the monotonicity formula: asymptotic behavior of o7~ !

The global monotonicity formula (20) (see Theorem [£.9]) can be formulated as follows:
d

4 ([ A0

for £'-a.e. t > 0 and for every x € IntS. For sake of simplicity, let S be closed (and hence
Ba(s) = 0, identically) and let us first restrict ourselves to consider non-characteristic points.
By Theorem 314l Case (1), we may pass to the limit as ¢ \, 0" in the previous inequality; see
Section 3.4l Hence

-1 k(v (2)) t9 Lexp | — tiA() s
(502 kol o) 19 ey (= [ A 3

for every x € Int(S'\ Cy).

Corollary 4.25. Let G be a k-step Carnot group and let S C G be a hypersurface of class C2.
Assume that S N By(z,t) = 0 for some t > 0 and that |Hu| < H% < +oo. Then, for every
x € Int(S'\ Cs), one has

“1(Se) = kylv, (2)) 197 e~ Hn (35)

as long ast — 0.

Proof. We just have to bound fo ds from above. Using Lemma 12 yields

( 5)

tA(s)
0 UZ 1(55)

as long as t — 0% and (35]) follows from (34]). O

ds < HY (1+o(1))

If S is smooth enough near its characteristic set C'g, the previous result can be generalized
by applying some results of Section

Corollary 4.26. Let x € Int(S N Cg), be an interior characteristic point of S of order (Q — 1),
for some i = 2,.... k. Assume that there exists « = h + 1,...,n, ord(«) = i, such that S can be
represented, locally around x, as the Xq-graph of a C-smooth function satisfying (III). Assume
that S N By(z,t) = 0 for some t > 0 and that |Hr| < HY < +oco0. Then

TH(Sy) > ro(Cs(a)) 1O et Ml (o) (36)

as long ast — 0.
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We remind that x,(Cs(z)) has been defined in Theorem [B.14], Case (2). We also stress that

k
dy = icihiby,
=2
where b, is the constant, only depends on p and G, defined by (24]).
Proof. By arguing as above, we may pass to the limit in ([33) as ¢t \, 07 and we get that

o11(S1) 2 rg(Cs(2)) 19 eap <— t%a@) |

0 o (S

By applying Lemma [£.13] we get that

t
Als) 0
<H,(1+d
o of(sn) = P
as t — 07. This achieves the proof. O

In particular, in the case of Heisenberg groups H", the following holds:

Corollary 4.27. Let (H", o) be the Heisenberg group endowed with its Korany distance; see
Ezample(2Z.6. Let S C H" be a C%-smooth hypersurface. Assume that SN By(x,t) = for some
t >0 and that |Hu| < HY < +o0o. Then, for every x € SN Cg, one has

o2(S) > ro(C(x)) t9 e Tl (150e) (37)
as long ast — 0.

The constant k,(Cs(x)) has been defined in Theorem B.14] Case (2). Even in this case the
constant b, is that defined by (24)).

Proof. By arguing as for the non-characteristic case, we may pass to the limit in (33]) as ¢ \, 0%.
As above, we have

o150 2 rulCsa) @ ey (- [ 2Eas),

0 U?Jn(ss)
as t \, 07, for every z € SN Cy. By applying Lemma [£.10] we get
A(s) 0 0
<HE(1+2cb,) =Hy (14 0,),
O_%H(Ss) = H( + c2 Q) H( Q)
for every small enough s > 0, since in this case ¢y = % O

Example 4.28. Consider (H", o) where ¢ is the Korany distance and remind that Q = 2n + 2.
Let S = {exp(xn,t) € H" : t = 0}. One has Cg = 0 € H". Furthermore Hu = 0, since
v, = —3C3" 'y and

. 1
divpy, = §dZ’UR2n(—$2,$1, ey —Top—1, Top) = 0.
By a little computation we see that ky,(Cg) = %, where Ooy,_1 1s the surface measure of the

unit sphere S**~1 C R*". Thus B7) says that

o
o2 (S, > ﬁtQ—l.

In this elementary case, the claim can easily be verified by using 02" = @ dL?" and then
spherical coordinates on R?".
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5 Sobolev-type inequalities on hypersurfaces

The isoperimetric inequality (8] is actually equivalent to a Sobolev-type inequality. The proof
is analogous to that of the equivalence between the Euclidean Isoperimetric Inequality and the
Sobolev one; see [7].

Theorem 5.1. Let G be a k-step Carnot group. Let S C G be a C?-smooth closed hypersurface.
Then

RIS
&

( /S rwwgiaz*) < Clo /S (1] [Hor | + lgradssv]) o (38)

for every 1 € C§°(S), where Crsqp is the constant appearing in Theorem [{.1]

Proof. The proof follows a classical argument; see [23], [42]. Since |gradus| < |gradys ||l
without loss of generality, we may assume v > 0. Set

Sp:={zx e S Px) >t}

Since 1 has compact support, the set Sy is a bounded open subset of S and, by applying Sard’s
Lemma, one sees that its boundary 05; is smooth for £'-a.e. t > 0. Furthermore, S; = ()
for each (large enough) ¢ > 0. The main tools we are going to use are, in order, Cavalieri’s
principla=] and Coarea Formula; see Theorem [Il We start by the identity

Q-1 —1 [*>® 1
[ty =225 [T b apis) a (39)
s Q-2 Jo
which follows from Lemma with @ = =L We also remind that, if ¢ : Ry — R4 is a

Q-2
positive decreasing function and « > 1, then

+o00 +00 e
a/ tto dt < </ o(t) dt> .
0 0

Using (39) and the last inequality yields

Q- — oo
/Wg% ol = E/ 137 o(S,) dt
s 0

Q-2
Q-1
[ [+o Q-2 Q2
< ([Tt
/0
Q-1
rp4oo Q-2
< Crsop < / Hu|op ™t + 02—2(8&)) dt] (by ([@8) with S = S;)
S
- t Q-1
n—1 Q-2
— (Gt [ 011301+ lgradisut) 03]
where we have used Cavalieri’s principle and Coarea Formula. The thesis easily follows. ]

2 The following lemma, also known as Cavalieri’s principle, is an easy consequence of Fubini’s Theorem:

Lemma 5.2. Let X be an abstract space, p a measure on X, « >0, p >0 and Ay ={x € X : ¢ > t}. Then

o0 1
/ t* (A dt = —/ o du.
0 & Ja,
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Notation 5.3. As in the standard theory of Sobolev spaces, for any p > 0, we shall set
1 1 1

» p Q-1
1

Moreover, we will denote by p’ the Holder conjugate of p, i.e. % + 5 = 1. In the sequel, any LP
norm will be understood with respect to the measure o7~ t.

Warning 5.4. Henceforth, we shall assume that Hu is globally bounded along S. Furthermore
we shall set
€= maX{HHH ”Loo(g), 0}.

Corollary 5.5. Under the previous assumptions, one has
191l 2o 5y < Crsop (¥l Lr sy + cp lgradus ¥l Lr(s))
for every ¢ € CF(S), where cp= == p*%. Thus, there exists Cpx = Cp+ (g, 0,G) such that
191l 2o 5y < Cpr (19l Lo sy + llgradus bl Lo(s))
for every 1 € CF(S).
Proof. Let us apply (B8) with 1 replaced by [[*~!, for some t > 0. It follows that

Q=2
-1\ o _ _

< /S [y[' =2 o 1) < Crsop /S (e [l + tlel = gradus ¥l) o (40)

If we put (t — 1)p’ = p*, one gets p* =t Q—:% Using Holder inequality yields
Q-2 L
p* _n—1 Q-1 <0 px _n—1\"F d
g [P o < Clrsop | |, [P o (elellLr sy + tllgradas ¥l o(s))

which is equivalent to the thesis. O

Corollary 5.6. Under the previous assumptions, let p € [1,Q — 1[. For all q € [p,p*| one has
”QpHLq(S) < (1+eCrsop) Hl/’”LP(S) + ¢p* Crsop |’9des¢HLP(S)
for every 1 € C3°(S). In particular, there exists Cy = Cy(e, 0,G) such that

191l Lacs) < Cq (18l Lr(sy + llgradus ¥l ie(s))
for every 1 € CF(S).

+ =2 Hence

Proof. For any given ¢ € [p,p*] there exists o € [0, 1] such that % = =

o2
p

19/l La(s) < IITZJ\I%p(S)WHIL;f(S) < llze(s) + 19l ()

where we have used the usual interpolation inequality and Young’s inequality. The thesis follows
from Corollary |

Corollary 5.7 (Limit case: p = Q — 1). Under the previous assumptions, let p = @Q — 1. For
every q € [Q — 1,4o00[ there exists Cy = Cy(e, 0,G) such that

9l ey < Cq (1Nl Les) + llgradus ¥l Lo (s))
for every ¢ € CP(S).
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Proof. By using ({d0]) we easily get that there exists C1 = C(e,t, 0, G) > 0 such that

Q-2
Q-1 Q-1 - n—
( [ &ay ) < O [l + Wl lgrads ) o

for every ¢ € C§°(S). From now on we assume that ¢ > 1. Using Holder inequality with
p=Q — 1, yields

-1
IIwIItLt%(S) < O (II?X)HtLt(S)JrIIWtL(t1)(@21>(S)||¢HL91(5)>

for every ¢ € C(S) and t > 1. By means of Young’s inequality, we get there that there exists
another constant Cy = Cs(g,t, 0,G) such that

W”Lt%(s) < O <H¢HLt(S> + WHL(H)SQ{”(S) + HgdesWLQl(s)) :

By setting ¢t = @ — 1 in the last inequality we get that
[l @2 < Co (WHLQ*(S) + ”grastwuLQ*l(S)) -
L Q=2 (5)

By reiterating this procedure for t = @, +1, ... one can show that for all ¢ > @ — 1 there exists
Cy = Cy(e, 0,G) such that

1l zags) < Co (Illza-ss) + llgradus Yl a-r(s)

for every ¢ € CF(S). O

5.1 Final remarks and generalizations

Since Carnot groups are endowed with natural and rich geometric structures, we may easily give
the notion of horizontal variation. More precisely, if U C G is an open set and ¢ : U — R, the
H-variation of ¢ in U is defined by

Vargy(U) := sup {/ Ydivapoy - ¢ € CYU, H), |¢| < 1}. (41)
U
If » € C} (U), by using an integration by parts, one can show that

Vaer(U):/ |grady | oy,
U

where we stress that o} = dL". If U = G we also set Varg1). Starting from (4I]) we may define
the space of functions of bounded horizontal variation on U as follows:

BVy(U) :={¢p € L*(U) : Varup(U) < +oc}.

By definition, £ C G is a set of finite H-perimeter in U if 15 € BVy(U). We also set
|OE|n (U) := Varg1g(U) and just |0F|x, if U = G. Note that the previous notions are based
on the validity of a Divergence Theorem for horizontal vector fields on G.

Analogous remarks can be done when we define horizontal Sobolev spaces. For the theory of
(horizontal) Sobolev and BVy spaces in Carnot groups we refer the reader to [18], [8], [27) 28],
[29], [37], [47], [60] and bibliographies therein.
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The results of this paper and, in particular the validity of a horizontal Divergence Theorem
(see Theorem[3.3]) enable us to define the HS-variation (i.e. horizontal tangent variation, denoted
by Varus) for functions defined on any C2-smooth hypersurface S C G. More precisely, let
S CGbea C2-smooth closed hypersurface and let ¢/ C S be any open subset of S. We denote
by Dus the differential operator Dus : X(HS) — R given by

Dus¢ = divas + (Cu vy, d) for every ¢ € X(HS).

By the results of Section 3.2} for every ¢ € X{(HU) = CL(U, HU), the following holds:
[ oPwoot == [ (gradusvé) ot
u u

whenever 1) € CH(U).
Definition 5.8. The HS-variation of 1 : U C .S — R is defined by

Vargsy(U) = Sup{/ VDuspo !¢ € CYU, HU), |¢| < 1} . (42)
u

The space of functions of bounded HS-variation on U is given by
BVus(U) := {p € L*U, oY) : Varas(U) < +oo}.

Any subset E C S is said to have finite HS-perimeter in U if 1g € BVus(U). We denote by
|OE|us (U) := Varus1g(U) the HS-perimeter of E inU. If U = S we also set |OF|u .

Starting from this definition, a complete theory of BVgus spaces and of finite HS-perimeter
sets can be developed, in particular, by adapting to this context some standard approximation
toold?]. The same observation applies for horizontal tangent Sobolev spaces on hypersurfaces.

The Isoperimetric Inequality (see Theorem [A.T]) and the related Sobolev-type inequalities
(see Theorem [5.1] and its corollaries proved throughout Section [B]) can easily be generalized for
the weakly-differentiable function spaces introduced above.

More precisely, we state without proof, the following:

Theorem 5.9 (Generalized Isoperimetric and Sobolev inequalities). Let G be a k-step Carnot
group and fix a homogeneous metric o on G just as in Definition[2.48. Let S C G be a C?-smooth
closed hypersurface and let Hu be its horizontal mean curvature. Then there exists a positive
constant Crsep, only dependent on G and on the homogeneous metric o, such that

Q-2

(UZ_I(E)) Q-1 < Crsop </E |H x| O’Z_l + ‘8E‘HS> (43)

for every set E of finite HS-perimeter in S. Furthermore, for every ) € BVus(S) one has

n—1
161, g4, < Crop ([ 16117010371+ Varuss) (44)

2In particular, it is not difficult to define mollifiers on smooth submanifolds of Carnot groups. Actually this
can be done by studying mollifiers on graded vector spaces.
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