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CAPILLARY FLOATING AND THE BILLIARD BALL

PROBLEM

EUGENE GUTKIN

Abstract. We establish a connection between capillary floating
in neutral equilibrium and the billiard ball problem. This allows us
to reduce the question of floating in neutral equilibrium at any ori-
entation with a prescribed contact angle for infinite homogeneous
cylinders to a question about billiard caustics for their orthogonal
cross-sections. We solve the billiard problem. As an application,
we characterize the possible contact angles and exhibit an infinite
family of real analytic non-round cylinders that float in neutral
equilibrium at any orientation with constant contact angles.
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1. Introduction: Floating in neutral equilibrium and the
billiard ball problem

The mathematical theory of capillarity goes back to 1806. In his
famous treatise on celestial mechanics [24] Laplace discussed a broad
range of problems related to surface tension at fluid interfaces, among
them a theory of capillary floating. One of the major open problems in
this subject is to determine configurations at which a particular body
will float on a liquid surface. In [24] Laplace characterized some spe-
cial cases of capillary floating which was an astonishing achievement
for his time. There are several physical phenomena that need to be
taken into account: The mass distribution in the body, the gravity,
the surface tension, etc. This leads to a highly nonlinear free bound-
ary problem with nonlinear boundary conditions. Further specializing
and simplifying the physical assumptions, we arrive at the concept of
floating in neutral equilibrium with zero gravity. See [10]. In what
follows we will simply speak of floating in neutral equilibrium. The rel-
evant mathematical conditions involve geometry of the body surface,
its space orientation, and the contact angle between the body and the
liquid surface.
On the outset, the problem of body floating is three dimensional.

In the special case when the body is an infinite homogeneous cylinder,
it reduces to a two dimensional problem involving the cross-section
of the cylinder. We will assume that it is a bounded, convex, planar
domain, say Ω ⊂ R2. The three-dimensional floating problem for the
cylinder translates into properties of Ω which are naturally interpreted
as the conditions for capillary floating in two dimensions. The essential
requirements for neutral equilibrium are then imposed by the basic
laws of physics. In what follows we will be mostly concerned with the
two-dimensional floating in neutral equilibrium. This problem can be
reformulated in terms of the geometry of Ω. Figure 1 illustrates the
concept of two-dimensional floating in neutral equilibrium.
The first work connecting two-dimensional capillary floating with

convex geometry appears to be [27]. The main result in [27] says that
any regular, convex, bounded, planar domain will float at a given con-
tact angle in at least four distinct orientations. The proof crucially
uses the four vertex theorem. The problem was further studied by R.
Finn. In [10] he showed that the mathematical assumptions in [27] fol-
low from basic physical laws. Finn then asked which convex, smooth
domains Ω can float at a prescribed contact angle γ in every rotational
orientation. He pointed out that for γ = π/2 this happens if and only
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if Ω is a domain of constant width. See [10, 11] for this and related
material.

γ γ

Figure 1. Floating in neutral equilibrium; γ is the con-
tact angle.

The geometry of a convex planar domain Ω is crucial for the billiard
ball problem championed by G.D. Birkhoff in the early 20th century [5].
It can also be viewed as a highly specialized and simplified case of a
physical situation. The billiard ball is a point that travels with the
unit speed inside Ω reflecting at the boundary ∂Ω according to the law
of equal angles. Disregarding the motion of the ball between collisions
with the boundary, we reduce the billiard ball problem to the study of
the billiard map on Ω. Invariant curves of this map provide a crucial
insight into the billiard dynamics. Let s be the arc length variable on
∂Ω, and let θ be the outgoing angle. See Figure 3. Beginning with
Birkhoff [5], invariant curves of the form θ = h(s) played an important
role in the literature on billiard dynamics.

The functions θ = h(s) that yield invariant curves have been exten-
sively studied [25, 9, 21, 18]. The present work is based on the following
observation relating the floating problem and the billiard ball problem
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for the planar domain Ω. The cylinder with the cross-section Ω floats
in neutral equilibrium at any orientation with the contact angle γ if
and only if the billiard table Ω admits the invariant curve θ = h(s)
with the constant function h(s) ≡ π − γ. For the reasons that we will
explain in section 2, we call these invariant curves the constant angle
caustics for Ω. The floating problem thus becomes the following bil-
liard problem: i) Find the regular, convex billiard tables that admit
constant angle caustics; ii) Determine the corresponding angles. This
work provides a fair amount of information on this subject. Before de-
scribing our results, we will further elaborate on the capillary floating
in three dimensions.

The conjecture that the round ball is the only body to float in equi-
librium at any orientation is usually ascribed to S. Ulam. See [2, 28].
Various authors have mathematically reformulated this question in dif-
ferent, albeit related ways. The interpretation of Finn et al takes the
tension of the liquid surface into account [10, 12, 13], while the other
interpretations disregard it [31]. Whatever the interpretation, the con-
ditions of floating in neutral equilibrium are much more restrictive for
three dimensions than in the special case of two dimensions. Thus,
Finn and Sloss [12] show that the only three-dimensional body to float
in neutral equilibrium in any orientation at a constant contact angle is
the round ball. Using a different interpretation of the concept of float-
ing, P. Varkony [31] finds a counterexample to the Ulam conjecture.
It is clear that the concept of floating in neutral equilibrium generates
challenging questions about the geometry of surfaces in R3. In the
present work we relate the two-dimensional floating to the geometry of
convex bounded domains in R2.

We will now briefly describe our results and the structure of the
paper. In section 2 we review the concept of the billiard map. Let Ω ⊂
R2 be a bounded, strictly convex domain with the smooth boundary
∂Ω. The phase space Z = Z(Ω) for the billiard map on Ω consists of
rays1 intersecting Ω. Let 0 ≤ θ, θ1 ≤ π be the two angles that a ray
l ∈ Z forms at the points of intersection s, s1 ∈ ∂Ω. See Figure 2.
Let F : Z → Z be the billiard map. The ray l1 = F (l) is obtained by
reflecting l at s1 about ∂Ω, as if ∂Ω was a perfect mirror. The domain Ω
floats in neutral equilibrium at any orientation with a constant contact
angle if and only if there exists 0 < δ < π such that for any l ∈ Z
satisfying θ(l) = δ we have θ1(l) = δ.

1I. e., oriented straight lines.
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θ1

θ1

s1

Figure 2. The billiard phase space as a space of rays
intersecting the billiard table.

In section 2 we study this geometric condition from the viewpoint
of the billiard map. Let ρ(s) be the radius of curvature for ∂Ω; let
ck, k ∈ Z, be its Fourier coefficients. Note that ∂Ω is circular if and only
if ck = 0 for all nonzero k. Theorem 1 says that a noncircular domain Ω
has the above property if and only if the following two conditions hold:
i) There exists n > 1 such that the pair n, δ satisfies the trigonometric
equation (6); ii) The coefficients ck vanish if the pair k, δ does not
satisfy equation (6).
In section 3 and section 5 we study equations (6) and obtain sev-

eral applications. The value δ = π/2 is special in that the pair n, π/2
satisfies equation (6) with any odd n. The corresponding regions Ω
are the domains of constant width; we briefly review their geometry
in section 6. The symmetry δ′ = π − δ allows us to reduce the study
of solutions of equations (6) to the range 0 < δ < π/2. Restricted to
this interval, equations (6) are equivalent to tannx = n tanx. In sec-
tion 4 we obtain fairly detailed qualitative information about solutions
of these equations. Let Bn ⊂ (0, π/2) denote the set of solutions. We
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show that Bn has roughly n/2 elements; it is (π/n)-dense in the inter-
val (0, π/2). For every n > 3 we exhibit a one-parameter family Ωn,τ

of noncircular, real analytic domains that float in every orientation at
the contact angles γ ∈ Bn and γ ∈ π − Bn. See equations (11), (12)
and Corollary 3.
The classification of domains that float in neutral equilibrium at con-

stant contact angles hinges on the information about the solutions to
tannx = n tanx. In particular, we need to know whether the sets
Bn ∩Bm can have nonempty intersections for m 6= n. In section 7 and
section 8 we reduce these questions to a study of roots of an infinite
chain of polynomials that are closely related to Chebyshev polynomi-
als. This reveals a number-theoretic aspect of capillary floating. Let
Sn, n ≥ 1, be the polynomials. In section 8.1 we study the roots of
Sn and obtain some information about them. However, the question
whether Sm, Sn have nontrivial common roots for m 6= n remains un-
resolved. It is the lack of this information that prevented the author
from publishing his findings immediately after the 1993 PennState Dy-
namics Workshop [14]. The book [29] contains a brief report on these
findings.
Based on substantial partial evidence, we formulate three conjectures

about the roots of Sn. Conjectures 1 and 2 are equivalent. In section 9,
assuming that these conjectures hold, we derive consequences for the
billiard and for the floating problem. Theorems 2, 3, 4 completely
describe billiard tables with constant angle caustics. Theorem 5 gives a
classification of regular planar domains that float in neutral equilibrium
in any orientation at constant contact angles.

The present work can be viewed as one of many examples of fruitful
relationships between the billiard and other mathematical subjects.
We refer the reader to [22, 23, 20, 29, 16, 30] for other examples of
this nature. The billiard framework offers a variety of open problems
that often bear on fundamental and elementary mathematical concepts
[17]. The author hopes that the present work will help to advertise the
subject in the mathematical fluid mechanics community. The author
is grateful to Bob Finn for bringing the subject of capillary floating to
his attention and for making several comments on the present work. It
was partially supported by the MNiSzW grant N N201 384834.
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2. The Birkhoff billiard: General caustics versus
constant angle caustics

The billiard in the sense of G.D. Birkhoff plays on a compact, convex
domain Ω ⊂ R2. We will assume that the boundary ∂Ω is twice con-
tinuously differentiable. Let 0 ≤ s ≤ |∂Ω| be an arc length parameter.
Then the curvature κ(s) is a continuous, nonnegative function on ∂Ω.
We will assume throughout the paper that Ω is strictly convex in the
sense of differential geometry: κ > 0. In what follows we refer to such
Ω as regular billiard tables, or regular convex domains.
The elements of the phase space of the billiard map are the inward

pointing unit vectors v based on ∂Ω. Let 0 ≤ θ ≤ π be the angle
between v and the positively oriented ∂Ω. The coordinates 0 ≤ s ≤
|∂Ω|, 0 ≤ θ ≤ π induce a diffeomorphism of the phase space Z and the
cylinder (R/|∂Ω|Z)× [0, π].
The phase point (s, θ) ∈ Z corresponds to the billiard ball located

at s ∈ ∂Ω, which is about to shoot of in the direction that makes
angle θ with ∂Ω. This shot lands at s1 ∈ ∂Ω. Let 0 ≤ θ1 ≤ π be
the other angle of the chord [s, s1]. The ball bounces elastically at the
boundary and is set to shoot of again. The law of equal angles yields
that the new vector v1 makes angle θ1 with ∂Ω. The transformation
F : Z → Z given by F (s, θ) = (s1, θ1) is the billiard ball map for Ω.
Figure 3 illustrates the discussion.
In view of our assumptions on Ω, the billiard map is of class C1. Let

l(s, s1) denote the length of the chord [s, s1]. The differential of the
billiard map is given by the following expressions [18]:

∂s1
∂s

=
κ(s)l(s, s1)− sin θ

sin θ1
,
∂s1
∂θ

=
l(s, s1)

sin θ1
,
∂θ1
∂θ

=
κ(s1)l(s, s1)− sin θ1

sin θ1
,

and
∂θ1
∂s

=
κ(s)κ(s1)l(s, s1)− κ(s) sin θ1 − κ(s1) sin θ

sin θ1
.

The billiard ball map is an area preserving twist map. The classical
results of Birkhoff on the dynamics of the billiard map received a “sec-
ond life” in the theory of area preserving twist maps. See the accounts
in [3], [26] and [23]. We are concerned with a particular aspect of the
billiard ball map: The invariant circles.

Definition 1. Let Ω be a regular billiard table. An invariant circle for
the billiard map on Ω is a closed curve Γ ⊂ Z which is homotopic to a
boundary component of Z and is invariant under the billiard map.

By a theorem of Birkhoff, any invariant circle Γ is the graph of a
lipshitz function: θ = hΓ(s). Thus, for every base point s ∈ ∂Ω there
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s
θ

θ1

θ1

s1

Ω

∂Ω

Figure 3. The billiard map for a regular convex domain.

is a unique angle θ = hΓ(s) such that the ball shooting from s in the
direction θ will “stay” on the invariant circle Γ. For a typical Γ the
function hΓ is not constant. See [3, 15, 18, 21, 19, 25]. We will study
invariant circles such that hΓ is constant. Both boundary components
of Z are trivial invariant circles of that type. We will consider only
nontrivial invariant circles in what follows. To simplify the terminology,
we will often call them the invariant curves. This is justified, since we
will not study other invariant curves.

Definition 2. Let Γ ⊂ Z be an invariant circle, and let θ = hΓ(s) the
corresponding lipshitz function. If hΓ = const, we will say that Γ is
a constant angle invariant circle. A constant angle invariant circle is
determined by that angle, say 0 < δ < π. We will denote it by Γδ. See
Figure 4.

It is instructive to think of the phase space Z as the space of ori-
ented lines (i. e., rays) intersecting Ω, or, alternatively, as the space of
directed chords in Ω. In this representation, an invariant circle Γ is a
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one-parameter family of rays. Its envelope γ ⊂ R2 is the caustic of Ω
corresponding to the invariant circle Γ.2

Let Γ′ be the family obtained from Γ by reversing the directions of
rays. Then Γ′ is an invariant circle as well. This is a consequence of
the well known fact that the direction reversing involution σ : Z →
Z conjugates the billiard map with its inverse: σFσ = F−1.3 It is
clear that Γ and Γ′ have the same evolute; hence, the correspondence
between invariant circles and the caustics is 2-to-1. The geometry of
caustics for regular billiard tables offers challenging open questions. See
[9, 18] and [19] for this material. Since invariant circles are determined
by their caustics essentially uniquely, in what follows we identify them;
in particular, we will speak of general caustics and of constant angle
caustics.

Remark 1. The reader should keep in mind that the two invariant
circles, say Γ and Γ′ = σ(Γ) corresponding to the caustic γ are distinct
subsets of the phase space Z. Let 0 < r(Γ) < 1 be the rotation number
of the invariant circle. Then r(Γ′) = 1− r(Γ).

Since ∂Ω is strictly convex, we parameterize it by the direction 0 ≤
α ≤ 2π of the tangent ray to s ∈ ∂Ω. Thus, s = s(α). The derivative
ρ(α) = ds/dα is the radius of curvature function for Ω. Set T = R/2πZ.
Then the billiard map is a diffeomorphism of T× [0, π]; we will use the
notation F (α, θ) = (α1, θ1).

Proposition 1. Let Ω ⊂ R2 be a billiard table, and let ρ(α), 0 ≤ α ≤
2π, be its radius of curvature. Then Ω has the constant angle caustic
Γδ iff the function ρ(·) satisfies the identity

(1)

∫ α+δ

α−δ

ρ(ξ) sin(α− ξ)dξ = 0.

Proof. Set P = P (α) = (x(α), y(α)) and let P1 = P (α1). Let O be the
intersection point of the tangent lines at α and α1. From the triangle
POP1 we have α1 = α + 2δ. See Figure 5. As is well known

(2) x′(α) = ρ(α) cosα, y′(α) = ρ(α) sinα.

Thus

x(α + 2δ)− x(α) =

∫ α+2δ

α

ρ(ξ) cos ξdξ,

2The term “caustic” is widely used in the geometric optics, mechanics, and
the geometric theory of singularities; in different contexts it stands for different,
although related things. We refer the reader to [1, 4, 8] for many variations of this
concept.

3It is often called the billiard involution.
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θ = 0

θ = δ

θ = π

Γδ

Γ : θ = h(s)

s = 2π

s = 0

Figure 4. Billiard map phase space with a general in-
variant circle and a constant angle invariant circle.

y(α+ 2δ)− y(α) =

∫ α+2δ

α

ρ(ξ) sin ξdξ.

The direction of the chord [PP1] is α + δ. We introduce the new
variable β = α + δ. Thus, the slope of [PP1] is tanβ. Computing the
slope from the coordinates of points P and P1, we obtain

(3)

∫ β+δ

β−δ
ρ(ξ) sin ξdξ

∫ β+δ

β−δ
ρ(ξ) cos ξdξ

= tanβ.

Equation (3) is an identity that holds for any β ∈ T. Performing
elementary trigonometric manipulations in equation (3), and renaming
the independent variable by α again, we obtain the claim.
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δ

δ
P1

P

α + 2δ

α

2δ

O

∂Ω

Ω

Figure 5. The billiard map restricted to a constant an-
gle invariant circle.

We will briefly review basic facts from harmonic analysis on the
circle. The reader may find proofs of the statements below in most
analysis textbooks.
If g is a distribution on T, its Fourier transform is defined by ĝ(n) =

∫

T
g(α)e−inαdα for n ∈ Z. The radius of curvature has a Fourier ex-

pansion

(4) ρ(α) =
∑

n∈Z

cne
inα

where cn = ρ̂(n)/2π are the Fourier coefficients. The Fourier coeffi-
cients of a real function satisfy c−n = c̄n. Equation (4) is equivalent to
the trigonometric expansion

ρ(α) = a0 +
∑

n≥1

an cosnα + bn sinnα

whose coefficients are real. The coefficients in these equations are re-
lated by a0 = c0 and an = 2ℜ(cn), bn = −2ℑ(cn) for n > 0.
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Denote by x+ y the group operation on T. Let k(·) be a function or
a distribution on T. The operator of convolution with k is defined by

(5) (Kρ)(x) =

∫

T

ρ(x− ξ)k(ξ)dξ =

∫

T

ρ(ξ)k(x− ξ)dξ.

The standard notation for convolution operators is K(ρ) = ρ∗k = k∗ρ.
Let Fn be the complex line in the space of functions on T spanned

by einx. We view equation (4) as the orthogonal decomposition by the
subspaces Fn, n ∈ Z. Convolution operators preserve this decompo-
sition. The restriction K|Fn

is the operator of multiplication by k̂(n).
The above discussion yields the following statement which is crucial for
Theorem 1.

Lemma 1. Let k(·) be a distribution on T, and let k̂(n), n ∈ Z, be
its Fourier transform. Let K be the operator of convolution with the
distribution k(·). Let ρ(·) be a function on T, and let cn, n ∈ Z, be its
Fourier coefficients.

Then Kρ = 0 iff k̂(n)cn = 0 for all n ∈ Z.

Theorem 1. Let Ω ⊂ R2 be a regular, noncircular billiard table. Let
ρ(·) be the radius of curvature of ∂Ω, and let cn, n = 1, 2 . . . be its
Fourier coefficients. Then Ω has the constant angle caustic Γδ iff the
following conditions hold:

i) There exist n > 1 such that

(6)
sin(n− 1)δ

n− 1
=

sin(n+ 1)δ

n+ 1
;

ii) We have ck = 0 for all k > 1 such that equation (6) is not
satisfied.

iii) We have cn 6= 0 for at least one n > 1 such that equation (6) is
satisfied.

Proof. By Proposition 1, Γδ is a caustic for Ω iff ρ(·) belongs to the
zero space of the convolution with the function

(7) k(x) = (sin x) 1[−δ,δ].

The function k(·) is odd, hence k̂(0) = 0. By a straightforward com-
putation, for n > 1 we have

i · k̂(n) = sin(n− 1)δ

n− 1
− sin(n+ 1)δ

n+ 1
.

It is well known that for any billiard table Ω we have c1 = 0. By
Lemma 1, Γδ is a caustic for Ω iff cmk̂(m) = 0 for all m. By the
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preceding discussion, Γδ is a caustic iff

cm

[

sin(m− 1)δ

m− 1
− sin(m+ 1)δ

m+ 1

]

= 0

for m > 1. Since Ω is not circular, at least one coefficient, say cn, does
not vanish. But Γδ being a caustic, equation (6) holds for all n > 1
such that cn 6= 0.

3. Constant angle caustics and a chain of trigonometric
equations

By Theorem 1, the description of billiard tables with constant angle
caustics hinges on solving equation (6). In this section we will reduce
equation (6) to a chain of trigonometric equations involving the func-
tion tan(·).
Recall that δ ∈ A if there exists n > 1 such that equation (6) holds.

Let An ⊂ A be the set of δ ∈ (0, π) such that the pair δ, n satisfies
equation (6). Thus

A = ∪∞
n=2An.

Lemma 2. Let n > 1. Then the following claims hold.

i) We have π
2
∈ An iff n is odd.

ii) Set Ãn = An \ {π
2
}. Then Ãn is the set of solutions in (0, π) of

the equation tannδ = n tan δ.

Proof. Set δ = π
2
. If n is odd, then both sides in equation (6) vanish,

hence π
2
∈ An. If n is even, then the numerators in equation (6) are

±1, and their signs are opposite. Thus, π
2
/∈ An, proving claim i).

Let δ ∈ An. Arguing as above, we establish that sin(n+1)δ = 0 iff n
is odd and δ = π

2
. Hence for δ ∈ Ãn we have sin(n−1)δ, sin(n+1)δ 6= 0.

Therefore, Ãn is the set of δ ∈ (0, π) satisfying

sin(n− 1)δ

sin(n + 1)δ
=

n− 1

n+ 1
.

We rewrite this as

(8)
sin nδ cos δ − cos nδ sin δ

sinnδ cos δ + cosnδ sin δ
=

n− 1

n+ 1
.

If cosnδ = 0, then the left hand side in equation (8) is 1, which is
impossible. Thus, cosnδ 6= 0. Dividing the numerators and the de-
nominators in equation (8) by cos δ cosnδ, we obtain

tannδ − tan δ

tannδ + tan δ
=

n− 1

n+ 1
.

Claim 2 follows.
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For X ⊂ R and a ∈ R let {a − X} = {a − x : x ∈ X}. Set

Ã = A \ {π
2
}. Then

(9) Ã = ∪∞
n=2Ãn.

Set Bn = An ∩ (0, π/2) and B = A ∩ (0, π/2). Lemma 2 and the
preceding discussion imply the following.

Proposition 2. Let n > 1. Then for n even, An = Bn ∪ {π − Bn}
and for n odd, An = Bn ∪ {π − Bn} ∪ {π

2
}. Moreover, Bn is the set of

solutions in (0, π/2) of the equation

(10) tannx = n tanx.

4. Analysis of trigonometric equations

In this section we begin to analyze solutions of the chain of equa-
tions (10) in the interval (0, π/2).

Proposition 3. 1. Let n > 1 be even. Then Bn consists of n
2
− 1

points ξ
(n)
k , where

2k

2n
π < ξ

(n)
k <

(2k + 1)

2n
π : k = 1, . . . ,

n

2
− 1.

2. Let n > 1 be odd. Then Bn consists of n−1
2

− 1 points ξ
(n)
k , where

2k

2n
π < ξ

(n)
k <

(2k + 1)

2n
π : k = 1, . . . ,

n− 1

2
− 1.

Proof. The graph of the function y = tannx on (0, π/2) is the disjoint
union of n connected curves; we will call them branches. A branch
is defined on the interval k

2n
π < x < k+1

2n
π : 0 ≤ k ≤ n − 1. Set

I
(n)
k = ( k

2n
π, k+1

2n
π). Each branch extends by continuity to one of the

endpoints of I
(n)
k . These endpoints don’t enter in our analysis, and we

ignore them in what follows. We say that a branch is positive (resp.
negative) if it belongs the the upper (resp. lower) halfplane.

Positive branches correspond to I
(n)
k with k even. Thus, there are

n/2 (resp. (n − 1)/2) positive branches if n is even (resp. odd). We
observe that each point in Bn belongs to the intersection of the graph
of y = n tanx on (0, π/2) with a positive branch; this intersection
contains at most one point. See Figure 6 and Figure 7.
Comparing the asymptotics of n tanx and tannx as x → 0+, we

see that the first branch, which corresponds to k = 0, does not yield
an intersection point. When n is even, all other positive branches
intersect the graph n tan x. This proves claim 1. Let now n be odd.
Then both the last branch and the graph of y = n tanx are asymptotic
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to the vertical line x = π/2. Comparing the asymptotics of n tanx and
tannx as x → π

2
−, we see that the curves do not intersect. This proves

claim 2. We leave details to the reader.

y = n tanx

y = tannxy = tannxy = tannx

π

2n
(n−2)π

2n
π

2 =
nπ

2n

(n−1)π
2n

(n+1)π
2n

x

y

0

Figure 6. The graphs of functions y = tannx and y =
n tan x for n even.

We will state an immediate consequence of Proposition 3. Recall
that An ⊂ (0, π) is the set of numbers satisfying equation (6) and that
A = ∪n>1An.

Corollary 1. We have |An| = n − 2. The sets An are 2π/n dense in
(0, π).

Proof. By Lemma 2 and Proposition 2, |An| = 2|Bn| if n is even and
|An| = 2|Bn| + 1 if n is odd. The first claim now follows from Propo-
sition 3. The above propositions imply that the distances between
consecutive points of An are at most π/n. Besides, the distances from
An and the endpoints of (0, π) are at most 2π/n.
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π

2 =
nπ

2n

y = n tanx

y = tannxy = tannx

π

2n
(n−1)π

2n
(n+1)π

2n
x

y

0

Figure 7. The graphs of functions y = tannx and y =
n tan x for n odd.

5. Immediate implications

The results of section 2, section 3, and section 4 have immediate
consequences for the billiard and for the floating. We begin with the
former. We will say that the billiard tables Ω1,Ω2 are conformally
equivalent if there is a conformal mapping F : R2 → R2 such that
F (Ω1) = Ω2. For instance, all discs in R2 are conformally equivalent.

Corollary 2. There is a dense countable set Ã ⊂ (0, π) \ {π/2} such
that the following holds.
1. For any δ ∈ Ã there is n > 1 and a real analytic 1-parameter
family Ωn,τ , 0 ≤ τ < 1, of conformally inequivalent, regular billiard
tables having the constant angle caustic Γδ. The curves ∂Ωn,τ are real
analytic; ∂Ωn,0 is the unit circle.
2. A regular billiard table Ω has the caustic Γπ/2 iff ∂Ω is a curve of
constant width.
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3. Let 0 < δ < π belong to the complement of Ã ∪ {π/2} in (0, π). If
a regular billiard table Ω has the constant angle caustic Γδ, then Ω is
circular.

Proof. Let Ãn and Ã be as in equation (9). Then δ ∈ Ã iff there exists
n > 1 such that tannδ = n tan δ. Let a, b ∈ R be arbitrary. Set

ρ(α) = 1 + a cosnα + b sin nα.

By elementary trigonometry, there exists α0 depending on a, b, n such
that ρ(α) = 1+

√
a2 + b2 sinn(α+α0). This is the radius of curvature of

a regular billiard table iff a2+b2 < 1. Different values of α0 correspond
to isometric billiard tables. Set ρn,τ (α) = 1 + τ sinnα.
Integrating equation (2), we obtain

(11) xn,τ (α) = ξ0+sinα+
τ

2(n− 1)
cos(n−1)α− τ

2(n + 1)
cos(n+1)α,

(12) yn,τ(α) = η0−cosα+
τ

2(n− 1)
sin(n−1)α− τ

2(n+ 1)
sin(n+1)α.

Fixing the constants ξ0, η0, we obtain a real analytic family Ωn,τ . This
proves claim 1. Claim 2 will follow from the discussion in the beginning
of section 6. Claim 3 is immediate from Theorem 1.

Set ρ(α) = c + a cosnα + b sin nα. This formula, provided 0 ≤√
a2 + b2 < c, yields a 3-parameter family of functions that serve as

radii of curvature for billiard tables Ω having the caustic Γδ. By equa-
tions (11), (12), we have a 5-parameter family of these domains. How-
ever, the conformal equivalence eats up 4 of the parameters. We can
view equations (11), (12) as a deformation Ωn,τ of the circular table.

The following is the counterpart of Corollary 2 for the floating in neu-
tral equilibrium. Its claims are the reformulations of the corresponding
claims in Corollary 2; we do not repeat the proof.

Corollary 3. There is a dense countable set Ã ⊂ (0, π) \ {π/2} such
that the following holds.
1. For any δ ∈ Ã there is n > 1 and a real analytic 1-parameter family
Ωn,τ , 0 < τ < 1, of conformally inequivalent planar domains with real
analytic boundaries that float in neutral equilibrium at any orientation
with the contact angle π − δ. The domain Ωn,0 is the unit circle.
2. A regular convex domain floats in neutral equilibrium at any orien-
tation with the contact angle π/2 if and only if its boundary is a curve
of constant width.
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3. Let 0 < δ < π belong to the complement of Ã∪ {π/2} in (0, π). If a
regular convex domain floats in neutral equilibrium at any orientation
with the contact angle δ, then it is a disc.

Recall that Bn ⊂ (0, π/2) is the set of solutions to equation (10). To
continue our study of floating in neutral equilibrium, we need further
number theoretic information about these sets. Below we formulate
questions about floating and/or billiard whose answers depend on this
information.

Question 1. Let δ ∈ B. Describe the set of billiard tables Ω such
that Γδ is a caustic. Equivalently, describe the set of cross-sections of
cylinders that float in neutral equilibrium with the contact angle π− δ
at any orientation.

Question 2. Let δ ∈ B. Let Ω be a billiard table with the caustic Γδ.
Let ϕ : Γδ → Γδ be the restriction of the billiard map on Ω to Γδ. Can
ϕ be periodic?

In order to answer Question 1, we need to investigate the intersec-
tions Bn ∩ Bm for m 6= n. In particular, we need to know for what
pairs m 6= n the set Bn ∩ Bm is nonempty. The answer to Q uestion 2
depends on whether δ ∈ πQ or not. In particular, if B ∩ πQ is empty,
the answer is negative. In section 7 and the following sections we will
study the sets of solutions to equation (10) and equation (6). The solu-
tion δ = π/2 of the latter is special. The corresponding planar domains
have been studied by geometers from an independent viewpoint. We
briefly review this in the next section.

6. The caustics Γπ/2 and curves of constant width

To illustrate the preceding discussion, we will now study the ques-
tion: Which billiard tables have the caustic Γπ/2? Let Ω be a regular
billiard table. Then Γπ/2 is a caustic iff any chord which is perpendic-
ular to ∂Ω at one of its ends, is also perpendicular to ∂Ω at the other
end. The values of the angle parameter at these points are α, α + π.
The length d(α) = |P (α)P (α + π)| is the width of Ω in the direction
α+ π/2. The chord [P (α)P (α+ π)] is perpendicular to ∂Ω iff α+ π/2
is a critical point for the function d(·) . Therefore, Γπ/2 is a caustic iff
d(α) = const. These curves are known in geometry as the curves of
constant width [6]. Thus, a regular billiard table Ω has the caustic Γπ/2

iff Ω is a domain of constant width.
We point out that the analysis below assumes that ∂Ω is twice con-

tinuously differentiable. In particular, it is not valid for domains of
constant width with corners. The boundary of the famous example of
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such a domain, the Reuleaux triangle [6], consists of three circular arcs
of the same radius; it has corners at the endpoints of the arcs. See
Figure 8. The Reuleaux triangle is not a regular billiard table.

B

C

A

Figure 8. Reuleaux triangle: A domain of constant
width with corners.

Corollary 4. Let Ω be a regular billiard table, and let ρ(·) be its radius
of curvature. Then Γπ/2 is a caustic for Ω iff we have the identity

(13) ρ(α) + ρ(α + π) = const.

Proof. Let cm, m ∈ Z, be the Fourier coefficients of ρ. By the proof of
Theorem 1, Γπ/2 is a caustic iff

cm

[

sin (m−1)π
2

m− 1
− sin (m+1)π

2

m+ 1

]

= 0

for all m > 1. For m = 2k this means 4kc2k/(4k
2 − 1) = 0, yielding

c2k = 0. For odd m the equation holds for any cm. Thus, the caustic



20 EUGENE GUTKIN

Γπ/2 exists iff the radius of curvature has the Fourier expansion of the
form

(14) ρ(α) = c0 +
∑

modd

cme
imα.

Set ρ0(α) = ρ(α)− c0. Then equation 14 holds iff ρ0 is an odd function
on T. Equivalently, ρ(α + π) + ρ(α) = 2c0.

Remark 2. We point out that the identity equation (14) characterizes
all billiard tables Ω with the caustic Γπ/2, including the circular billiard
table. By the discussion preceding Corollary 4, the width of any such
Ω is constant, and is equal to 2c0. Let |∂Ω| be the perimeter of Ω. If
Ω has constant width, we denote it by w(Ω). By the above argument,
for a curve of constant width we have

ρ(α + π) + ρ(α) = w(Ω).

Integrating this equation and using that
∫

T
ρ(α)dα = |∂Ω|, we obtain

the identity

(15) π · w(Ω) = |∂Ω|.
Note that we have used the regularity of ∂Ω to derive equation (15).

In fact, it is valid for arbitrary curves of constant width; it is called
Barbier’s theorem. Another amusing fact about domains of constant
width is the Blaschke-Lebesgue theorem [6]. It says that amongst the
domains of a fixed constant width the Reuleaux triangle has the small-
est area. By the isoperimetric theorem, the disc has the biggest area.
Let Ω be any domain of constant width w; let |Ω| be the area of Ω. By
an elementary calculation

π −
√
3

2
w2 ≤ |Ω| ≤ π

4
w2.

The equalities take place only for the Reuleaux triangle and the disc.

7. Trigonometric equations and a family of polynomials

We will now obtain quantitative information about the solutions of
equations (10).

Lemma 3. Let n ≥ 1. There are polynomials Pn, Qn such that

(16) tannx =
Pn(tan x)

Qn(tanx)
.

Polynomials Pn, Qn are uniquely determined by the recurrence relations

(17) Pn+1(z) = Pn(z) + zQn(z), Qn+1(z) = Qn(z)− zPn(z)
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and the initial data P1(z) = z, Q1(z) = 1. The polynomial Pn (resp.
Qn) is odd (resp. even). The degree of each of the two polynomials is
either n or n− 1, depending on the parity of n.

Proof. The formula

tan(x+ y) =
tan x+ tan y

1− tanx tan y

in the special case y = nx yields

tan(n + 1)x =
tannx+ tanx

1− tannx tan x
.

The claims follow by induction on n.

Remark 3. Polynomials Pn, Qn can be expressed in terms of the
Chebyshev polynomials of the first and the second kind. We will not
pursue this approach here.

Proposition 4. The polynomials in equation (16) satisfy

(18) − 2Pn(z) = in+1(z − i)n + (−i)n+1(z + i)n

and

(19) 2Qn(z) = in(z − i)n + (−i)n(z + i)n.

Proof. We rewrite equation (17) as
[

Pn+1(z)
Qn+1(z)

]

=

[

1 z
−z 1

] [

Pn(z)
Qn(z)

]

.

The claims follow by the elementary algebra.

Corollary 5. For n > 1 set

(20) Rn(z) = −1

2
in [(nz + i)(z − i)n + (−1)n(nz − i)(z + i)n] .

Let 0 < x < π/2, and set z = tan x. Then x ∈ Bn iff z is a positive
root of the polynomial Rn.

Proof. By Proposition 2, equation (10), and Lemma 3, x ∈ Bn iff
tanx = z > 0 satisfies Pn(z) − nzQn(z) = 0. By equations (18)
and (19), Pn(z)− nzQn(z) = Rn(z).

8. Number theoretic conjectures and implications

We have reduced our investigation of equations (10) to a study of
roots of the polynomials Rn. We now continue to study these polyno-
mials, and bring in some number theory.
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8.1. Polynomials and fractional linear transformations.

We will investigate the roots of Rn. The following lemma summarizes
the immediate properties of these polynomials.

Lemma 4. Let n ≥ 1. Then the following holds:

i) The polynomials Rn are real, odd polynomials;
ii) The degree of Rn is equal to n + 1 for n even, and to n for n

odd;
iii) The highest coefficient of Rn is 2n for n even and ±1 for n odd;
iv) We have Rn(z) = O(z3);
v) The roots of Rn are real and simple, except for the zero root,

which has multiplicity three.

Proof. Claims i) - iv) follow either from Rn(z) = Pn(z) − nzQn(z) or
directly from equation (20). We will prove claim v). Suppose n is even;
set n = 2k. Then deg(Rn) = 2k + 1. By iv), Rn has at most 2k − 2
nonzero roots, counted with multiplicities. By claim 1 in Proposition 3
and Corollary 5, Rn has k − 1 distinct positive roots. By i), Rn has
k − 1 distinct negative roots, hence the claim. The case of odd n is
similar, and we leave it to the reader.

Let

[

a b
c d

]

be a nondegenerate matrix. We will use the notation

[

a b
c d

]

◦ z =
az + b

cz + d
.

Let A,A′ be nondegenerate matrices. We will write A ∼ A′ to mean
that A′A−1 is a scalar matrix. Then A ∼ A′ holds iff A ◦ z ≡ A′ ◦ z.
Proposition 5. Let n > 1. There is a 1-to-1 correspondence, preserv-
ing the multiplicities, between the nonzero roots of Rn and the roots of
the equation

(21) ζn = (−1)n+1

[

n+ 1 n− 1
n− 1 n+ 1

]

◦ ζ,

other than ζ = ±1.

Proof. By equation (20), we have Rn(z) = 0 iff

(22)

(

z − i

z + i

)n

= (−1)n+1 nz − i

nz + i
.

We recall a few well known facts. The fractional linear transforma-
tions

ζ =

[

1 −i
1 i

]

◦ z, z =

[

i i
−1 1

]

◦ ζ.
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are inverse to each other; they induce a diffeomorphism of R∪∞ onto
the unit circle which sends the natural orientation of the real axis to
the counter clockwise orientation of the unit circle.
Setting Fn(z) =

nz−i
nz+i

, we rewrite equation (22) as

(F1(z))
n = (−1)n+1 Fn(z).

Setting F1(z) = ζ, z = F−1
1 (ζ), and using that

[

n −i
n i

] [

i i
−1 1

]

=

[

ni+ i ni− i
ni− i ni+ i

]

∼
[

n+ 1 n− 1
n− 1 n+ 1

]

,

we obtain equation (21).

We have proved that the transformation ζ =

[

1 −i
1 i

]

◦ z induces

a multiplicity preserving isomorphism between the roots z of Rn such
that F1(z) 6= ∞ and the solutions ζ 6= F1(∞) of equation (21). Using
that F1(0) = −1, F1(∞) = 1, and the information about the roots of
Rn contained in Lemma 4, we obtain the claim.

Remark 4. Proposition 5 singles out the roots ζ = ±1 of equa-
tion (21). Observe that −1 is always a root of multiplicity three for
this equation, while 1 is a (simple) root iff n is odd. To explain this,
we note that −1 = F1(0), while 1 = F1(∞). Observe that 0 is a multi-
plicity three root of Rn; the appearance of ∞ as a “root” of Rn is due
to the circumstance that in the beginning of the proof of Proposition 5
we have put the equation Rn(z) = 0 in the form

(23) (nz + i)(z − i)n = (−1)n+1(nz − i)(z + i)n.

If n is odd, the leading terms in both sides of equation (23) have the
same sign when z → ∞; if n is even, the signs are opposite.

Equation (21) involves a rational function whose denominator is (n−
1)ζ + (n + 1). Getting rid of the denominator and using the variable
x = −ζ , we obtain an equivalent polynomial equation:

−(n− 1)xn+1 + (n+ 1)xn − (n+ 1)x+ (n− 1) = 0.

The two corollaries below follow immediately from Proposition 5 and
the preceding discussion.

Corollary 6. Let n > 1. Set

(24) Sn(x) = (n− 1)
[

xn+1 − 1
]

− (n+ 1) [xn − x] .

Then all roots of the polynomials Sn belong to the unit circle {|x| = 1}.
The number 1 is a root of multiplicity three. The number −1 is a simple
root of Sn if n is odd, and Sn(−1) 6= 0 if n is even. The remaining
roots of Rn are simple.
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In what follows we will refer to the roots x 6= ±1 of Sn as the complex
roots.

Corollary 7. Let n > 1. The transformation z 7→ x given by

x = −z − i

z + i

induces a 1-to-1 correspondence between the nonzero roots of the poly-
nomial Rn and the complex roots of the polynomial Sn. Moreover, this
transformation sends the positive (resp. negative) roots of Rn to the
roots of Sn such that ℑx > 0 (resp. ℑx < 0).

8.2. Polynomials Sn: Conjectures and supporting evidence.

Let 0 < δ < π, δ 6= π/2, be an element in A. We want to describe the
set of billiard tables having caustics Γδ. The conjectures below aim at
answering Question 1.

Conjecture 1. Let m,n > 1 be distinct integers; let Sm, Sn be the
corresponding polynomials in equation (24). Then their sets of complex
roots are disjoint.

The material of section 7 and section 8.1 yields that Conjecture 1 is
equivalent to the following claim.

Conjecture 2. Let m,n > 1 be distinct integers. Then equations
tanmx = m tanx, tannx = n tan x have no common solutions in
(0, π/2).

For reader’s convenience, we outline a proof that the two conjectures
are equivalent. Recall that Bk denotes the set of roots of the equation
tan kx = k tanx in (0, π/2). By Lemma 3, Proposition 4, and Corol-
lary 5, the set {tanx : x ∈ Bk} is the set of positive roots of the
polynomial Rk. See equation (20). Corollary 7 provides a fractional
linear transformation that sends the positive roots of Rk, k > 1, to the
roots of Sk in the semi-circle {|z| = 1,ℑz > 0}. Now the information
about the roots of Sk contained in Corollary 6 implies the claim.
The following proposition lends support to Conjecture 2.

Proposition 6. Let n > 1. We will say that a solution x is nontrivial
if tan x 6= 0.
1. The system

(25) tannx = n tan x, tan(n+ k)x = (n+ k) tanx

has no nontrivial solutions for k = 1, 2.
2. The system

(26) tannx = n tan x, tan knx = kn tanx
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has no nontrivial solutions for k = 2, 3.
3. The systems

(27) tannx = n tan x, tan(2n± 1)x = (2n± 1) tanx

have no nontrivial solutions.

Proof. We have

tan(n+ k)x =
tannx+ tan kx

1− tannx tan kx
.

Substituting this into equation (25) and using that tan x 6= 0, we obtain
1 + n(n + 1) tan2 x = 0 in the case k = 1, and (n + 1)2 tan2 x = 0 in
the case k = 2. This proves claim 1.
We have

tan 2nx =
2 tannx

1− tan2 nx
, tan 3nx =

3 tannx− tan3 nx

1− 3 tan2 nx
.

Substituting these identities into equation (26), and assuming tanx 6=
0, we obtain 1−n2 tanx = 1, 8n2 tan x = 0 if k = 2, k = 3 respectively.
This proves claim 2.
Equation (27) and the identity

tan(2n± 1)x =
tan 2nx± tanx

1∓ tan 2nx tanx

yield the relationship n3± 2n2+n = 0 which has no solutions n > 1.

Remark 5. A refinement of the above approach yields that the systems

tannx = n tan x, tan(3n± 1)x = (3n± 1) tanx

do not have nontrivial solutions as well. The proof is rather long, and
we do not reproduce it here.

Proposition 6 and Remark 5 yield particular families of pairs of in-
tegers m 6= n such that the system tanmx = m tanx, tannx = n tanx
has no nontrivial solutions. This provides direct evidence supporting
Conjecture 2. The work [7] provides additional support for the equiv-
alent Conjecture 1. We will now elaborate on this.
Let n ≥ 4. Set S̃n(x) = Sn(x)/(x − 1)3(x + 1) if n is odd and

S̃n(x) = Sn(x)/(x−1)3 if n is even. By Corollary 6, S̃n are polynomials
with integer coefficients; their roots are simple and belong to the unit
circle. Let X be a property that holds for some natural numbers.
Denote by N(X) ⊂ N be the set of natural numbers having property
X . We say that property X holds for almost all positive integers if
N(X) ⊂ N is a subset of density one. A property that holds for almost
all pairs of positive integers is defined analogously.
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The work [7] puts forward several conjectures about irreducibility
of polynomials over Q. It conjectures, in particular, that polynomials
S̃n are irreducible. See Conjecture 3 in [7]. Let m 6= n be natural
numbers. We will say that Conjecture 1 holds for the pair m,n if the
sets of complex roots of the polynomials Sm, Sn are disjoint.

Proposition 7. Conjecture 1 holds for almost all pairs of positive in-
tegers.

Proof. By the preceding discussion, it suffices to show that for almost
all pairs m 6= n the root sets of S̃m, S̃n are disjoint. Let I ⊂ N be the
set of integers k such that S̃k is irreducible. Let J ⊂ I× I be the set of
distinct pairs. By Theorem 4 in [7], I ⊂ N is a set of density one. Thus,
the sets J ⊂ I × I ⊂ N× N have density one. But for pairs (m,n) ∈ J

the polynomials S̃m, S̃n have disjoint root sets.

Our next conjecture addresses Question 2.

Conjecture 3. Let x 6= 0 satisfy tannx = n tan x for some n > 1.
Then x is x/π is irrational.

The motivation for Conjecture 3 is as follows. If 0 < x < π/2 satisfies
equation (10) then there is a continuous family4 of billiard tables Ω with
the invariant curve Γx. The billiard map on Ω, restricted to Γx, is the
rotation by 2x. See the proof of Proposition 1. If x/π is rational, then
we acquire a lot of examples of billiard tables with invariant circles
realizing rational rotations. The billiard literature indicates that such
invariant circles are extremely rare [21, 19].
Let us now look at examples. The smallest n for which equation

tannx = n tanx has nontrivial solutions is 4. Below we analyze its
solutions for n = 4, 5.

Example 1. Set z = tanx. From the recurrence relations equa-
tion (17), we easily obtain P4 = 4z − z3, Q4 = 1 − 6z2 + z4, P5 =
5z−10z3+z5, Q5 = 1−10z+5z4. Thus, the equation tan 4x = 4 tanx is
equivalent to z4−5z2 = 0. Since z 6= 0, this yields z = ±

√
5. Denote by

x4 the solution of tan 4x = 4 tanx in (0, π/2). Then x4 = arctan(
√
5) =

arcsin(
√
5/
√
6). We analyze the equation tan 5x = 5 tanx is d the same

way. Denote by x5 the unique solution of tan 5x = 5 tanx in (0, π/2).

Then x5 = arctan(
√

5/3) = arcsin(
√
5/2

√
2).

Using the formula tan π
5
=

√

5− 2
√
5, we obtain the bounds

π

4
< x5 <

3π

10
<

π

3
< x4 <

π

2
.

4A one-parameter family, if Conjecture 2 holds.
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These inequalities do not imply that the numbers x4/π, x5/π are irra-
tional; however, they show that the denominators cannot be small.

Our next proposition provides more evidence for Conjecture 3.

Proposition 8. Let Ω be a regular billiard table. Suppose that Γπ/4 or
Γπ/3 is a caustic for Ω. Then Ω is circular.

Proof. We will show that π/3, π/4 do not satisfy equation (6) for any
n > 1. Set δ = π/4 and examine both sides of equation (6) for n =
2, 3, . . . . By periodicity of the sine function, everything is determined
by the residue n mod 4. Let n ≡ 1 mod 4. Then in the left hand
side of equation (6) the numerator is sin(kπ) = 0; in the right hand
side of equation (6) the numerator is sin(kπ + π/2) = ±1. Analogous
considerations show that for n ≡ 3 mod 4 equation (6) is not satisfied.
Let now n ≡ 0 mod 4. Thus n − 1 ≡ 3 mod 4, n + 1 ≡ 1 mod 4.

Then one of the two numerators in equation (6) is ±1 while the other is
∓1, hence equation (6) does not hold. An analogous argument disposes
of the case n ≡ 2 mod 4. This proves the claim for π/4. The argument
for δ = π/3 follows the same pattern, and we leave it to the reader.

9. Conditional implications for the billiard and the
floating

We will now deduce some implications of the above conjectures to
billiard dynamics and capillary floating. We begin with the billiard.

9.1. Billiard tables with constant angle caustics.

Proposition 9. Let δ ∈ A \ {π/2}, and let Ω ⊂ R2 be a noncircular,
regular billiard table with the caustic Γδ.

Suppose that Conjecture 2 holds. Then there is a unique integer
n ≥ 4 and a unique parameter 0 < τ < 1 such that Ω is conformally
equivalent to the table Ωn,τ given by equations (11), (12).

Proof. Let ρ(α) be the radius of curvature function for ∂Ω. By The-
orem 1, there are unique constants a, b, c satisfying 0 < a2 + b2 < c
such that ρ(α) = c + a cosnα + b sinnα. The claim now follows from
Corollary 2.

We say that a set Ω ⊂ R2 is rotationally symmetric of order n > 1
if there is P0 ∈ R2 such that Ω is invariant under the group Z/nZ of
rotations of R2 about P0.
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Theorem 2. Let Ω ⊂ R2 be a noncircular, regular billiard table. The
following statements are equivalent.

1. The table Ω has a caustic Γδ, δ 6= π/2.
2. There is n > 3 such that the Fourier coefficients of the radius of
curvature ρ(·) of ∂Ω satisfy i) cn 6= 0; ii) ck = 0 for all positive k 6= n.
3. There is n > 3 and 0 < τ < 1 such that Ω is conformally equivalent
to the table Ωn,τ given by equations (11), (12).

Proof. Proposition 9 proves the implication 1 ⇒ 3, while 2 ⇒ 1 is a
byproduct of Corollary 2. The implication 3 ⇒ 2 is obvious.

The preceding propositions rely on Conjecture 2.5 The proof of the
following claim relies on Conjecture 3.

Theorem 3. Let Ω ⊂ R2 be a regular billiard table, where ∂Ω is not a
curve of constant width. Suppose that the table Ω has a caustic Γδ of
constant type. Then the restriction of the billiard map on Ω to Γδ is
an irrational rotation.

Proof. By the proof of Proposition 1, the transformation in question is
the rotation by 2δ/π. The claim now follows from Conjecture 3.

From now until the end of the section, we will assume the truth of
all conjectures in section 8.2.

Theorem 4. There is a dense countable set R ⊂ (0, 1) of irrational
numbers such that the following claims hold.

1. For every ρ ∈ R there is a one-parameter family of regular billiard
tables Ωτ having a constant angle caustic with the rotation number ρ.
The curves ∂Ωτ are real analytic. Every regular billiard table having a
constant angle caustic with the rotation number ρ is conformally equiv-
alent to a unique table Ωτ .
2. Let ρ ∈ (0, 1) \ R. Suppose that a regular billiard table Ω has a
constant angle caustic with the rotation number ρ. i) If ρ = 1/2 then
Ω has constant width. ii) If ρ 6= 1/2 then Ω is a disc.

Proof. Claim 1 is immediate from Theorem 2 and Theorem 3. Claim
2 follows by combining these statements with Theorem 1.

9.2. Two-dimensional capillary floating.

In what follows we assume that all of the conjectures in section 8.2
hold.

5Or the equivalent Conjecture 1.
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Theorem 5. Let Ω ⊂ R2 be a regular, compact, convex domain. Then
the following holds.

1. Suppose that Ω is not a disc. Then Ω floats in neutral equilibrium
at any orientation with the contact angle π − δ 6= π/2 if and only if
there is n > 3 and 0 < τ < 1 such that Ω is conformally equivalent to
the domain Ωn,τ given by equations (11), (12).

2. Suppose that Ω is not a domain of constant width. If Ω floats in
neutral equilibrium at any orientation with the contact angle γ then
γ/π is irrational.

3. There is a countable dense set A ⊂ (0, π) containing π/2 and sym-
metric about this point such that the following holds:

If Ω floats in neutral equilibrium at any orientation with the contact
angle γ ∈ (0, π) \ A then Ω is a disc.

Proof. The claims are the counterparts of statements in Theorems 2, 3,
and 4.
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