SOME RESULTS CONCERNING THE *p*-ROYDEN AND *p*-HARMONIC BOUNDARIES OF A GRAPH OF BOUNDED DEGREE

MICHAEL J. PULS

ABSTRACT. Let p be a real number greater than one and let Γ be a connected graph of bounded degree. We show that the p-Royden boundary of Γ with the p-harmonic boundary removed is a F_{σ} -set. We also characterize the p-harmonic boundary of Γ in terms of the intersection of the extreme points of a certain subset of one-sided infinite paths in Γ .

1. INTRODUCTION

Let Γ be a graph with vertex set V_{Γ} and edge set E_{Γ} . We will write V for V_{Γ} and E for E_{Γ} if it is clear what graph Γ we are working with. For $x \in V$, deg(x) will denote the number of neighbors of x and N_x will be the set of neighbors of x. A graph Γ is said to be of bounded degree if there exists a positive integer k such that $\deg(x) \leq k$ for every $x \in V$. A path γ in Γ is a sequence of vertices x_1, x_2, \ldots, x_n where $x_{i+1} \in N_{x_i}$ for $1 \le i \le n-1$ and $x_i \ne x_j$ if $i \ne j$. A graph is connected if any two given vertices of the graph are joined by a path. All graphs considered in this paper will be connected, of bounded degree with no self-loops and have countably infinite number of vertices. We shall say that a subset S of V is connected if the subgraph of Γ induced by S is connected. The Cayley graph of a finitely generated group is an example of the type of graph the we study in this paper. By assigning length one to each edge of Γ , V becomes a metric space with respect to the shortest path metric. We will denote this metric by d(x, y), where x and y are vertices of Γ . Thus d(x, y) gives the length of the shortest path joining the vertices x and y. Finally, if $x \in V$ and $n \in \mathbb{N}$, then $B_n(x)$ will denote the metric ball that contains all elements of V that have distance less than n from x.

Let p be a real number greater than one. In Section 2 we will define the p-Royden boundary of Γ , which we will indicate by $R_p(\Gamma)$. We will also define the p-harmonic boundary of Γ , which is a subset of $R_p(\Gamma)$. We will use $\partial_p(\Gamma)$ to denote the pharmonic boundary. Our motivation for investigating the p-harmonic boundary of a graph is its connection to the vanishing of the first reduced ℓ_p -cohomology space of a finitely generated group. More specifically, this space vanishes if and only if its p-harmonic boundary is empty or contains exactly one element, see [5, Section 7] for the details of this fact. Gromov conjectured in [1, page 150] that the first reduced ℓ_p cohomology space of a finitely generated amenable group vanishes. Thus, a better

Date: December 1, 2010.

²⁰⁰⁰ Mathematics Subject Classification. Primary: 60J50; Secondary: 43A15, 31C45.

Key words and phrases. p-Royden boundary, p-harmonic boundary, p-harmonic function, F_{σ} -set, extreme points of a path, p-extremal length of paths.

understanding of the *p*-harmonic boundary could be helpful in resolving Gromov's conjecture.

Recall that in a topological space a set is said to be F_{σ} if it is a countable union of closed sets. In this paper we will prove that $R_p(\Gamma) \setminus \partial_p(\Gamma)$ is F_{σ} . For each infinite path in Γ we can associate a set of extreme points, which is roughly the "points at infinity" of the path with respect to the *p*-Royden boundary. Our other main result in this paper is that the *p*-harmonic boundary is precisely the intersection of the extreme points of a certain subset of one-sided infinite paths in Γ .

The research for this paper was partially supported by PSC-CUNY grant 63873-00 41 and I would like to thank them for their support.

2. The *p*-Royden and *p*-harmonic boundaries

Let 1 . In this section we construct the*p*-Royden and*p*-harmonic $boundaries of <math>\Gamma$. For a more detailed discussion about this construction see Section 2.1 of [5]. Before we can give these definitions we need to define the space of *p*-Dirichlet finite functions on *V*. For any $S \subset V$, the outer boundary ∂S of *S* is the set of vertices in $V \setminus S$ with at least one neighbor in *S*. For a real-valued function *f* on $S \cup \partial S$ we define the *p*-th power of the gradient, the *p*-Dirichlet sum, and the *p*-Laplacian of $x \in S$ by

$$|Df(x)|^{p} = \sum_{y \in N_{x}} |f(y) - f(x)|^{p},$$
$$I_{p}(f, S) = \sum_{x \in S} |Df(x)|^{p},$$
$$\Delta_{p}f(x) = \sum_{y \in N_{x}} |f(y) - f(x)|^{p-2} (f(y) - f(x))$$

In the case $1 , we make the convention that <math>|f(y)-f(x)|^{p-2}(f(y)-f(x)) = 0$ if f(y) = f(x). Let $S \subseteq V$. A function f is said to be p-harmonic on S if $\Delta_p f(x) = 0$ for all $x \in S$. We shall say that f is p-Dirichlet finite if $I_p(f, V) < \infty$. The set of all p-Dirichlet finite functions on G will be denoted by $D_p(G)$. With respect to the following norm $D_p(G)$ is a reflexive Banach space,

$$|| f ||_{D_p} = (I_p(f, V) + |f(o)|^p)^{1/p},$$

where o is a fixed vertex of Γ and $f \in D_p(\Gamma)$. We use $HD_p(\Gamma)$ to represent the set of *p*-harmonic functions on *V* that are contained in $D_p(\Gamma)$. Let $\ell^{\infty}(\Gamma)$ denote the set of bounded functions on *V* and let $|| f ||_{\infty} = \sup_V |f|$ for $f \in \ell^{\infty}(\Gamma)$. Set $BD_p(\Gamma) = D_p(\Gamma) \cap \ell^{\infty}(\Gamma)$. The set $BD_p(\Gamma)$ is a Banach space under the norm

$$|| f ||_{BD_p} = (I_p(f, V))^{1/p} + || f ||_{\infty},$$

where $f \in BD_p(\Gamma)$. Let $BHD_p(\Gamma)$ be the set of bounded *p*-harmonic functions contained in $D_p(\Gamma)$. The space $BD_p(\Gamma)$ is also closed under the usual operations of scalar multiplication, addition and pointwise multiplication. Furthermore, || $fg ||_{BD_p} \leq || f ||_{BD_p} || g ||_{BD_p}$ for $f, g \in BD_p(\Gamma)$. Thus $BD_p(\Gamma)$ is a commutative Banach algebra. Let $C_c(\Gamma)$ be the set of functions on V with finite support. Indicate the closure of $C_c(\Gamma)$ in $D_p(\Gamma)$ by $\overline{C_c(\Gamma)}_{D_p}$. Set $B(\overline{C_c(\Gamma)}_{D_p}) = \overline{C_c(\Gamma)}_{D_p} \cap \ell^{\infty}(\Gamma)$. Using the fact that the inequality $(a + b)^{1/p} \leq a^{1/p} + b^{1/p}$ is true when $a, b \geq 0$ and $1 , we see immediately that <math>|| f ||_{D_p} \leq || f ||_{BD_p}$. It now follows that $B(\overline{C_c(\Gamma)}_{D_p})$ is closed in $BD_p(\Gamma)$.

Let $Sp(BD_p(\Gamma))$ denote the set of complex-valued characters on $BD_p(\Gamma)$, that is the nonzero ring homomorphisms from $BD_p(\Gamma)$ to \mathbb{C} . Then with respect to the weak *-topology, $Sp(BD_p(\Gamma))$ is a compact Hausdorff space. Given a topological space X, let C(X) denote the ring of continuous functions on X endowed with the supnorm. The Gelfand transform defined by $\hat{f}(\chi) = \chi(f)$ yields a monomorphism of Banach algebras from $BD_p(\Gamma)$ into $C(Sp(BD_p(\Gamma)))$ with dense image. Furthermore the map $i: V \to Sp(BD_p(\Gamma))$ given by (i(x))(f) = f(x) is an injection, and i(V)is an open dense subset of $Sp(BD_p(\Gamma))$. For the rest of this paper, we shall write f for \hat{f} , where $f \in BD_p(\Gamma)$. The *p*-Royden boundary of Γ , which we shall denote by $R_p(\Gamma)$, is the compact set $Sp(BD_p(\Gamma)) \setminus i(V)$. The *p*-harmonic boundary of Γ is the following subset of $R_p(\Gamma)$:

$$\partial_p(\Gamma) \colon = \{ \chi \in R_p(\Gamma) \mid \hat{f}(\chi) = 0 \text{ for all } f \in B(\overline{C_c(\Gamma)}_{D_p}) \}.$$

Let S be an infinite subset of V and let A and B be disjoint nonempty subsets of $S \cup \partial S$. The *p*-capacity of the condenser (A, B, S) is defined by

$$cap_p(A, B, S) = \inf I_p(u),$$

where the infimum is taken over all functions $u \in D_p(\Gamma)$ with u = 0 on A and u = 1on B. Such a function is called *admissible*. Set $cap_p(A, B, S) = \infty$ if the set of admissible functions is empty.

Let A be a finite subset of $S \cup \partial S$ and let (U_n) be an exhaustion of V by finite connected subsets such that $A \subset U_1$. We now define

$$cap_p(A, \infty, S) = \lim_{n \to \infty} cap_p(A, (\partial S \cup S) \setminus U_n, S).$$

Since $cap_p(A, (\partial S \cup S) \setminus U_n, S) \geq cap_p(A, (\partial S \cup S) \setminus U_{n+1}, S)$, the above limit exists. We shall say that S is p-hyperbolic if there exists a finite subset A of $S \cup \partial S$ that satisfies $cap_p(A, \infty, S) > 0$. If S is not p-hyperbolic, then it is said to be p-parabolic. An equivalent definition of p-hyperbolic is that S is p-hyperbolic if and only if $1_S \in \overline{C_c(\Gamma_S)}_{D_p}$, where 1_S is the constant function 1 on S and Γ_S the subgraph of Γ induced by S, [8, Theorem 3.1]. We will define a graph Γ to be p-hyperbolic (p-parabolic) if its vertex set V is p-hyperbolic (p-parabolic). It was shown in [5, Proposition 4.2] that Γ is p-parabolic if and only if $\partial_p(\Gamma) = \emptyset$. A useful property of p-hyperbolic graphs that we will use throughout this paper is the following p-Royden decomposition, see [5, Theorem 4.6] for a proof.

Theorem 2.1. (*p*-Royden decomposition) Let $1 and suppose <math>f \in BD_p(\Gamma)$. Then there exists a unique $u \in B(\overline{C_c(\Gamma)}_{D_p})$ and a unique $h \in BHD_p(\Gamma)$ such that f = u + h.

3. Statement of main results

In this section we will state our main results. In section 4 we will prove

Theorem 3.1. Let $1 and let <math>\Gamma$ be a graph of bounded degree. The set $R_p(\Gamma) \setminus \partial_p(\Gamma)$ is F_{σ} .

M. J. PULS

Before we state our other main result we need to define the set of extreme points of a path in Γ . Let P be the set of all one-sided infinite paths in Γ . For a realvalued function f on V and a path $\gamma \in P$, the limit of f as we follow γ to infinity is given by $\lim_{n\to\infty} f(x_n)$, where $x_0, x_1, \ldots, x_n, \ldots$ is the vertex representation of the path γ . Sometimes we write $f(\gamma) = \lim_{n\to\infty} f(x_n)$ to indicate this limit. Let $\gamma \in P$ and denote by $V(\gamma)$ the set of vertices on γ . The closure of $i(V(\gamma))$ in $Sp(BD_p(\Gamma))$ will be indicated by $\overline{V}(\gamma)$. Recall that $Sp(BD_p(\Gamma))$ is endowed with the weak*-topology. Thus $\chi \in \overline{V}(\gamma)$ if and only if there exists a subsequence (x_{n_k}) of (x_n) such that $\lim_{k\to\infty} f(x_{n_k}) = \chi(f)$ for all $f \in BD_p(\Gamma)$. The extreme points of a path γ is defined to be

$$E(\gamma) = \overline{V}(\gamma) \cap R_p(\Gamma)$$

Let $f \in B(\overline{C_c(\Gamma)}_{D_p})$ and set $A_f = \{\gamma \in P \mid f(\gamma) \neq 0\}$. Set

$$E_f = \overline{\{\cup_{\gamma} E(\gamma) \mid \gamma \in P \setminus A_f\}}.$$

In Section 5 we shall prove

Theorem 3.2. Let $1 and let <math>\Gamma$ be a graph of bounded degree. Then

$$\partial_p(\Gamma) = \bigcap_{f \in B(\overline{C_c(\Gamma)}_{D_p})} E_f.$$

Let $1 . If <math>\Gamma$ is *p*-parabolic, then $\partial_p(\Gamma) = \emptyset$ and Theorem 3.1 is true. Also for the *p*-parabolic case, $1_V \in B(\overline{C_c(\Gamma)}_{D_p})$ by [8, Theorem 3.2], where 1_V is the constant function one on V. Then $E_{1_V} = \emptyset$ and Theorem 3.2 follows. Thus for the rest of the paper we will assume Γ is *p*-hyperbolic.

4. Proof of Theorem 3.1

In this section we will prove Theorem 3.1. We will start by giving some needed definitions and proving a comparison principle. A comparison principle for finite subsets of V was proved in [2, Theorem 3.14]. Our proof follows theirs in spirit.

Let f and h be elements of $BD_p(\Gamma)$ and let 1 . Define

$$\langle \Delta_p h, f \rangle \colon = \sum_{x \in V} \sum_{y \in N_x} |h(y) - h(x)|^{p-2} (h(y) - h(x)) (f(y) - f(x)).$$

The sum exists since

$$\sum_{x \in V} \sum_{y \in N_x} \left| |h(y) - h(x)|^{p-2} (h(y) - h(x)) \right|^q = I_p(h, V) < \infty$$

where $\frac{1}{p} + \frac{1}{q} = 1$. For notational convenience let

$$T(h, f, x, y) = |h(y) - h(x)|^{p-2}(h(y) - h(x))(f(y) - f(x)).$$

In order to prove Theorem 3.1 we will need the following:

Lemma 4.1. (Comparison principle) Let h_1, h_2 be elements of $BHD_p(\Gamma)$ and suppose $h_1(x) \leq h_2(x)$ for all $x \in \partial_p(\Gamma)$. Then $h_1 \leq h_2$ on V.

Proof. Define a function f on V by $f = \min\{h_2 - h_1, 0\}$. Theorem 4.8 of [5] says $f \in B(\overline{C_c(\Gamma)}_{D_p})$ since f = 0 on $\partial_p(\Gamma)$. By Lemma 4.6 of [5] we have $\langle \Delta_p h_1, f \rangle = 0$ and $\langle \Delta_p h_2, f \rangle = 0$, which implies $\langle \Delta_p h_1 - \Delta_p h_2, f \rangle = 0$. Now set

$$A = \{x \in V \mid h_1(x) \le h_2(x)\},\$$

$$B = \{x \in V \mid h_2(x) < h_1(x)\},\$$

and for $a \in V$ let

$$C_a = \{ y \in V \mid y \in N_a \text{ and } h_1(y) \le h_2(y) \},\$$

$$D_a = \{ y \in V \mid y \in N_a \text{ and } h_2(y) < h_1(y) \}.$$

Now

(4.1)
$$0 = \sum_{x \in V} \sum_{y \in N_x} (T(h_1, f, x, y) - T(h_2, f, x, y)) = T_1 + T_2 + T_3$$

where

$$T_1 = \sum_{x \in A} \sum_{y \in C_x} (T(h_1, f, x, y) - T(h_2, f, x, y)),$$

$$T_2 = \left(\sum_{x \in A} \sum_{y \in D_x} + \sum_{x \in B} \sum_{y \in C_x} \right) (T(h_1, f, x, y) - T(h_2, f, x, y))$$

and

$$T_3 = \sum_{x \in B} \sum_{y \in D_x} (T(h_1, f, x, y) - T(h_2, f, x, y)).$$

Since f(x) = f(y) = 0 for $x \in A$ and $y \in C_x$ it follows that $T_1 = 0$. We now claim that $T_3 \leq 0$. To see the claim let a and b be real numbers such that $a \neq b$. It follows from the inequality

$$|a|^{p-2}a(a-b) > |b|^{p-2}b(a-b)$$

that

(4.2)
$$T(h_1, h_1 - h_2, x, y) \ge T(h_2, h_1 - h_2, x, y)$$

Equality occurs if and only if $(h_1 - h_2)(x) = (h_1 - h_2)(y)$. Now if $x \in B$ and $y \in D_x$, then $f(y) - f(x) = (h_2 - h_1)(y) - (h_2 - h_1)(x)$. Combining (4.2) with the fact $T(h_k, h_1 - h_2, x, y) = -T(h_k, h_2 - h_1, x, y)$, where k = 1 or k = 2, we obtain $T_3 \leq 0$, which is our claim.

We now proceed to show that if there is a pair of vertices x and y that satisfy $x \in A, y \in D_x$ or $x \in B, y \in C_x$, then $T_2 < 0$. Suppose $x \in A$ and $y \in D_x$. Then $f(y) - f(x) = h_2(y) - h_1(y) < 0$ and

$$T(h_1, f, x, y) - T(h_2, f, x, y) = (h_2(y) - h_1(y)) \times (|h_1(y) - h_1(x)|^{p-2}(h_1(y) - h_1(x)) - |h_2(y) - h_2(x)|^{p-2}(h_2(y) - h_2(x))).$$

Also $h_1(y) - h_1(x) > h_2(y) - h_2(x)$ because $h_1(y) - h_2(y) > 0 \ge h_1(x) - h_2(x)$. So if $h_2(y) \ge h_2(x)$ we see that $T(h_1, f, x, y) - T(h_2, f, x, y) < 0$ since $h_1(y) - h_1(x) > h_2(y) - h_2(x)$. On the other hand if $h_2(y) < h_2(x)$ and $h_1(y) > h_1(x)$ we obtain

$$T(h_1, f, x, y) - T(h_2, f, x, y)$$

= $(h_2(y) - h_1(y)) \left(|h_1(y) - h_1(x)|^{p-1} + |h_2(y) - h_2(x)|^{p-1} \right) < 0$

since $|h_2(y) - h_2(x)| = -(h_2(y) - h_2(x))$. The only other possibility is $h_2(y) < h_2(x)$ and $h_1(y) \le h_1(x)$. If this is the case then $h_2(y) < h_1(y) \le h_1(x) \le h_2(x)$ due to $x \in A$ and $y \in D_x$. Consequently, $h_2(y) - h_2(x) < h_1(y) - h_1(x)$ and $h_1(x) - h_1(y) < h_2(x) - h_2(y)$; hence, $|h_1(y) - h_1(x)| < |h_2(y) - h_2(x)|$. It now follows that

$$T(h_1, f, x, y) - T(h_2, f, x, y)$$

= $(h_2(y) - h_1(y)) \left(|h_2(y) - h_2(x)|^{p-1} - |h_1(y) - h_1(x)|^{p-1} \right) < 0.$

A similar argument can be used to show that $T(h_1, f, x, y) - T(h_2, f, x, y) < 0$ for each $x \in B$ and $y \in C_x$. Hence, if $x \in A, y \in D_x$ or $x \in B, y \in C_x$, then $T_2 < 0$. Since $T_1 = 0$ and $T_3 \leq 0$, it follows from (4.1) that it must be the case $T_2 = 0$. Thus it is impossible to have a pair of vertices x and y with $x \in A, y \in D_x$ or $x \in B, y \in C_x$.

Now assume that $h_1(z) > h_2(z)$ for some $z \in V$. We claim that there exists vertices x_0, y_0 in V for which $y_0 \in N_{x_0}, h_1(x_0) > h_2(x_0)$ and $h_1(y_0) \leq h_2(y_0)$. To see the claim suppose $h_1 = h_2$ on $\partial_p(\Gamma)$, then $h_1 = h_2$ on V by [5, Corollary 4.9]. So there exists an $x \in \partial_p(\Gamma)$ that satisfies $h_1(x) < h_2(x)$. Let $(x_n) \to x$ where (x_n) is a sequence in V. Now there exists a term x_m in this sequence such that $h_1(x_m) < h_2(x_m)$. Since Γ is connected there is a path from z to x_m . Thus there are vertices x_0 and y_0 on this path with $y_0 \in N_{x_0}, h_1(x_0) > h_2(x_0)$, and $h_1(y_0) < h_2(y_0)$ because $h_1(z) > h_2(z)$ and $h_1(x_m) < h_2(x_m)$. Thus $x_0 \in B$ and $y_0 \in C_{x_0}$, a contradiction. Therefore, $h_1(z) \leq h_2(z)$ for all $z \in V$.

Proof of Theorem 3.1. Let $1 . Since <math>Sp(BD_p(\Gamma))$ is a normal space, there exists for each $x \in R_p(\Gamma)$ a sequence $(U_j(x))$ of open sets containing x such that $\overline{U}_{j+1}(x) \subseteq U_j(x)$. For each $j \in \mathbb{N}$ there exists a finite number of points $x_{j,k}, 1 \leq k \leq N_j$ such that $U_j(x_{j,k})$ cover $R_p(\Gamma)$. For notational simplicity we will denote $U_j(x_{j,k})$ by $U_{j,k}$. Using Urysohn's lemma we can construct a continuous function $\phi_{j,k}$ with $\phi_{j,k} = 2$ on $U_{j,k}$ and $\phi_{j,k} = -1$ on $Sp(BD_p(\Gamma)) \setminus U_{j-1,k}$. By the density of $BD_p(\Gamma)$ in $C(Sp(BD_p(\Gamma)))$ there exists a $g \in BD_p(\Gamma)$ such that $|\phi_{j,k} - g| < \frac{1}{2}$. Set $f_{j,k} = \max(\min(1,g), 0)$, so $f_{j,k} \in BD_p(\Gamma), 0 \leq f_{j,k} \leq 1, f_{j,k} = 1$ on $U_{j,k}$ and $f_{j,k} = 0$ on $Sp(BD_p(\Gamma)) \setminus U_{j-1,k}$. The p-Royden decomposition of $BD_p(\Gamma)$ yields a unique p-harmonic function $h_{j,k} \in BHD(\Gamma)$ and a unique $u_{j,k} \in B(\overline{C_c(\Gamma)}_{D_p})$ such that $f_{j,k} = u_{j,k} + h_{j,k}$. Because $u_{j,k} = 0$ on $\partial_p(\Gamma)$ by [5, Theorem 4.8], we see that $f_{j,k} = h_{j,k}$ on $\partial_p(\Gamma)$. New define

$$R_{j,k} = \{x \in R_p(\Gamma) \cap \overline{U}_{j,k} \mid \lim_{x_n \to x} h_{j,k}(x_n) < f_{j,k}(x) = 1\},$$

where (x_n) is a sequence in V. Observe that if $R_{j,k}$ is nonempty, then it only contains elements of $R_p(\Gamma) \setminus \partial_p(\Gamma)$.

Let $x \in R_p(\Gamma) \setminus \partial_p(\Gamma)$. We will now show that there exists $j, k \in \mathbb{N}$ such that $x \in R_{j,k}$. Since $x \notin \partial_p(\Gamma)$ there exists a $u \in B(\overline{C_c(\Gamma)}_{D_p})$ such that $u(x) \neq 0$. Since $B(\overline{C_c(\Gamma)}_{D_p})$ is an ideal we may assume that $u \geq 0$ on V and u(x) > 0. Replacing u by $u^{-1}(x)u$ if necessary we may assume that u(x) = 1. Let $h \in BHD_p(\Gamma)$ that satisfies $h \geq 1$ on V. Set f = u + h, so $f \in BD_p(\Gamma)$ and f = h on $\partial_p(\Gamma)$. Let (x_n) be a sequence in V that converges to x. Now $\lim_{n\to\infty} h(x_n) < f(x)$. Because f is continuous we can find an open set $U_{j,k}$ that contains x and satisfies

$$m = \inf_{U_{j-1,k} \cap R_p(\Gamma)} f > \lim_{n \to \infty} h(x_n).$$

It now follows

$$f_{j,k} \leq \frac{f}{m}$$
 on $R_p(\Gamma)$,

which implies that $h_{j,k} \leq \frac{h}{m}$ on $\partial_p(\Gamma)$. An appeal to the comparison principle gives us

$$\lim_{n \to \infty} h_{j,k}(x_n) \le \frac{1}{m} \lim_{n \to \infty} h(x_n) < 1 = f_{j,k}(x),$$

hence $x \in R_{j,k}$. Furthermore,

$$R_{j,k} = \bigcup_{i=1}^{\infty} \left(R_p(\Gamma) \cap \overline{U}_{j,k} \cap \{ \overline{y \in V \mid h_{j,k}(y) < 1 - 1/i} \} \right).$$

Thus $R_{j,k}$ is a countable union of compact sets. Theorem 3.1 now follows because

$$R_p(\Gamma) \setminus \partial_p(\Gamma) = \bigcup_{j=1}^{\infty} \bigcup_{k=1}^{N_j} R_{j,k}$$

5. Proof of Theorem 3.2

Before we prove Theorem 3.2 we need to state some definitions and prove several preliminary results.

Fix a real number p > 1. Recall that E denotes the edge set of a graph Γ . Denote by $\mathcal{F}(E)$ the set of all real-valued functions on E and let $\mathcal{F}^+(E)$ be the subset of $\mathcal{F}(E)$ that consists of all nonnegative functions. For $\omega \in \mathcal{F}(E)$ set

$$\mathcal{E}_p(\omega) = \sum_{e \in E} |\omega(e)|^p.$$

The edge set of a path γ in Γ will be denoted by $Ed(\gamma)$, remember $E(\gamma)$ represents the extreme points of γ . Let Q be a set of paths in Γ , denote by $\mathcal{A}(Q)$ the set of all $\omega \in \mathcal{F}^+(E)$ that satisfy $\mathcal{E}_p(\omega) < \infty$ and $\sum_{e \in Ed(\gamma)} \omega(e) \ge 1$ for each $\gamma \in Q$. The *extremal length* of order p for Q is defined by

$$\lambda_p(Q)^{-1} = \inf \{ \mathcal{E}_p(\omega) \mid \omega \in \mathcal{A}(Q) \}.$$

A variation of the next lemma was proved for the case p = 2 in [6, Lemma 6.13]. In the p = 2 case the conclusion of the lemma is stronger in that g belongs to $\overline{C_c(\Gamma)}_{D_2}$ instead of the larger space $D_2(\Gamma)$.

Lemma 5.1. Let K be a compact subset of $R_p(\Gamma)$ with $K \cap \partial_p(\Gamma) = \emptyset$. Then there exists a function $g \in D_p(\Gamma)$ that satisfies $g = \infty$ on K and g = 0 on $\partial_p(\Gamma)$.

Proof. By Urysohn's lemma there exists an $f \in C(Sp(BD_p(\Gamma)))$ that satisfies the following: $0 \leq f \leq 1, f = 1$ on K and f = 0 on $\partial_p(\Gamma)$. Using the argument from the first paragraph of the proof of Theorem 3.1 we may and do assume $f \in BD_p(\Gamma)$.

Let (U_n) be an exhaustion of V by finite connected subsets. Applying Theorem 3.1 of [2] yields a function h_n that is *p*-harmonic on U_n and equals f on $V \setminus U_n$. It follows from the minimizer property of *p*-harmonic functions on U_n that $I_p(h_n, V) \leq I_p(f, V)$. Hence, $h_n \in BD_p(\Gamma)$ for each $n \in \mathbb{N}$. Also, $h_n = 0$ on $\partial_p(\Gamma)$, $h_n = 1$ on K and $0 \leq h_n \leq 1$ for each n. By passing to a subsequence if necessary, we may assume that (h_n) converges pointwise to a function h because $\{h_n(x) \mid n \in \mathbb{N}\}$ is compact for each $x \in V$. By Lemma 3.2 of [2], h is *p*-harmonic on V. Since the sequence $(I_p(h_n, V))$ is bounded, Theorem 1.6 on page 177 of [7] says that by passing to a subsequence if necessary, we may assume that (h_n) converges weakly to a function $\overline{h} \in D_p(\Gamma)$. Because evaluation by $x \in V$ is a continuous linear functional on $D_p(\Gamma)$, we have that $h_n(x) \to \overline{h}(x)$ for each $x \in V$. Thus $h = \overline{h}$ and $h \in BD_p(\Gamma)$. It follows from [5, Corollary 4.9] that h = 0 on V, due to that fact h = 0 on $\partial_p(\Gamma)$.

Since $h_n \to h$ pointwise on U_k for $k \in \mathbb{N}$, it follows $I_p(h_n, U_k) \to I_p(h, U_k) = 0$ for each k. Consequently, $I_p(h_n, V) \to 0$. By taking a subsequence if necessary, we may assume that $\|h_n\|_{D_p} \leq 2^{-n}$. Let $\epsilon > 0$ be given and for $m \in \mathbb{N}$, let $g_m = \sum_{k=1}^m h_k$. There exists $N \in \mathbb{N}$ such that $2^{-N} < \epsilon$. For $m, n \in \mathbb{N}$ with $m > n \geq N$ we see that

$$\|g_m - g_n\|_{D_p} = \|\sum_{k=n+1}^m h_k\|_{D_p} \le \sum_{k=n+1}^m 2^{-k} < 2^{-n} < \epsilon.$$

Hence, the Cauchy sequence (g_m) converges to $g = \sum_{k=1}^{\infty} h_k$ in the D_p -norm. Thus $g \in D_p(\Gamma)$. For $x \in K, g_m(x) = m$, so $g(x) = \infty$; also $g = g_m = 0$ on $\partial_p(\Gamma)$. The proof of the lemma is complete.

The next result was shown to be true for the case p = 2 in [6, Theorem 6.16]. Our proof is essentially the same, and we include it for completeness.

Lemma 5.2. Let P be a family of one-sided infinite paths in Γ and let

$$K = \overline{\cup_{\gamma \in P} E(\gamma)}.$$

If K is disjoint from $\partial_p(\Gamma)$, then $\lambda_p(P) = \infty$.

Proof. By Lemma 5.1 there exists a $g \in D_p(\Gamma)$ such that $g = \infty$ on K and g = 0 on $\partial_p(\Gamma)$. Let $\gamma \in P$ and let $x_1, x_2, x_3...$ be the vertex representation of γ . Since $E(\gamma) \subseteq K$ we have that $g(\gamma) = \lim_{k \to \infty} g(x_k) = \infty$. Thus

$$\sum_{k=1}^{\infty} |g(x_k) - g(x_{k+1})| \ge \lim_{k \to \infty} (g(x_k) - g(x_1)) = \infty.$$

By [3, Lemma 2.3] we obtain $\lambda_p(P) = \infty$.

A connected infinite subset D of V with $\partial D \neq \emptyset$ is defined to be D_p -massive if there exists a p-harmonic function u on D that satisfies the following: $0 \leq u \leq$ 1, u = 0 on $\partial D, \sup_D u = 1$ and $I_p(u, D) < \infty$. The function u is known as an inner potential of D.

Proposition 5.3. Let D be a D_p -massive subset, with inner potential u, of V. Denote by P_D the set of all one-sided infinite paths contained in $D \cup \partial D$. Then $\lambda_p(P_D) < \infty$.

Proof. Let $a \in D$ and let P_a be the set of all paths in P_D with initial point a. If $\lambda_p(P_a) < \infty$, then $\lambda_p(P_D) < \infty$ by [3, Lemma 2.1]. Let (B_n) be an exhaustion of V by finite connected subsets of V such that $B_1 \cap \partial D \neq \emptyset$. Pick an $a \in B_1 \cap \partial D$. By combining Theorem 2.1 and Theorem 2.4 of [4] we see that $\lambda_p(P_a) < \infty$ if and only if $cap_p(\{a\}, \infty, D) > 0$. Thus to finish the proof we need to show $cap_p(\{a\}, \infty, D) > 0$, which we now proceed to do.

Choose admissible functions $\omega_k, k \geq 2$, for condensers $(\{a\}, (D \cup \partial D) \setminus B_k, D)$ such that

(5.1)
$$I_p(\omega_k, D \cap B_k) \le cap_p(\{a\}, (D \cup \partial D) \setminus B_k, D) + \frac{1}{k}.$$

Replacing all values of $\omega_k(x)$ on $D \cap B_k$ for which $\omega_k(x) < 0$ by 0 and replacing all values of $\omega_k(x)$ on $D \cap B_k$ for which $\omega_k(x) > 1$ by 1 decreases the value of $I_p(\omega_k, D \cap B_k)$. Thus we may and do assume $0 \le \omega_k \le 1$ on $D \cap B_k$. Theorem 3.11 of [2] tells us that there exists a unique *p*-harmonic function v_2 on $D \cap B_2$ such that $v_2 = \omega_2$ on $\partial(D \cap B_2)$. Extend v_2 to all of D by setting $v_2 = 1$ on $D \setminus B_2$. By the minimizing property of *p*-harmonic functions,

$$I_p(v_2, D \cap B_2) \le I_p(\omega_2, D \cap B_2).$$

Since u is p-harmonic on D and $u(x) \leq v_2(x)$ for all $x \in \partial(D \cap B_2), u \leq v_2$ on $D \cap B_2$ by [2, Theorem 3.14]. Pick ω_3 . The set $A = \{x \in D \mid \omega_3(x) > v_2(x)\}$ is a subset of $D \cap B_2$. If $A \neq \emptyset$, redefine ω_3 by setting $\omega_3 = v_2$ on A. The redefined ω_3 decreases $I_p(\omega_3, D \cap B_3)$, so (5.1) remains true. By continuing as above, we obtain a decreasing sequence of functions (v_k) such that v_k is p-harmonic on $B \cap B_k, v_k \geq u$, and

$$I_p(v_k, D \cap B_k) \le I_p(\omega_k, D \cap B_k).$$

Now assume that $cap_p(\{a\}, (D \cup \partial D) \setminus B_k, D) \to 0$. Then $I_p(v_k, D \cap B_k) \to 0$. Since $v_k \ge u$ and $\sup_D u = 1$, it must be the case that $(v_k) \to 1_D$, the constant function 1 on D. This is a contradiction because (v_k) is a decreasing sequence of functions, $0 \le v_2 \le 1$ and $v_2 \ne 1$. Thus, $cap_p(\{a\}, \infty, D) > 0$ and the proof of the proposition is complete. \Box

Our next result is [6, Theorem 6.18] for the case p = 2. We give a different proof of the result.

Lemma 5.4. Let P be the family of all one-sided infinite paths in Γ and let $P_{\infty} \subseteq P$ be any subfamily with $\lambda_p(P_{\infty}) = \infty$. Then

$$\partial_p(\Gamma) \subseteq \overline{\{\cup_{\gamma} E(\gamma) \mid \gamma \in P \setminus P_{\infty}\}}.$$

Proof. Set $K = \overline{\{\cup_{\gamma} E(\gamma) \mid \gamma \in P \setminus P_{\infty}\}}$. Since our standing assumption is that Γ is p-hyperbolic, it follows from [4, theorem 2.1] that $\lambda_p(P) < \infty$. By [3, Lemma 2.2], $\lambda_p(P \setminus P_{\infty}) < \infty$. Lemma 5.2 tells us $K \cap \partial_p(\Gamma) \neq \emptyset$. For purposes of contradiction, assume that there exists a $\chi \in \partial_p(\Gamma)$ for which $\chi \notin K$. By Urysohn's lemma there exists a continuous function f on $Sp(BD_p(\Gamma))$ that satisfies the following: $0 \leq f \leq 1, f(\chi) = 1$ and f = 0 on $K \cap \partial_p(\Gamma)$. By density of $BD_p(\Gamma)$ in $C(Sp(BD_p(\Gamma)))$ we assume $f \in BD_p(\Gamma)$. The p-Royden decomposition for $BD_p(\Gamma)$ yields a unique p-harmonic function h on V and a unique $g \in B(\overline{C_c(\Gamma)}_{D_p})$ such that f = g + h. Theorem 4.8 of [5] shows that g = 0 on $\partial_p(\Gamma)$. Combining this fact with the maximum principe ([5, Theorem 4.7]) it follows that 0 < h < 1 on $V, h(\chi) = 1$ and h = 0 on $\partial_p(\Gamma) \cap K$. Let

$$A = \{ x \in V \mid h(x) > 1 - \epsilon \},\$$

where $0 < \epsilon < 1$. Let *B* be a component of *A*. The set *B* is D_p -massive, see the proof of [5, Proposition 4.12] for a proof of this fact. Let P_A be the family of all one-sided infinite paths in *A*, and let P_B consist of all one-sided infinite paths in *B*. Since *B* is a D_p -massive set, $\lambda_p(P_B) < \infty$ by Proposition 5.3. It now follows from [3, Lemma 2.1] that $\lambda_p(P_A) < \infty$. Set

$$K_1 = \overline{\{\cup_{\gamma} E(\gamma) \mid \gamma \in P_A \setminus P_\infty\}}.$$

Another appeal to Lemma 5.2 shows $K_1 \cap \partial_p(\Gamma) \neq \emptyset$, because $\lambda_p(P_A \setminus P_\infty) < \infty$. Furthermore, h = 0 on $K_1 \cap \partial_p(\Gamma)$ since $K_1 \cap \partial_p(\Gamma) \subseteq K \cap \partial_p(\Gamma)$. However, $h(\gamma) \geq 0$ $1 - \epsilon$ for all $\gamma \in P_A$. Thus we obtain the contradiction $h(x) \ge 1 - \epsilon$ for all $x \in K_1$. Therefore, $\partial_p(\Gamma) \subseteq K$, as desired.

Proof of Theorem 3.2. Let $f \in B(\overline{C_c(\Gamma)}_{D_p})$ and let $a \in V$. Denote by P_a the set of all one-sided infinite paths in Γ with initial point a. Set

$$A_{a,f} = \{ \gamma \in P_a \mid f(\gamma) \neq 0 \}.$$

By [3, Theorem 3.3], $\lambda_p(A_{a,f}) = \infty$. Also, [3, Lemma 2.2] tells us $\lambda_p(A_f) = \lambda_p(\bigcup_{a \in V} A_{a,f}) = \infty$. The definition of A_f above and E_f below were given in Section 3. Now Proposition 5.4 says that

$$\partial_p(\Gamma) \subseteq E_f$$
.

For notational convenience set $F = \bigcap_f E_f$, where f runs through $B(\overline{C_c(\Gamma)}_{D_p})$. Thus, $\partial_p(\Gamma) \subseteq F$. We now proceed to prove the reverse inclusion. Suppose there exists a $\chi \in F$ for which $\chi \notin \partial_p(\Gamma)$. By [5, Theorem 4.8] we obtain an $f \in B(\overline{C_c(\Gamma)}_{D_p})$ for which $\chi(f) \neq 0$. Let $\alpha \sim x_0, x_1, \ldots, x_n, \ldots$ be a one-sided path with $\chi \in \overline{V}(\alpha)$. Because $\chi(f) \neq 0$, there is a subsequence (x_{n_k}) of (x_n) that satisfies $\lim_{k\to\infty} f(x_{n_k}) \neq 0$. Thus $f(\alpha) \neq 0$ and has a result $\alpha \in A_f$. Hence $\chi \notin \{\bigcup_{\gamma} E(\gamma) \mid \gamma \in P \setminus A_f\}$. We are assuming $\chi \in E_f$, so it must be the case that there is a sequence (χ_n) in $\{\bigcup_{\gamma} E(\gamma) \mid \gamma \in P \setminus A_f\}$ with $(\chi_n) \to \chi$. Since $f(\gamma) = 0$ for each $\gamma \in P \setminus A_f$ it follows immediately that $\chi_n(f) = 0$ for each $n \in \mathbb{N}$. This implies $\chi(f) = 0$, contradicting our assumption $\chi(f) \neq 0$. Therefore, $F \subseteq \partial_p(\Gamma)$. The proof of Theorem 3.2 is now complete.

References

- M. Gromov. Asymptotic invariants of infinite groups. In Geometric group theory, Vol. 2 (Sussex, 1991), volume 182 of London Math. Soc. Lecture Note Ser., pages 1–295. Cambridge Univ. Press, Cambridge, 1993.
- [2] Ilkka Holopainen and Paolo M. Soardi. p-harmonic functions on graphs and manifolds. Manuscripta Math., 94(1):95–110, 1997.
- [3] Takashi Kayano and Maretsugu Yamasaki. Boundary limit of discrete Dirichlet potentials. *Hiroshima Math. J.*, 14(2):401–406, 1984.
- [4] Tadashi Nakamura and Maretsugu Yamasaki. Generalized extremal length of an infinite network. *Hiroshima Math. J.*, 6(1):95–111, 1976.
- [5] Michael Puls. Graphs of bounded degree and the p-harmonic boundary. Pacific J. Math., 248(2):429–452, 2010.
- [6] Paolo M. Soardi. Potential theory on infinite networks, volume 1590 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1994.
- [7] Angus E. Taylor and David C. Lay. Introduction to functional analysis. Robert E. Krieger Publishing Co. Inc., Melbourne, FL, second edition, 1986.
- [8] Maretsugu Yamasaki. Parabolic and hyperbolic infinite networks. *Hiroshima Math. J.*, 7(1):135-146, 1977.

Department of Mathematics, John Jay College-CUNY, 445 West 59th Street, New York, NY 10019, USA

E-mail address: mpuls@jjay.cuny.edu

10