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Abstract

This paper introduces the notion of Arakelov motivic cohomology. We

construct a ring spectrum HD representing Deligne cohomology which is

shown to enjoy a unique algebra structure over the spectrum HB repre-

senting motivic cohomology. We define Arakelov motivic cohomology to

be represented by the homotopy fiber of the regulator map HB → HD.

Taking advantage of the framework of the stable homotopy category of

schemes over an arithmetic ring, we establish a number of properties such

as pushforwards, localization sequences, and h-descent.
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1 Introduction

The aim of this paper is to construct a new cohomology theory for schemes
of finite type over an arithmetic ring. The main motivation for this Arakelov-
theoretic version of motivic cohomology is the conjecture on special values of
L-functions and zeta functions formulated by the second author [Sch10]. Addi-
tional motivation comes from the hope that these cohomology groups together
with some version of higher arithmetic K-theory will allow for the formulation
of a higher arithmetic Riemann-Roch theorem.

Compared to earlier definitions of higher arithmetic Chow groups by Gon-
charov and Burgos-Feliu, the main advantages of our cohomology theory is that
it is defined for schemes over arithmetic rings like SpecZ and not just over fields,
and that it has pushforward functoriality for projective morphisms between reg-
ular schemes.

The following theorem summarizes the results of this paper:

Theorem 1.1. Let S be a regular scheme over a number field F or a number
ring OF , or R or C. In the stable homotopy category SH(S) (cf. Section 2.1)
there is a spectrum HD representing Deligne cohomology of smooth schemes
X/S (Theorem 3.6). This spectrum HD enjoys a unique HB,S-algebra structure,
where HB,S is Riou’s spectrum representing motivic cohomology (Theorem 3.7).

We define the Arakelov motivic cohomology spectrum ĤB,S as the homotopy
fiber of ρD : HB → HD, the unique HB-module map. We define Arakelov motivic
cohomology to be the theory represented by this spectrum, that is to say

Ĥn(M,p) := HomSH(S)(M, ĤB,S(p)[n])
for any M ∈ SH(S).

Arakelov motivic cohomology shares the structural properties known for mo-
tivic cohomology, for example a projective bundle formula, a localization se-
quence, and h-descent (Theorem 4.4). It also has the expected functoriality:
pullback for arbitrary morphisms of schemes (or motives) and pushforward along
projective maps between regular schemes (Theorem 4.8).

In a second paper. we will show that the map obtained from the HB,S-algebra
structure of HD,

chD : BGL→ ⊕p∈ZHB,S(p)[2p]→ ⊕HD(p)[2p],

is such that the induced map of motivic cohomology to Deligne cohomology

Kn(X) = HomSH(X)(S
n,BGL)→ ⊕pH

2p−n
D (X, p) = HomSH(X)(S

n,HD(p)[2p])

agrees with the Beilinson regulator. Moreover, we compare the Arakelov motivic
cohomology groups with Takeda’s higher arithmetic K-theory and with Gillet-
Soulé arithmetic Chow groups. Moreover, the height pairing is shown to arise
as a special case of a natural pairing between between (usual) motivic homology
and Arakelov motivic cohomology.
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2 Preliminaries

2.1 The stable homotopy category

This section sets the notation and recalls some results pertaining to the homo-
topy theory of schemes due to Morel and Voevodsky and Riou [MV99, Rio07].

Let S be a Noetherian scheme. We only use schemes which are of finite
type over Z, Q, or R. Unless explicitly mentioned otherwise, all morphisms
of schemes are understood to be separated and of finite type. Let Sm/S be
the category of smooth schemes over S. The category of presheaves of pointed
sets on this category is denoted PSh• := PSh•(Sm/S). We often regard a
scheme X ∈ Sm/S as the presheaf (of sets) represented by X , and we write
X+ := X ⊔ {∗} for a pointed version. The projective line P1

S is pointed by
∞. The prefix ∆op− indicates simplicial objects in a category. The simplicial
n-sphere is denoted Sn, this should not cause confusion with the base scheme S.
Recall the definition of the stable homotopy category SH(S). In a nutshell, it
is built by the following Quillen adjunctions. (Underneath we give the notation
for the corresponding homotopy category.)

∆opPSh•

id
⇆

id
∆opPSh•

id
⇆

id
∆opPSh•

Ω∞

⇆

Σ∞
P1

SptP
1

•

id
⇆

id
SptP

1

•

Hosect,• HoNis,• Ho• SHp SH

(1)
From left to right, the involved model structures are the following (recall the
2-out-of-3-principle, by which any two classes among fibrations, cofibrations and
weak equivalences determine the third): the sectionwise model structure on the
category of pointed simplicial presheaves on smooth schemes over S is defined by
sectionwise weak equivalences and monomorphisms as cofibrations. Second, the
Nisnevich local model structure is determined by weak equivalences on Nisnevich
stalks and monomorphisms as cofibrations. The A1-local model structure on
presheaves is given by A1-equivalences and monomorphisms. The former are
maps f : X → Y such that f∗ : HomHoNis,•

(Y, Z) → HomHoNis,•
(X,Z) is an

isomorphism for all A1-local objects Z, that is, objects satisfying the condition
that

HomHoNis,•
(T×A1

S , Z)→ HomHoNis,•
(T, Z)

be a weak equivalence (of simplicial sets) for all “test” objects T ∈ HoNis,•.

The next category, SptP
1

(∆opPSh•(Sm/S)), consists of symmetric P1
S-

spectra, that is, sequences E = (En)n≥0 of simplicial presheaves which are
equipped with an action of the symmetric group Sn and Sn-equivariant bond-
ing maps P1 ∧ En → En+1 (and the obvious morphisms). Here, the presheaf
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(represented by the scheme) P1 is pointed by ∞. It is endowed with the pro-
jective model structure [Jar00, 2.1]: weak equivalences and fibrations are maps
E → F such that each En → Fn is an A1-equivalence, and a fibration in the
A1-local model structure, respectively. Moreover, cofibrations are maps such
that E0 → F0 is a cofibration and

P1 ∧ Fn ∧P1∧En
En+1 → Fn+1

is a cofibration. The functor Σ∞
P1 : ∆op(PSh•) ∋ F 7→

(
(P1)∧n ∧ F

)
n≥0

(bond-

ing maps are identity maps, Sn acts by permuting the factors P1) is left adjoint to
Ω∞ : (En) 7→ E0. Often, we will not distinguish between a simplicial presheaf F
and Σ∞

P1(F ). Finally, the stable model structure is defined by projective cofibra-
tions (the same as in the previous step) and stable A1-equivalences. The latter

are defined as follows: an Ω-spectrum is an object (En) ∈ SptP
1

(PSh•(Sm/S))
such that the maps En → RHom•(P

1, En+1) is an A1-local weak equivalence for
all n. Here RHom•(P

1,−) is the derived functor of the right adjoint to P1 ∧ −
and the above map is the adjoint to the bonding map of E. A stable weak
equivalence is a map E → F of spectra such that for any Ω-spectrum V the
induced map

HomSHp(S)(F, V )→ HomSHp(S)(E, V )

is a bijection. Note that the objects in the image of Σ∞
P1 consists are cofibrant.

The identity functors and (Σ∞
P1 ,Ω∞) are Quillen adjunctions with respect

to these model structures (i.e., the left adjoint preserves cofibrations and weak
equivalences). This is mostly just by definition. For the first adjunction, for any
point x in the Nisnevich topology (i.e., Henselian local ring) of someX ∈ Sm/S,
and any simplicial presheafA, πn(Ax) = lim

−→
πn(A(U)); the (filtered) limit is over

all Nisnevich neighborhoods U of x.
The stable homotopy categories are triangulated categories. We write

SH(S)Q for the category obtained by tensoring all Hom-groups with Q.
For any map f : T → S, not necessarily of finite type, the stable homotopy

categories are connected by adjunctions [CD09, 1.1.11, 1.1.13; 2.4.4., 2.4.10]

f∗ : SH(S) ⇄ SH(T ) : f∗ (2)

and, if f is separated (of finite type)

f! : SH(S) ⇄ SH(T ) : f !. (3)

The right adjoint to S1 ∧ − : Ho•(S)→ Ho•(S) (or on SH(S)) is denoted
RΩ.

In Ho(S), there is an isomorphism P1
S
∼= Gm,S∧S1 (smash product of Gm,S,

pointed by 1, with the simplicial one-sphere). In particular, smashing with S1

is invertible on SH(S) and M [p] := M ∧ (S1)∧p = M ∧ Sp for p ≥ 0 and the
unique object M ′ such that M ′[−p] = M for p < 0. Twists are defined by
M(p) := M ∧ G∧p

m,S[−p] with a similar convention for negative twists. For any
p ∈ Z, we will sometimes write

M{p} := M(p)[2p].
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2.2 Motives

Let S be a Noetherian scheme of finite dimension. Recall the following facts and
definitions due to Riou [Rio07, IV.46, IV.72]. There is an object BGLS ∈ SH(S)
representing algebraic K-theory in the sense that

HomSH(S)(S
n ∧Σ∞

P1X+,BGLS) = Kn(X) (4)

for any regular scheme S and any smooth schemeX/S, functorially (with respect
to pullback) in X . Also recall BGLS⊗Q decomposes as

BGLS⊗Q = ⊕n∈ZBGL
(n)
S

such that the pieces BGL
(n)
S represent the graded pieces of the γ-filtration on

K-theory:

HomSH(S)(S
n ∧ Σ∞

P1X+,BGL
(i)
S ) ∼= griγ Kn(X)Q. (5)

The Beilinson motivic cohomology spectrum HB is defined by

HB,S := BGL
(0)
S . (6)

The parts of the K-theory spectrum are related by natural isomorphisms

BGL
(p)
S = HB,S{p}. (7)

For any map f : T → S, not necessarily of finite type, there are natural isomor-
phisms

f∗BGLS = BGLT , f∗HB,S = HB,T . (8)

Definition 2.1. [CD09, Section 12.3] By a result of Röndigs, Spitzweck and Ost-
vaer, BGLS ∈ SH(S) is weakly equivalent to a strict ring spectrum BGL′

S , that

is to say a ring object in the underlying model category SptP
1

(PSh•(Sm/S)).
Thus it makes sense to look at the subcategory of BGL′

S-modules. Its model
category structure is defined such that the adjunction

− ∧BGL′
S : SptP

1

(PSh•) ⇆ BGL′
S −modules in SptP

1

(PSh•) : forget (9)

is a Quillen adjunction. The categoryDMBGL(S) is defined to be the homotopy
category of the right hand category. It is a full subcategory of SH(S). Similarly,
the category DMB(S) ⊂ SH(S)Q is defined to be the homotopy category of the
subcategory of HB,S-modules. Objects in this category will be referred to as
Beilinson motives (or just motives) over S.

Motivic cohomology of any object M in SH(S)Q is defined as

Hn(M,p) := HomSH(S)(M,HB(p)[n]) (9)
= HomDMB(S)(M⊗HB,S ,HB,S(p)[n]).
5



Theorem 2.2. [CD09, 2.4.21, 13.4.1] The functors f∗, f
∗, f! and f ! of (2),

(3) preserve the subcategories DMBGL(−) and DMB(−) of SH(−). Moreover,
relative purity holds: for any smooth quasi-projective morphism f : X → Y
of constant relative dimension n and any M ∈ DMB(Y ), we have a natural
isomorphism

f !M ∼= f∗M{n}. (10)

In particular, f !HB,Y = HB,X{n}. Secondly, absolute purity holds: for any
closed immersion i : X → Y between two regular schemes X and Y with constant
relative codimension n, there is an isomorphism

i!HB,Y ∼= HB,X{−n}. (11)

Definition 2.3. Let f : X → S be any map of finite type. We define the motive
of X over S to be

M(X) := MS(X) := f!f
!HB,S ∈ DMB(S).

Remark 2.4. In [CD09, 1.1.33] the motive of a smooth scheme f : X → S
is defined as f♯f

∗HB,S . Here, f♯ is the left adjoint to f∗. These two def-
initions agree up to isomorphism: we can assume that is of constant rela-
tive dimension d. By relative purity, the functors f ! and f∗{d} are isomor-
phic. Thus their left adjoints, namely f! and f♯{−d} agree, too. Therefore,
f!f

!HB,S = f!f
∗HB,S{d} = f♯f

∗HB,S .
2.3 Deligne cohomology

We recall the properties of Deligne cohomology that we need in the sequel.
For the construction of a spectrum representing Deligne cohomology in Section
3 it is necessary to have an explicit, functorial down-to-earth complex whose
cohomology groups identify with Deligne cohomology. This is due to Burgos
[Bur97].

Definition 2.5. [GS90, 3.1.1.] An arithmetic ring is a datum (S,Σ,Fr∞), where
S is a ring, Σ = {σ1, . . . , σn : S → C} is a set of embeddings of S into C and
Fr∞ : CΣ(:= ⊕n

1C)→ CΣ is a C-antilinear involution (called infinite Frobenius)
such that Fr∞ ◦σ = σ, where σ = (σi)i : S → CΣ consists of the σi. If S happens
to be a field, this datum is called arithmetic field . For example, the generic fiber
η : Sη := S×SpecZSpecQ → S of an arithmetic ring is an arithmetic field. For
any scheme X over an arithmetic ring S, we write

XC := ⊔σ∈ΣX×S,σC

andX(C) for the associated complex-analytic space (with its classical topology).
We also write Fr∞ : XC → XC for the pullback of infinite Frobenius on the base.

Example 2.6. We have the following examples: S = F (or S = OF ), a number
field (or its ring of integers), with its set Σ of archimedean places, and Fr∞ given
by (zv)v∈Σ 7→ (zv)v. Moreover, we have (R, standard inclusion, id), as well as
(C, {id, ?},Fr∞ : C2 ∋ (a, b) 7→ (b, a)).

6



In the remainder of this subsection, X/S is a smooth scheme (of finite type)
over an arithmetic field.

Definition 2.7. [Bur97, Def. 1.2, Thm. 2.6] Let E∗(X(C)) be the following
complex:

E∗(X(C)) := lim−→E∗
X(C)

(logD(C)),

where the colimit is over all smooth compactifications X of X such that D :=
X\X is a divisor with normal crossings. The complex E∗

X(C)
(logD(C)) is the

complex of C∞-differential forms that have at most logarithmic poles along the
divisor (see loc. cit. for details). The complex is a commutative differential
graded algebra. We write

E∗(X) := (E∗(X(C)))Fr
∗

∞

for the subcomplex of elements fixed under the Fr∗∞-action. Forms in E∗(X) that
are fixed under complex conjugation are referred to as real forms and denoted
ER(X). As usual, a twist is written as ER(X)(p) := (2πi)pER(X) ⊂ E∗(X).
The complex E∗(X) is filtered by

F pE∗(X) := ⊕a≥p,a+b=∗E
a,b(X).

Let D∗(X, p) be the complex defined by

Dn(X, p) :=

{
E2p+n−1

R (X)(p− 1) ∩ ⊕a+b=2p+n−1,a,b<pE
a,b(X) n < 0

E2p+n
R (X)(p) ∩ ⊕a+b=2p+n,a,b≥pE

a,b(X) n ≥ 0

The differential dD(x), x ∈ Dn(X, p), is defined as −proj(dx) (n < −1), −2∂∂x
(n = −1), and dx (n ≥ 0). Here d is the standard exterior derivative, and proj
denotes the projection onto the space of forms of the appropriate bidegrees.
The usual pullback of differential forms turns D into complexes of presheaves
on Sm/S. We also set

D :=
⊕

p∈Z

D(p).

Deligne cohomology of X is defined as

Hn
D(X, p) := Hn−2p(E∗(X)(p)).

For a scheme X over an arithmetic ring, such that X×SSη is smooth (possibly
empty), we set Hn

D(X, p) := Hn
D(X×SSη).

Recall that a complex of presheaves X 7→ F∗(X) on Sm/S is said to have
étale descent if for any X ∈ Sm/S and any étale map f : Y → X the canonical
map

F∗(X)→ Tot(F∗(. . .→ Y×XY → Y ))

is a quasi-isomorphism. The right hand side is the total complex of F∗ applied
to the Čech nerve. At least if F is a complex of presheaves of Q-vector spaces,
this is equivalent to the requirement that

F∗(X)→ Tot(F∗(Y))

7



is a quasi-isomorphism for any étale hypercover Y → X . Indeed the latter
is equivalent to Galois descent, cf. (19) and Nisnevich descent in the sense of
hypercovers, which is equivalent to the one in the sense of Cech nerves by the
Morel-Voevodsky criterion (see e.g. [CD09, 3.3.2, Theorem 3.3.22]).

Theorem 2.8. (i) The previous definition of Deligne cohomology agrees with
the classical one (for which see e.g. [EV88a]). In particular, there is a
long exact sequence

Hn
D(X, p)→ Hn(X(C),R(p))(−1)p → (Hn

dR(XC)/F
pHn

dR(XC))
Fr∞ → Hn+1

D (X, p)
(12)

involving Deligne cohomology, the (−1)p-eigenspace of the Fr∗∞ action on
Betti cohomology, and the invariant subspace of de Rham cohomology mod-
ulo the Hodge filtration.

(ii) The complex D(p) is homotopy invariant in the sense that the projection
map X×A1 → X induces a quasi-isomorphism D(A1×X) → D(X) for
any X ∈ Sm/S.

(iii) There is a functorial first Chern class map

c1 : Pic(X)→ H2
D(X, 1). (13)

(iv) Let E be a vector bundle of rank r over X. Let P := P(E) be the pro-
jectivization of E with tautological bundle OP (−1).1 Then there is an
isomorphism

⊕r−1
i=0 Hn−2i

D (X, p− i)
−∪(c1(OP (1)))i

−→ Hn
D(P, p). (14)

In particular the following Künneth-type formula holds:

Hn
D(P

1×X, p) ∼= Hn−2
D (X, p− 1)⊕Hn

D(X, p). (15)

(v) The complex of presheaves D(p) satisfy étale descent.

(vi) The complex D is a unital differential bigraded Q-algebra which is associa-
tive and commutative up to homotopy. (The product of two sections will
be denoted by a ·D b.) The induced product on Deligne cohomology agrees
with the classical product on these groups [EV88b, Section 3].

Moreover, for a section x ∈ D0(X) satisfying dD(x)(= dx) = 0 and any
two sections y, z ∈ D∗(X), we have

x ·D (y ·D z) = (x ·D y) ·D z (16)

and
x ·D y = y ·D x. (17)

1 We use the notation of [Har77]: O(−1) is the generator of Pic(P1) of degree −1, i.e.,
whose only global section is 0.
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Proof: (i): This explicit presentation of Deligne cohomology is due to Bur-
gos [Bur97, Prop. 1.3.]. The sequence (12) is a consequence of this and the
degeneration of the Hodge to de Rham spectral sequence. See e.g. [EV88b,
Cor. 2.10].

(ii): This follows from (12) and the homotopy invariance of Betti coho-
mology, de Rham cohomology, and, by functoriality of the Hodge filtration,
homotopy invariance of F pHn

dR(−).
(iii): See [BGKK07, Section 5.1.] (or [EV88b, Section 7] for the case of a

proper variety). In fact, there is a unique such morphism such that its compo-
sition with the map to Betti cohomology coincides with the usual first Chern
class [EV88b, Prop. 8.2.].

(iv): See e.g. [EV88b, Prop. 8.5.].
(v): This statement is part of the existence statement of the absolute Hodge

realization functor [Hub00, Corollary 2.3.5] (and also seems to be folklore).
Since it is crucial for us in Theorem 3.7, we give a proof here. Let

D̃∗(X, p) := cone(E∗(X)R(p)⊕ F pE∗(X)
(+1,−1)
−→ E∗(X))[−1 + 2p].

By [Bur97, Theorem 2.6.], there is a natural (fairly concrete) homotopy equiv-
alence between the complexes of presheaves D̃(p) and D(p). The descent state-
ment is stable under quasi-isomorphisms of complexes of presheaves and cones
of maps of such complexes. Therefore it is sufficient to show descent for the
three constituent parts of D̃∗(X, p), namely X 7→ E∗

R(X)(p), X 7→ F pE∗(X),

X 7→ E∗(X). Taking invariants of these complex under the Fr∗∞-action is an
exact functor, so we can (and will) assume S = C in this proof. Let j : X → X
be an open immersion into a smooth compactification such that D := X\X is
a divisor with normal crossings. The inclusion

Ω∗
X
(logD) ⊂ E∗

X(logD)

of holomorphic forms into C∞-forms (both with logarithmic poles) yields quasi-
isomorphisms of complexes of vector spaces

RΓRj∗C→ RΓRj∗Ω
∗
X(C) ← RΓΩ∗

X
(logD)→ ΓE∗

X(C)(logD)

that are compatible with both the real structure and the Hodge filtration [Bur94,
Theorem 2.1.], [Del71, 3.1.7, 3.1.8]. Here (R)Γ denotes the (total derived functor
of the) global section functor onX(C), i.e., with respect to the analytic topology.
The complex E∗(X), whose cohomology is H∗(X(C),C), is known to satisfy
étale descent [Hub00, Prop. 2.1.7]. This also applies to E∗

R(X)(p) instead of
E∗(X). (Alternatively for the former, see also [CD07, 3.1.3] for the étale descent
of the algebraic de Rham complex Ω∗

X .)
It remains to show the descent for X 7→ F pE∗(X). Consider a distinguished

square

X ′ //

��

X

��
Y ′ // Y,

9



i.e., cartesian such that Y ′ → Y is an open immersion, X/Y is étale and induces
an isomorphism (X\X ′)red → (Y \Y ′)red. Then the sequence

Hn(F pE∗(Y ))→ Hn(F pE∗(Y ′))⊕Hn(F pE∗(X))→ Hn(F pE∗(X ′))→ Hn+1(F pE∗(Y ))
(18)

is exact: indeed, Hn(F pEX(logD)) maps injectively into Hn(X,Ω∗
X
(logD),

and the image is precisely the p-th filtration step of the Hodge filtration on
Hn(X,Ω∗

X
(logD)) = Hn(X,C). Similarly for X ′ etc., so that the exactness of

(18) results from the one of the sequence featuring the Betti cohomology groups
of Y , Y ′⊔X and X ′, together with the strictness of the Hodge filtration [Del71,
Th. 1.2.10]. This shows Nisnevich descent for the Hodge filtration. Secondly,
for any scheme X and a Galois cover Y → X with group G, the pullback map
into the G-invariant subspace

Hn(F pE∗(X))→ Hn(F pE∗(Y )G) (19)

is an isomorphism. Indeed, the similar statement holds for E∗(−) instead
of F pE∗(−). We work with Q-coefficients, so taking G-invariants is an ex-
act functor, hence Hn(F pE∗(Y )G) = (Hn(F pE∗(Y )))G = (F pHn

dR(Y ))G =
F p(Hn

dR(Y )G), the last equality by functoriality of the Hodge filtration. Then,
again using the strictness of the Hodge filtration, the claim follows. Hence
(this uses Q-coefficients) the presheaf X 7→ F pE∗(X) has étale descent. The
statement (v) is shown.

(vi): [Bur97, Theorem 3.3.].2

3 The Deligne cohomology spectrum

Let S be smooth scheme (of finite type) over an arithmetic field (Definition
2.5). The aim of this section is to construct a ring spectrum in SH(S) which
represents Deligne cohomology for smooth schemes X over S. The method is a
slight variation of the method of Cisinski and Deglise used in [CD07] to construct
a spectrum for any mixed Weil cohomology, such as algebraic or analytic de
Rham cohomology, Betti cohomology, and (geometric) étale cohomology. The
difference compared to their setting is that the Tate twist on Deligne cohomology
groups is not an isomorphism of vector spaces.

In this section, all complexes of (presheaves of) abelian groups are considered
with homological indexing: the degree of the differential is −1 and C[1] is the
complex whose n-th group is Cn+1. As usual, any cohomological complex is
understood as a homological one by relabeling the indices. In particular, we
apply this to D(p), D (Definition 2.7) and let

Dn := D−n = ⊕p∈ZD
−n(p). (20)

2Actually, the product on D(X) is commutative on the nose. We shall only use the com-
mutativity in the case stated in (17) and the associativity as in (16), cf. Definition and Lemma
3.3.
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In order to have a complex of simplicial presheaves (as opposed to a complex of
abelian groups), we use the Dold-Kan-equivalence

K : Com≥0(Ab) ⇄ ∆op(Ab) : N

between homological complexes concentrated in degrees ≥ 0 and simplicial
abelian groups.

As usual, we write τ≥n for the good truncation of a complex.

Definition 3.1. We write
Ds := K(τ≥0D),

Ds(p) := K(τ≥0D(p)).

Lemma 3.2. For X smooth over S and any k ≥ 0, p ∈ Z we have:

HomHo•
(Sk ∧X+,Ds(p)) = H2p−k

D (X, p) (21)

and similarly for Ds.

Proof: The statement does hold if we take the Hom-group in Hosect,• (cf.
the discussion following (1) for the notation) instead of Ho•:

HomHosect,•
(Sk ∧X+,K(τ≥0(D))) = πkK(τ≥0(D(X)))

= Hk(τ≥0(D(X)))

= ⊕p∈ZH
2p−k
D (X, p).

(We have used the identification πn(A, 0) = Hn(N (A)) for any simplicial abelian
group and the fact that K(−) is as a simplicial abelian group a fibrant simplicial
set.)

The presheaf Ds is fibrant with respect to the A1- local model structure, since
Deligne cohomology satisfies Nisnevich descent and is A1-invariant by Theorem
2.8 (v) and (ii). Thus the Hom-groups agree when taken in Hosect,• and Ho,
respectively.

Via the Alexander-Whitney map, the product on D transfers to a product

Ds(i) ∧Ds(j)
µi,j
−→ Ds(i + j).

Definition and Lemma 3.3. The Deligne cohomology spectrum HD is the
symmetric P1-spectrum consisting of the Ds(p) (p ≥ 0), equipped with the triv-
ial action of the symmetric group Σp. We define the bonding maps to be the
composition

σp : P1
S ∧Ds(p)

c∗∧id
→ Ds(1) ∧Ds(p)

µ1,p
→ Ds(p+ 1).

Here c∗ is the map induced by c := c1(OP1(1)) ∈ D0(1)(P1), the first Chern form
of the bundle O(1) which is equipped with the Fubini-Study metric. Moreover,
µ1,p is the product map mentioned above.

11



We equip HD with the following monoid structure: the product µ : HD∧HD →
HD is induced by the products µp,p′ : Ds(p) ∧ Ds(p

′) → Ds(p + p′). The unit
map η : Σ∞

P1S+ → HD is defined in degree zero by the unit of the DGA D(0). In
higher degrees, we put

ηp : (P1)∧p (c∗)∧p

−→ Ds(1)
∧p µ
−→ Ds(p).

Equivalently, ηp := σp−1 ◦ (idP1 ∧ ηp−1).
This defines a symmetric P1-spectrum in ∆opPSh(Sm/S)). As an object in

Hosect,•(S), HD is a ring spectrum.

Proof: First, recall that c is a (1, 1)-form which is invariant under Fr∗∞ and
under complex conjugation, so c is indeed an element of D0(1)(P1). Secondly,
if we write ∞ for the immersion of the infinite point in P1

S , we have ∞∗c = 0 ∈
D0(1)(S), since the pullback of c is a 2-form, but dimS = 0. That is, c is a
pointed map (P1,∞)→ (D0(1), 0). Thirdly, we have to show that the map

P1∧m
∧Ds(n)

id∧m−1∧c∗∧id
−→ P1∧m−1

∧Ds(1) ∧Ds(n)
µ1,n
→ P1∧m−1

∧Ds(m+ 1)

→ . . .

→ Ds(m+ n)

is a Σm+n equivariant map of presheaves on Sm/S, i.e., invariant under permut-

ing the m wedge factors P1. Given some map f : U → P1×m
with U ∈ Sm/S,

let fi : U → P1 be the i-th projection of f and ci := f∗
i c1(OP1(1)). Given some

form ω ∈ D(n)(U) (in some unspecified degree), the map is given by

(f, ω) 7→ c1 ·D (c2 ·D (. . . (cm ·D ω) . . . )).

Here ·D denotes the product on D(∗) (also denoted µ1,∗). The forms ci ∈
D0(1)(U) are closed differential forms, so by Theorem 2.8(vi) the right hand
expression is associative and commutative, i.e. invariant under the permutation
action of Σm on P1×m

.
By loc. cit., the product on D is (graded) commutative and associative up to

homotopy, thus the diagrams checking, say, the commutativity of HD∧HD → HD

do hold in the homotopy category Hosect,•(S). The details of that verification
are omitted.

Remark 3.4. 1. The spectrum
⊕

p∈Z HD{p} is given by replacing the p-th
level Ds(p) of HD by D. Indeed, to see that the two agree, it is enough
to check that HomSH(S)(S

n ∧ Σ∞
P1X+,−) induces an isomorphism when

applied to the map in question. By the compactness of Sn ∧ Σ∞
P1X+ in

SH(S), this Hom-group commutes with the direct sum. Then the claim
is trivial.

2. Choosing another metric on O(1) in the above definition, the resulting
spectrum would be weakly equivalent because the Chern class (as opposed
to the Chern form) is independent of the choice of the metric.

12



Lemma 3.5. The Deligne cohomology spectrum HD is an Ω-spectrum (with
respect to P1).

Proof: We have to check that the adjoint map to to σp (Definition and Lemma
3.3),

bp : Ds(p)→ RHom•(P
1,Ds(p+ 1)),

is a A1-local weak equivalence. As P1 is cofibrant and Ds(p + 1) is fibrant,
the non-derived Hom•(P

1,Ds(p)) is fibrant and agrees with RHom•(P
1,Ds(p)).

The map is actually a sectionwise weak equivalence, i.e., an isomorphism in
Hosect,•(S). To see this, it is enough to check that the map

Ds(p)(U)→ Hom•(P
1,Ds(p+ 1)(U))

is a weak equivalence of simplicial sets for all U ∈ Sm/S [MV99, 1.8., 1.10, p.
50]. The m-th homotopy group of the left hand side is H2p−m

D (U, p) (Lemma
3.2), while πm of the right hand simplicial set identifies with those elements

of πm(Hom(P1×U,Ds(p+ 1)) = H
2(p+1)−m
D (P1×U, p+ 1) which restrict to zero

when applying the restriction to the point ∞ → P1. By the projective bundle
formula (15), the two terms agree.

Theorem 3.6. The ring spectrum HD represents Deligne cohomology in SH(S):
for any smooth variety X over S, and any n, m ∈ Z we have

HomSH(S)(S
n ∧ Σ∞

P1(P1
S

∧m
∧X+),HD) = H−n−2m

D (X,−m).

(For n < 0 the left hand group is the same as HomSH(S)(Σ
∞
P1X+, S

−n ∧ HD),
taking into account that smashing with S1 is invertible in SH(S). Likewise for
m < 0, see p. 4.)

Proof: By Lemma 3.5, HD is an Ω-spectrum. Thus the claim follows from
Lemma 3.2.

Theorem 3.7. The Deligne cohomology spectrum HD has a unique structure
HB,S-algebra and ⊕p∈ZHD{p} has a unique structure of an BGLS-algebra. In
particular, HD is an object in DMB(S).
Definition 3.8. The maps induced by the unit of HD(⊂ ⊕pHD{p}) are denoted

ρD : HB → HD, chD : BGL→ ⊕pHD{p}.

Proof: By construction, HD is a commutative ring spectrum. Recall the
definition of étale descent for spectra and that for this it is sufficient that the
individual pieces of the spectrum have étale descent [CD09, Def. 3.2.5, Cor.
3.2.18]. Thus, HD satisfies étale descent by Theorem 2.8(v). Any commutative
ring spectrum in SH(S)Q satisfying étale descent admits a unique structure of
an HB-algebra [CD09, Corollary to Theorem 13, p. 7; 13.2.15]. This settles the
claim for HD. Secondly, the natural map (in SH(S)Z)

chD : BGL→ BGLQ

(7)
∼= ⊕p∈ZHB{p} ρD{p}

−→ ⊕pHD{p}
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and the ring structure of ⊕HD{p} defines a BGL-algebra structure on ⊕HD{p}.
This uses that the isomorphism (7) is an isomorphism of ring objects [CD09,
13.2.16]. The unicity of that structure follows from the unicity of the one on
HD and HomSH(S)Z(BGLQ,⊕HD{p}) = HomSH(S)Q(BGLQ,⊕HD{p}), since HD

is a spectrum of R- (a fortiori: Q-)vector spaces.

4 Arakelov motivic cohomology

Let S be a regular scheme of finite type over an arithmetic ring B (Definition
2.5). Let η : Sη := S×ZQ → S be the generic fiber of S. The scheme Sη is
smooth over the arithmetic field belonging to B, so Section 3 yields a Deligne
cohomology spectrum in SH(Sη). We glue this with BGLS and HB,S to define
a Arakelov motivic cohomology spectrum. The framework of the stable homo-
topy category and motives readily implies a number of formal properties, most
notably pushforwards for Arakelov motivic cohomology.

4.1 Definition

Definition 4.1. Recall the spectra BGL and HB,S from (4) and (6), respectively,
as well as the regulator maps chD : BGLSη

→ ⊕HD{p}, ρD : HB,Sη
→ HD

(Definition 3.8). Using the adjunction η∗ ⇄ η∗ we put:

B̂GLS := hofib
(
BGLS → η∗BGLSη

chD−→ η∗ ⊕p HD{p}
)
,

ĤB,S := hofib
(
HB,S → η∗HB,Sη

ρD
−→ η∗HD

)

The latter is called Arakelov motivic cohomology spectrum.

Remark 4.2. • The map chD is a map in DMBGL(S) ⊂ SH(S) (cf.
Definition 2.1). In the underlying model category BGL′ − Mod ⊂

SptP
1

(PSh•(Sm/S)), BGL′ is cofibrant and HD is fibrant (Lemma 3.5).
Thus, chD can be lifted to a map ch′D of BGL′-modules. As an object
of DMBGL(S), the homotopy fiber of chD is independent of the choice of
the lift. (We refer to, say, [Hir03, Section 13.4] for generalities on homo-
topy fibers.) The adjunction (9) is a Quillen adjunction, in particular the
forgetful functor preserves homotopy limits and in particular homotopy

fibers. Thus, we could also have lifted chD to a map SptP
1

(PSh•(Sm/S))
and taken its homotopy fiber, without changing the resulting definition of

B̂GLS . Similarly, ĤB,S can be constructed indifferently in SH(S)Q or
DMB(S).
• We are mainly interested in gluing motivic cohomology with Deligne co-
homology. However, nothing is special about Deligne cohomology. In
fact, given some scheme f : T → S (not necessarily of finite type), and
complexes of presheaves of Q-vector spaces D(p) on Sm/T satisfying the
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conclusion of Theorem 2.8(ii), (iii), (iv) (actually (15) suffices), (v), and
(vi), everything could be done with f∗D(p) instead of η∗D(p). This might
be an approach to an adelic variant of Arakelov theory, as envisioned in
[Sou92, O.1.5].

• By construction, the spectrum ĤB,S is a spectrum of Q-vector spaces. A
seemingly plausible modification of this definition to Z-coefficients would
be

ĤZS := hofib
(
HZS → HQS

∼
←− HB,S → η∗HB,Sη

→ η∗HD

)
.

Here, HRS denotes the Eilenberg-MacLane spectrum which represents mo-
tivic cohomology with R-coefficients over the base scheme S [Voe98, sec-
tion 6.1]. The time being, questions such as f∗HZS

∼= HZT for a map
f : T → S are only known when passing to rational coefficients, so at this
point we do not study this variant any further.

Definition 4.3. For any M ∈ SH(S), we define

Ĥn(M) := HomSH(S)(M, B̂GLS [n]),

Ĥn(M,p) := HomSH(S)Q(M, ĤB(p)[n]).
The latter is called Arakelov motivic cohomology of M . For any finite type
scheme f : X → S, we define Arakelov motivic cohomology of X as

Ĥn(X/S, p) := Ĥn(X, p) := Ĥn(MS(X), p) = HomSH(S)Q(f!f
!HB,S, ĤB,S(p)[n]).

For any compact object M (such as M = MS(X)), we have a natural iso-
morphism

Ĥn(M)⊗ZQ = ⊕p∈ZĤ
n+2p(M,p). (22)

Moreover Ĥn(M,p) = Ĥn(M⊗HB,S, p) by (9).

4.2 First properties

Theorem 4.4. Arakelov motivic cohomology satisfies h-descent (thus, a fortiori,
Nisnevich, étale, cdh, qfh and proper descent), homotopy invariance:

Ĥn(X×A1, p) ∼= Ĥn(X, p),

and the projective bundle formula

Ĥn(P(E), p) ∼= ⊕d
i=0Ĥ

n−2i(X, p− i).

Here X/S is arbitrary (of finite type), E → X is a vector bundle of rank d+ 1,
P(E) is its projectivization. Any distinguished triangle of motives induces long
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exact sequences of Arakelov motivic cohomology. For example, let X/S be a
scheme satisfying

X is regular and is a closed subscheme of a smooth scheme Y/S. (23)

Let Z ⊂ X be a closed regular subscheme of constant codimension c. Let U be
its complement. Then there is an exact sequence

Ĥn−2c(Z, p− c)→ Ĥn(X, p)→ Ĥn(U, p)→ Ĥn+1−2c(Z, p− c).

Proof: The h-descent is a general property of modules over HB,S [CD09,
Thm 15.1.3]. The A1-invariance and the bundle formula are immediate from
M(X) ∼= M(X×A1) and M(P(E)) ∼= ⊕d

i=0M(X){i}. For the last statement, we

use the localization exact triangle [CD09, 2.3.5] to U
j
→ X

i
← Z, as well as the

absolute purity for the closed immersion Z ⊂ X and the purity isomorphism
f∗HB,S{d} = f !HB,S for the structural map f : X → S which is obtained
by using relative purity (10) for Y/S and absolute purity (11) for the closed
immersion X ⊂ Y (note that Y is regular since S is so by assumption).

f!j!j
!f !HB,S → f!f

!HB,S → f!i∗i
∗f !HB,S .

Hom-ming this triangle into ĤB,S(p)[n] gives the desired long exact sequence.

Proposition 4.5. For any M ∈ SH(S) there are long exact sequences relating
Arakelov motivic cohomology to (usual) motivic cohomology (Definition 2.1)
and, for appropriate motives, Deligne cohomology (Definition 2.7):

. . .→ Ĥn(M,p)→ Hn(M,p)→ HomSH(S)(M, η∗HD(p)[n])→ Ĥn+1(M,p) . . .
(24)

The first map will sometimes be called the forgetful map.) For example, the
motive M = MS(X) (Definition 2.3 of a scheme X/S satisfying (23) we get

Ĥn(X, p)→ K2p−n(X)
(p)
Q → Hn

D(X, p)→ Ĥn+1(X, p).

Secondly, we have a sequence

· · · → Ĥn(X)→ K−n(X)→ ⊕pH
2p−n
D (X, p)→ Ĥn+1(X)→ · · · . (25)

If S′ f
→ S is a scheme of characteristic p > 0 over S, the forgetful map

Ĥn(i∗M,p)→ Hn(i∗M,p)

is an isomorphism for any M ∈ SH(S′).

Proof: The first statement is a general property of the homotopy fiber in any
stable model category. For the second statement, let f : X → S be the structural
map. In order to identify the motivic cohomology with the claimed Adams

16



eigenspace in K-theory, we use the adjunction (3) and the purity isomorphism
for f (cf. the proof of Theorem 4.4). Consider the following cartesian diagram
where j is such that fU : XU := X×SU → U is smooth. Let d := reldim(fU ) =
reldim(fη).

Xη

η′

U //

fη

��

XU
//

fU

��

X

f

��
SpecF

ηU // U
j // S

The group HomSH(S)(f!f
!HB,S , η∗HD(p)[n]) is easily seen to be isomorphic to

HomSH(Xη)(HB,Xη
, f∗

η j
∗HD(p)[n])

3.6
= H2p−n

D (X, p).

One uses j∗j
∗η∗HD = HD (by base-change applied to F = F×ZU), relative

purity (10), applied to fU and fη, together with base-change (η∗UfU !f
∗
U =

fη !η
′
U
∗f∗

U = fη !f
∗
η η

′∗).
The last claim follows from η∗i∗ = 0.

Example 4.6. Let us list what the groups Ĥ−n := Ĥ−n(SpecOF ) look like.
This is well-known, cf. [Sou92, III.4], [Tak05, p. 623]. We refer to [Wei05] to
facts pertaining to K-theory of OF and the regulator in this case. Let r1 and
r2 be the number of real and pairs of complex embeddings of F . The sequence
(25) shows that for n ≤ −2

Ĥ−n ∼=
← ⊕pH

2p−n−1
D (OF , p) =





0 n = 2m
Rr2 n = 4m− 1
Rr1+r2 n = 4m− 3

Moreover, Ĥ1 ∼= H0
D(0)/ chD(K0) = Rr1+r2/Z. Here chD : Z = K0/Pic(OF ) →

H0
D(0) is the diagonal embedding. For n = 2m ≥ 0, the group Ĥ−n is an

extension of Kn,tor, the torsion part of the K-group (which is the class group

in case n = 0) by H1
D(m + 1)/ chD(Kn+1). For n = 2m + 1 ≥ 1, Ĥ−n maps

isomorphically to Kn,tor.

4.3 Functoriality

This section gathers a few functoriality properties of Arakelov motivic cohomol-
ogy. They are consequences of Ayoub’s six functors formalism. First of all, we
unsurprisingly have pullbacks:

Lemma 4.7. For any map f : M →M ′ in SH(S) there is a functorial pullback

f∗ : Ĥn(M ′, p)→ Ĥn(M,p), f∗ : Ĥn(M ′)→ Ĥn(M).

This pullback is compatible with the long exact sequence (24) and, for compact
motives M and M ′, with the decomposition (22). For example, for any map
f : X → Y of schemes over S, there is a functorial pullback

f∗ : Ĥn(Y, p)→ Ĥn(X, p).
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Proof: The first statement is a trivial consequence of the definitions. The
second follows by considering the map induced by the adjunction f! ⇆ f !:

pX !pX
! = pY !f!f

!pY
! → pY !pY

!.

Here pX and pY are the structural maps of X and Y , respectively.

We say that a map f : X → Y of schemes over S is regular projective if

both X and Y are regular and if f = p ◦ i : X
i
→ Pn

Y

p
→ Y , where i is a closed

immersion and p is the projection map. For any map f : X → Y we write
df := dimX − dimY .

Theorem 4.8. Let f1 : X1 → X2 be a regular projective map. We also assume
the structural map p2 : X2 → S is regular projective. For simplicity of notation,
we also assume all schemes are connected. Then there is a natural pushforward

f1! : Ĥ
n(X1, p)→ Ĥn−2df1 (X2, p− df1)

f1! : Ĥ
n(X1)Q → Ĥn(X2)Q.

It is functorial: given another regular projective map f2 : X2 → X3 then f2 ◦ f1
is also regular projective and

f2! ◦ f1! = (f2 ◦ f1)!.

Proof: In the following arguments, we refer to the following commutative
diagram:

X ′
2

p2

    B
BB

BB
BB

B
X ′

3

p3

    B
BB

BB
BB

B
X ′

4

p4

## ##H
HHHHHHHH

X1

>>

i1

>>|||||||| f1 // X2

>>

i2

>>|||||||| f2 // X3

>>

i3

>>|||||||| f3 // X4 := S

(26)

In this proof A ։ B denotes a projection map A = Pn
B → B and ֌ denotes

closed immersions. We let pn = f3 ◦ · · · ◦ fn : Xn → S be the structural map
(for n ≤ 3). By assumption, all schemes in this proof are regular.

Recall the map (n ≤ 2)

fn∗BGLXn
= pn+1∗in∗i

∗
nBGLX ′

n+1 → pn+1∗BGLX ′
n+1 → BGLXn+1

constructed in [CD09, 12.7.3]. It represents the K-theoretic pushforward. At
least after tensoring with Q, the map is therefore independent of the choice of
the factorization fn = pn+1 ◦ in by [Rio07, 6.1.3.2]. Consider the diagrams:

pn+1∗p
∗
n+1HB,Xn+1

{dpn
} //

� _

��

HB,Xn+1

pn+1∗p
∗
n+1BGLXn+1

// BGLXn+1
,

OOOO
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and
in∗i

∗
nHB,X′

n+1
{din} //

� _

��

HB,X′

n+1

in∗i
∗
nBGLX′

n+1
// BGLX′

n+1
.

OOOO

The top map in the left diagram is the adjoint to the purity isomorphism (10),
which induces the usual pushforward on motivic cohomology. Thus the com-
mutativity of the diagram is essentially a restatement of the fact that the K-
theoretic pushforward of OPn

A
(n) ∈ K0(Pn

A) along π : Pn
A → A is OA ∈ K0(A),

which is the same as the cycle-theoretic pushforward of the codimension-n-cycle
on Pn

A represented by OPn
A
(n) (i.e., an A-point).

The commutativity of the second diagram is by construction of the absolute
purity isomorphism for HB [CD09, Th. 13.4.1.]. Therefore, the isomorphism

rHBn : HB,Xn
{dfn} = i∗nHB,X′

n+1
→ i!np

∗
n+1HB,Xn+1

{dpn+1
} → f !

nHB,Xn+1

also only depends on fn, not on the factorization.
To define the pushforward map f1!, look at the above diagram, where X3 =

X ′
4 = X4 := S. We define

f1! : Ĥ
n(X1, p)→ Ĥn−2df1 (X2, p− df1)

to be HomSH(S)(φ12, ĤB,S(p)[n]), where φ12 is the the composition

f2!f2
!HB{df1} (r

HB
2

)−1

−→ f2!f2
∗HB{df1 + df2}

(2)
→ f2!f1∗f1

∗f2
∗HB{df1 + df2}

r
HB
1→ f2!f1∗f1

!f2
∗HB{df2}

r
HB
2→ f2!f1!f1

!f2
!HB.

Similarly, define Ĥn(X1)Q → Ĥn(X2)Q using rBGL
∗ instead of rHB∗ .

The compatibility of f1 7→ f1! with compositions follows from completing
(26) by schemes X ′

n−1 ֌ X ′′
n ։ X ′

n (n = 2, 3, 4) making the above commu-
tative. Indeed, given a commutative diagram (we could even assume that it is
cartesian)

X ′
2
// //

����

φ

  B
BB

BB
BB

B
X ′′

3

����
X2

// // X ′
3

the two possible (iso)morphisms φ∗BGLX′

3
→ φ!BGLX′

3
(and similarly with HB

instead of BGL) resulting from the two factorizations of φ agree, by the same
argument as above.
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Remark 4.9. (i) Unlike with pullbacks, the pushforward is not compatible
with the decomposition (22). To elucidate this, let f1 : X1 → X2 = S be a
projective regular map such that S is an arithmetic ring. In the notation of

the proof, applying HomSH(S)(φ12,−) to the triangle B̂GLS → BGLS →
⊕HD{p} yields a commutative diagram

. . . // Ĥn(X1)
//

f1!

��

K−n(X1)

f1!

��

// ⊕pH
2p+n
D (X1, p) //

f1!◦(−∪Td(X1))

��

. . .

. . . // Ĥn(S) // K−n(S) // ⊕pH
2p+n
D (S, p) // . . .

Here f1! in the middle and right column is the usual pushforward in K-
theory and Deligne cohomology (the latter being given by integration over
the fiber) and Td(X1) denotes the Todd class of the tangent bundle of
X1×SSη, which is a smooth scheme over Sη. Indeed, the statement about
the induced map on K-theory is by definition. To identify the induced
map on Deligne cohomology with the stated one, one can replace S by
an open subscheme thereof and assume f1 smooth. The Grothendieck-
Riemann-Roch theorem for smooth maps [Rio09, 6.3.1] yields the claim,
since chD : BGL → ⊕HD{p} factors over the Chern character BGL →
⊕pHB{p}, (22), by definition.

(ii) For comparison, the pushforward of arithmetic K-theory groups K̂n(−)
defined by Takeda applies to smooth projective maps f : X → Y between
arithmetic varieties (flat over Z and regular). The definition needs an
auxiliary choice of a metric on the relative tangent bundle [Tak05, Section
7.3.]. Neither the independence of this choice nor the functoriality seem to
be known. The situation is similar for the pushforward defined by Roessler
on K̂0 [Roe99, 3.1]. The pushforward on arithmetic Chow groups [GS90,
Theorem 3.6.1] is defined for all proper maps between arithmetic varieties.
For the time being, no pushforward has been established for the higher
arithmetic Chow groups of Feliu and Burgos.
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