ABOUT SOME FAMILY OF ELLIPTIC CURVES

K. M.BUGAJSKA

ABSTRACT. We examine the moduli space $\mathcal{E} \cong \mathbf{T}^*$ of complex tori $\mathbf{T}(\tau) \cong$ $\mathbb{C}/L(\tau)$ where $L(\tau) = const \cdot \eta^2(\tau) L_{\tau}$. We find that the Dedekind eta function furnishes a bridge between the euclidean and hyperbolic structures on $T^* \cong$ $\mathbb{C} - L_0/L_0$ as well as between the doubly periodic Weierstrass function \wp on T^* and the theta function for the lattice E_8 . The former one allows us to rewrite the Lame equation for the Bers embedding of $\mathcal{T}_{1,1}$ in a new form. We show that L_0 has natural decomposition into 8 sublattices (each equivalent to L_0 , together with appropriate half-points and that this leads to local functions of the form $\vartheta_l^8(0, \tau_\alpha)$ for a local map (U_α, τ_α) and to a relation with E_8 .

1. INTRODUCTION

We have shown in [\[1\]](#page-15-0) that the natural algebraic structures associated to the punctured torus $\mathbf{T}^* \cong H/\Gamma'$, (here Γ' is the commutator group of the modular group $\Gamma = SL_2\mathbb{Z}, \Gamma' = [\Gamma, \Gamma]$ viewed as the Veech modular curve of complex tori, produce exactly the generating matrix for the binary error correcting Golay code G_{24} . This is a reason why in this paper we investigate the (on the other hand well known) punctured torus \mathbf{T}^* more carefully. We will find that the Dedekind eta function η plays very important role. It furnishes not only a bridge between the hyperbolic and euclidean geometries on \mathbf{T}^* but it also connects (see the formula (5.5)) the doubly-periodic Weierstrass function $\varphi(p(z_{\alpha}), L_0)$ on \mathbf{T}^* with the theta function for the lattice E_8 , that is with $\Theta_{E_8}(\tau_\alpha) = \sum_{m=0}^{\infty} r_{E_8}(m) q_{\alpha}^m$ (here $\tau_\alpha = \tau_\alpha(x')$, $z_{\alpha} = p(\tau_{\alpha})$, $x' \in U_{\alpha} \subset \mathbf{T}^*$ and $r_{E_8}(m)$ is the number of elements $\underline{v} \in E_8$ such that $\underline{v} \cdot \underline{v} = 2m$.

Since the Veech modular curve T^* naturally carries the modular *J*-invariant we may view each of the objects G_{24} and E_8 as a sort of a hidden structure associated to the Klein *J*-function that is encoded in the projection $J: \mathbf{T}^* \to Y(1) = H/\Gamma$.

In [\[2\]](#page-15-1) we have shown that, similarly to strong consequences coming from relations between Γ' and the subgroups $\Gamma(2)$, $\Gamma(3)$, Γ_c and $\Gamma_{ns}^+(3)$ of the modular group Γ (and investigated in this note) the relations between $\Gamma = SL_2\mathbb{Z}$ and $\Gamma_0(p)$ (for the supersingular primes) introduce a hidden structure asociated to the J-function whose the full symmetry group K must have the order that is devided by each of these primes p. Since the full automorphism group of G_{24} (given by the Matieu group \mathcal{M}_{24}) must be a subgroup of K, the conditions that $p||\mathcal{K}|$ together with the requirement that K is a simple group implies that K has to be the monster group M.

We will start with the family of lattices $L(\tau) = const \cdot \eta^2(\tau) L_{\tau}$ on H, where $L_{\tau} = [1, \tau]$ and we will show that the moduli space for complex tori $\mathbf{T}(\tau) \cong \mathbb{C}/L(\tau)$

Date: December 14, 2010.

²⁰¹⁰ Mathematics Subject Classification. Primary 11F06; Secondary 30C99.

is an elliptic open curve $\mathcal{E}: t^2 = 4u^3 - 1$. Using the ramification scheme for appropriate natural projections we obtain that $u(\tau)$ and $t(\tau)$ coicide with the absolute invariants for $\Gamma_{ns}^{+}(3)$ and for Γ_c respectively as well as that the curve \mathcal{E} is analytically isomorphic to $\mathbf{T}^* \cong H/\Gamma' \cong \mathbb{C} - L_0/L_0$. In section 3 we find relations $dz_{\alpha} = s\eta^4(\tau_{\alpha})d\tau_{\alpha}$, (s is a global constant) between local coordinates on \mathbf{T}^* and we investigate their consequences. We introduce some Hecke operators and we find their images on some, important for us , automorphic functions and forms. The expression of the standard holomorphic quadratic differential $(dz_\alpha^2)_\alpha$ on \mathbf{T}^* in terms of the Dedekind eta function allows us to find the Bers embedding of $\mathcal{T}_{1,1}$ using the equation(3.22) instead of working with the Lame equation (3.23). In section 4 we investigate different realizations (4.3) of the quotient Γ/Γ' , $(\Gamma = PSL_2\mathbb{Z})$ that are naturally associated to the standard quadrilateral \mathfrak{F}_4' and hexagonal \mathfrak{F}_6' fundamental domains for Γ′ respectively. Only the latter one determines very important (although a non-unitary) representation of Γ in the 2-dimentional vector space spanned by the Weierstrass functions \wp and \wp' on \mathbf{T}^* . In section 5 we construct the decomposition of the lattice $L_0 \cong p(\Gamma'(\infty))$, (p is the natural projection $p: H \to \mathbb{C} - L_0$ into eight disjoint subsets $\tilde{\mathcal{L}}_k$. The symmetries of the lattice L_0 allow us to realize each \mathcal{L}_k , $k = 1, \ldots, 8$, as a sublattice of L_0 (which is the 4-dilate of L_0) together with its appropriate half-points in three distinct ways. In section 6 we investigate conclusions of these decompositions and we find some sort of hidden E_8 -symmetry on \mathbf{T}^* .

2. Preliminaries

2.1. Curve \mathcal{E} . Each element τ of the upper half-plane H determines a lattice $L_{\tau} =$ [1, τ] and a complex torus $\mathbf{T}_{\tau} = \mathbb{C}/L_{\tau}$. However, we will consider, instead of the standard family $\{T_\tau\}_{\tau \in H}$ of compact complex tori, a family $\{T(\tau) = \mathbb{C}/L(\tau)\}_{\tau \in H}$ where $L(\tau) = \mu(\tau)L_{\tau}$, $\mu(\tau) = 2\pi 3^{-\frac{1}{4}}\eta^2(\tau)$ and $\eta(\tau)$ is the standard Dedekind eta function. Now, each torus $\mathbf{T}(\tau)$ is analytically isomorphic to the curve

(2.1)
$$
E_{L(\tau)}: Y^2 = 4X^3 - g_2(L(\tau))X - g_3(L(\tau))
$$

and we will define a function $u(\tau)$ as given by $u(\tau) := \frac{1}{3\sqrt[3]{4}}g_2(L(\tau))$ and the function $t(\tau) := g_3(L(\tau))$. We have

(2.2)
$$
g_2(L(\tau)) = \mu(\tau)^{-4} g_2(\tau) = \frac{3}{(2\pi)^4} \frac{g_2(\tau)}{\eta(\tau)^8}
$$

and

(2.3)
$$
g_3(L(\tau)) = \mu(\tau)^{-6} g_3(\tau) = \frac{3^{\frac{3}{2}}}{(2\pi)^6} \frac{g_3(\tau)}{\eta(\tau)^{12}}
$$

where $g_k(\tau) = g_k(L_\tau)$ for $k = 2, 3$ are the standard Eisenstein series. We see that the functions $u(\tau)$ and $t(\tau)$ satisfy the equation $4u^3 - t^2 - 1 = 0$ and hence determine an elliptic open curve

(2.4)
$$
\mathcal{E}: t^2 = 4u^3 - 1
$$

Each point $(u(\tau), t(\tau)) \in \mathcal{E}$ corresponds to a curve

(2.5)
$$
E_{u,t}: Y^2 = 4X^3 - 3\sqrt[3]{4}uX - t
$$

When point $P = (u, t)$ of $\mathcal E$ has both coordinates different from zero then there exist exactly six distict points $(\rho^k u, \pm t)$ $(k = 0, 1, 2, \rho = e^{\frac{2\pi i}{3}})$ on \mathcal{E} which correspond to six isomorphic elliptic curves representing the same equivalent class of complex tori. When $P = (u, 0)$ then we must have $u = 4^{-\frac{1}{3}} \rho^k$ and points $(\rho^k 4^{-\frac{1}{3}}, 0)$ with $k = 0, 1, 2$ correspond to three isomorphic curves representing the equivalence class $[\mathbb{C}/\mathbb{Z}[i]]$. When $P = (0, t)$ then we must have $t = \pm i$ and both curves $E_{0, \pm i}$ represent the equivalence class $[\mathbb{C}/\mathbb{Z}[\rho]]$ of tori. (Here the square bracket denotes the equivalence class of complex tori i.e. a point of the modular space H/Γ , $\Gamma = SL_2\mathbb{Z}$.

From the form of the equation (2.4) the elliptic curve $\mathcal E$ is itself analytically isomorphic to a complex torus that belongs to the class $\mathcal{C}/\mathbb{Z}[\rho]$. Since both functions $u(\tau)$ and $t(\tau)$ have the hyperbolic nature to find their realizations in terms of the Weierstrass functions \wp and \wp' (which belong to the flat geometry) we must consider the relationships between $\mathcal E$ and some modular curves of level 2 and of level 3 structures respectively.

2.2. Γ', Γ_c and $\Gamma(2)$. Let r_N denote the modulo N homomorphism r_N : $SL_2\mathbb{Z} \rightarrow$ $SL_2(N)$. The image $r_2(\Gamma) = SL_2(2) \cong S_3$ whereas the image of $\Gamma' = [\Gamma, \Gamma]$ is the normal subgroup of S_3 given by $C_3 \cong \mathbb{Z}_3$. Let Γ_c denote the subgroup $r_2^{-1}(\mathcal{C}_3)$ of Γ . It has genus zero, it has only one cusp of width 2 and it has index 2 in Γ. Moreover we may take $\{I,T\}$ as a set of its coset representatives in Γ , $T =$ $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. Let \mathbf{T}^* denote the punctured torus H/Γ' which is analyticaly isomorphic to $\mathbb{C} - L_0/L_0$ for some lattice $L_0 = const \cdot L_\rho$ and let \mathbf{X}' be $\mathbf{T}^* \cup {\infty} \cong H^*/\Gamma'$ where H^* denotes the extended half-plane $H \cup \mathbb{Q} \cup \{\infty\}$. We have the following natural projections: $\mathbf{X}' \stackrel{\pi'}{\rightarrow} \mathbf{X}_c \stackrel{\pi_c}{\rightarrow} \mathbf{X}(1)$ with $\mathbf{X}_c \cong H^*/\Gamma_c$, $\mathbf{X}(1) \cong H^*/\Gamma$ with projections π'_c of degree 3 and π_c of degree 2. The absolute invariant for Γ_c is given by $J_c(\tau) = (J(\tau)-1)^{\frac{1}{2}}$, [\[3\]](#page-15-2), and it is also Γ' invariant (using (2.3) it may be identified with the function $t(\tau)$). The comparison of the ramification scheme for $\pi'_{c} \colon \mathbf{X}' \to \mathbf{X}_{c}$ and for $\wp' \colon \mathbf{X}' \to \mathbb{C}P_1$ implies that (after the identification of $\mathbb{C}P_1$ with J_c -plane \mathbf{X}_c) the Γ'-automorphic function $t(\tau)$ coincides with the lifting to H of the function \wp' on \mathbf{T}^* . In other words we have shown that the following is true:

Lemma 1. Let p: $H \rightarrow H/N$ be the natural projection coresponding to the group $N = [\Gamma', \Gamma']$ with $H/N \cong \mathbb{C} - L_0$. The lifting of $\wp'(z, L_0)$ on $\mathbb{C} - L_0$ to H determined by p produces exactly the Γ' -automorphic function $t(\tau)$.

At this point it is worth to notice that (since the modulo 2 homomorphism maps both groups $\langle g \rangle$ and $\langle a \rangle$ onto C_3 and since a is Γ(2)-equivalent to g^2 and a^2 is Γ(2)-equivalent to g) we may view the modular curve \mathbf{X}_c (of C₃-equivalent level two structures) as the quotient $\mathbf{X}(2)/\mathcal{C}_3$ (here $g = ST$, $a = TS$, $S =$ $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$).

2.3. Γ', Γ(3) and $\Gamma_{ns}^{+}(3)$. A similar situation occurs when we pass to the modulo 3 homomorphism. The image $r_3(\Gamma')$ is the normal subgroup of $\Gamma/\Gamma(3) \cong SL_2(3)$ but now this subgroup is not an abelian one. It is isomorphic to the quaternion group Q_8 and we have

$$
(2.6) \t1 \longrightarrow Q_8 \longrightarrow SL_2(3) \longrightarrow \mathbb{Z}_3 \longrightarrow 1
$$

The subgroup $r_3^{-1}(Q_8)$ of Γ is associated to the non-split Cartan subgroup of $GL_2(3)$ and is usually denoted by $\Gamma_{ns}^+(3)$, [\[4\]](#page-15-3). It has index 3 in Γ and we may take

the set $\{I, T, T^2\}$ as a set of its coset representatives. The modular curve $\mathbf{X}_{ns}^+(3)$ of Q_8 -equivalent level 3 structures (in fact, since the normal subgroup N of Q_8 acts trivially, these structures are Q_8/N equivalent) has genus zero and only one cusp of width 3.

The absolute invariant for $\Gamma_{ns}^{+}(3)$ can be taken as $J_n(\tau) = J(\tau)^{\frac{1}{3}}$, [\[5\]](#page-15-4), and hence this uniformizer of $X_{ns}^{+}(3)$ coincides with the Γ'-automorphic function $\sqrt[3]{4u(\tau)}$ introduced earlier. Taking into account the ramification scheme given by Pict.1

we obtain immediately:

Lemma 2. Let p be the natural projection $H \to \mathbb{C} - L_0$ introduced earlier. The lifting of the Weierstrass function $\wp(z, L_0)$ on $\mathbb{C} - L_0$ to H determined by p produces exactly the Γ' -automorphic function $u(\tau) = J_n(\tau)$.

Since functions $u(\tau)$ and $t(\tau)$ are liftings to H of the Weierstrass functions φ and \wp' respectively we have the following

Corollary 1. An elliptic curve $\mathcal{E}: t^2 = 4u^3 - 1$ that forms the moduli space of elliptic curves associated to the family of lattices $\{L(\tau) = \mu(\tau)L_{\tau}\}\$ with $\tau \in H$ is analytically isomorphic to the punctured torus $T^* = H/\Gamma' \cong \mathbb{C} - L_0/L_0$ with isomorphism given by $z \to (u(\tau), t(\tau), 1)$ for any τ with the property that $p(\tau) \in$ $z + L_0$.

Thus, the Γ' -automorphic functions $u(\tau) = \frac{1}{3\sqrt[3]{4}}g_2(L(\tau))$ and $t(\tau) = g_3(L(\tau))$ are objects of both: of the euclidean geometry (since $u(\tau) = \varphi(p(\tau), L_0)$) and $t(\tau) = \wp'(p(\tau), L_0)$ and of the hyperbolic geometry (as $u(\tau)$ is the lifting to Γ' of a Hauptmodule $J_n(\tau)$ for $\Gamma^+_{ns}(3)$ and $t(\tau)$ is the lifting of a Hauptmodule J_c for Γ_c). In other words we have the following commutative diagrams:

3. A Matter of the Dedekind Eta Function

3.1. Hyperbolic and Euclidean. We have already introduced a universal covering p which projects H onto the infinite punctured plane $\mathbb{C} - L_0$ with the deck group corresponding to a homomorphism of $\Pi_1(\mathbb{C} - L_0) \to N$, $N = [\Gamma', \Gamma']$. So, $N\tau \Leftrightarrow z \in \mathbb{C} - L_0$, $\Gamma' \tau \Leftrightarrow z + L_0$ and $L_0 = c[1, \rho]$ for some constant c. Let r be

the local inverse of p, that is, $\{r, z\} = \frac{1}{2}\wp(z, L_0)$ (here $\{\}\$ denotes the Schwarzian derivative). Now the Γ' -automorphic functions u and t can be locally viewed as

(3.1)
$$
u(r(z)) = \wp(z, L_0) \qquad t(r(z)) = \wp'(z, L_0)
$$

Let $\{(U_\alpha, \tau_\alpha\}_\alpha)$ be an atlas on $\mathbf{T}^* \cong H/\Gamma'$ coming from the universal covering π' : $H \to \mathbf{T}^*$ i.e. for $(u, t) = x' \in U_\alpha \cap U_\beta$, we have $\tau_\beta(x') = \gamma \tau_\alpha(x')$ for some $\gamma \in \Gamma'$. Since the multiplier system of $\eta^2(\tau)$ restricted to the subgroup Γ' of Γ is a trivial one, on any intersection $U_{\alpha} \cap U_{\beta}$ we obtain

(3.2)
$$
L(\tau_{\beta}) = \mu(\tau_{\beta}) L_{\tau_{\beta}} = \mu(\tau_{\alpha}) L_{\tau_{\alpha}} = L(\tau_{\alpha})
$$

This means that at each point $x' \in \mathbf{T}^*$, $x' = (u, t)$, we have well define lattice $L(x') = L(\tau_{\alpha}(x')) = L(\tau_{\beta}(x'))$ and hence we have an analytic isomorphism between $\mathbb{C}/L(x')$ and $E_{u,t}$: $Y^2 = 4X^3 - 3\sqrt[3]{4}uX - t$.

Let us introduce another atlas $\{(U_{\alpha}, z_{\alpha})\}_{\alpha}$ on \mathbf{T}^* with holomorphic bijections z_{α} : $U_{\alpha} \to V_{\alpha} \subset \mathbb{C} - L_0$ coming from the projection $p' : \mathbb{C} - L_0 \to \mathbf{T}^*$ and with the property that

(3.3)
$$
\tau_{\alpha}(p'(z_{\alpha})) = r(z_{\alpha}) \qquad z_{\alpha}(\pi'(\tau_{\alpha})) = p(\tau_{\alpha})
$$

(If necessary we may pass to some refinement of an open covering ${U_\alpha}$ of \mathbf{T}^* .) Now, for each $x' \in U_\alpha \cap U_\beta$ we have $\tau_\beta(x') = \gamma \tau_\alpha(x')$ for some $\gamma \in \Gamma'$ and $z_\beta(x') =$ $z_{\alpha}(x') + w$ for some $w \in L_0$. Since

$$
u(\tau_{\alpha}) = \wp(p(\tau_{\alpha}), L_0) = \wp(p(\tau_{\beta}), L_0) = u(\tau_{\beta})
$$

and analogously

$$
t(\tau_{\alpha}) = \wp'(z_{\alpha}, L_0) = \wp'(z_{\beta}, L_0) = t(\tau_{\beta})
$$

the relation

$$
t(\tau_{\alpha}) = \wp'(z_{\alpha}, L_0) = \frac{d\wp(p(\tau_{\alpha}), L_0)}{dp(\tau_{\alpha})} = \frac{d\wp(p(\tau_{\alpha}))}{d\tau_{\alpha}} \frac{d\tau_{\alpha}}{dz_{\alpha}} = \frac{du(\tau_{\alpha})}{d\tau_{\alpha}} \frac{d\tau_{\alpha}}{dz_{\alpha}}
$$

implies that

(3.4)
$$
\frac{du(\tau_{\alpha})}{d\tau_{\alpha}} = t(\tau_{\alpha}) \frac{dz_{\alpha}}{d\tau_{\alpha}}
$$

Since we already know that

$$
u(\tau_{\alpha}) = (\frac{1}{4}J(\tau_{\alpha}))^{\frac{1}{3}}, \qquad t(\tau_{\alpha}) = (J(\tau_{\alpha}) - 1)^{\frac{1}{2}}
$$

we may use the well known formula [\[6\]](#page-15-5)

$$
\eta^{24}(\tau) = \frac{1}{(48\pi^2)^3} \frac{J'(\tau)^6}{(J(\tau))^4 (1 - J(\tau))^3}
$$

to find that on $U_{\alpha} \subset \mathbf{T}^*$ we have

(3.5)
$$
\frac{dz_{\alpha}}{d\tau_{\alpha}} = s\eta^{4}(\tau_{\alpha}), \qquad s = 2k\pi \frac{\sqrt[3]{2}}{\sqrt{3}}
$$

and k is a global constant given by a 6-th root of -1 . Hence, on any intersection $U_{\alpha} \cap U_{\beta}$ on \mathbf{T}^* we have

(3.6)
$$
dz_{\alpha} = s\eta^4(\tau_{\alpha})d\tau_{\alpha} = s\eta^4(\tau_{\beta})d\tau_{\beta} = dz_{\beta}
$$

as expected. We see that the Dedekind eta function provides the transition between the local flat coordinates $z_{\alpha}(x')$ and the hyperbolic $\tau_{\alpha}(x')$ coordinates on T ∗ . In other words it plays the role of a bridge between the euclidean geometry on $\mathbf{T}^* \cong H/\Gamma'$ and its natural hyperbolic geometry. Moreover, from the formula (3.6), we obtain that

(3.7)
$$
\wp(z_{\alpha}, L_0)dz_{\alpha}^2 = \frac{k}{3(2\pi)^3}g_2(\tau_{\alpha})d\tau_{\alpha}^2
$$

Let q be the holomorphic quadratic differential on T^* that is determined by the Eisenstein series $g_2(\tau)$ i.e. with respect to the atlas $\{(U_\alpha, \tau_\alpha)\}_\alpha$ it can be written as $q = (\frac{k}{3(2\pi)}g_2(\tau_\alpha)d\tau_\alpha^2)_\alpha$. Now, with respect to the atlas $\{(U_\alpha, z_\alpha)\}_\alpha$, q takes the form:

(3.8)
$$
q = (\wp(z_{\alpha}, L_0) dz_{\alpha}^2)_{\alpha}
$$

Similarly, it is easy to check that

(3.9)
$$
t(\tau_{\alpha}) = \frac{2\pi\sqrt{3}}{\sqrt[3]{2}} \frac{du(\tau_{\alpha})}{d\tau_{\alpha}} \eta^{-4}(\tau_{\alpha})
$$

and hence on each U_{α} we can write

(3.10)
$$
g_3(\tau_\alpha) = \frac{(2\pi)^7}{3\sqrt[3]{2}}e^{-\frac{i\pi}{6}}\eta^8(\tau_\alpha)\frac{du(\tau_\alpha)}{d\tau_\alpha}
$$

Let ξ denote the holomorphic differential on \mathbf{T}^* wich is determined by $g_3(\tau)$. The above formulae allow us to write

(3.11)
$$
\xi = (\wp'(z_{\alpha}, L_0) dz_{\alpha}^3)_{\alpha} = (\frac{2}{(2\pi)^9} e^{\frac{i\pi}{2}} g_3(\tau_{\alpha}) d\tau_{\alpha}^3)_{\alpha}
$$

In other words we have shown the following:

Lemma 3. The Γ' -automorphic forms on H corresponding to the differentials $q =$ $(\wp(z_\alpha,L_0)dz_\alpha^2)_\alpha$ and $\xi=(\wp'(z_\alpha,L_0)dz_\alpha^3)_\alpha$ on T^* are exactly ones determined by the standard Eisenstein series $g_2(\tau)$ and $g_3(\tau)$ respectively. More precisely we have

(3.12)
$$
\frac{k^2}{3(2\pi)^2}g_2(\tau) = \frac{k^2 \sqrt[3]{4}}{3}(2\pi)^2 \eta^8(\tau)u(\tau)
$$

and

(3.13)
$$
\frac{2k^3}{(2\pi)^3}g_3(\tau) = \frac{k^3\sqrt[3]{2}}{3}(2\pi)^2\eta^8(\tau)\frac{du(\tau)}{d\tau}
$$

respectively.

From the relations (3.12) and (3.13) we obtain (after differentiating the first equation):

(3.14)
$$
\frac{dg_2(\tau)}{d\tau} = 8 \frac{\eta'(\tau)}{\eta(\tau)} g_2(\tau) + \frac{3k}{\pi} g_3(\tau)
$$

We notice that when we choose the 6-th root k of -1 as $k = -i$ then the latter formula is equivalent to the Serre derivative of the modular form $E_4(\tau) = \frac{3}{2\pi^2} g_2(\tau)$.

3.2. Some Hecke Operators. Let us introduce (see [\[7\]](#page-15-6)) the operator $T_{(g),k}$ of weight $k \in \mathbb{Z}$ acting on the space of functions $f : H \to \mathbb{C}$ as follows

(3.15)
$$
(T_{\langle g \rangle,k}f)(\tau) = \sum_{r=1}^{3} j_{g^{r}}^{-k} f(g^{r}\tau)
$$

where $j_{\gamma}(\tau) = c\tau + d$ for any element $\gamma =$ $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ in $SL_2\mathbb{R}$. Let $\mathcal{A}_k(G)$ denote the space of G-automorphic forms of weight k for a Fuchsian group G . Since we have

(3.16)
$$
T_{\langle g \rangle,k} : \mathcal{A}_k(\Gamma') \to \mathcal{A}_k(\Gamma_c)
$$

and

(3.17)
$$
T_{\langle g \rangle,k} : \mathcal{A}_k(\Gamma(2)) \to \mathcal{A}_k(\Gamma_c)
$$

we may find some relations between k-forms for $\Gamma(2)$ and k-forms for Γ' . Namely, these Hecke operators together with the projections π'_c and $\pi_2^c: X(2) \to X_c$ allow us to transform $\frac{k}{2}$ -differentials on **X**' into $\frac{k}{2}$ -differentials on **X**(2) and vice versa. Let us denote the composition of $(\pi_2^c)^*$ and of $T_{\langle g \rangle,k}$ as the operator \hat{H}_k . Let us check what are the images of H_0 produced by the Γ' -automorphic functions $u(\tau)$ and $t(\tau)$. Since $L(g\tau) = ie^{\frac{i\pi}{6}}L(\tau)$ and $L(g^2\tau) = -ie^{-\frac{i\pi}{6}}L(\tau)$ we have $g_2(L(g\tau)) = \rho^2 g_2(L(\tau))$ and $g_2(L(g^2\tau)) = \rho g_2(L(\tau))$. Hence

$$
\widehat{H}_0 u(\tau) = 0 \qquad and \qquad \widehat{H}_0 t(\tau) = 3t(\tau)
$$

So, the Weierstrass function \wp on \mathbf{T}^* produces the zero function on $\mathbf{X}(2)$ but the Weierstrass function \wp' produces a multiple of the lifting of the absolute invariant J_c from \mathbf{X}_c to $\mathbf{X}(2)$. We already know that the regular quadratic differential $(dz_\alpha^2)_\alpha$ on \mathbf{T}^* corresponds to the Γ' -automorphic form $s^2\eta^8(\tau)$ on H. It occurs that the image under the operator $\widehat{H}_4 = (\pi_2^c)^* \circ T_{\langle g \rangle, 4}$ (transforming $\mathcal{A}_4(\Gamma')$ into $\mathcal{A}_4(\Gamma(2)))$ of $\eta^8(\tau)$ vanishes. Although $\hat{H}_0 u(\tau) = 0$ and $\hat{H}_4 \eta^8(\tau) = 0$ the operator \hat{H}_4 acts on their product $u(\tau)\eta^{8}(\tau)$ by multiplication by 3. This is because the product is a Γ-automorphic form i.e. $u(τ)η⁸(τ) ∈ A₄(Γ) ⊂ A₄(Γ')$. Generally we have

Lemma 4. For any
$$
\varphi \in A_k(\Gamma)
$$
 and for any $f \in A_0(\Gamma')$ we have $\tilde{H}_k(f\varphi) = \varphi \tilde{H}_0(f)$.
Proof. Simple

We have exactly the same properties when we replace $\mathcal{A}_k(\Gamma')$ by $\mathcal{A}_k(\Gamma(2))$ and the operator H_k by the the operator H_k defined as the composition $\pi_c^{k^*} \circ T_{(g),k}$ and transforming $A_k(\Gamma(2))$ into $A_k(\Gamma')$. Since we have

(3.18)
$$
T_{(g),4}\vartheta_3(\tau)^8 = \frac{3}{(2\pi)^4}g_2(\tau)
$$

the image by H_4 of the differential on **X**(2) determined by $\vartheta_3(\tau)^8 \in A_4(\Gamma(2))$ produces the differential

(3.19)
$$
(\frac{1}{k^2}(\frac{3}{2\pi})^2 \wp(z_\alpha, L_0) dz_\alpha^2)_\alpha = (\frac{3}{(2\pi)^4} g_2(\tau_\alpha) d\tau_\alpha^2)_\alpha
$$

on \mathbf{T}^* . (Here $\vartheta_3(\tau) \equiv \vartheta_3(0,\tau)$ is the standard theta function on H.) However when we start with $g_2(\tau)$ as Γ' -automorpfic form then, using the operatoe H_4 we will not

return to $\vartheta_3(\tau)^8 \in \mathcal{A}_4(\Gamma(2))$. Instead of we obtain $\hat{H}_4g_2(\tau) = 3g_2(\tau)$ as an element of $\mathcal{A}_4(\Gamma(2))$.

3.3. Bers embedding. Since the differential q given by (3.8) has a pole of order 2 at the puncture of T^* it is not integrable so, although it is holomorphic on T^* , it does not correspond to any element of the Banach space $\mathfrak{B}_{2}(L, \Gamma')$ (the space of all holomorphic Nehari-bounded forms on the lower half-plane L of weight 4, [\[8\]](#page-15-7)). This means that we cannot use q to construct the Bers embedding $\mathcal{T}_{1,1} \to \mathfrak{B}_2(L,\Gamma').$ However, we see from (3.6) that the holomorphic differential on \mathbf{T}^*

(3.20)
$$
\varphi = (dz_{\alpha}^2)_{\alpha} = (s^2 \eta^8(\tau_{\alpha}) d\tau_{\alpha}^2)_{\alpha}
$$

corresponds to $\Phi = \phi(\tau)d\tau^2$ with $\varphi(\tau) = s^2\eta^8(\tau)$ and hence it corresponds to an element of $\mathfrak{B}_2(L, \Gamma')$ which may be used to find a concrete Bers embedding. However now, the space $\mathcal{T}_{1,1}$ must have its origin at \mathbf{T}^* . This means that we must find the domain of complex numbers b such that the Schwarzian differential equation

$$
(3.21) \t\t\t \{w,\tau\} = b\varphi(\tau)
$$

has a schlicht solution w which has a quasiconformal extention \hat{w} to all $\mathbb C$ compatible with Γ' . Since a shlicht solution w of (3.21) can be written as the quotient $\frac{y_1}{y_2}$ of two linearly independent solutions of $y''(\tau) + \frac{1}{2}b\varphi(\tau)y(\tau) = 0$ to find the values of b for which $\hat{w}\Gamma'\hat{w}^{-1}$ is a quasi-Fuchsian of signature $(1, 1)$ we should consider the linear differential equation

(3.22)
$$
y''(\tau) + \frac{bs^2}{2} \eta^8(\tau) y(\tau) = 0 \qquad \tau \in L
$$

Till now, to find a Bers embedding of $\mathcal{T}_{1,1}$ we take the the Teichmueller space $\mathcal{T}_{1,1}$ originating at the punctured torus, usually $\mathbb{C} - L_i/L_i$, and we are looking for the values $b \in \mathbb{C}$ for which the Lame equation

(3.23)
$$
y'' + \frac{1}{2}(\frac{1}{2}\wp(z, L_i) + b)y = 0
$$

has a purely parabolic monodromy group (which is the commutator subgroup of the quasi-Fuchsian group $\widehat{w}\Gamma_i\widehat{w}^{-1}$ of signature $(1; 1)$) Thus, the relation (3.6) allows us to consider the equation (3.22) instead of (3.23) and, since till now the equation (3.22) had not been investigated (to the author's knowledge), there is a possibility that we obtain new, more transparent understanding of the domain of Bers embedding of the Teichmueller space $\mathcal{T}_{1,1}$ that originates at $\mathbf{T}^* = H/\Gamma'$ (instead of at \mathbf{T}_{i}^{*})

4. Fundamental Domains for Γ ′

The standard quadrilateral fundamental domains \mathfrak{F}'_4 for Γ' and $\mathfrak{F}(\Gamma(2))$ for $\Gamma(2)$ have the same underlying set \mathfrak{F} , given by the quadrilateral $(-1, 0, 1, \infty)$, and hence we may choose the same set of their coset representatives in $\tilde{\Gamma} = PSL_2\mathbb{Z}$. We may decompose the set $\mathfrak F$ into copies of a fundamental region $F(\Gamma) = (i-1, \rho, i, \infty)$ or into copies of a fundamental region $F_{\Gamma} = (0, \rho + 1, \infty)$ of the modular group according to

(4.1)
$$
\mathfrak{F} = \mathfrak{S}_1 F(\Gamma) = \mathfrak{S}_2 F_{\Gamma}
$$

where $\mathfrak{S}_1 = \{I, g, g^2, T, Tg, Tg^2\}$ and $\mathfrak{S}_2 = \{I, a, a^2, S, Sa, Sa^2\}$ are two sets of coset representatives in Γ. When we start with the set \mathfrak{F} , to determine whether we have $\Gamma(2)$ or Γ' quadrilateral domain, we have to use either geometric or algebraic considerations. Geometrically, we have different identifications on the border $\partial \mathfrak{F}$ given by the generators of $\Gamma' = \langle A, B \rangle$ and of $\Gamma(2) = \langle -I, T^2, U \rangle$ respectively.

Algebraically, the free generators S and g of $\widetilde{\Gamma} = \langle S \rangle * \langle q \rangle$ determine distinct permutations of the copies of fundamental domains for Γ depending whether their union forms $\mathfrak{F}(\Gamma(2))$ or \mathfrak{F}'_4 . More precisely, following the Millington construction [\[9\]](#page-15-8), both S and g determine permutations μ and σ of a set of coset representatives. A permutation group $\Sigma = \langle \mu, \sigma | \mu^2 = \sigma^3 = I \rangle$ acts transitively on a set of cosets and the disjoint cycle decomposition of μ , σ and of their product $\mu\sigma$ provides the genus and inequivalent cusp widths for an appropriate subgroup of Γ .

For example, if we consider cosets represented by elements of \mathfrak{S}_1 and if we denumerate its elements as $\{I, T, g^2, Tg^2, g, Tg\} \Leftrightarrow \{0, 1, 2, 3, 4, 5\}$ respectively then, the permutation $\mu = (03)(14)(25) \in S_6$ for the both subgroups $\Gamma(2)$ and Γ' of Γ. However the motion g produces the permutation $\sigma' = (042)(153)$ for Γ' and hence $\mu \sigma' = (0, 1, 2, 3, 4, 5)$. The corresponding permutation group $\Sigma(\Gamma') = \langle \mu, \sigma' \rangle$ tells us that Γ' has genus 1, no elliptic elements and the single cusp of width 6 (equal to the lenght of the cycle $\mu\sigma'$). For $\Gamma(2)$, $g = ST$ generates the permutation $\sigma = (042)(135)$. So the product $\mu \sigma = (01)(23)(45)$ and we have three inequivalent cusps of width equal to 2 each.

We notice that the cycle structures of the generators of $\Sigma(\Gamma')$ and of $\Sigma(\Gamma(2))$ are the same but the permutations given by the products of the generators introduce distinction in the properties of cusps for Γ' and for $\Gamma(2)$ respectively. Of course we could take different enumeration of cosets and different decompositions of the fundamental region of a given subgroup of $\tilde{\Gamma}$. The permutation group obtained by using these new data will have generators (i.e. permutations representing S and g) that are simultaneously conjugate in S_6 either to $\{\mu, \sigma'\}$ (in the case of Γ') or to $\{\mu, \sigma\}$ (for $\Gamma(2)$).

Thus, when we start with the quadrilateral region $\mathfrak{F} = (-1, 0, 1, \infty)$ then we must perform some operations for the cusp of width 6 of Γ′ to be seen. However, the hexagonal fundamental domain $\mathfrak{F}'_6 = (\rho - 2, \rho - 1, \rho, \omega, \omega + 1, \omega + 2, \omega + 3, \infty)$ has the parabolic vertex of index 6 already. Moreover, if we choose the following fundamental standard domains: $R = (\rho, \omega, \infty)$ for Γ , $F(\Gamma_c) = T^{-2}R \cup T^{-1}R$ for Γ_c and $F(\Gamma_{ns}^+(3)) = T^{-2}R \cup T^{-1}R \cup R$ for $\Gamma_{ns}^+(3)$ then we have immediately the relations between appropriate sets given by

(4.2)
$$
\mathfrak{F}'_6 = (I \cup T^3) F(\Gamma^+_{ns}(3)) = (I \cup T^2 \cup T^4) F(\Gamma_c)
$$

These relations immediately describe the ramifications of $X' \to X_{ns}^+(3)$ and of $\mathbf{X}' \to \mathbf{X}_c$ at ∞ respectively.

When we work with the quadrilateral domain \mathfrak{F}_4' then, in fact, we are dealing with the subgroups of $PSL_2\mathbb{Z}/\Gamma'$ that may be identified with the finite subgroups $\langle S \rangle$ and $\langle q \rangle$ of the modular group itself. But when we consider the hexagonal fundamental domain \mathfrak{F}'_6 then the more natural is to view the quotient $PSL_2\mathbb{Z}/\Gamma'$

as given by $\langle T \rangle \text{mod}T^6$. Although we have that T^3 is equivalent to S modulo Γ' (more precisely $T^3 = S[S^{-1}, T][S^{-1}, T^{-1}]$) and we can write

(4.3)
$$
\widetilde{\Gamma}/\Gamma' \cong \langle S \rangle \times \langle g \rangle \cong \langle T^3 \rangle \times \langle T^2 \rangle mod T^6
$$

we notice that the elements S and g have finite order in Γ whereas both T^3 and T^2 are generators of infinite parabolic subgroups of $PSL_2\mathbb{Z}$. So we are dealing with transparent differences between the nature of algebraic objects that may be associated to \mathfrak{F}_4' and \mathfrak{F}_6' respectively and which are involved in the hidden structure of the Veech curve determined by the dynamical system of a billiard (in a $(\frac{\pi}{2}, \frac{\pi}{3}, \frac{\pi}{6})$ -triangle) and described by the error correcting Golay code G_{24} in [\[1\]](#page-15-0). These differences become even deeper when we consider a non-unitary representation χ of $\tilde{\Gamma}$ in $\mathbb{C}^2 = Span\{J_c, J_n\}$. Since the Γ' -automorphic functions $u(\tau)$ and $t(\tau)$ are given by the liftings of J_n and of J_c from $\Gamma^+_{ns}(3)$ and from Γ_c to Γ' appropriately we may identify the underlying vector space \mathbb{C}^2 for χ with the linear span of the Weierstrass functions $\wp(p(\tau), L_0) \cong u(\tau)$ and $\wp'(p(\tau), L_0) \cong t(\tau)$ respectively. Since

$$
u(\frac{-1}{\tau}) = u(\tau) \qquad u(\tau + 1) = \rho u(\tau)
$$

and

$$
t(\frac{-1}{\tau}) = t(\tau) \qquad t(\tau + 1) = -t(\tau)
$$

the transformation S acts as identity. We have: $\chi(S) = I$, $\chi(T) = \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix}$ 0ρ $\overline{ }$ and $\chi(T^6) = I$. Thus to see χ as a representation of $\tilde{\Gamma}/\Gamma'$ on $Span\{\wp, \wp'\}$ we must take the set $\{T^k, k = 0 \dots 5\}$ as a set of the cosets representatives of Γ' in $\tilde{\Gamma}$. In other words, it is the cusp of Γ' and its ramification indices over \mathbf{X}_c and over $\mathbf{X}_{ns}^+(3)$ respectively that are important here, and it is the hexagonal domain \mathfrak{F}'_6 which immediately produces the relations (4.2).

5. DECOMPOSITION OF L_0

The projection $p: H \to H/N \cong \mathbb{C} - L_0$, $N = [\Gamma', \Gamma']$ corresponds to the abelization of Γ', Γ'/ $N \cong \mathbb{Z}^2$. More precisely, let Γ' be generated by $A = [S, T^{-1}] =$ $\begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$ and by $B = [S, T] = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}$. Any element $\gamma \in \Gamma'$ has the abelianized form

(5.1)
$$
\gamma = A^m B^n \mathfrak{n}, \qquad (m, n) \in \mathbb{Z}^2, \qquad \mathfrak{n} \in N
$$

We usually write $\gamma = mA + nB$, [\[10\]](#page-15-9), so that

$$
p(\mathfrak{n}\tau) = p(\tau) = z \in \mathbb{C} - L_0,
$$
 $L_0 = [\omega_1, \omega_2] = c[1, \rho]$

and

$$
p(\gamma\tau)=p(\tau)+m\omega_1+n\omega_2 \qquad for \qquad \gamma=A^mB^n\mathfrak{n}\in \Gamma'
$$

Let the quaternion group $Q_8 = \langle \alpha, \beta | \alpha^4 = 1, \alpha^2 = \beta^2, \alpha \beta = \beta \alpha^{-1} \rangle$ be realized by the following matrices in $SL₂(3)$:

(5.2)
$$
I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \alpha = \begin{pmatrix} 0 & 2 \\ 1 & 0 \end{pmatrix}, \quad \alpha^2 = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}, \quad \alpha^3 = \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix},
$$

$$
\beta = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}, \quad \beta^3 = \begin{pmatrix} 2 & 2 \\ 2 & 1 \end{pmatrix}, \quad \beta\alpha = \begin{pmatrix} 1 & 2 \\ 2 & 2 \end{pmatrix}, \quad \alpha\beta = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}
$$

The group \mathbb{Z}_3 that occurs in (2.6) is generated by $X =$ $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and acts on Q_8 by the automorphisms determined by $X\alpha X^{-1} = \beta$ and $X\beta X^{-1} = \alpha\beta$. Let r'_3 denote the restriction of the homomorphism r_3 to Γ'. It maps

(5.3)
$$
A \to \beta
$$
, $A^2 \to \beta^2$, $A^3 \to \beta^3$, $A^4 \to I$

 $B \to \beta \alpha$, $AB \to \alpha^3$, $A^2B \to \alpha \beta$, $A^3B \to \alpha$

From now on we will use the following enumeration of the elements of Q_8 :

(5.4)
$$
\{I, \beta, \beta^2, \beta^3, \beta\alpha, \alpha^3, \alpha\beta, \alpha\} \equiv \{q_1, q_2, \dots, q_8\}
$$

respectively. Let $\sigma \in S_8$ be the permutation $\sigma = (13)(24)(57)(68)$ of $\{q_1, \ldots, q_8\}$ corresponding to the multiplication by $\alpha^2 = \beta^2 = (\alpha \beta)^2 = -I$.

Lemma 5. The homomorphism r'_3 : $\Gamma' \rightarrow Q_8$ induces a unique mapping κ : $\Gamma'/N \rightarrow Q_8 \times Q_8$ such that $\kappa(m,n) = (q_k, \sigma q_k)$ for some unique, appropriate $k \in \{1, \ldots, 8\}$

Proof. Let $\mathcal{N} = \{1, \alpha^2\}$ denote a normal subgroup of Q_8 and let $r'_{3,N}$ denote the restriction of r'_3 to the normal subgroup N of Γ' . Let K_N denote the kernel of the homomorphism $r'_{3,N}$, $K_N \triangleleft N$, so that we have $N = K_N \cup A$ as a set, with $\mathcal{A} = r'_{3,N}^{-1}(\alpha^2)$. Since each coset (m, n) of N has the decomposition

(5.5)
$$
(m, n) \equiv A^m B^n N = A^m B^n K_N \cup A^m B^n A
$$

and all elements of the set $\{A^m B^n K_N\}$ are mapped onto some concrete q_k whereas elements of $\{A^m B^n A\}$ are all mapped onto σq_k , the lemma follows. elements of $\{A^m B^n A\}$ are all mapped onto σq_k , the lemma follows.

For each $k \in \{1, ..., 8\}$ we introduce the subset \mathcal{A}_k of Γ' as the union $\mathcal{A}_k =$ $\mathfrak{A}_k \cup \mathfrak{B}_k$ with

(5.6)
$$
\mathfrak{A}_k = \{A^m B^n \mathfrak{n} | \mathfrak{n} \in K_N; r'_3 (A^m B^n) = q_k \}
$$

and with

.

(5.7)
$$
\mathfrak{B}_k = \{A^{m'}B^{n'}\mathfrak{n}|\mathfrak{n} \in \mathcal{A}; r'_3(A^{m'}B^{n'}) = \sigma q_k\}
$$

Lemma 6. The decomposition $\Gamma' = \bigcup_{k=1}^{8} A_k$ determines a one-one correspondence between the set of elements of Q_8 and the set of elements of $\mathbb{Z}_4 \times \mathbb{Z}_2$

Proof. Let us write

(5.8)
$$
\mathfrak{A}_k = \{A^{m_k}B^{n_k}\}K_N \quad and \quad \mathfrak{B}_k = \{A^{m'_k}B^{n'_k}\}\mathcal{A}
$$

for appropriate pairs of integers (m_k, n_k) and (m'_k, n'_k) in \mathbb{Z}^2 . Let s_k and t_k denote the smallest nonnegative integers such that $r'_3(A^{s_k}B^{t_k}) = q_k$. We see immediately that

$$
(5.9) \quad \{(m_k, n_k)\} = \{(4m + s_k, 4n + t_k), (4m + 2 + s_k, 4n + 2 + t_k), m, n \in \mathbb{Z}\}\
$$

and

$$
(5.10) \quad \{(m'_k, n'_k)\} = \{(4m+2+s_k, 4n+t_k), (4m+s_k, 4n+2+t_k), m, n \in \mathbb{Z}\}\
$$

Thus the set $\mathcal{A}_k \subset \Gamma'$ is uniquely determined by the pair $(s_k, t_k) \in \mathbb{Z}_4 \times \mathbb{Z}_2$ and the lemma follows. \Box

The explicit relations between Q_8 and $\mathbb{Z}_4 \times \mathbb{Z}_2$ are given in the table.

We recall that the lattice L_0 is produced by the images of $\infty \in H^*$ under Γ' , $L_0 \cong p(\Gamma'(\infty))$, and that it is identified with the quotient $\Gamma'/N \cong \mathbb{Z}^2$. Our previous considerations lead us to the following:

Lemma 7. The homomorphism $r'_3 : \Gamma' \to Q_8$ determines the decomposition of the lattice L_0 into 8 disjoint sublattices.

Proof. We have seen that we can decompose the set of all N-cosets in Γ' into 8 subsets of cosets given by $\{(m_k, n_k) \in \mathbb{Z}^2 | A^{m_k} B^{n_k} \stackrel{r'_3}{\rightarrow} q_k \}$ i.e. produced by cosets representatives $A^{m_k}B^{n_k} \in \mathfrak{A}_k$. Now, to each such subset we may uniquely associate the subset $\mathcal{L}_k \subset \mathbb{Z}^2$ of the form:

(5.11)
$$
\mathcal{L}_k = \{a_k + 4\mathbb{Z}^2\} \cup \{a_k + (2,2) + 4\mathbb{Z}^2\}
$$

Using the correspondence $(m, n) \Leftrightarrow m\omega_1 + n\omega_2$ as well as the symmetry properties of the lattice $L_0 = [\omega_1, \omega_2] = \omega_1[1, \rho]$ expressed by $[1, \rho] = [1, \omega]$ for $\omega = \rho + 1 = e^{\frac{i\pi}{3}}$ we obtain immediately that each subset $\mathcal{L}_k \subset \mathbb{Z}^2$, $k \in \{1, ..., 8\}$ determines a unique sublattice \mathcal{L}_k of L_0 given by

(5.12)
$$
\widetilde{\mathcal{L}_k} = \widetilde{a}_k + \omega_1[4, 2\omega] \subset L_0, \qquad \widetilde{a}_k = s_k \omega_1 + t_k \omega_2
$$

We notice that the K-multiple (for $K = \frac{\pi}{2} \theta_3^2(0, \omega)$) of the lattice $[4, 2\omega]$ gives the primitive periods of the function sinus amplitudis $sn(2Kz)$. We will not pursuit this direction here. Instead of we will look at \mathcal{L}_k as the sublattice $L_k = \tilde{a}_k + 4L_0$ of L_0 together with its halfpoints $\{h_k\} = \tilde{a}_k + 2(\omega_1, \omega_2) + 4L_0$. We see immediately that although the decomposition of L_0 into mutually disjoint subsets \mathcal{L}_k , $k = \{1, \ldots, 8\}$ is uniquely determined by q_k 's, the realization of each \mathcal{L}_k as a sublattice of L_0 (more precisely a 4-dilate of L_0) together with appropriate half points is not a canonical one. Namely we can do this in three distinct ways. To analyse the situation let us introduce the lattices:

(5.13)
$$
\Lambda_3 = [\omega_1^3, \omega_2^3] = 4[\omega_1, \omega_2]
$$

(5.14)
$$
\Lambda_4 = [\omega_1^4, \omega_2^4] = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix} \circ \Lambda_3 = [\omega_2^3, -\omega_1^3 - \omega_2^3]
$$

(5.15)
$$
\Lambda_2 = [\omega_1^2, \omega_2^2] = \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix} \circ \Lambda_3 = [-\omega_1^3 - \omega_2^3, \omega_1^3]
$$

Equivalently we could write $\Lambda_4 = g \circ \Lambda_3$ and $\Lambda_2 = g^2 \circ \Lambda_3$, $g = ST$. Although all these three lattices Λ_i 's, $i = 2, 3, 4$ are equivalent, the realizations of each subsets \mathcal{L}_k by distinct Λ_i 's requires distinct half points of these lattices. Thus we have:

(5.16)
$$
I. \quad \widetilde{\mathcal{L}_k} = \{\widetilde{a}_k + \Lambda_3\} \cup \{\widetilde{a}_k + \frac{\omega_1^3 + \omega_2^3}{2} + \Lambda_3\}
$$

or

(5.17)
$$
II. \quad \widetilde{L}_k = \{\widetilde{a}_k + \Lambda_4\} \cup \{\widetilde{a}_k + \frac{\omega_2^4}{2} + \Lambda_4\}
$$

(5.18)
$$
III. \quad \widetilde{\mathcal{L}_k} = {\{\widetilde{a}_k + \Lambda_2\} \cup {\{\widetilde{a}_k + \frac{\omega_1^2}{2} + \Lambda_2\}}
$$

We observe that the realizations I, II and III are associated to the pairs (Q_8, I) , (Q_8, g) and to (Q_8, g^2) respectively.

 $\mathsf{L}_2\}$

6. Conclusions

We have seen that we needed both homomorphisms, modulo 2 and modulo 3, to find that the Weierstrass functions \wp and \wp' on $p(H) \cong \mathbb{C} - L_0$ have liftings to H given by the absolute invariants $J_n(\tau) = (J(\tau))^{\frac{1}{3}}$ (for $\Gamma^+_{ns}(3)$) and $J_c(\tau) = (J(\tau) - 1)^{\frac{1}{2}}$, (for Γ_c) respectively. Further, we have obtained that the homomorphism r'_3 determines the decomposition of Γ' into subsets $\mathcal{A}_k = r'^{-1}(q_k)$, $k = 1, \ldots, 8$ (equivalently into the cosets of a normal subgroup $\Gamma' \cap \Gamma(3)$ in Γ'). Then we decomposed each $\mathcal{A}_k \subset \Gamma'$ as $\mathcal{A}_k = \mathfrak{A}_k \cup \mathfrak{B}_k$ according to (5.6) and (5.7). We have noticed that the set of pairs $(m_k, n_k) \in \mathbb{Z}^2$ with $A^{m_k} B^{n_k}_{\infty} \in \mathfrak{A}_k$ determines a sublattice \mathcal{L}_k of the lattice $L_0 \cong \mathbb{Z}^2$. Although the sublattice \mathcal{L}_k is not a dilate of L_0 we may view it as given by a lattice equivalent to L_0 together with the set of all of its appropriate half points. Such realization is not a canonical one and we have three ways, I, II and III, to do this. In other words, we obtain the decomposition of L_0 into eight disjoint subsets, $L_0 = \bigcup_{k=1}^8 \widetilde{\mathcal{L}_k}$, each of which can be seen as

(6.1)
$$
\widetilde{\mathcal{L}_k} = \{\widetilde{a}_k + \Lambda_l\} \cup \{\widetilde{a}_k + h(l) + \Lambda_l\} \qquad k = 1, ..., 8
$$

for $l = 2, 3, 4$ (here $\Lambda_l = g^l \circ \Lambda_3$ and $h(l)$ is an appropriate, depending on l, halfpoint of Λ_l). All lattices Λ_l 's are 4-dilates of L_0 and the essential differences between I, II and III lie in the different positions of half-points. These three realizations correspond to the elements of the group $\langle g \rangle$ < $SL_2\mathbb{Z}$ involved in the formulae $(5.13) - (5.15)$. More precisely, although the three lattices $\Lambda_l = [\omega_1^l, \omega_2^l] = g^l \circ \Lambda_3$, $l = 2, 3, 4$ coincide (and are all 4-dilates of the lattice L_0) the fact that $g \notin \Gamma(2)$ implies that the half-points of the lattices $g^l \circ \Lambda_3$'s are not preserved. Since $r_3(\langle g \rangle) \cong$ $SL_2(3)/Q_8$ we may view the group $Q_8 \triangleleft SL_2(3)$ as producing the decomposition $L_0 = \bigcup_{k=1}^8 \widetilde{\mathcal{L}}_k$ and we may view the quotient $SL_2(3)/Q_8$ (which is associated to the symmetries of the lattice L_0 described by the cyclic group $\langle g \rangle$) as responsible for the three realizations given by $(5.16), (5.17)$ and (5.18) respectively. We see that:

- The realization I is associated to $(\Lambda_3, \frac{\omega_1^3 + \omega_2^3}{2})$ and involves the half points that correspond to the zeros of $\vartheta_3(v,\rho)$
- The realization II is associated to $(\Lambda_4, \frac{\omega_2^4}{2})$ and involves the half poins that correspond to the zeros of $\vartheta_4(v, \rho)$
- The realization III is associated to $(\Lambda_2, \frac{\omega_1^2}{2})$ and involves the half points that correspond to the zeros of $\vartheta_2(v, \rho)$

Here $v = \frac{z}{4\omega_1}$, $L_0 = [\omega_1, \omega_2]$, $z = p(\tau)$ for $\tau \in H$ and we use exactly the same subindex l for a lattice Λ_l and for the corresponding even theta function. Moreover, the relations $\Lambda_4 = g \circ \Lambda_3$ and $\Lambda_2 = g^2 \circ \Lambda_3$ are parallel to the following relations respectively:

$$
\vartheta_4^8(0,\tau) = (j_g(\tau))^{-4} \vartheta_3^8(0,g\tau), \qquad \vartheta_2^8(0,\tau) = (j_{g^2}(\tau))^{-4} \vartheta_3^8(0,g^2\tau)
$$

Now, the global section $L(x')$ of lattices over \mathbf{T}^* introduced earlier leads to the fiber space over \mathbf{T}^* whose fiber at any point $x' \in \mathbf{T}^*$ is a complex torus $\mathbf{T}_{x'}$ given by

or

 $\mathbb{C}/L(x')$ and attached to x' at the origin. However although for each point $x' \in \mathbf{T}^*$ the lattice $L(x')$ is well defined it is not equipped with any concrete basis and hence its half points are determined only up to permutations. The situation will change when we restrict ourselves to a single map $(U_{\alpha}, \tau_{\alpha})$, that is to $x' \in U_{\alpha} \subset \mathbf{T}^*$. Now we can write

$$
L(x') = L(\tau_{\alpha}) = \mu(\tau_{\alpha})[1, \tau_{\alpha}] = [\omega_1^{\alpha}, \omega_2^{\alpha}]
$$

and the half points are given by $h_1^{\alpha} = \frac{\omega_1^{\alpha}}{2}$, $h_2^{\alpha} = \frac{\omega_2^{\alpha}}{2}$ and by $h_3^{\alpha} = \frac{\omega_1^{\alpha} + \omega_2^{\alpha}}{2}$ respectively. Since the decomposition of L_0 corresponds to the decomposition of \mathbb{Z}^2 given by (5.11) the realization I defines the decompositions of each $L(\tau_{\alpha}(x'))$, $x' \in U_{\alpha}$ onto eight sublattices together with their half points as follows:

(6.2)
$$
\widetilde{\mathcal{L}}_k^{\alpha} = \{ \widetilde{a_k^{\alpha}} + 4L(\tau_{\alpha}) \} \cup \{ \widetilde{a}_k^{\alpha} + 4h_3^{\alpha} + 4L(\tau_{\alpha}) \}, \quad k = 1, ..., 8
$$

where $\widetilde{a_k^{\alpha}} = s_k \omega_1^{\alpha} + t_k \omega_2^{\alpha}$. Each $\widetilde{\mathcal{L}}_k^{\alpha}$ produces torus isomorphic to $\mathbf{T}(\tau_{\alpha}(x'))$ attached at the origin to x ′ together with well defined half-point on it (corresponding to the zero of $\vartheta_3(z, \tau_\alpha): U_\alpha \times \mathbb{C} \to \mathbb{C}$). Since $k = 1, \ldots, 8$, we may consider (on a set U_{α}) the field $(4L(\tau_{\alpha}), 4h_3^{\alpha} + 4L(\tau_{\alpha}))^{\otimes 8}$ and hence we naturally obtain the function $\vartheta_3^8(0, \tau_\alpha)$ (on U_α). Similarly, starting with the realization II or III we arrive to the functions $\vartheta_4^8(0, \tau_\alpha)$ or to $\vartheta_2^8(0, \tau_\alpha)$ respectively. None of these functions $\vartheta_1^8(0, \tau_\alpha)$, $l = 2, 3, 4$ can be (using the atlas $\{(U_\alpha, \tau_\alpha)\}_\alpha$) extended to the whole \mathbf{T}^* to define any meaningful object on it.

The existence of the three pictures I, II and III of each L_k , $k = 1, \ldots, 8$ comes from the symmetry properties of the lattice $p(\Gamma' \infty) = L_0$. Since the group $\langle q \rangle$ is responsible for the existence of these three realizations we may naturally involve the Hecke operators $T_{\langle g \rangle,k}$ introduced in the subsection (3.2). Thus, for $l = 2,3,4$ on each $U_{\alpha} \subset \mathbf{T}^*$ we obtain

$$
T_{\langle g \rangle,4} \vartheta_L^8(0, \tau_\alpha) = \vartheta_3^8(0, \tau_\alpha) + \vartheta_4^8(0, \tau_\alpha) + \vartheta_2^8(0, \tau_\alpha)
$$

Since for $x' \in U_\alpha \cap U_\beta$ we have $\tau_\beta(x') = \gamma \tau_\alpha(x')$ for some $\gamma =$ $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma'$ and $T_{\langle g \rangle,4} \vartheta_l^8(0, \tau_\beta) = (c\tau_\alpha + d)^4 T_{\langle g \rangle,4} \vartheta_l^8(0, \tau_\alpha)$

the family $\{T_{(g),4}\theta^8_l(0, \tau_\alpha)\}_\alpha$ forms well defined quadratic differential on \mathbf{T}^* which is exactly the same for each $l = 2, 3, 4$. The necessity of applying on U_{α} the Hecke operator $T_{(g),4}$ to $\vartheta_l^8(0, \tau_\alpha)$ (or equivalently, the necessity of taking equally weighted sum $\sum_{l=2}^{4} \vartheta_l^8(0, \tau_\alpha)$ on U_α) reflects the fact that each one of these three realizations is equally important. Thus, the explicite forms of the Thetanullverte $\vartheta_l(0, \tau_\alpha)$, $l = 2, 3, 4$ on U_{α} (which result from these all three realizations) provide

(6.3)
$$
T_{\langle g \rangle, 4} \vartheta_l^8(0, \tau_\alpha) = \sum_{\underline{n} \in \mathbb{Z}^8} q_{\underline{n}}^{\underline{n}^2} + \sum_{\underline{n} \in \mathbb{Z}^8} (-1)^{\underline{n} \cdot 1} q_{\alpha}^{\underline{n}^2} + \sum_{\underline{n} \in \mathbb{Z}^8} q_{\alpha}^{\underline{(n-e)^2}}
$$

and is further equal to the following expresion

$$
\sum_{\underline{n}\cdot\underline{1}\in 2\mathbb{Z}} q_{\alpha}^{\underline{n}^2} + \sum_{\underline{n}\in \mathbb{Z}^8} q_{\alpha}^{(\underline{n}-\underline{e})^2} = 2\Theta_{E_8}(\tau_{\alpha})
$$

Here $q_{\alpha} = e^{i\pi\tau_{\alpha}}, \underline{e} = (\frac{1}{2}, \frac{1}{2}, \dots, \frac{1}{2}) \in \mathbb{Q}^{8}$, and $\underline{1} = 2\underline{e}$.

Another argument which leads to the sum of all $\vartheta_l^8(0, \tau_\alpha)$, $l = 2, 3, 4$ comes from the subsection (3.2). Namely, for any holomorphic atlas on $Y(2) \cong H/\Gamma(2)$ the transition functions preserve (pointwise) all half-points of each nonsingular fiber

of the modular elliptic surface over $X(2)$. Hence $\vartheta_3^8(0, \tau) = \sum_{n \in \mathbb{Z}^8} q^{\underline{n}^2}$ is a $\Gamma(2)$ automorphic form of weight 4. Roughly speaking, the existence of a global section of half-points over the moduli space $Y(2)$ allows us to consider only the first part of the right side of (6.3) wich contains only the lattice \mathbb{Z}^8 . When we pass to the moduli space \mathbf{T}^* of complex tori, it is no longer possible and (on each U_{α}) we must also involve the remaining terms of the left side of (6.3), that is, we must consider the lattice E_8 instead of merely \mathbb{Z}^8 as for $Y(2)$.

Summerizing, the occurence of the E_8 -symmetry related to the moduli space T^* can be seen as a consequence of the relation between Γ' and Q_8 coming from the modulo 3 homomorphism and of the existence of the equally important three realizations of the decomposition of the lattice L_0 into 8 mutually disjoint subsets.

Moreover, from local relations $\tilde{H}_4(\vartheta_3^8(\tau)d\tau^2) \cong const_{\mathcal{P}}(z)dz^2$ coming off the subsection (3.2) we obtain

(6.4)
$$
u(\tau_{\alpha}) = \wp(p(\tau_{\alpha}), L_0) = const \cdot \frac{\Theta_{E_8}(\tau_{\alpha})}{\eta^8(\tau_{\alpha})} \qquad on \qquad U_{\alpha}
$$

and hence

(6.5)
$$
\wp(p(\tau_{\alpha}), L_0) = const \cdot q_{\alpha}^{-\frac{1}{3}} \sum_{n=0}^{\infty} \sum_{m=0}^{n} r_{E_8}(m) p_8(n-m) q_{\alpha}^n
$$

So, we may view the Weierstrass function on the moduli curve T^* as a function which encodes the information about the decompositions of L_0 .

Let us notice the difference between the Jacobi and our approach. Although Jacobi forms involve both euclidean variable z and hyperelliptic variable τ (in particular, the ratio of the Jacobi-Eisenstein forms of index 1 and weight 10 and 12 respectively gives a constant multiple of the Weierstrass \wp -function for each L_{τ} , $\tau \in H$) in the Jacobi picture we must work with meromorphic functions on $H \times \mathbb{C}$ satisfying some concrete conditions. In our approach we simply translate the hyperbolic objects for Γ' , Γ_c , $\Gamma^+_{ns}(3)$, etc. into the euclidean objects on $\mathbb{C} - L_0$ and vice versa and this is a reason for the appearance of 8 sublattices of L_0 together with their appropriate half-points and further the appearance of $\Theta_{E_8}(q_\alpha)$ on U_α .

We have shown that the bridge between the hyperbolic structure of the universal covering space H of $\mathbf{T}^* \cong H/\Gamma'$ and the euclidean structure of $\mathbb{C} - L_0$, $(\mathbf{T}^* \cong$ $\mathbb{C} - L_0/L_0$) is given by the function $\eta^4(\tau)$. Now, rewriting the formula (6.4) as

(6.6)
$$
\wp(p(\tau_{\alpha}), L_0)\eta^8(\tau_{\alpha}) = const \cdot \Theta_{E_8}(\tau_{\alpha})
$$

we may view $\eta^8(\tau_\alpha)$ as a bridge between 2-periodic, with respect to L_0 , function \wp and the theta function of the lattice E_8 (which may be produced by the decomposition of L_0 into 8 sublattices together with appropriate half points in three distict ways respectively).

Let us also notice that the function $\eta^8(\tau)$ provides very strong interrelation between the groups Γ and Γ' . It is expressed by the fact that the ring of modular forms for Γ, that is the ring $\mathfrak{M}(\Gamma) = \mathbb{C}[q_2(\tau), q_3(\tau)]$ can be written as $\mathfrak{M}(\Gamma) =$ $\mathbb{C}[\eta^{8}(\tau)u(\tau), \eta^{8}(\tau)u'(\tau)]$ and hence can be given as:

(6.7)
$$
\mathfrak{M}(\Gamma) = \mathbb{C}[\eta^8(\tau)\wp(p(\tau), L_0), \eta^8(\tau)\wp'(p(\tau), L_0)]
$$

This tells us that although the generators $g_2(\tau)$ and $g_3(\tau)$ are algebraically independent they produce differentials $\wp(z)dz^2$ and $\wp'(z)dz^3$ respectively and hence we have some "elliptic" type of differential relation between them.

REFERENCES

- [1] Bugajska,K., About a moduli space of elliptic curves and the Golay code G_{24} , submitted for publication
- [2] Bugajska,K., $Hidden\ symmetries\ and\ j(\tau),$ submitted for publication
- [3] Serre,J.-P., Lectures on the Mordell-Weil theorem, Vieweg,1997
- [4] Chen, I., On Siegel's modular curve of level 5 and the class number one problem, Journal of Number Theory,74 (1999),278-297
- [5] Baran,B., A modular curve of level 9 and the class number one problem, Journal of Number Theory,129 (2009),715-728
- [6] Chandrasekharan,K., Elliptic Functions, Springer-Verlag,Berlin Heidelberg, 1985
- [7] Venkov,A., Spectral theory of automorphic functions, Kluwer Academic Publishers,1990
- [8] Nag,S., The complex analytic theory of Teichmueller spaces, John Wiley and Sons, 1988
- [9] Sebbar,A., Modular subgroups, forms,curves and surfaces, Canadian Mathematical Bulletin,45 (2002),294-308
- [10] Cohn,H., Minimal geodesics on Friecke's torus covering Annals of Mathematics Studies,Princeton University Press,97,(1981),73-85

Department of Mathematics and Statistics, York University, Toronto, ON, M3J 1P3 E-mail address: bugajska@yorku.ca