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1.Introduction

Smooth maps between Riemannian manifolds are useful for comparing geometric
structures between two manifolds. Isometric immersions (Riemannian submanifolds)
are basic such maps between Riemannian manifolds and they are characterized by
their Riemannian metrics and Jacobian matrices. More precisely, a smooth map
F : (M1, g1) −→ (M2, g2) between Riemannian manifolds (M1, g1) and (M2, g2) is
called an isometric immersion if F∗ is injective and

g2(F∗X,F∗Y ) = g1(X,Y ) (1.1)

for X,Y vector fields tangent to M1, here F∗ denotes the derivative map.
On the other hand, Riemannian submersions between Riemannian manifolds were

initiated by B. O’Neill [O] and A. Gray [G], see also [FIP] and [YK]. A smooth
map F : (M1, g1) −→ (M2, g2) is called Riemannian submersion if F∗ is onto and it
satisfies the equation(1.1) for vector fields tangent to the horizontal space (kerF∗)

⊥.
For Riemannian submersions between various manifolds, see: [FIP] and [YK].

In 1992, Fischer introduced Riemannian maps between Riemannian manifolds in
[F] as a generalization of the notions of isometric immersions and Riemannian submer-
sions. Let F : (M1, g1) −→ (M2, g2) be a smooth map between Riemannian manifolds
such that 0 < rankF < min{m,n}, where dimM1 = m and dimM2 = n. Then we
denote the kernel space of F∗ by kerF∗ and consider the orthogonal complementary
space H = (kerF∗)

⊥ to kerF∗. Then the tangent bundle of M1 has the following
decomposition

TM1 = kerF∗ ⊕H.

http://arxiv.org/abs/1012.2001v1
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We denote the range of F∗ by rangeF∗ and consider the orthogonal complementary
space (rangeF∗)

⊥ to rangeF∗ in the tangent bundle TM2 of M2. Since rankF <

min{m,n}, we always have (rangeF∗)
⊥ 6= {0}. Thus the tangent bundle TM2 of M2

has the following decomposition

TM2 = (rangeF∗)⊕ (rangeF∗)
⊥
.

Now, a smooth map F : (M
m

1 , g1) −→ (M
n

2 , g2) is called a Riemannian map at

p1 ∈ M if the horizontal restriction F
h

∗p1
: (kerF∗p1)

⊥ −→ (rangeF∗p1) is a lin-
ear isometry between the inner product spaces ((kerF∗p1)

⊥, g1(p1) |(kerF∗p1 )
⊥) and

(rangeF∗p1 , g2(p2) |(rangeF∗p1)
), p2 = F (p1). Therefore Fischer stated in [F] that a

Riemannian map is a map which is as isometric as it can be. In other words, F∗ satis-
fies the equation(1.1) for X,Y vector fields tangent to H = (kerF∗)

⊥. It follows that
isometric immersions and Riemannian submersions are particular Riemannian maps
with kerF∗ = {0} and (rangeF∗)

⊥ = {0}. It is known that a Riemannian map is a
subimmersion. One of the main properties of Riemannian maps is that Riemannian
maps satisfy the eikonal equation which is a link between geometric optics and physical
optics. For Riemannian maps and their applications, see: [RK].

A map between Riemannian manifolds is harmonic if the divergence of its differ-
ential vanishes. Harmonic maps between Riemannian manifolds provide a rich display
of both differential geometric and analytic phenomena, and they are closely related
to the theory of stochastic processes and to the theory of liquid crystals in material
science. On the other hand, the biharmonic maps are the critical points of the bi-
energy functional and, from this point of view, generalize harmonic maps. The notion
of biharmonic map was suggested by Eells and Sampson [ES]. The first variation for-
mula and, thus, the Euler-Lagrange equation associated to the bienergy was obtained
by Jiang in [J1], [J2]. But biharmonic maps have been extensively studied in the last
decade and there are two main research directions. In differential geometry, many
authors have obtained classification results and constructed many examples. Bihar-
monicity of immersions was obtained in [CI], [CM], [OC] and biharmonic Riemannian
submersions were studied in [OC], for a survey on biharmonic maps, see:[MO]. From
the analytic point of view, biharmonic maps are solutions of fourth order strongly el-
liptic semilinear partial differential equations. It is known that plane elastic problems
can be expressed in terms of the biharmonic equation. On the other hand, the wave
maps are harmonic maps on Minkowski spaces and the biwave maps are biharmonic
maps on Minkowski spaces. The wave maps arise in the analysis of the more difficult
hyperbolic Yang-Mills equations either as special cases or as equations for certain fam-
ilies of gauge transformations. Such equations arise in general relativity for spacetimes
with two Killing vector fields. Bi-Yang-Mills fields, which generalize Yang-Mills fields,
have been introduced by Bejan and Urakawa [BU] recently. For relations between
the biwave maps and the bi-Yang-Mills equations, see [IIU] and [JC]. Moreover, in
geometric optics[D], one can obtain the eikonal equation by using the wave equation.

In this paper, we mainly investigate the biharmonicity of Riemannian maps from
Riemannian manifolds to space forms. In section 2, we introduce notations and give
fundamental formulas of the bitension field, then we obtain some preparatory results
of Riemannian maps in section 3. We also define pseudo umbilical Riemannian maps
as a generalization of pseudo umbilical isometric immersions, obtain a necessary and
sufficient condition for a Riemannian map to be pseudo umbilical and give a method
how to construct pseudo-umbilical Riemannian maps. In section 4, we find neces-
sary and sufficient conditions for Riemannian maps to be harmonic and observe that
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pseudo-umbilical Riemannian maps from Riemannian manifolds M1 to space forms
M2(c) with additional conditions must be either harmonic or c > 0.

2.Preliminaries

In this section we recall some basic materials from [BW] and [MO]. Let (M, g
M
) be

a Riemannian manifold and V be a q− dimensional distribution on M. Denote its
orthogonal distribution V⊥ by H. Then, we have

TM = V ⊕H. (2.1)

V is called the vertical distribution and H is called the horizontal distribution. We use
the same letters to denote the orthogonal projections onto these distributions.

By the unsymmetrized second fundamental form of V, we mean the tensor field
AV defined by

A
V

EF = H(∇VEVF ), E, F ∈ Γ(TM), (2.2)

where ∇ is the Levi-Civita connection on M. The symmetrized second fundamental
form BV of V is given by

B
V(E,F ) =

1

2
{AV

EF + A
V

FE} =
1

2
{H(∇VEVF ) +H(∇VFVE)} (2.3)

for any E,F ∈ Γ(TM). The integrability tensor of V is the tensor field IV given by

I
V(E,F ) = A

V

EF − A
V

FE −H([VE,VF ]). (2.4)

Moreover, the mean curvature vector field of V is defined by

µ
V =

1

q
T raceB

V =
1

q

q∑
i=1

H(∇er er), (2.5)

where {e1, ..., eq} is a local frame of V. By reversing the roles of V, H, BH, AH and
IH can be defined similarly. For instance, BH is defined by

B
H(E,F ) =

1

2
{V(∇HEHF ) + V(∇HFHE)} (2.6)

and, hence we have

µ
H =

1

m− q
T raceB

H =
1

m− q

m−q∑
s=1

V(∇EsEs), (2.7)

where E1, ..., Em−q is a local frame of H. A distribution D on M is said to be minimal
if, for each x ∈ M , the mean curvature vector field vanishes.

Let (M, g
M
) and (N, g

N
) be Riemannian manifolds and suppose that ϕ : M −→ N

is a smooth map between them. Then the differential ϕ∗ of ϕ can be viewed a section of
the bundleHom(TM,ϕ−1TN) −→ M, where ϕ−1TN is the pullback bundle which has
fibres (ϕ−1TN)p = Tϕ(p)N, p ∈ M. Hom(TM,ϕ−1TN) has a connection ∇ induced
from the Levi-Civita connection ∇M and the pullback connection. Then the second
fundamental form of ϕ is given by

(∇ϕ∗)(X,Y ) = ∇ϕ

Xϕ∗(Y )− ϕ∗(∇
M
X Y ) (2.8)
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for X,Y ∈ Γ(TM). It is known that the second fundamental form is symmetric. Let
ϕ : (M, g

M
) −→ (N, g

N
) be a smooth map between Riemannian manifolds and assume

M is compact, then its energy is

E(ϕ) =

∫
M

e(ϕ) vg =
1

2

∫
M

|dϕ|2 vg.

The critical points of E are called harmonic maps. Standard arguments yield the asso-
ciated Euler-Lagrange equation, the vanishing of the tension field:τ (ϕ) = trace(∇ϕ∗).
Let ϕ : (M, g

M
) −→ (N, g

N
) be a smooth map between Riemannian manifolds. Define

its bienergy as

E
2(ϕ) =

1

2

∫
M

|τ (ϕ)|2 vg .

Critical points of the functional E2 are called biharmonic maps and its associated
Euler-Lagrange equation is the vanishing of the bitension field

τ
2(ϕ) = −∆ϕ

τ (ϕ)− traceg
M
R

N(dϕ, τ (ϕ))dϕ, (2.9)

where ∆ϕτ (ϕ) = −traceg
M
(∇ϕ∇ϕ−∇ϕ

∇
) is the Laplacian on the sections of ϕ−1(TN)

and RN is the Riemann curvature operator on (N, g
N
). A map between two Rieman-

nian manifolds is said to be proper biharmonic if it is a non-harmonic biharmonic
map.

3.Riemannian maps

In this section, we obtain some new results which will be using in the next section.
First note that in [S2] we showed that the second fundamental form (∇F∗)(X,Y ),
∀X,Y ∈ Γ((kerF∗)

⊥), of a Riemannian map has no components in rangeF∗.
Lemma 3.1. Let F be a Riemannian map from a Riemannian manifold (M1, g1) to

a Riemannian manifold (M2, g2). Then

g2((∇F∗)(X,Y ), F∗(Z)) = 0,∀X,Y, Z ∈ Γ((kerF∗)
⊥). (3.1)

As a result of Lemma 3.1, we have

(∇F∗)(X,Y ) ∈ Γ((rangeF∗)
⊥),∀X,Y ∈ Γ((kerF∗)

⊥). (3.2)

Also from [S1], we have the following.
Lemma 3.2 Let F : (M, g

M
) −→ (N, g

N
) be a Riemannian map between Riemannian

manifolds. Then the tension field τ of F is

τ = −m1F∗(µ
kerF∗) +m2H2, (3.3)

where m1 = dim(kerF∗),m2 = rankF , µkerF∗ and H2 are the mean curvature vector

fields of the distributions of kerF∗ and rangeF∗, respectively.

From now on, for simplicity, we denote by ∇2 both the Levi-Civita connection of
(M2, g2) and its pullback along F . Then according to [N], for any vector field X on M1

and any section V of (rangeF∗)
⊥, where (rangeF∗)

⊥ is the subbundle of F−1(TM2)
with fiber (F∗(TpM))⊥-orthogonal complement of F∗(TpM) for g2 over p, we have

∇
F⊥

X V which is the orthogonal projection of ∇2
XV on (F∗(TM))⊥. In [N], the author
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also showed that ∇
F⊥

is a linear connection on (F∗(TM))⊥ such that ∇
F⊥

g2 = 0. We
now define AV as

∇2
F∗X

V = −A
V
F∗X +∇

F⊥

X
V, (3.4)

where A
V
F∗X is the tangential component (a vector field along F ) of ∇2

F∗X
V . It is

easy to see that AV F∗X is bilinear in V and F∗X and AV F∗X at p depends only on
Vp and F∗pXp. By direct computations, we obtain

g2(AV
F∗X,F∗Y ) = g2(V, (∇F∗)(X,Y )), (3.5)

for X,Y ∈ Γ((kerF∗)
⊥) and V ∈ Γ((rangeF∗)

⊥). Since (∇F∗) is symmetric, it follows
that A

V
is a symmetric linear transformation of rangeF∗.

We now define pseudo-umbilical Riemannian maps as a generalization of pseudo-
umbilical isometric immersions. Pseudo-umbilical Riemannian maps will be useful
when we deal with the biharmonicity of Riemannian maps.
Definitio 3.1. Let F : (M, g1) −→ (M2, g2) be a Riemannian map between Rieman-
nian manifolds M1 and M2. Then we say that F is a pseudo-umbilical Riemannian
map if

AH2F∗(X) = λF∗(X) (3.6)

for λ ∈ C∞(M1) and X ∈ Γ((kerF∗)
⊥).

Here we present an useful formula for pseudo umbilical Riemannian maps by us-
ing(3.5) and(3.6).
Proposition 3.1. Let F : (M, g1) −→ (M2, g2) be a Riemannian map between Rie-

mannian manifolds M1 and M2. Then F is pseudo-umbilical if and only if

g2((∇F∗)(X,Y ),H2) = g1(X,Y )g2(H2,H2) (3.7)

for X,Y ∈ Γ((kerF∗)
⊥).

Proof. Let {ẽ1, ..., ẽm1 , e1, ..., em2} be an orthonormal basis of Γ(TM1) such that
{ẽ1, ..., ẽm1} is an orthonormal basis of kerF∗ and {e1, ..., em2} is an orthonormal
basis of (kerF∗)

⊥. Then since F is a Riemannian map we have

m2∑
i=1

g2(AH2F∗(ei), F∗(ei)) = m2λ.

Using(3.5), we get
m2∑
i=1

g2(
1

m2
(∇F∗)(ei, ei),H2) = λ.

Thus we obtain
λ = g2(H2,H2). (3.8)

Then, from (3.5), (3.6) and(3.8) we have(3.7). The converse is clear.

It is known that the composition of a Riemannian submersion and an isometric
immersion is a Riemannian map [F].Using this we have the following.
Theorem 3.1. Let F1 : (M1, g1) −→ (M2, g2) be a Riemannian submersion and

F2 : (M2, g2) −→ (M3, g3) a pseudo-umbilical isometric immersion. Then the map

F2 ◦ F1 is a pseudo umbilical Riemannian map.
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Proof. From the second fundamental form of the composite map F2 ◦ F1 [BW], we
have

(∇(F2 ◦ F1)∗(X,Y ) = F2∗((∇F1∗)(X,Y )) + (∇F2∗)(F1∗X,F1∗Y )

for X,Y ∈ Γ((kerF1∗)
⊥). Then proof follows from the definition of pseudo-umbilical

submanifolds.

Remark. 3.1. We note that above theorem gives a method to find examples of pseudo
umbilical Riemannian maps. It also tells that if one has an example of pseudo-umbilical
submanifolds, it is possible to find an example of pseudo umbilical Riemannian maps.
For examples of pseudo umbilical submanifolds, see: [C].

4.Biharmonicity of Riemannian maps

In this section we obtain the biharmonicity of Riemannian maps between Riemannian
manifolds. We also show that pseudo-umbilical biharmonic Riemannian maps put
some restrictions on the total manifold of such maps.

Let F : (M1, g1) −→ (M2, g2) be a map between Riemannian manifolds (M1, g1)
and (M2, g2). Then the adjoint map ∗F ∗ of F∗ is characterized by g1(x,

∗F ∗p1y) =
g2(F∗p1x, y) for x ∈ Tp1M1, y ∈ TF (p1)M2 and p1 ∈ M1. Considering F h

∗ at each
p1 ∈ M1 as a linear transformation

F
h
∗p1

: ((kerF∗)
⊥(p1), g1p1((kerF∗)⊥(p1))

) −→ (rangeF∗(p2), g2p2(rangeF∗)(p2))
),

we will denote the adjoint of F h
∗ by ∗F h

∗p1 . Let ∗F ∗p1 be the adjoint of F∗p1 :
(Tp1M1, g1p2) −→ (Tp2M2, g2p2). Then the linear transformation

(∗F ∗p1)
h : rangeF∗(p2) −→ (kerF∗)

⊥(p1)

defined by (∗F ∗p1)
hy = ∗F ∗p1y, where y ∈ Γ(rangeF∗p1), p2 = F (p1), is an isomor-

phism and (F h
∗p1

)−1 = (∗F ∗p1)
h = ∗(F h

∗p1
).

We also recall that the curvature tensor R of a space form (M(c), g) is given by

R(X,Y )Z = c{g(Y,Z)X − g(X,Z)Y }. (4.1)

We are now ready to prove the following theorem which gives necessary and sufficient
conditions for a Riemannian map to be biharmonic.
Theorem 4.1. Let F be a Riemannian map from a Riemannian manifold (M1, g1)
to a space form (M2(c), g2). Then F is biharmonic if and only if

m1traceA(∇F∗)(.,µkerF∗ )F∗(.)−m1traceF∗(∇(.)∇(.)µ
kerF∗)

−m2traceF∗(∇(.)
∗
F ∗(AH2F∗(.)))−m2traceA

∇
F⊥

F∗(.)
H2

F∗(.)

−m1c(m2 − 1)F∗(µ
kerF∗) = 0 (4.2)

and

m1trace∇
F⊥

F∗(.)(∇F∗)(., µ
kerF∗) +m1trace(∇F∗)(.,∇(.)µ

kerF∗)

+m2trace(∇F∗)(.,
∗
F ∗(AH2F∗(.)))−m2∆

R⊥

H2

−m
2
2cH2 = 0. (4.3)
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Proof. First of all, from(4.1) and (3.4) we have

traceR
2(F∗(.), τ (F ))F∗(.) = m1c(m2 − 1)F∗(µ

kerF∗)−m
2
2cH2, (4.4)

where R2 is the curvature tensor field of M2. Let {ẽ1, ..., ẽm1 , e1, ..., em2} be a local
orthonormal frame onM1, geodesic at p ∈ M1 such that {ẽ1, ..., ẽm1} is an orthonormal
basis of kerF∗ and {e1, ..., em2} is an orthonormal basis of (kerF∗)

⊥. At p we have

∆τ (F ) = −

m2∑
i=1

∇
F

ei
∇

F

ei
τ (F )

= −

m2∑
i=1

∇
F

ei
{∇

F

ei
(−m1F∗(µ

kerF∗) +m2H2)}.

Then using(2.8),(3.2) and(3.4) we get

∆τ (F ) = −

m2∑
i=1

∇
F

ei
{−m1(∇F∗)(ei, µ

kerF∗)−m1F∗(∇eiµ
kerF∗)

+ m2(−AH2F∗(ei) +∇
F⊥

F∗(ei)
H2)}.

Using again (2.8),(3.2) and(3.4) we obtain

∆τ (F ) = m1

m2∑
i=1

−A(∇F∗)(ei,µ
kerF∗ )F∗(ei) +∇

F⊥

F∗(ei)
(∇F∗)(ei, µ

kerF∗)

+ m1

m2∑
i=1

(∇F∗)(ei,∇eiµ
kerF∗) + F∗(∇ei∇eiµ

kerF∗)

+ m2

m2∑
i=1

∇
F

ei
AH2F∗(ei)−m2

m2∑
i=1

−A
∇

F⊥

F∗(ei)
H2

F∗(ei)

+ ∇
F⊥

F∗(ei)
∇

F⊥

F∗(ei)
H2.

On the other hand, since AH2F∗(ei) ∈ Γ(F∗((kerF∗)
⊥)), we can write

F∗(X) = AH2F∗(ei)

for X ∈ Γ((kerF∗)
⊥), where

X = (F∗)
−1(AH2F∗(ei)) =

∗
F ∗(AH2F∗(ei)).

Then using(2.8) we have

∇
F

ei
AH2F∗(ei) = (∇F∗)(ei,

∗
F ∗(AH2F∗(ei))) + F∗(∇ei

∗
F ∗(AH2F∗(ei))).

Thus we obtain

∆τ (F ) = m1

m2∑
i=1

−A(∇F∗)(ei,µ
kerF∗ )F∗(ei) +∇

F⊥

F∗(ei)
(∇F∗)(ei, µ

kerF∗)
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+ m1

m2∑
i=1

(∇F∗)(ei,∇eiµ
kerF∗) + F∗(∇ei∇eiµ

kerF∗)

+ m2

m2∑
i=1

(∇F∗)(ei,
∗
F ∗(AH2F∗(ei))) + F∗(∇ei

∗
F ∗(AH2F∗(ei)))

− m2

m2∑
i=1

−A
∇

F⊥

F∗(ei)
H2

F∗(ei) +∇
F⊥

F∗(ei)
∇

F⊥

F∗(ei)
H2. (4.5)

Thus putting (4.4) and (4.5) in(2.9) and then taking the F∗((kerF∗)
⊥) = rangeF∗ and

(rangeF∗)
⊥ parts we have(4.2) and(4.3).

In particular, we have the following.

Corollary 4.1. Let F be a Riemannian map from a Riemannian manifold (M1, g1)
to a space form (M2(c), g2). If the mean curvature vector fields of rangeF∗ and kerF∗

are parallel, then F is biharmonic if and only if

m1traceA(∇F∗)(.,µkerF∗ )F∗(.)−m2traceF∗(∇(.)
∗
F ∗(AH2F∗(.))

−m1c(m2 − 1)F∗(µ
kerF∗) = 0

and

m1trace∇
F⊥

F∗(.)(∇F∗)(., µ
kerF∗) +m2trace(∇F∗)(.,

∗
F ∗(AH2F∗(.)))

−m
2
2cH2 = 0

We also have the following result for pseudo-umbilical Riemannian maps.

Theorem 4.2. Let F be a pseudo-umbilical biharmonic Riemannian map from a Rie-

mannian manifold (M1, g1) to a space form (M2(c), g2) such that the distribution kerF∗

is minimal and the mean curvature vector field H2 is parallel. Then either F is har-

monic or c =‖ H2 ‖2.
Proof. First note that it is easy to see that ‖ H2 ‖2 is constant. If F is biharmonic
Riemannian map such that µkerF∗ = 0 and H2 is parallel, then from (4.3) we have

m2

m2∑
i=1

(∇F∗)(ei,
∗
F ∗(AH2F∗(ei)))−m

2
2cH2 = 0.

Since F is pseudo umbilical, we get

m2

m2∑
i=1

(∇F∗)(ei,
∗
F ∗(‖ H2 ‖2 F∗(ei)))−m

2
2cH2 = 0.

On the other hand, from the linear map ∗F ∗ and ∗F ∗ ◦ F∗ = I (identity map), we
obtain

m2

m2∑
i=1

(∇F∗)(ei, ‖ H2 ‖2 ei))−m
2
2cH2 = 0.

Since the second fundamental form is also linear in its arguments, it follows that

m2 ‖ H2 ‖2
m2∑
i=1

(∇F∗)(ei, ei))−m
2
2cH2 = 0.
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Hence we have
m

2
2 ‖ H2 ‖2 H2 −m

2
2cH2 = 0

which implies that
(‖ H2 ‖2 −c)H2 = 0. (4.6)

Thus either H2 = 0 or (‖ H2 ‖2 −c) = 0. If H2 = 0, then Lemma 3.2 implies that F

is harmonic, thus proof is complete.

From(4.6), we have the following result which puts some restrictions on M2(c).

Corollary 4.2. There exist no proper biharmonic pseudo umbilical Riemannian maps

from a Riemannian manifold to space forms (M2(c) with c ≤ 0 such that the distribu-

tion kerF∗ is minimal and the mean curvature vector field H2 is parallel.

Remark 4.1. In this paper, we investigate the biharmonicity of Riemannian maps
between Riemannian manifolds. Our results give some clues to investigate the bihar-
monicity of arbitrary maps between Riemannian manifolds. They also give a method
to investigate the geometry of Riemannian maps. Since Riemannian maps are solu-
tions of the eikonal equations which can be obtained starting from the wave equation,
biharmonic maps are solutions of fourth order strongly elliptic semilinear partial differ-
ential equations and they are related to the biwave equation and bi-Yang-Mills fields,
biharmonic Riemannian maps have potential for further research in terms of partial
differential equations, geometric optics and mathematical physics.
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