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Abstract

We introduce combinatorial principles that characterizergy compactness and
supercompactness for inaccessible cardinals but also sealse for successor car-
dinals. Their consistency is established from what is sapgly optimal. Utiliz-
ing the failure of a weak version of square, we show that tis¢ digrrently known
lower bounds for the consistency strength of these priasipan be applied.
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1. Introduction

It is a well-known theorem that a cardinals weakly compact if and only if
it is inaccessible and thetree property holds, that is, there are mé\ronszajn
trees. By|[2], thev,-tree property can be forced from a weakly compact cardinal
and impliesw, is weakly compact i.. The tree property thus captures the combi-
natorial essence of weak compactness, even for succesdorats. Similarly, the
property that there is no specialAronszajn tree captures the essence of Mahlo,
seel[3, (1.9)].

In the present work, we introduce principl&®(k, 1) and SP(k, 1) as well
asITP(x, 1) andISP(k, 1) that achieve the same for strong compactness and su-
percompactness respectively. We present the ideals assbh¢o the principles
ITP(k, 2) andISP(«, 1), prove the consistency ¢$P(w,, 1), the strongest of the
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principles, from al<*-ineffable cardinal, and sholWP(k, 1) implies the failure of
a weak form of square, giving lower bounds on its consistat@ngth.

Notation

The notation used is mostly standard. Ord denotes the dafiodinals. For
A c Ord, LimA denotes the class of limit points 8f Lim stands for Lim Ord. If
a is a set of ordinals, otp denotes the order type af For a regular cardinal,
cof ¢ denotes the class of all ordinals of cofinalityand cof& §) denotes those
of cofinality less thar.

For forcings, we writgp < g to meanp is stronger thag. Names either carry
a dot above them or are canonical names for elementssd that we can confuse
sets in the ground model with their names.

The phrasedor large enoughy andfor syficiently larged will be used for
saying that there existspasuch that the sentence’s proposition holds fo6 &l¢'.

If k C X, then

P.X:={xePX|knNnxeOrd (x,e) < (X e)}

is club. Forx € P.X we setk, := kN Xx. Forf : P,X - PXletCl; := {x €
PX|Vz e P,x f(2 c x}. Cls is club, and it is well known that for any club
C c P .Xthereisanf : P,X —» P.X such that Cl c C.
If Xc X', Rc P.X,U c PX, then the projection d) to XisU | X:={un
X|ueU}cPXandtheliftofRto X' isRX ={X e PX' | X N X e R c P.X.
For section§14,13, arid 4,and A are assumed to be cardinatsg A, andx is
regular and uncountable.

2. Combinatorial principles for strong compactness and suprcompactness
Let us call a sequencé, | a € P.1) aPA-listif d, c aforall ae P.A.
Definition 2.1. LetD = (d, | a € P,A) be aP,A-list.

e Dis calledthinifthereis a clulkC c P.A suchthaf{d,nc|ccae P} <«
for everyc € C.

e D is calledslenderif for every suficiently larged there is a clulC c PHy
such thaty, Nbe M forall M e Cand allb € M n P, A/}

INote that this definition is slightly weaker than the one fifdjnas “for allb € M N P,.1” was
replaced by “for alb € M n P,, 1.” However, the proofs in [1] work for this weaker definitiondi
the resulting stronger principl€P just the same.
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Proposition 2.2. Let D be a Ra-list. If D is thin, then it is slender.

Proof. Let C c P, be a club that witnessd3 = (d, | a € P,1) is thin. Define
g:C—> PHybyg(c) ={danc|ccaec P} LetC :={M e C*|Vbe
MNnPA3dce MNCbcc Yce MNC g(c) c M}. ThenC is club. Let
M e Candb € M n P,A. Then there ix € M N C such thatb c ¢, so
dvna Nb =dyraNncnNnbe Masdy, NC e g(c) c M. ThereforeC witnesses
(dy | a € P.A) is slender. O

Definition 2.3. LetD = (d, | a € P,1) be aP,A-list andd c A.

e dis called acofinal branch of Of for all a € P, there isz, € P,4 such that
aczanddna=d, na

e dis called anneffable branch of Of there is a stationary s& c P,1 such
thatdna=d,forallaeS.

Combining these two definitions, we can define the followimgrfcombinato-
rial principles.

Definition 2.4. e TP(k, A) holds if every thinP,1-list has a cofinal branch.
e SP(k, 1) holds if every slendeP, A-list has a cofinal branch.
e ITP(k, A) holds if every thinP, 1-list has an inffable branch.
e ISP(k, 2) holds if every slendeP, A-list has an infable branch.

Remark 2.5. The reader should note that the princifle(k, «) is just the tree
property fork. Also, if « is an inaccessible cardinal, then evéy-list is thin.
ThereforeTP(k, 1) andSP(k, 1) as well adTP(k, 1) andISP(k, 1) are equivalent
if x is inaccessible. Furthermore this means an inaccessitdeeaéx is weakly
compact if and only ifTP(x, k) holds, and it is inffable if and only ifITP(«, k)

holds.

Remark 2.6. The following implications hold.

1. ISP(k, 1) impliesSP(«, 1),
2. ISP(k, A) impliesITP(k, 1),
3. ITP(k, A) impliesTP(«, 1),
4. SP(k, A) impliesTP(«, A2).



We will see thatll anld 3 can not be reversed. Foisfa strongly compact cardinal
that is not supercompact, then by Theofem 2F«, 1) holds for all1 > «, but
by Theoreni 2.10 we have th&tP(x, 1) cannot hold for all > . This is also
true for smallerx. One can show that the Mitchell collapse preserSE¢«, 1).
However, by Theorerh 5.7, if the Mitchell collapse producesadel in which
ITP(, A) holds, then also in the ground mod&P(«, 1) holds, so that again col-
lapsing a strongly compact cardinal that is not supercotmyatds a model in
which SP(k, 1) holds butiTP(«, 1) fails. Furthermore implicationl 2 can not be re-
versed. This follows from the fact that the forcing axi®mA(['s) from [4] can be
seen to impTP(ws, A) for all 2 > w,. The paper also shows tHAFA(Ts) is con-
sistent with the approachability property holding &ayr. It is easily seen that this
contradictdSP(w,, w»), SO that in any model dPFA(I'y) + “the approachability
property holds fotw,” ITP(w,, 2) holds for allA > w, butISP(w,, w,) fails.

Jech [5] was the first to consider generalizations of the ephof a tree to
P.A-lists. He gave the following characterization of strong@actness.

Theorem 2.7. The following are equivalent.

1. «is strongly compact.
2. For everya > k, every RA-list has a branch.

Shortly after, Magidor/[6] extended Jech’s result to superpactness with the
next theorem.

Theorem 2.8. The following are equivalent.

1. kis supercompact.
2. For everya > k, every RA-list has an ingfable branch.

By Remark 2.6 we can rephrase Theoréms 2.7andd 2.8 in theviotiovay.

Theorem 2.9. Suppose is inaccessible. Thenis strongly compact if and only
if TP(x, 2) holds for everyl > «.

Theorem 2.10. Suppose is inaccessible. Thenis supercompact if and only if
ITP(k, 1) holds for everyl > «.

The advantage of these new formulations is R, 1) andITP(k, 1) are not
limited to inaccessible cardinals, as we will see in sedfion



3. The corresponding ideals

The principlesiTP(x, 1) andISP(k, 1) have ideals canonically associated to
them.

Definition 3.1. Let A c P,A and letD = (d, | a € P,1) be aPA-list. D is called
A-efableif for every S c Athat is stationary i, A there area, b € S such that
ac bandd, # d,na. D is calledeffableif it is P, 1-effable.

Definition 3.2. We let

lir[«, 1] == {A c P | there exists a thi-effable P, A-list},
lis[x, 4] := {A c P4 | there exists a slendéreffable P, A-list}.

By Fit[«, 1] and F 5[k, 1] we denote the filters associatedltgk, 1] and | g[«, 1]
respectively.

Note thatlTP(x, 1) andISP(k, 1) now say thatl;t[«, 2] and l;s[«, A] are proper
ideals respectively. By Proposition 2.2 we hdwéx, 1] c lis[, 1].

Proposition 3.3. I|7[«, 4] and |s[«, 1] are normal ideals on PX.

Proof. SupposeD c P .1 andg : D — A is regressive. Sed, = g"{y}. Let
f 1 Ax A — A be bijective, and defing,, : 1 — A by f,,(ao) = f(ao, a1). We
show that ifA, € Iir[«, A] for all y < A, thenD € Iir[«, 4], and that ifA, € lis[«, 4]
forall y < 4, thenD € Ig[«, 1].

In the thin case, that is, &, € Iir[x, 4] forall y < 4, let(d} | a € P,) be athin
A, -effableP,A-list for y < 1. LetC” c P, be a club witnessingd} | a € P,4) is
thin. SetC := A,.,C”. We may assume that for alle C and allag, a1 < 4

f(ao,a1) € a e ag,a; € a. (1)
Forae Cn D set
d, = fé(’a)dg(a),

andsetd, :=0forae PA-(CnD).Ifce Candae CnD are suchthat c a
andg(a) ¢ c, then
d,Nnc=0. (2)

Forifg(a) ¢ c, then by[(1) we havd.nc = fg’(’a)dg(a)mc c rng fymNc = 0. Thus for

fixedc e Cwe havgd;nc|ccae CnND} c {fy”dgmc |y ec, ccaeCnA, U0}
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Fory € c we havec € C” and thus, a<” witnessesd} | a € P.1) is thin,
{dinclccaeCnA,} <« Thereford{d,nc|cc ae P.}| <k, which shows
(dy | a € P.A) is thin.

If A, € lig[«, 2] for all y < 4, let(d} | a € P,1) be a slendeA, -effable P, A-list
fory < A. LetC” c P.H, be a club witnessingd} | a € P, 1) is slender, wheré
is some large enough cardinal. &et= A,.,C”. We can again assume that for all
M € C andag, a1 < A f(ap, @1) € M & ag, @1 € M. In addition, we may require
that

(M, e, f [ (M x M)) <(Hg,¢€, f) (3)

for everyM e C. As above we defind, := fg’(’a)dg(a) forae (C | ) n D and let
d, := 0 otherwise. By the same argument that led 1o (2), we have

danb=0 (4)

ifbeP1,ae(CJ]A)ND,bca andg(a) ¢ b. To showd, | a € P, 1) is slender,
letM e Candbe MNP, 4. Seta:=MnA. If M ¢ D, thendnbcd, =0¢ M,
so assumé/ € D. Thend, nb = £ dd® nb = £ (¥ n f.1"0). If g(a) ¢ b,
then by [#)da N b = 0 € M, so supposg(a) € b. Thenf,}"b = b, so by the
slenderness abi?® | a € P 1) we havedd® N f-1"b e M. Thus, agy(a) € b c M,

9(a)
by @) danb = fy, (A% N £,17b) € M.

In both cases we arrived aPat-list (d, | a € P,1) such that foracluf c P,
that is closed undef and f ~* we have

d, = fé(fa)dg(a)

for everyae Cn D, andd, = 0 fora e P,A - (Cn D). Suppose thdD ¢ I7[«, 1]
for the thin case oD ¢ |s[«, 4] for the slender case. Then there &e C N D
stationary inP,4 andd c A such thatl, = dnaforalla € S. Sinceg s regressive
we may assum& c A, for somey < A. But then ford := fy—llzd anda e S it
holds that

dy = £ fd) = £,d, = £, (dna) = £,dn ;" a=dna
contradicting(d} | a € P,1) being dfable. O

It is standard to verify that it < A/, thenl;t[x,A] C {A" | A| A" € Ii1[x, ]}
andlg[«, 4] c{A" | 1| A’ € lig[«, A']}. This implies the following proposition.



Proposition 3.4. Suppose < A’. ThenlTP(k, ") impliesITP(k, 2), andISP(x, 1)
impliesISP(«, ).

It is easy to check cab N « € Iit[x,«]. The following theorem is the two
cardinal analog of this observation.

Theorem 3.5. Supposef A > «. Then

fae P.A| Limancofw c a} € Fir[k, 1].

Proof. LetA :={a€ P |dny, € Lima—a cfn, = w} and fora € Aletn, be a
witness. Fob € cofw N A let(d | v < 75) be an enumeration ¢l c ¢ | otpd =
w, supd = ¢}. Forae P,A1andéd € Liman cofw let

Vo = min{v < 75| sup@’ N a) = §}.

Forae Aset
d, = d:f;‘a Nna,

and forae P,A — Aletd, := 0.

Then(d, | a € P.1) is A-effable, for suppose there were a cofibat Aand a
dc Asuchthad, =dnaforallae U. Leta e U. Since cfl1 > « there exists
b € U such thahULim a c b. But then otpd, N a) < w, contradictingd,Na = d,.

(da | a € P.A) is also thin, for leta € P,A. Let

B.:={d’, na|éeLimancofw}UP,a

Then|B, < k. Letb € Awith a c b, and supposd, na ¢ P,a. Sincea c b, we

havey} < i forall § € Liman cofw. Becausedd, N al = w we also have that

d’» na=d,naisunbounded imy. Thereforevl < v}*, so thatv}’ = v/*. But
Vb

this meansl, na=d™ Nnae B,. O

7]
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Whenk is inaccessible, the filtét 1 [, 1] has some additional simple but help-
ful properties. These will be used in sectidn 5.

Proposition 3.6. Let« be inaccessible. Then

{ae P, |k, iInaccessiblee Fir[«, 4].



Proof. As « is inaccessible{a € P, 1 | «, strong limig is club. So it remains to
showA := {a € P,A | k; singulay € Iir[«, 2]. SUPPOSEA ¢ Iir[«, ], and fora e A
letd, c abe such that sugh, = «,, otpd, = cfk,. Then there exists a stationary
S c Asuch thad, = dnaforallae S. We may assume, = 6 for somes < «
and alla € S. Butif a,b € S are such thaa c b andk, < «y, then otpdy, > 6, a
contradiction. O

Proposition 3.7. Letk be inaccessible. Let gP.A — P,A. Then

{ae PlA|Vze P ag(2) c a} € Fir[k, 1].

Proof. Suppose not. Then
B:={aeP |3z, € P, ,a0z) ¢ a} ¢ Iir[«, 1].

So letS c B be stationary and c A be such that, = znaforalla€ S. For all
a € S we haveu, = |z < ka, SO there are a stationaB/ c S andu < « such that
us=puforallae s'.

Supposeéz > u. Then there iy c zsuch thaty] = u* < x. ButS” :={a e
S’ |y c a} is stationary and for everg € S” we havez, = zna>yna=Y,
which impliesu = uy = |z3) > |y| = u*, a contradiction.

SinceS’ is cofinal, there is am € S’ such thatzu g(z) c a. But thenz, =
zna=zandg(z) = g(2) c a, so thata ¢ B, contradictingS’ c B. O

4. The failure of a weak version of square

We define a weak variant of the square principle that is nataraur appli-
cation. It is a “threaded” version of Schimmerling’s two dizial square principle
that is only defined on a subgetof A.

Definition 4.1. A sequencéC, | @ € Lim n E N A) is called aJg(k, 1)-sequence
if it satisfies the following properties.

() 0<|C, <kforallae LImNENA,
(i) Ccaisclubforalla e LimNENAandC € C,,
(i) CnpeCgforalla eLimNENA,CeC,andseLimC,
(iv) thereisnocluD c AsuchthaDNnéeCsforall6 e LimDNEN A.



We say thatg(k, 1) holds if there exists alg(x, 1)-sequencell(x, 1) stands for
D/l(K? /l)

Note that ], ., impliesO(«, 7*) and thatJ(1) is (2, 2).

Theorem 4.2. Supposef A > « and Dot (< (k, 4) holds. ThemITP(k, 2).

Proof. Let A .= {a€ P4 | Liman cofw c a}. By Theoreni 35A € F[k, 4].
So it remains to show € I;1[x, 1]. We may assume sup¢ afor alla € A. Let
(C, |y € Limncof(< k)NA) be alcor<x (k, 1)-sequence. For e Limncof(< x)NA
letC, € C,, and setd, := Cg,pa N afora € A, otherwised, := 0. Then, since
Liman cofw C a,

supd, = supa (5)

for everya € A.
(dy | a € P.A) is thin, for leta € P,A. Set

Ba={(Cnauh|dpelimaCe(C, heP,ajUP,a

Then|B,| < k. Letb € A, ac b, and supposd,na ¢ P,a. Letn := maxLim(d,n
a). Thenn e Lim Cgypp, SO there is & € C, such thatl,nn = CsyppNbny = CNb,
sody,Nanny = Cna. Sinceld,Na—-n| < w, this means,Nna = (Cna)u(d,na-n) €
Ba.

(da | a € P2) is alsoA-effable. For suppose there were a cofidat A and
d c 2 suchthad, = dnaforallae U. Thend is unbounded im by (5). Let
6 € Lim dncof(< ) N 1. We will showd N § € Cs, which contradicts the fact that
(Cq | @ € Lim N cof(< «) N A) is alor(<4) (&, 4)-sequence, thus finishing the proof.
For everya € U such that € Lim(d n a) we haveCg,pa Na = d; = dna, and
thusé € Lim Cgpa, SO that there is &, € C; suchthadnan¢é = C;na. But
since|Cs| < «, there is a cofinal’ c {ae€ U | 6 € Lim(d na)} such thatC, = C
for someC € Cs and alla € U’. Butthenwe havdnéna=Cnaforallae U,
which meansin § = C € Cy. O

As a corollary, we get a well-known result originally due wl&ay [7].

Corollary 4.3. Supposg is supercompact. Thefil o< (k, 2) for all x < A with
cf A > «. In particular =[J(2) for all A > « with cf A > «.

Proof. This follows directly from Theorem 2.10 and Theorem 4.2. O



5. Consistency results
Definition 5.1. LetV C W be a pair of transitive models @C.

e (V,W) satisfies the:i-covering property if the cIasl's’XV is cofinal in PXVV,
that is, for everyx € W with x ¢ V and|x < u there isz € PL’V such that
XCz

e (V,W) satisfies theu-approximation property if for alk € W, x c V, it
holds that ifxn ze V for all ze P}V, thenx e V.

A forcing P is said to satisfy tha-covering property or the-approximation prop-
erty if for everyV-genericG c P the pair {, V[G]) satisfies the:-covering prop-
erty or theu-approximation property respectively.

The following theorem was originally discovered by MitdH2]. We cite [8],
where it is presented in the more modern way we use. The rehdefd note we
use the convention that conditions are only defined on tlsgpart.

Theorem 5.2. Let « be inaccessibler < « be regular and uncountable. Then
there exists an iteratioklP, | v < k) such that forcing withiP, preserves all car-

dinals less than or equal to, |-, k = 7" and forn = 0 and every inaccessible
n<kK

(i) P, is the direct limit okP, | v < ;) andn-cc,
(i) if P, =P, *Q, then|, Q satisfies thev;-approximation property,
(iii) for everyv < n, P, is definable in H from the parameters andyv,
(iv) P, satisfies thev;-covering property.
The next is a standard lemma which we will need.

Lemma 5.3. Letk > w be regularP, be the direct limit of an iteratioklP, | v < k).
Supposé, is k-cc. Let pe P, andx € VF« such that g~ x € P,V. Then there is
p < ksuch that gl x € V[G,].

Recall from [5] thatk is calledA-ingffable if every P A-list has an infable
branch.

Theorem 5.4. Let x, A be cardinals,r regular uncountabler < « < 2, and
(P, | v < k) be an iteration such that for all inaccessibje< «

(i) P, is the direct limit ofP, | v < 1) andn-cc,
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(i) if P, =P, *Q, then|, Q satisfies they;-approximation property,
(iii) for everyy < n, P, is definable in H from the parameters andyv,
(iv) P, satisfies thev;-covering property.

Suppose is A<*-ineffable. Then}l, ISP(«, 1).

Proof. LetG c P, beV-generic and work itV[G]. Let (d, | a € P,1) be a slender
P.A-list, and letC’ c P,Hy be a club witnessing the slendernessdyf| a € P,1)
for some large enough

Forx € P,A by Lemma[5.B there ipx < « such thatx € V[G,]. Thus
C={MeC|V¥xePanMp, e M}is suchthaP.An M c V[G,,] for all
M e C.

Leto = (1%)V. LetM € V be such thaM < HY, AU P/a c M, M}V = o.
LetCo := C | M. SinceP, is k-cc, there is &, € V such thatC, c C, and
V E C; c P.M club.

Let

E :={M e Cy |7 < ku, kv inaccessible iv, PY(M N 1) c M}.

Claim 5.4.1.1f M € E, then G, € V[G,,, ]

Proof. Letz e PXEGKM](M N ). P, satisfies thev;-covering property by (iv), so

there isb € PY (M n 1) such thaz c b. Let M’ € C be such thaM = M’ n M.
Thenb € M c M’. Therefore, by the slenderness(df | a € P,.1), dyra Nb =
dwnnb € P.ANM’ C V[G,, ] = V[G,,] and thusdyn,NZ = dun,NbNZ € V[G,,,].
LetP, = P, * Q. ThenQ®w satisfies thev;-approximation property by {ii),
So sincez was arbitrary we gedyn, € V[G,,,]- .

ForM e E we haveP,, c M by (i) and ii). By Claim(5.4.1 there igy € VFw
such tha‘olf[M = duna. Let

Du = {(p,a, ) | p € Py, @ € MNA, (N = 0AP |Fy, @ & du)V(N = AP |y, @ € dy)}.

Then(Dy | M € E) € VandDy c M.

Work inV. Let f : M — o be a bijection. If2 > «, additionally choosd
suchthatf [k =id [ k. If k = A, then{M € C, | f”M = ky} is club, and we may
assume it i<C;. By Proposition§ 316 arid 3.7

F :={me P,o | kminaccessibleP,(mnN f’2) c m} € Fr[«, o].
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Askisco-ineffable, there exist a stationa®y c F andd’ c o such thatf”D;-1,, =
d’ nmforall me S’ such thatf*"m e E. But = {f¥"/m|me F}n C; by
our choice off or the additional assumption d@, so forS := {f'm|m e
S'NF}NC;andforD = f1"d we haveDy, = DN M forall M € S.

Back inV[G], letT :=S | 1and

d={a<A|dpeG{(p, a,l)e D}

Clam5.4.2.IfaeT,thend=dna.

Proof. If a € T, thena = M n A for someM € S. But then fora € a, if
@€ dy = dyny = df,f“”, then there ip € G,, such thatp |-, @ € dy. Thus
(p,a,1) e Dy = DN M, so thatw € d by the definition ofd.

By the same argument, df ¢ d,, thena ¢ d. 4

T is stationary inV, so it is also stationary iN[G] sinceP, is k-cc. Therefore, by
Claim5.4.2(d, | a € P,1) is not dfable. O

Note that if« is A-ineffable and cft > «, then by [9] it follows thati* = A. So in
this case, Theorem 5.4 shov®&P(«, 1) is forced from the more natural condition
thatx is A-ineffable.

Corollary 5.5. If the theoryZFC + “there is an ingfable cardinal” is consistent,
then the theorgZFC + ISP(w,, w,) is consistent.

Proof. Takingr = ws, this follows immediately from Theorem 5.2, Theorem! 5.4,
and Remark?Z]5. O

Corollary 5.6. Ifthe theoryZFC + “there exists a supercompact cardinal” is con-
sistent, then the theoBfFC + “ ISP(w,, A) holds for everyl > w,” is consistent.

Proof. This follows from Theorems 5.2, 5.4, ahd 2.10. O

In Corollaried 5.6 and 5.6y, only serves as the minimal cardinal for which the
theorems hold true. One can of course take successors ef l@&gular cardinals
instead.

It is worth noting that, when using the Mitchell forcing froftheorem 5.2,
Corollary[5.6 and, when cf > «, Theoreni 5.4 were best possible, as shows the
next theorem. Its proof can be found in [1, Theorem 2.3.5[L0},[where similar
“pull back” theorems are used in a more general setting.
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Theorem 5.7. Let V c W be a pair of models afFC that satisfies the-covering
property and ther-approximation property for some< «, and suppose is inac-
cessible in V. Then

PYA-PYA e 1]k, A,

which furthermore implies
Fylk, 4] ¢ FY[«, A].

So in particular, if WE ITP(k, 2), then VE ITP(k, 1).

We proceed to give lower bounds on the consistency strerigtiracombina-
torial principles. We first consider the one cardinal variahowing Corollary 515
was best possible.

The next lemma is usually only given in its weaker version ngkes required
to be weakly compact.

Lemma 5.8. Suppose is regular uncountable and the tree property holds #or
Let Ac k. fFAna e Lforall @ <, then Ae L.

Proof. Let6 = x + w. By [2, Proposition 5.3]k is inaccessible i.[A]. By the
usual argument, one proves there exists a nonpringipaimplete ultrafiltetJ on
PLAk N Ls[A], see [2, Proof of Theorem 5.9]. L& be the transitive collapse of
the internal ultrapower df;[A] by U, and letj : Ls[A] — M be the corresponding
embedding. Themn has critical poink. As L;[A] E V = L[A], we haveM E V =
L[j(A)], soM = L,[j(A)] for some limit ordinaly > §. It holds thatl;[A]
Vo < k Ana e L, so,[j(A)] E Ya < j(«) j(A) na € L, so in particular
L,[j(A)] E A= j(A) Nk e L. Therefore reallyA € L. O

Theorem 5.9. Suppose is regular and uncountable. iTP(«, ) holds, then L=
k is ingffable.

Proof. Again by [2, Proposition 5.3k is inaccessible ifh.

Let(d, |a@ < k) € L. Then{d, N8| a < «} c P-B. So(d, | a € P,1), where
d, = 0 if a ¢ «, is thin as|P-8| < k. Thus byITP(k, ) there is ad c « such that
d, = dn « for stationarily manyr < «. This also meand Ny € L for all y < «.
Therefored € L by Lemmd5.B. Sincér < «|d, = dna} € L is also stationary
in L, the proof is finished. 0J
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The best known lower bounds for the consistency strengthRyk, 1) are de-
rived from the failure of square. The following theorem iedo Jensen, Schim-
merling, Schindler, and Steel [11].

Theorem 5.10. Supposel > ws is regular such thag” < A foralln < A. If
-[(12) and —[1,, then there exists a sharp for a proper class model with a @rop
class of strong cardinals and a proper class of Woodin catin

Corollary 5.11. The consistency oZFC + “there is a k*-ineffable cardinal«”
implies the consistency &@FC + “there is a proper class of strong cardinals and
a proper class of Woodin cardinals”

Proof. If « is k*-ineffable, then it is inaccessible and thyts< « for all n < k. By
Propositior 34| TP(k, ) holds. By Theorerh 412TP(k, k) andITP(x, «*) imply
=-[(x) and-(«x*), so by Theorem 5.10 there is an inner model with a propesclas
of strong cardinals and a proper class of Woodin cardinals. O

Corollary 5.12. Suppose is regular uncountable and > ws is such thacf A >
kandn® < Aforall n < A. If ITP(x, A*) holds, then there exists an inner model
with a proper class of strong cardinals and a proper class obdin cardinals.

Proof. This follows from Proposition 314, Theorém #.2, and Thedkefd). O

6. Conclusion

The reader will have noted that one could also define priasipbrresponding
to 1-almost indfability. However, by [12]1-ineffability andA-almost ingfability
both characterize supercompactness, so that considaasg principles does not
seem to give any new insights.

The main motivation behind the principles we considered c®arse the quest
for an inner model for a supercompact cardinal. So far the mteyesting applica-
tions of the principles can be found in [10], which shows thikofving. Suppose
k is an inaccessible cardinal afitdis an iteration of forcings of size less than
that takes direct limits stationarily often. IFf forcesPFA andk = w,, thenk is
strongly compact. I is additionally required to be proper, theis necessarily
supercompact. As this is the only known means of constrgetiodels ofPFA
from large cardinal assumptions, it gives strong heuristidence on the lower
bound of the consistency strengthRFA.
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