TWO FAMILIES OF MAXIMAL CURVES WHICH ARE NOT GALOIS SUBCOVERS OF THE HERMITIAN CURVE

IWAN DUURSMA AND KIT-HO MAK

ABSTRACT. We show that the generalized Giulietti-Korchmáros curve and the maximal curve with equation $x^{q^2} - x = y^{(q^n+1)/(q+1)}$ defined over $\mathbb{F}_{q^{2n}}$, for $n \geq 3$ odd and $q \geq 3$, are not Galois subcovers of the Hermitian curve over $\mathbb{F}_{q^{2n}}$. For q = 2, we show that the generalized GK curve is covered by the Hermitian curve.

1. INTRODUCTION AND STATEMENTS OF RESULTS

Let \mathbb{F}_{q^2} be the finite field with q^2 elements, and let \mathcal{X} be a projective, nonsingular, geometrically irreducible curve (hereafter referred to as a *curve*) defined over \mathbb{F}_{q^2} . We say that \mathcal{X} is \mathbb{F}_{q^2} -maximal if the number of its rational points attains the Hasse-Weil upper bound

$$\left|\mathcal{X}(\mathbb{F}_{q^2})\right| = q^2 + 1 + 2g(\mathcal{X})q,$$

where $q(\mathcal{X})$ is the genus of \mathcal{X} .

A curve C is called a *subcover* of \mathcal{X} over \mathbb{F}_{q^2} (or equivalently \mathcal{X} is a *cover* of C) if there exists a surjective map $\phi : \mathcal{X} \to C$ with C, \mathcal{X} and ϕ defined over \mathbb{F}_{q^2} . More information about maximal curves can be found in [2, 3, 7, 9, 13, 16, 17] and their references. The most important example of a maximal curve is the Hermitian curve \mathcal{H} , which is defined over \mathbb{F}_{q^2} by the equation

$$y^q + y = x^{q+1}$$

It has genus $\frac{1}{2}q(q-1)$. By the work of [8, 15, 26], the genus of any maximal curve \mathcal{X} satisfies

$$g(\mathcal{X}) \in [0, (q-1)^2/4] \cup \{q(q-1)/2\}.$$

Therefore the Hermitian curve has the largest possible genus that a maximal curve can have. It is shown in [21] that the Hermitian curve is the unique maximal curve having genus $\frac{1}{2}q(q-1)$.

By a result known as Serre's theorem (see [18, Proposition 6]), any subcover of a \mathbb{F}_{q^2} -maximal curve is \mathbb{F}_{q^2} -maximal. Most of the known maximal curves are subcovers of the Hermitian curve \mathcal{H} , and systematic studies on subcovers of \mathcal{H} can be found in [4, 5, 12]. The first example of a maximal curve which is not a Galois subcover of \mathcal{H} is discovered by Garcia and Stichtenoth [11]. This curve has defining equation

$$y^9 - y = z^7$$

²⁰¹⁰ Mathematics Subject Classification. Primary 11G20; Secondary 14G15, 14H25.

Key words and phrases. maximal curves, generalized GK curves, Galois coverings.

over \mathbb{F}_{3^6} , and is a special case with q = 3, n = 3 of the curve \mathcal{X}_n with defining equation

(1.1)
$$y^{n^2} - y = z^{\frac{q^n+1}{q+1}}$$

over $\mathbb{F}_{q^{2n}}$, for $q \geq 2$ and odd $n \geq 3$. The curve \mathcal{X}_n was shown to be maximal in [1]. On the other hand, an unpublished result by Rains and Zieve states that the Ree curve over \mathbb{F}_{3^6} is not a Galois subcover of the Hermitian curve over the same field.

In [13], Giulietti and Korchmáros give an example of a maximal curve, now called the GK curve, that is not covered by the Hermitian curve. The GK curve has been generalized by Garcia, Güneri and Stichtenoth in [10]. These generalized curves, called the generalized GK curves C_n , are maximal curves over $\mathbb{F}_{q^{2n}}$ for a prime power q and odd $n \geq 3$ ([10], see also [6]). They have defining equations

(1.2)
$$\begin{aligned} x^{q} + x &= y^{q+1} \\ y^{q^{2}} - y &= z^{\frac{q^{n}+1}{q+1}}. \end{aligned}$$

It is shown in [10] that the curves with n = 3 are isomorphic to those given originally by Giulietti and Korchmáros. It is not known whether these generalized GK curves C_n are covered by the Hermitian curve for $n \ge 5$. In this paper, we give a partial answer to this problem by showing that C_n is not a Galois subcover of the Hermitian curve over the same finite field for any odd $n \ge 3$ and $q \ge 3$. More precisely, we prove the following.

Theorem 1.1. The generalized GK curve, defined by (1.2) over $\mathbb{F}_{q^{2n}}$, is not a Galois subcover of the Hermitian curve over $\mathbb{F}_{q^{2n}}$ for any odd $n \geq 3$ and $q \geq 3$.

For q = 2, the situation is completely different. We prove that the generalized GK curve C_n over $\mathbb{F}_{2^{2n}}$ is covered by the Hermitian curve over $\mathbb{F}_{2^{2n}}$, and the degree of the covering is given.

Theorem 1.2. The generalized GK curve, defined by (1.2) with q = 2 over $\mathbb{F}_{2^{2n}}$, is covered by the Hermitian curve over the same finite field for any odd $n \ge 3$. The degree of the covering is $d = (2^n + 1)/3$.

Next, we consider the curve \mathcal{X}_n defined over $\mathbb{F}_{q^{2n}}$ by (1.1), which is the second equation in the definition of the generalized GK curve. This curve is maximal and has genus $g(\mathcal{X}_n) = \frac{1}{2}(q-1)(q^n-q)$. It is proved in [1] that for q = 2, the curve \mathcal{X}_n is covered by the Hermitian for any odd $n \geq 3$. We prove that for $q \geq 3$ and odd $n \geq 3$, the curve \mathcal{X}_n is not a Galois subcover of the Hermitian curve \mathcal{H}_n , which answers the first question raised in [11].

Theorem 1.3. The family of curves \mathcal{X}_n , defined by (1.1) over $\mathbb{F}_{q^{2n}}$, is not a Galois subcover of the Hermitian curve over $\mathbb{F}_{q^{2n}}$ for any odd $n \geq 3$ and $q \geq 3$.

Finally, we note that the GK curve for n = 3 is not a subcover of the Hermitian [13]. By our arguments in Section 4, we have the following corollary, which answers the second question in [11].

Corollary 1.4. The curve \mathcal{X}_3 with q = 3, defined by the equation

$$y^9 - y = x^7$$

over \mathbb{F}_{3^6} is not covered by the Hermitian over the same finite field.

We will prove Theorem 1.1 in Section 3, and then obtain the other theorems and corollaries by a simple argument in Section 4. We remark that for $n \geq 5$, we do not know whether the curves C_n and \mathcal{X}_n are non-Galois covered by the Hermitian curve or not.

2. Preliminaries

From now on, we consider both the Hermitian curve \mathcal{H}_n and the generalized GK curve \mathcal{C}_n over $\mathbb{F}_{q^{2n}}$, where *n* is odd (we do not restrict *q* at this moment). The genus and the number of $\mathbb{F}_{q^{2n}}$ -rational points on the Hermitian curve over $\mathbb{F}_{q^{2n}}$ are given by

(2.1)
$$g(\mathcal{H}_n) = \frac{1}{2}q^n(q^n-1), \qquad N(\mathcal{H}_n) = q^{2n} + 1 + 2g(\mathcal{H}_n)q^n.$$

and the corresponding quantities for the generalized GK curve are given by (see [10])

(2.2)
$$g(\mathcal{C}_n) = \frac{1}{2}(q-1)(q^{n+1}+q^n-q^2), \qquad N(\mathcal{C}_n) = q^{2n}+1+2g(\mathcal{C}_n)q^n.$$

Suppose there is a covering $\phi : \mathcal{H}_n \to \mathcal{C}_n$ of degree d. From the Hurwitz genus formula (see [25, Theorem 3.4.13]), we have

$$2g(\mathcal{H}_n) - 2 \ge d \cdot (2g(\mathcal{C}_n) - 2),$$

and from the splitting of points we have

$$N(\mathcal{H}_n) \le d \cdot N(\mathcal{C}_n).$$

By substituting the values of (2.1) and (2.2) into the above equations and using the division algorithm, we get

(2.3)
$$q^{n-2} + 1 \le d \le q^{n-2} + q^{n-4} + \ldots + q^3 + q$$

for $q \geq 3$, and

(2.4)
$$q^{n-2} + 1 \le d \le q^{n-2} + q^{n-4} + \ldots + q^3 + q + 1$$

for q = 2. It is immediate from (2.3) that the range of d is empty when n = 3 and $q \ge 3$. In particular, we recover the known result that the GK curve C_3 is not a subcover of the Hermitian curve \mathcal{H}_3 [13]. For $n \ge 5$, the ranges in (2.3) and (2.4) are nontrivial.

Now we suppose that the covering $\phi : \mathcal{H}_n \to \mathcal{C}_n$ is Galois with Galois group G, with |G| = d. Then G can be realized as a subgroup of $\operatorname{Aut}(\mathcal{H}_n) = PGU(3, q^n)$ (see [20, 24]), and \mathcal{C}_n is the quotient curve of \mathcal{H}_n by G. To understand the ramification in a Galois covering, we will use the Hilbert different formula (see the proof in [25, Theorem 3.8.7]), which we state here for the sake of completeness. Let $\mathcal{X}' \to \mathcal{X}$ be a Galois covering of curves with Galois group G, and let P and P' be points on \mathcal{X} and \mathcal{X}' respectively (which need not lie in the field of definition of the covering) so that P maps to P' under the covering. Then the different exponent d(P|P') is

(2.5)
$$d(P|P') = \sum_{\substack{1 \neq \sigma \in G \\ \sigma(P) = P}} i_P(\sigma),$$

where $i_P(\sigma) = v_P(\sigma(t) - t)$ with t a local uniformizer at P. Note that if the ramification of P over P' is tame, then $i_P(\sigma) = 1$ for any σ that fixes P, and in that case d(P|P') is the number of elements $\sigma \neq 1$ in G that fix P. Combining

(2.5) with the Hurwitz genus formula, we get the following proposition which we will rely on heavily.

Proposition 2.1. Suppose $\mathcal{X} \to \mathcal{X}'$ is a Galois covering of degree d with Galois group G, then

$$2g(\mathcal{X}) - 2 = d(2g(\mathcal{X}') - 2) + \deg R,$$

where R is the ramification divisor given by

$$R = \sum_{1 \neq \sigma \in G} \sum_{P \in \mathcal{X}} i_P(\sigma) P,$$

with $i_P(\sigma) = 0$ if $\sigma(P) \neq P$.

3. Proof of Theorem 1.1

In this section, we apply 2.1 with $\mathcal{X} = \mathcal{H}_n$ and $\mathcal{X}' = \mathcal{C}_n$. To do this, we need to understand the quantity

$$i(\sigma) := \sum_{P \in \mathcal{X}} i_P(\sigma) \deg P$$

for each $\sigma \in PGU(3, q^n)$. An element in $PGU(3, q^n)$ either fixes no points on \mathcal{H}_n , or it fixes a point of degree one, or fixes a point of degree three (see [12]). If σ fixes no points on \mathcal{H}_n , then $i(\sigma) = 0$. If it fixes a point of degree three, then it fixes only that point. Since any such σ has order dividing $q^2 - q + 1$, which is relatively prime to q, the ramification is tame. Hence $i(\sigma) = 3$. The case when σ fixes a point of degree one has several subcases. Since the action of $PGU(3, q^n)$ on the points of degree one on \mathcal{H}_n is transitive (see for example [14]), and $i(\sigma)$ is unchanged under conjugation (see for example [23, Chapter IV]), we may assume that the degree one point fixed is the point at infinity P_{∞} when \mathcal{H}_n is given by the equation $x^{q^n} + x = y^{q^n+1}$. Following [12], we write $\sigma = [a, b, c]$, where

$$\sigma(x) = ax + b, \qquad \qquad \sigma(y) = a^{q^n + 1}y + ab^{q^n}x + c,$$

with $a \in \mathbb{F}_{q^{2n}} \setminus \{0\}, b \in \mathbb{F}_{q^{2n}}, c^{q^n} + c = b^{q^n+1}$. There are 2 cases:

(1) a = 1, then σ fixes P_{∞} to a high order. In this case we have

$$i(\sigma) = \begin{cases} 2 & , \text{ if } a = 1, b \neq 0, \\ q^n + 2 & , \text{ if } a = 1, b = 0, c \neq 0 \end{cases}$$

(2) $a \neq 1$, then σ may also fix other points of degree one. In this case, if p denotes the characteristic of $\mathbb{F}_{q^{2n}}$, we have

$$i(\sigma) = \begin{cases} 1 & , \text{ if } p \text{ divides } \operatorname{ord}(\sigma), \\ q^n + 1 & , \text{ if } \operatorname{ord}(\sigma) \text{ divides } q + 1, \\ 2 & , \text{ otherwise.} \end{cases}$$

Combining all the cases, we obtain the following proposition. The significance of the proposition is that either $i(\sigma)$ is very small, or $i(\sigma)$ is very large, and nothing in the middle can happen.

Proposition 3.1. If $\sigma \in PGU(3, q^n)$, then $i(\sigma) = 0, 1, 2, 3, q^n + 1$ or $q^n + 2$.

Remark 3.1. Proposition 3.1 can also be verified using the Artin representation (see [22, Chapter 19], [23, Chapter VI]) of $PGU(3, q^n)$. In this case, the Artin representation is the unique irreducible representation of minimal degree $2g(\mathcal{H}_n) = q^n(q^n - 1)$ (see [19, Lemma 4.1]).

Now we have the contribution of each element in $PGU(3, q^n)$ to the ramification divisor, and we are ready to finish the proof of Theorem 1.1. From now on, we assume $q \geq 3$ unless otherwise stated.

(Proof of Theorem 1.1) Suppose now that $\phi : \mathcal{H}_n \to \mathcal{C}_n$ is a Galois covering with group $G \subseteq PGU(3, q^n)$ of order |G| = d. Using (2.3), we write

(3.1)
$$d = q^{n-2} + a,$$
 $1 \le a \le q^{n-4} + q^{n-6} + \ldots + q^3 + q.$

By the Hurwitz genus formula the degree of the ramification divisor R is

(3.2)
$$\deg R = (2g(\mathcal{H}_n) - 2) - d(2g(\mathcal{C}_n) - 2))$$

From Proposition 2.1, deg $R = \sum_{1 \neq \sigma \in G} i(\sigma)$. Proposition 3.1 gives the contribution $i(\sigma)$ for each of the d-1 nontrivial elements in G. The nontrivial elements divide into two groups according to $i(\sigma) = 0, 1, 2, 3$ or $i(\sigma) = q^n + 1, q^n + 2$. Let d = 1 + u + v with $u = \#\{\sigma \neq 1 : i(\sigma) = 0, 1, 2, 3\}$ and $v = \#\{\sigma \neq 1 : i(\sigma) = q^n + 1, q^n + 2\}$. We derive two inequalities for u and v with no common solution, thus proving that no Galois covering exists. For the first inequality we use that the remainder of deg R modulo $q^n + 1$ is in [0, 3u + v]. On the other hand, combining (3.2) with

$$2g(\mathcal{H}_n) - 2 = (q^n - 2)(q^n + 1)$$

$$2g(\mathcal{C}_n) - 2 = (q^2 - 1)(q^n + 1) - (q^3 + 1),$$

and using (3.1), gives deg $R \equiv d(q^3+1) \equiv d-q+aq^3 \pmod{q^n+1}$. Since $d-q+aq^3 < q^n + 1$, it is the remainder of deg R modulo $q^n + 1$ and $d-q+aq^3 \leq 3u+v$, or $2u \geq aq^3 - q + 1$. For the second inequality we use that deg $R \leq 3u + (q^n + 2)v$. In combination with

$$2g(\mathcal{H}_n) - 2 = (q^n - 2)(q^n + 2) - (q^n - 2)$$

$$2g(\mathcal{C}_n) - 2 = (q^2 - 1)(q^n + 2) - (q^3 - q^2),$$

and $3u < 3d < q^n + 2$, we obtain $v + 1 \ge \deg R/(q^n + 2) \ge (q^n - 3) - d(q^2 - 1) = d - aq^2 - 3$, or $u \le aq^2 + 3$. But $2(aq^2 + 3) < aq^3 - q + 1$ and no solution for u exists. This proves Theorem 1.1.

Remark 3.2. Note that the argument above also works for q = 2. This excludes every possible d in the range given by (2.4) except

$$d = 2^{n-2} + 2^{n-4} + \ldots + 2^3 + 2 + 1 = \frac{2^n + 1}{3}.$$

This gives the degree in Theorem 1.2.

Remark 3.3. If we try the same argument on the curves \mathcal{X}_n defined by (1.1), we can eliminate some d in the feasible range obtained by the upper bound and lower bound method in Section 2, but we cannot eliminate all of them. For example, we cannot eliminate $d = (q^n - 1)/(q - 1)$ since

$$2g(\mathcal{H}_n) - 2 = d(2g(\mathcal{X}_n) - 2) + q \cdot (q^n + 1) + (d - q - 1) \cdot 2.$$

IWAN DUURSMA AND KIT-HO MAK

4. Proof of Theorem 1.2 and 1.3

The proof will be based on the following proposition. The proof is elementary.

Proposition 4.1. Suppose we have the following tower of fields (here dotted lines indicate that the containment is unknown):

Then

- (1) $K \subseteq L$ if and only if $K_2 \subseteq L$.
- (2) If the extension $K_2 \subseteq L$ is Galois, then $K \subseteq L$ is Galois.
- (3) If the extension $k \subseteq L$ is Galois, then $K \subseteq L$ is Galois if and only if $K_2 \subseteq L$ is Galois.

The key observation here is that the generalized GK curve C_n over $\mathbb{F}_{q^{2n}}$ is the fibre product of two maximal curves over $\mathbb{F}_{q^{2n}}$, namely the curves \mathcal{H} , given by

(4.1)
$$x^q + x = y^{q+1}$$

and \mathcal{X}_n given by

$$y^{q^2} - y = z^{\frac{q^n + 1}{q+1}},$$

over $\mathbb{P}^1(y)$ with variable y. Denote the function field for a curve \mathcal{Y} over $\mathbb{F}_{q^{2n}}$ by $\mathbb{F}_{q^{2n}}(\mathcal{Y})$, then the function field $\mathbb{F}_{q^{2n}}(\mathcal{C}_n)$ is the compositum of the function fields $\mathbb{F}_{q^{2n}}(\mathcal{H})$ and $\mathbb{F}_{q^{2n}}(\mathcal{X}_n)$ over the rational function field $\mathbb{F}_{q^{2n}}(y)$ (i.e. regard all fields that come into play as finite extensions of $\mathbb{F}_{q^{2n}}(y)$). Since n is odd, the curve \mathcal{H} is a subcover of the Hermitian curve over \mathcal{H}_n , so we have an extension $\mathbb{F}_{q^{2n}}(\mathcal{H}) \subseteq \mathbb{F}_{q^{2n}}(\mathcal{H}_n)$. Thus we have a tower of fields as shown in Figure 1, for which Proposition 4.1 is applicable.

FIGURE 1. Tower of fields

For $q \geq 3$ and odd $n \geq 3$, the fact that C_n is not a Galois subcover of \mathcal{H}_n together with Proposition 4.1(2) shows that \mathcal{X}_n is not a Galois subcover of \mathcal{H}_n . This proves Theorem 1.3. For q = 2, Abdón, Bezerra and Quoos [1] showed that \mathcal{X}_n is a subcover of \mathcal{H}_n . Therefore by Proposition 4.1(1), C_n is a subcover of \mathcal{H}_n . This proves Theorem 1.2. Finally, for n = 3, we know that C_3 is not covered by \mathcal{H}_3 , and again by Proposition 4.1(1), \mathcal{X}_3 is not covered by \mathcal{H}_3 . This proves Corollary 1.4.

References

- Miriam Abdón, Juscelino Bezerra, and Luciane Quoos, Further examples of maximal curves, J. Pure Appl. Algebra 213 (2009), no. 6, 1192–1196.
- Miriam Abdón and Arnaldo Garcia, On a characterization of certain maximal curves, Finite Fields Appl. 10 (2004), no. 2, 133–158.
- [3] Miriam Abdón and Fernando Torres, On maximal curves in characteristic two, Manuscripta Math. 99 (1999), no. 1, 39–53.
- [4] Antonio Cossidente, Gabor Korchmáros, and Fernando Torres, On curves covered by the Hermitian curve, J. Algebra 216 (1999), no. 1, 56–76.
- [5] _____, Curves of large genus covered by the Hermitian curve, Comm. Algebra 28 (2000), no. 10, 4707–4728.
- [6] Iwan M. Duursma, Two-point coordinate rings for GK-curves, to appear in IEEE Trans. Inform. Theory.
- [7] Rainer Fuhrmann, Arnaldo Garcia, and Fernando Torres, On maximal curves, J. Number Theory 67 (1997), no. 1, 29–51.
- [8] Rainer Fuhrmann and Fernando Torres, The genus of curves over finite fields with many rational points, Manuscripta Math. 89 (1996), no. 1, 103–106.
- [9] Arnaldo Garcia, Curves over finite fields attaining the Hasse-Weil upper bound, European Congress of Mathematics, Vol. II (Barcelona, 2000), Progr. Math., vol. 202, Birkhäuser, Basel, 2001, pp. 199–205.
- [10] Arnaldo Garcia, Cem Güneri, and Henning Stichtenoth, A generalization of the Giulietti-Korchmáros maximal curve, Adv. Geom. 10 (2010), no. 3, 427–434.
- [11] Arnaldo Garcia and Henning Stichtenoth, A maximal curve which is not a Galois subcover of the Hermitian curve, Bull. Braz. Math. Soc. (N.S.) 37 (2006), no. 1, 139–152.
- [12] Arnaldo Garcia, Henning Stichtenoth, and Chao-Ping Xing, On subfields of the Hermitian function field, Compositio Math. 120 (2000), no. 2, 137–170.
- [13] Massimo Giulietti and Gábor Korchmáros, A new family of maximal curves over a finite field, Math. Ann. 343 (2009), no. 1, 229–245.
- [14] Daniel R. Hughes and Fred C. Piper, *Projective planes*, Springer-Verlag, New York, 1973, Graduate Texts in Mathematics, Vol. 6.

- [15] Yasutaka Ihara, Some remarks on the number of rational points of algebraic curves over finite fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), no. 3, 721–724.
- [16] Gábor Korchmáros and Fernando Torres, Embedding of a maximal curve in a Hermitian variety, Compositio Math. 128 (2001), no. 1, 95–113.
- [17] _____, On the genus of a maximal curve, Math. Ann. **323** (2002), no. 3, 589–608.
- [18] Gilles Lachaud, Sommes d'Eisenstein et nombre de points de certaines courbes algébriques sur les corps finis, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), no. 16, 729–732.
- [19] Vicente Landazuri and Gary M. Seitz, On the minimal degrees of projective representations of the finite Chevalley groups, J. Algebra 32 (1974), 418–443.
- [20] Heinrich-Wolfgang Leopoldt, Über die Automorphismengruppe des Fermatkörpers, J. Number Theory 56 (1996), no. 2, 256–282.
- [21] Hans-Georg Rück and Henning Stichtenoth, A characterization of Hermitian function fields over finite fields, J. Reine Angew. Math. 457 (1994), 185–188.
- [22] Jean-Pierre Serre, Linear representations of finite groups, Springer-Verlag, New York, 1977, Translated from the second French edition by Leonard L. Scott, Graduate Texts in Mathematics, Vol. 42.
- [23] _____, Local fields, Graduate Texts in Mathematics, vol. 67, Springer-Verlag, New York, 1979, Translated from the French by Marvin Jay Greenberg.
- [24] Henning Stichtenoth, Über die Automorphismengruppe eines algebraischen Funktionenkörpers von Primzahlcharakteristik. I, II, Arch. Math. (Basel) 24 (1973), 527–544, 615– 631.
- [25] _____, Algebraic function fields and codes, second ed., Graduate Texts in Mathematics, vol. 254, Springer-Verlag, Berlin, 2009.
- [26] Henning Stichtenoth and Chao Ping Xing, The genus of maximal function fields over finite fields, Manuscripta Math. 86 (1995), no. 2, 217–224.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN, 273 ALT-GELD HALL, MC-382, 1409 W. GREEN STREET, URBANA, ILLINOIS 61801, USA *E-mail address:* duursma@math.uiuc.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN, 273 ALT-GELD HALL, MC-382, 1409 W. GREEN STREET, URBANA, ILLINOIS 61801, USA *E-mail address*: mak4@illinois.edu