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TWO FAMILIES OF MAXIMAL CURVES WHICH ARE NOT

GALOIS SUBCOVERS OF THE HERMITIAN CURVE

IWAN DUURSMA AND KIT-HO MAK

Abstract. We show that the generalized Giulietti-Korchmáros curve and the

maximal curve with equation x
q2 − x = y

(qn+1)/(q+1) defined over Fq2n , for
n ≥ 3 odd and q ≥ 3, are not Galois subcovers of the Hermitian curve over
Fq2n . For q = 2, we show that the generalized GK curve is covered by the
Hermitian curve.

1. Introduction and Statements of Results

Let Fq2 be the finite field with q2 elements, and let X be a projective, nonsingular,
geometrically irreducible curve (hereafter referred to as a curve) defined over Fq2 .
We say that X is Fq2 -maximal if the number of its rational points attains the
Hasse-Weil upper bound

∣

∣X (Fq2 )
∣

∣ = q2 + 1 + 2g(X )q,

where g(X ) is the genus of X .
A curve C is called a subcover of X over Fq2 (or equivalently X is a cover of C)

if there exists a surjective map φ : X → C with C, X and φ defined over Fq2 . More
information about maximal curves can be found in [2, 3, 7, 9, 13, 16, 17] and their
references. The most important example of a maximal curve is the Hermitian curve
H, which is defined over Fq2 by the equation

yq + y = xq+1.

It has genus 1
2q(q − 1). By the work of [8, 15, 26], the genus of any maximal curve

X satisfies

g(X ) ∈ [0, (q − 1)2/4] ∪ {q(q − 1)/2}.

Therefore the Hermitian curve has the largest possible genus that a maximal curve
can have. It is shown in [21] that the Hermitian curve is the unique maximal curve
having genus 1

2q(q − 1).
By a result known as Serre’s theorem (see [18, Proposition 6]), any subcover

of a Fq2-maximal curve is Fq2-maximal. Most of the known maximal curves are
subcovers of the Hermitian curve H, and systematic studies on subcovers of H can
be found in [4, 5, 12]. The first example of a maximal curve which is not a Galois
subcover of H is discovered by Garcia and Stichtenoth [11]. This curve has defining
equation

y9 − y = z7
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over F36 , and is a special case with q = 3, n = 3 of the curve Xn with defining
equation

(1.1) yn
2

− y = z
q
n+1

q+1

over Fq2n , for q ≥ 2 and odd n ≥ 3. The curve Xn was shown to be maximal in [1].
On the other hand, an unpublished result by Rains and Zieve states that the Ree
curve over F36 is not a Galois subcover of the Hermitian curve over the same field.

In [13], Giulietti and Korchmáros give an example of a maximal curve, now
called the GK curve, that is not covered by the Hermitian curve. The GK curve
has been generalized by Garcia, Güneri and Stichtenoth in [10]. These generalized
curves, called the generalized GK curves Cn, are maximal curves over Fq2n for a
prime power q and odd n ≥ 3 ([10], see also [6]). They have defining equations

(1.2)
xq + x = yq+1

yq
2

− y = z
q
n+1

q+1 .

It is shown in [10] that the curves with n = 3 are isomorphic to those given originally
by Giulietti and Korchmáros. It is not known whether these generalized GK curves
Cn are covered by the Hermitian curve for n ≥ 5. In this paper, we give a partial
answer to this problem by showing that Cn is not a Galois subcover of the Hermitian
curve over the same finite field for any odd n ≥ 3 and q ≥ 3. More precisely, we
prove the following.

Theorem 1.1. The generalized GK curve, defined by (1.2) over Fq2n , is not a
Galois subcover of the Hermitian curve over Fq2n for any odd n ≥ 3 and q ≥ 3.

For q = 2, the situation is completely different. We prove that the generalized
GK curve Cn over F22n is covered by the Hermitian curve over F22n , and the degree
of the covering is given.

Theorem 1.2. The generalized GK curve, defined by (1.2) with q = 2 over F22n ,
is covered by the Hermitian curve over the same finite field for any odd n ≥ 3. The
degree of the covering is d = (2n + 1)/3.

Next, we consider the curve Xn defined over Fq2n by (1.1), which is the second
equation in the definition of the generalized GK curve. This curve is maximal and
has genus g(Xn) =

1
2 (q − 1)(qn − q). It is proved in [1] that for q = 2, the curve

Xn is covered by the Hermitian for any odd n ≥ 3. We prove that for q ≥ 3 and
odd n ≥ 3, the curve Xn is not a Galois subcover of the Hermitian curve Hn, which
answers the first question raised in [11].

Theorem 1.3. The family of curves Xn, defined by (1.1) over Fq2n , is not a Galois
subcover of the Hermitian curve over Fq2n for any odd n ≥ 3 and q ≥ 3.

Finally, we note that the GK curve for n = 3 is not a subcover of the Hermitian
[13]. By our arguments in Section 4, we have the following corollary, which answers
the second question in [11].

Corollary 1.4. The curve X3 with q = 3, defined by the equation

y9 − y = x7

over F36 is not covered by the Hermitian over the same finite field.
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We will prove Theorem 1.1 in Section 3, and then obtain the other theorems and
corollaries by a simple argument in Section 4. We remark that for n ≥ 5, we do
not know whether the curves Cn and Xn are non-Galois covered by the Hermitian
curve or not.

2. Preliminaries

From now on, we consider both the Hermitian curve Hn and the generalized GK
curve Cn over Fq2n , where n is odd (we do not restrict q at this moment). The
genus and the number of Fq2n -rational points on the Hermitian curve over Fq2n are
given by

g(Hn) =
1

2
qn(qn − 1), N(Hn) = q2n + 1 + 2g(Hn)q

n.(2.1)

and the corresponding quantities for the generalized GK curve are given by (see
[10])

g(Cn) =
1

2
(q − 1)(qn+1 + qn − q2), N(Cn) = q2n + 1 + 2g(Cn)q

n.(2.2)

Suppose there is a covering φ : Hn → Cn of degree d. From the Hurwitz genus
formula (see [25, Theorem 3.4.13]), we have

2g(Hn)− 2 ≥ d · (2g(Cn)− 2),

and from the splitting of points we have

N(Hn) ≤ d ·N(Cn).

By substituting the values of (2.1) and (2.2) into the above equations and using
the division algorithm, we get

(2.3) qn−2 + 1 ≤ d ≤ qn−2 + qn−4 + . . .+ q3 + q

for q ≥ 3, and

(2.4) qn−2 + 1 ≤ d ≤ qn−2 + qn−4 + . . .+ q3 + q + 1

for q = 2. It is immediate from (2.3) that the range of d is empty when n = 3 and
q ≥ 3. In particular, we recover the known result that the GK curve C3 is not a
subcover of the Hermitian curve H3 [13]. For n ≥ 5, the ranges in (2.3) and (2.4)
are nontrivial.

Now we suppose that the covering φ : Hn → Cn is Galois with Galois group G,
with |G| = d. Then G can be realized as a subgroup of Aut(Hn) = PGU(3, qn) (see
[20, 24]), and Cn is the quotient curve of Hn by G. To understand the ramification
in a Galois covering, we will use the Hilbert different formula (see the proof in [25,
Theorem 3.8.7]), which we state here for the sake of completeness. Let X ′ → X be
a Galois covering of curves with Galois group G, and let P and P ′ be points on X
and X ′ respectively (which need not lie in the field of definition of the covering) so
that P maps to P ′ under the covering. Then the different exponent d(P |P ′) is

(2.5) d(P |P ′) =
∑

16=σ∈G
σ(P )=P

iP (σ),

where iP (σ) = vP (σ(t) − t) with t a local uniformizer at P . Note that if the
ramification of P over P ′ is tame, then iP (σ) = 1 for any σ that fixes P , and in
that case d(P |P ′) is the number of elements σ 6= 1 in G that fix P . Combining
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(2.5) with the Hurwitz genus formula, we get the following proposition which we
will rely on heavily.

Proposition 2.1. Suppose X → X ′ is a Galois covering of degree d with Galois
group G, then

2g(X )− 2 = d(2g(X ′)− 2) + degR,

where R is the ramification divisor given by

R =
∑

16=σ∈G

∑

P∈X

iP (σ)P,

with iP (σ) = 0 if σ(P ) 6= P .

3. Proof of Theorem 1.1

In this section, we apply 2.1 with X = Hn and X ′ = Cn. To do this, we need to
understand the quantity

i(σ) :=
∑

P∈X

iP (σ) degP

for each σ ∈ PGU(3, qn). An element in PGU(3, qn) either fixes no points on Hn,
or it fixes a point of degree one, or fixes a point of degree three (see [12]). If σ
fixes no points on Hn, then i(σ) = 0. If it fixes a point of degree three, then it
fixes only that point. Since any such σ has order dividing q2 − q + 1, which is
relatively prime to q, the ramification is tame. Hence i(σ) = 3. The case when σ
fixes a point of degree one has several subcases. Since the action of PGU(3, qn)
on the points of degree one on Hn is transitive (see for example [14]), and i(σ) is
unchanged under conjugation (see for example [23, Chapter IV]), we may assume
that the degree one point fixed is the point at infinity P∞ when Hn is given by the
equation xqn + x = yq

n+1. Following [12], we write σ = [a, b, c], where

σ(x) = ax+ b, σ(y) = aq
n+1y + abq

n

x+ c,

with a ∈ Fq2n\{0}, b ∈ Fq2n , c
qn + c = bq

n+1. There are 2 cases:

(1) a = 1, then σ fixes P∞ to a high order. In this case we have

i(σ) =

{

2 , if a = 1, b 6= 0,

qn + 2 , if a = 1, b = 0, c 6= 0.

(2) a 6= 1, then σ may also fix other points of degree one. In this case, if p
denotes the characteristic of Fq2n , we have

i(σ) =











1 , if p divides ord(σ),

qn + 1 , if ord(σ) divides q + 1,

2 , otherwise.

Combining all the cases, we obtain the following proposition. The significance of
the proposition is that either i(σ) is very small, or i(σ) is very large, and nothing
in the middle can happen.

Proposition 3.1. If σ ∈ PGU(3, qn), then i(σ) = 0, 1, 2, 3, qn + 1 or qn + 2.
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Remark 3.1. Proposition 3.1 can also be verified using the Artin representation
(see [22, Chapter 19], [23, Chapter VI]) of PGU(3, qn). In this case, the Artin
representation is the unique irreducible representation of minimal degree 2g(Hn) =
qn(qn − 1) (see [19, Lemma 4.1]).

Now we have the contribution of each element in PGU(3, qn) to the ramification
divisor, and we are ready to finish the proof of Theorem 1.1. From now on, we
assume q ≥ 3 unless otherwise stated.

(Proof of Theorem 1.1) Suppose now that φ : Hn → Cn is a Galois covering with
group G ⊆ PGU(3, qn) of order |G| = d. Using (2.3), we write

d = qn−2 + a, 1 ≤ a ≤ qn−4 + qn−6 + . . .+ q3 + q.(3.1)

By the Hurwitz genus formula the degree of the ramification divisor R is

degR = (2g(Hn)− 2)− d(2g(Cn)− 2).(3.2)

From Proposition 2.1, degR =
∑

16=σ∈G i(σ). Proposition 3.1 gives the contribution

i(σ) for each of the d− 1 nontrivial elements in G. The nontrivial elements divide
into two groups according to i(σ) = 0, 1, 2, 3 or i(σ) = qn+1, qn+2. Let d = 1+u+v
with u = #{σ 6= 1 : i(σ) = 0, 1, 2, 3} and v = #{σ 6= 1 : i(σ) = qn + 1, qn + 2}. We
derive two inequalities for u and v with no common solution, thus proving that no
Galois covering exists. For the first inequality we use that the remainder of degR
modulo qn + 1 is in [0, 3u+ v]. On the other hand, combining (3.2) with

2g(Hn)− 2 = (qn − 2)(qn + 1)

2g(Cn)− 2 = (q2 − 1)(qn + 1)− (q3 + 1),

and using (3.1), gives degR ≡ d(q3+1) ≡ d−q+aq3 (mod qn+1). Since d−q+aq3 <
qn + 1, it is the remainder of degR modulo qn + 1 and d − q + aq3 ≤ 3u + v, or
2u ≥ aq3 − q+ 1. For the second inequality we use that degR ≤ 3u+ (qn + 2)v. In
combination with

2g(Hn)− 2 = (qn − 2)(qn + 2)− (qn − 2)

2g(Cn)− 2 = (q2 − 1)(qn + 2)− (q3 − q2),

and 3u < 3d < qn + 2, we obtain v + 1 ≥ degR/(qn + 2) ≥ (qn − 3)− d(q2 − 1) =
d − aq2 − 3, or u ≤ aq2 + 3. But 2(aq2 + 3) < aq3 − q + 1 and no solution for u
exists. This proves Theorem 1.1.

Remark 3.2. Note that the argument above also works for q = 2. This excludes
every possible d in the range given by (2.4) except

d = 2n−2 + 2n−4 + . . .+ 23 + 2 + 1 =
2n + 1

3
.

This gives the degree in Theorem 1.2.

Remark 3.3. If we try the same argument on the curves Xn defined by (1.1), we
can eliminate some d in the feasible range obtained by the upper bound and lower
bound method in Section 2, but we cannot eliminate all of them. For example, we
cannot eliminate d = (qn − 1)/(q − 1) since

2g(Hn)− 2 = d(2g(Xn)− 2) + q · (qn + 1) + (d− q − 1) · 2.
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4. Proof of Theorem 1.2 and 1.3

The proof will be based on the following proposition. The proof is elementary.

Proposition 4.1. Suppose we have the following tower of fields (here dotted lines
indicate that the containment is unknown):

L

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

K = K1K2

ssssssssss

KKKKKKKKKK

K1

KKKKKKKKKKK K2

sssssssssss

k

Then

(1) K ⊆ L if and only if K2 ⊆ L.
(2) If the extension K2 ⊆ L is Galois, then K ⊆ L is Galois.
(3) If the extension k ⊆ L is Galois, then K ⊆ L is Galois if and only if K2 ⊆ L

is Galois.

The key observation here is that the generalized GK curve Cn over Fq2n is the
fibre product of two maximal curves over Fq2n , namely the curves H, given by

(4.1) xq + x = yq+1

and Xn given by

yq
2

− y = z
q
n+1

q+1 ,

over P
1(y) with variable y. Denote the function field for a curve Y over Fq2n

by Fq2n(Y), then the function field Fq2n(Cn) is the compositum of the function
fields Fq2n(H) and Fq2n(Xn) over the rational function field Fq2n(y) (i.e. regard
all fields that come into play as finite extensions of Fq2n(y)). Since n is odd, the
curve H is a subcover of the Hermitian curve over Hn, so we have an extension
Fq2n(H) ⊆ Fq2n(Hn). Thus we have a tower of fields as shown in Figure 1, for
which Proposition 4.1 is applicable.
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Fq2n(Hn)

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Fq2n(Cn)

rrrrrrrrrr

LLLLLLLLLL

Fq2n(H)

LLLLLLLLLL
Fq2n(Xn)

rrrrrrrrrr

Fq2n(y)

Figure 1. Tower of fields

For q ≥ 3 and odd n ≥ 3, the fact that Cn is not a Galois subcover of Hn

together with Proposition 4.1(2) shows that Xn is not a Galois subcover of Hn.
This proves Theorem 1.3. For q = 2, Abdón, Bezerra and Quoos [1] showed that
Xn is a subcover of Hn. Therefore by Proposition 4.1(1), Cn is a subcover of Hn.
This proves Theorem 1.2. Finally, for n = 3, we know that C3 is not covered by H3,
and again by Proposition 4.1(1), X3 is not covered by H3. This proves Corollary
1.4.
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