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ON SQUARE ROOTS OF THE HAAR STATE ON COMPACT

QUANTUM GROUPS

UWE FRANZ, ADAM SKALSKI, AND REIJI TOMATSU

Abstract. The paper is concerned with the extension of the classical study
of probability measures on a compact group which are square roots of the
Haar measure, due to Diaconis and Shahshahani, to the context of compact
quantum groups. We provide a simple characterisation for compact quantum
groups which admit no non-trivial square roots of the Haar state in terms
of their corepresentation theory. In particular it is shown that such compact
quantum groups are necessarily of Kac type and their subalgebras generated
by the coefficients of a fixed two-dimensional irreducible corepresentation are
isomorphic (as finite quantum groups) to the algebra of functions on the group
of unit quaternions. An example of a quantum group whose Haar state admits
no nontrivial square root and which is neither commutative nor cocommutative
is given.

1. Introduction

If G is a (locally) compact group, then the space M(G) of all bounded regular
measures on G is equipped with a natural product ⋆ afforded by the convolution,
making M(G) a Banach algebra. In particular a convolution of two probability
measures remains a probability measure. Convolution equations in M(G) have often
natural interpretations – for example the Haar measure µG on compact G can be
described as a unique probability measure in M(G) such that µG ⋆µ = µ⋆µG = µG

for all µ ∈ Prob(G), idempotents in Prob(G) can be characterised as Haar measures
on compact subgroups of G (Kawada-Itô Theorem), and so on. In [DS86] Diaconis
and Shahshahani showed that the Haar measure of a separable compact topological
group G does not admit a non-trivial square root, i.e. a probability ν 6= µG with
ν ⋆ ν = µG, if and only if G is abelian or of the form H × E, where H is the eight
element group of unit quaternions and E a product of two element groups.

If (A,∆) is a compact quantum group in the sense of Woronowicz ([Wor98]),
then the quantum counterpart of the set of the probability measures on the group is
given by the state space of A, S(A). It is again equipped with a natural convolution
operation and it makes sense to ask for the solutions of analogous equations as
those listed above. Thus for example the Haar state can be described as a unique
state h on A such that for all ρ ∈ S(A) there is h ⋆ ρ = ρ ⋆ h = h, but on the other
hand there may exist idempotent states on A which do not arise as Haar states on
compact quantum subgroups of A (see [FS08], [FST09]).
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In this paper we investigate the quantum counterpart of the question studied
by Diaconis and Shahshahani – which compact quantum groups belong to the
quantum DS-family, i.e. have the property that their Haar state does not admit a
non-trivial square root? The proof of the characterisation in [DS86] consists of three
main steps: first they show that that the existence of the nontrivial square roots of
the Haar measure on G is equivalent to the existence of a non-zero bounded real
nilpotent measure on G, then deduce from that that if G admits no such nilpotent
measures then it must be hamiltonian (i.e. all its closed subgroups are normal) and
finally classify compact separable hamiltonian groups and use this classification to
complete the proof.

Here we first show that the existence of the nontrivial square roots of the Haar
state is equivalent to the fact that the dual discrete algebraic quantum group (Â, ∆̂)
contains a hermitian non-zero nilpotent element, cf. Theorem 3.8 (the proof in our
context is similar to that of [DS86], but substantially more technical). Motivated
by our work on idempotent states, we propose a definition of a hamiltonian compact
quantum group as the one on which all idempotent states are central and show that
if (A,∆) belongs to the quantum DS-family, then it is hamiltonian, cf. Proposi-
tion 3.12 (in particular, all compact quantum subgroups of (A,∆) are normal). As
the classification of hamiltonian compact quantum groups is currently beyond our
reach, to continue the investigation we need to provide another strategy, based on
the corepresentation theory. It turns out that the quantum DS-family consists ex-
actly of those compact quantum groups which have only one- and two-dimensional
irreducible corepresentations and satisfying a certain additional condition on the
linear functionals coming from their two-dimensional corepresentations, cf. Theo-
rem 4.1. This allows us to deduce that if (A,∆) is in the quantumDS-family, then it
is necessarily of Kac type and its subalgebras generated by the coefficients of a fixed
two-dimensional irreducible corepresentation are isomorphic to the algebra of func-
tions on the group of unit quaternions. That result and some further observations
on the interaction between two-dimensional and one-dimensional corepresentations
are used to provide an explicit example of a compact quantum group in the quantum
DS-family which is neither commutative nor cocommutative.

The detailed plan of the paper is as follows: Section 2 contains all the preliminary
facts and terminology related to compact (and discrete) quantum groups and their
corepresentations. Here we also introduce the fundamental notion of the square
root of the Haar state and characterise commutative and cocommutative elements
of the quantum DS-family. Section 3 is devoted to establishing the equivalence
between the existence of nontrivial square roots and non-zero bounded hermitian
nilpotent functionals and discus hamiltonian compact quantum groups. In Section
4 the corepresentation theory starts to play a prominent role, providing a means to
characterise the quantum DS-family. This is used in the following section to show
that the members of the quantum DS-family are necessarily compact quantum
groups of Kac type and to obtain a description of their ‘local’ structure. Different
parts of this ‘local’ structure are combined in Section 6 to construct an example of a
compact quantum group which admits no non-trivial square root of the Haar state
and yet is neither commutative nor cocommutative. In that section we also state
an open problem related to the possible ‘degree of complication’ of two-dimensional
irreducible corepresentations of a quantum group in the quantum DS-family.
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2. Preliminaries

The symbol ⊗ will denote the spatial tensor product of C∗-algebras and ⊙ the
algebraic tensor product, we use LinF for the linear span of a set F is a vector
space and LinF for the closed linear span of a set F in a Banach space.

2.1. Compact quantum groups. The notion of compact quantum groups has
been introduced in [Wor87a]. Here we adopt the definition from [Wor98] (Definition
2.1 of that paper).

Definition 2.1. A C∗-bialgebra (a compact quantum semigroup) is a pair (A,∆),
where A is a unital C∗-algebra, ∆ : A → A ⊗ A is a unital, ∗-homomorphic map
which is coassociative, i.e.

(∆⊗ idA) ◦∆ = (idA ⊗∆) ◦∆.
If the quantum cancellation properties

Lin((1 ⊗ A)∆(A)) = Lin((A ⊗ 1)∆(A)) = A⊗ A,

are satisfied, then the pair (A,∆) is called a compact quantum group.

The map ∆ is called the coproduct of A, it induces the convolution product

λ ⋆ µ := (λ⊗ µ) ◦∆, λ, µ ∈ A
∗.

When the coproduct is clear from the context we just speak of a compact quantum
group A.

The following fact is of the fundamental importance for this paper, cf. [Wor98,
Theorem 2.3].

Proposition 2.2. Let (A,∆) be a compact quantum group. There exists a unique
state h ∈ A

∗ (called the Haar state of A) such that for all a ∈ A

(h⊗ idA) ◦∆(a) = (idA ⊗ h) ◦∆(a) = h(a)1.

This naturally leads to the next definition introducing the main object of interest
for the rest of the paper.

Definition 2.3. A state φ on a compact quantum group A is called a square root
of the Haar state if

φ ⋆ φ = h.

It is said to be non-trivial if φ 6= h.

In general, the Haar state of a compact quantum group need not be faithful.
But one can always divide by the nullspace of the Haar state to produce a compact
quantum group with faithful Haar state, usually called the reduced version of the
original quantum group, cf. [BMT01]. This construction allows us to reduce our
study to compact quantum groups with faithful Haar states, see Lemma 3.6.

2.2. Quantum subgroups. The notion of a quantum subgroup was introduced
by Kac [Kac68] in the setting of finite ring groups and by Podleś [Pod95] for matrix
pseudo-groups. In some contexts related to quantum subgroups it is necessary to
distinguish between the reduced and universal versions of the compact quantum
groups in question (or consider coamenable compact quantum groups, for which
the two versions coincide), but it will not be important here.
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Definition 2.4. A compact quantum group (B,∆B) is said to be a quantum sub-
group of a compact quantum group (A,∆A) if there exists a surjective compact
quantum group morphism π : A → B, i.e. a surjective unital ∗-homomorphism
π : A → B such that

∆B ◦ π = (π ⊗ π) ◦∆A.

A quantum subgroup B of A with Haar state hB is called normal if the images of
the conditional expectations

EA/B =
(
id⊗ (hB ◦ π)

)
◦∆A,

EB\A =
(
(hB ◦ π)⊗ id

)
◦∆A,

coincide, cf. [Wan08, Proposition 2.1 and Definition 2.2]. Note that the images of
the conditional expectations above can be thought of as the algebras of functions
constant respectively on the right and left ‘cosets’ of the quantum subgroup B.

2.3. Corepresentations. An element u = (ukℓ)1≤k,ℓ≤n ∈ Mn(A) is called an n-
dimensional corepresentation of (A,∆) if for all k, ℓ = 1, . . . , n we have ∆(ukℓ) =∑n

j=1 ukj ⊗ ujℓ. All corepresentations considered in this paper are supposed to
be finite-dimensional. A corepresentation u is said to be non-degenerate, if u is
invertible, unitary, if u is unitary, and irreducible, if the only matrices T ∈Mn(C)
with Tu = uT are multiples of the identity matrix. Two corepresentations u, v ∈
Mn(A) are called equivalent, if there exists an invertible matrix U ∈ Mn(C) such
that Uu = vU .

An important feature of compact quantum groups is the existence of the dense
∗-subalgebra A (the algebra of the smooth elements of A), which is in fact a Hopf
∗-algebra with the coproduct ∆|A – so for example ∆ : A → A⊙A. Fix a complete
family (u(s))s∈I of mutually inequivalent irreducible unitary corepresentations of

(A,∆), then {u(s)kℓ ; s ∈ I, 1 ≤ k, ℓ ≤ ns} (where ns denotes the dimension of u(s)) is
a linear basis of A, cf. [Wor98, Proposition 5.1]. We shall reserve the index s = ∅
for the trivial representation u∅ = 1.

Set Vs = span {u(s)kℓ ; 1 ≤ k, ℓ ≤ ns} for s ∈ A. By [Wor98, Proposition 5.2], there

exists a unique irreducible unitary corepresentation u(s
c), called the contragredient

representation of u(s), such that V ∗
s = Vsc . Clearly (sc)c = s.

The matrix elements of the irreducible unitary corepresentations satisfy the fa-
mous Peter-Weyl orthogonality relations

(2.1) h
((

u
(s)
ij

)∗
u
(t)
kℓ

)

=
δstδjℓf

((

u
(s)
ki

)∗)

Ds

where f : A → C denotes the so-called Woronowicz character and

Ds =

ns∑

ℓ=1

f
(

u
(s)
ℓℓ

)

=

ns∑

ℓ=1

f
((

u
(s)
ℓℓ

)∗)

is the quantum dimension of u(s), cf. [Wor87a, Theorem 5.7.4]. Note that unitarity
implies that the matrix

f
((

u
(s)
kℓ

)∗)
∈Mns

(C)

is invertible, with inverse
(
f(u

(s)
kℓ )
)
∈Mns

(C), cf. [Wor87a, Equations (5.18), (5.24)]
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We will say that a linear functional φ : A → C has finite support, if

ϕ|Vs
= 0

for all but finitely many s ∈ I. The Haar state has finite support, since it vanishes
on all irreducible unitary representations except the trivial one.

Lemma 2.5. A continuous linear functional φ : A → C has finite support if and
only if it admits a smooth density w.r.t. to the Haar state, i.e. if there exists x ∈ A
such that

φ(a) = h(xa), for all a ∈ A.

The density x is uniquely determined by φ.

Proof. Assume such a density x ∈ A exists. We write hx for the linear functional
defined by hx(a) = h(xa) for all a ∈ A. As a smooth element, x can be written as
a finite linear combination

x =

n∑

i=1

nsi∑

k,ℓ=1

c(si, k, ℓ)u
(si)
kℓ

Then the Peter-Weyl orthogonality relations (2.1) imply that φ|Vs
= hx|Vs

= 0 for
s ∈ I, s 6∈ {sc1, . . . , scn}.

Conversely, if φ has finite support, then the sum

x =
∑

s∈I

ns∑

j,k,ℓ=1

Dsφ(u
(s)
jℓ )f(u

(s)
kj )

(

u
(s)
kℓ

)∗

is finite, therefore x ∈ A, and the Peter-Weyl orthogonality relations (2.1) imply
φ|A = hx|A. Density of A in A and continuity of φ and hx then give φ = hx.

Clearly, by the Peter-Weyl orthogonality relations (2.1), x is uniquely determined
by hx|A = φ|A. �

Remark 2.6. Note that the density x is uniquely determined by φ, even if the Haar
state h is not faithful. This is a consequence of the fact that the Haar state is
always faithful on the algebra A of smooth elements.

Denote by (πh, H,1h) the GNS representation of A with respect to the Haar
state. If the Haar state h is faithful, we can make use of the Tomita-Takesaki
theory for Haar states on compact quantum groups [Wor87a, Wor98]. Define an
antilinear operator Sh on H by

Shπh(a)1h = πh(a)
∗1h,

for any a ∈ A and set ∆h = S∗
hSh. The modular automorphism group (σh

t )t∈R is
given by

πh
(
σh
t (a)

)
1h = ∆it

hπh(a)1h

for a ∈ A. Each element ofA is analytic with respect to the modular group (σh
t )t∈R.
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2.4. Discrete quantum groups. Let (A,∆) be a compact quantum groups. The
space of linear functionals on A with finite support has the structure of a discrete
algebraic quantum group.

Fix a complete family (u(s))s∈I of mutually inequivalent irreducible unitary

corepresentations of A, and define e
(s)
kℓ : A → C for s ∈ I, 1 ≤ k, ℓ ≤ ns by

e
(s)
kℓ

(

u
(t)
ij

)

= δstδkiδℓj

for t ∈ I, 1 ≤ i, j ≤ ns. These functionals extend to continuous functionals on A,

since e
(s)
kℓ = hx, with x = Ds

∑ns

j=1 f(u
(s)
jℓ )

(

u
(s)
jk

)∗
. The convolution product of two

such functionals gives e
(s)
ij e

(t)
kℓ = δstδjke

(s)
iℓ for s, t ∈ I, 1 ≤ i, j ≤ ns, 1 ≤ k, ℓ ≤ nt,

i.e. the linear functionals on A with finite support from a subalgebra

Â = span
{

e
(s)
ij ; s ∈ I, 1 ≤ i, j ≤ ns

}

of A
∗ with respect to the convolution product. Equip Â with the involution

(

e
(s)
kℓ

)∗
= e

(s)
ℓk . The

∗-algebra Â has the form of a multimatrix algebra,

Â =
⊕

s∈I
span

{

e
(s)
ℓk ; 1 ≤ k, ℓ ≤ ns

}

∼=
⊕

s∈I
Mns

(C) ⊆ A
∗

(algebraic direct sum). With the coproduct ∆̂ : Â →M(Â⊙Â) defined by ∆̂(φ)(a⊗
b) = φ(ab) for a, b ∈ A, Â becomes a discrete algebraic quantum group in the sense

of [VD98, VD03]. Here M(Â ⊙ Â) denotes the multiplier algebra of Â ⊙ Â, its
elements can be naturally identified with linear functionals on A⊙A.

For J ⊆ I, we introduce the notation

V̂J =
{

φ ∈ Â;φ
(

u
(s)
ij

)

= 0 for s 6∈ J, 1 ≤ i, j ≤ ns

}

for the space of functionals which vanish on the irreducible unitary corepresenta-
tions that do not belong to J . We have

V̂{s} = span
{

e
(s)
ℓk ; 1 ≤ k, ℓ ≤ ns

}

∼=Mns
(C)

for s ∈ I and

V̂{s,sc} ∼=Mns
(C)⊕Mns

(C)

if s 6= sc, i.e. if u(s) is not contragredient to itself.
The pair (Â, ∆̂) admits an antipode Ŝ : Â → Â, which can be characterised by

(
Ŝ(φ)

)
(a) = φ

(
S(a)

)
for a ∈ A, φ ∈ Â.

The antilinear map A
∗ ∋ φ 7→ φ† = ◦ φ ◦ ∗ ∈ A

∗ allows to characterise the
real algebra of hermitian functionals on A as its fixed point algebra. We have
(φ ⋆ ψ)† = φ† ⋆ ψ† and (φ†)† = φ. Since finitely supported functionals are in the

domain of the antipode Ŝ, we have φ† = Ŝ−1(φ∗) =
(
Ŝ(φ)

)∗
for φ ∈ Â.

2.5. First examples.
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2.5.1. Commutative examples. If G is a compact group, then A = C(G) becomes a
compact quantum group with the coproduct ∆ : A = C(G) → A ⊗ A ∼= C(G ×G)
defined by

∆(f)(g1, g2) = f(g1g2),

for f ∈ C(G), g1, g2 ∈ G. Furthermore, any commutative compact quantum group
is of this form, cf. [Wor98, Remark 3 following Definition 1.1].

The Haar state on a commutative compact quantum group C(G) is given by
integration against the Haar measure µ of G, i.e. h(f) =

∫

G fdµ for f ∈ C(G). It
admits a non-trivial square root if and only if the Haar measure µ admits a non-
trivial square root. Hence the main theorem of [DS86] can be reformulated in the
following way.

Theorem 2.7 ([DS86]). Let G be a separable compact group. The pair (C(G),∆))
admits no non-trivial square root of the Haar state if and only if G is abelian or
of the form H ×E where H is the group of unit quaternions and E is a Cartesian
product of (at most countably many) copies of Z2.

2.5.2. Cocommutative examples. A compact quantum group (A,∆) is called cocom-
mutative, if τ ◦ ∆ = ∆, where τ : A ⊗ A → A ⊗ A is the flip, τ(a ⊗ b) = b ⊗ a.
Since irreducible corepresentations of a cocommutative compact quantum group
are necessarily one-dimensional, the dense ∗-Hopf algebra of smooth elements in a
cocommutative compact quantum group (A,∆) is of the form A = span(Γ), where

Γ = {u ∈ A;u unitary and ∆(u) = u⊗ u}
is a (discrete) subgroup of the group U(A) of unitary elements of A.

The Haar state h acts as

h(u) =

{
1 if u = 1 the trivial corepresentation,
0 else.

on u ∈ Γ. If φ is a square root of h, then (φ ⋆ φ)(u) =
(
φ(u)

)2
= δu1 for u ∈ Γ, and

the only positive square root of the Haar state is the trivial solution φ = h. This
argument shows that the Haar state of a cocommutative compact quantum group
never admits a non-trivial square root.

2.6. Terminology. Motivated by Theorem 2.7 we introduce the following termi-
nology.

Definition 2.8. A compact quantum group A is said to belong to the quantum
DS-family if its Haar state does not admit any non-trivial square roots.

We will sometimes refer to a classical DS-family as the family of groups listed in
Theorem 2.7. The examples discussed above show that one can find and characterise
commutative and cocommutative quantum groups in the quantum DS-family. A
priori it is not clear if there exist at all any elements in the quantum DS-family
which belong to neither of these classes. We will in fact exhibit such an example in
Proposition 6.3.

3. Square roots of the Haar state and nilpotent functionals

We will show in this section that a compact quantum group (A,∆) is not in the
quantum DS-family if and only if there exists a hermitian functional on A that
is nilpotent for the convolution, cf. Theorem 3.8. Necessity of this condition is
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immediate. Indeed, if a state φ : A → C, φ 6= h, is a square root of the Haar state,
then ρ = φ− h 6= 0 is hermitian and nilpotent, since

ρ ⋆ ρ = φ ⋆ φ− φ ⋆ h− h ⋆ φ+ h ⋆ h = 0.

To prove the converse, we follow a similar strategy as Diaconis and Shahshahani.
Given a nilpotent hermitian functional ρ, we construct a new (“truncated”) her-
mitian functional ψs for which there exists ǫ 6= 0 such that h+ ǫψs defines a state
which is a square root of the Haar state h. But if the Haar state is not a trace,
then more care is required to prove the positivity of h+ ǫψs.

We begin with a simple lemma for the tracial case.

Lemma 3.1. Let A be a unital C∗-algebra with tracial state h. Then we have

|h(xa)| ≤ ||x||h(a)

for all x ∈ A and a ∈ A+.

Proof. Since a is positive, there exists b ∈ A such that a = bb∗. Denote by πh and
1h the GNS representation of h and its cyclic vector representing the state h. Then
we have

|h(xa)| = |h(xbb∗)| = |h(b∗xb)| = 〈πh(b)1h, πh(x)πh(b)1h〉
≤ ||x||〈πh(b)1h, πh(b)1h〉 = ||x||h(b∗b) = ||x||h(a),

since πh is a contraction. �

Let us now characterise hermitianity and positivity of a given finitely supported
linear functional in terms of its density. Recall that elements in A are analytic with
respect to the modular automorphism group of the Haar state.

Lemma 3.2. Let (A,∆) be a compact quantum group with faithful Haar state h
and modular group (σh

t )t∈R, and let x ∈ A.

(1) The functional hx ∈ A
∗, hx(a) = h(xa) is hermitian if and only if σh

−i/2(x)

is self-adjoint.
(2) The functional hx ∈ A

∗, hx(a) = h(xa) is positive if and only if σh
−i/2(x)

is positive.

Proof. (1) Denote by A
∗
h the space of hermitian continuous functionals on A

and once again write πh and 1h for the GNS representation of h and its
cyclic vector representing the state h. We have

hx ∈ A
∗
h ⇔ h(xa∗) = h(xa) ∀a ∈ A (or a ∈ A)

⇔ 〈x∗1h, a
∗1h〉 = 〈x∗1h, a1h〉 ∀a ∈ A

⇔ 〈Shx1h, Sha1h〉 = 〈a1h, x
∗1h〉 ∀a ∈ A

⇔ 〈a1h,∆hx1h
︸ ︷︷ ︸

〉 = 〈a1h, x
∗1h〉 ∀a ∈ A

= σh
−i(x)1h

⇔ σh
−i(x) = x∗ ⇔ σh

−i/2(x) =
(
σh
−i/2(x)

)∗
,

where we used faithfulness of h and the relation σh
i/2 ◦ ∗ = ∗ ◦ σh

−i/2.
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(2) Denote by A
∗
+ the space of positive functionals on A. We have

hx ∈ A
∗
+ ⇔ h(xbb∗) ≥ 0 ∀b ∈ A (or b ∈ A)

⇔ h
(
σh
i (b

∗)xb
)
≥ 0 ∀b ∈ A

⇔ 〈σh
−i(b)1h, xb1h〉 ≥ 0 ∀b ∈ A.

Since

〈σh
−i(b)1h, xb1h〉 = 〈∆hb1h, xb1h〉 = 〈∆1/2

h b1h,∆
1/2
h xb1h〉

= 〈∆1/2
h b1h, σ

h
−i/2(x)∆

1/2
h b1h〉

and since {∆1/2
h b1h; b ∈ A} = {σh

−i/2(b)1h; b ∈ A} is dense, this is equiva-

lent to σh
−i/2(x) ≥ 0.

�

Lemma 3.3. Let x ∈ A. If the functional hx ∈ A
∗ is hermitian, then there exists

ǫ > 0 such that h+ ǫhx is a positive.

Proof. Set ϕǫ = h + ǫhx = h1+ǫx. Since hx ∈ A
∗
h, σ

h
−i/2(x) is self-adjoint by

Lemma 3.2. Therefore there exists ǫ > 0 such that 1 ≥ ǫσh
−i/2(x) ≥ −1. Then

σh
−i/2(1+ ǫx) = 1+ ǫσh

−i/2(x) ≥ 1−1 = 0. Since 1+ ǫx ∈ A, we can apply Lemma

3.2 and get ϕǫ ∈ A
∗
+. �

Remark 3.4. Similar methods yield the following general result.
If M is a von Neumann algebra with a faithful normal state ω and x ∈ M

analytic with respect to the modular automorphism group {σt : t ∈ R} of the state
ω, then

|ω(xa)| ≤ ‖σ− i

2

(x)‖ω(a), for a ∈M+.

Lemma 3.5. (Truncation Lemma) Let ρ ∈ A
∗ be a hermitian functional such that

ρ ⋆ ρ = 0. For u(s) an irreducible unitary corepresentation of A, define ψs by

ψs

(

u
(t)
kℓ

)

=

{

ρ
(

u
(t)
kℓ

)

if t is equivalent to s or sc,

0 else.

Then ψs is hermitian, has finite support, and satisfies ψs ⋆ ψs = 0.

Proof. The support of ψs is contained in the ∗-closed subspace Vs+Vsc and ψs|Vs+Vsc
=

ρ|Vs+Vsc
. Therefore ψs is clearly hermitian and finitely supported. Furthermore,

(ψs ⋆ ψs)(u
(t)
kℓ ) =

nt∑

j=1

ψs(u
(t)
kj )ψs(u

(t)
jℓ )

=

{
∑nt

j=1 ρ(u
(t)
kj )ρ(u

(t)
jℓ ) = (ρ ⋆ ρ)(u

(t)
kℓ ) = 0 if t is equivalent to s or sc,

0 else

for all irreducible unitary corepresentations u(t) of A, i.e. ψs ⋆ ψs = 0. �

Let us first show that it is sufficient to consider compact quantum groups with
faithful Haar states.
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Lemma 3.6. Let (A,∆) be a compact quantum groups with not necessarily faithful

Haar state h and denote by (Ã, ∆̃) its reduced version, i.e. the compact quantum

group with faithful Haar state h̃ obtained from (A,∆) by dividing out the nullspace
of h.

If h̃ admits a non-trivial square root, then so does h.

Remark 3.7. The converse is also true, and can be shown using truncation argu-
ments similar to those in the proof of Theorem 3.8, but we will not need it.

Proof. Denote by π̃ : A → Ã the canonical projection from (A,∆) to (Ã, ∆̃), cf.

[BMT01]. Then h = h̃ ◦ π̃ and if h̃ admits a non-trivial square root φ̃ 6= h, then

clearly φ = φ̃ ◦ π̃ 6= h defines a non-trivial square root of h. �

Theorem 3.8. The Haar state h of a compact quantum group (A,∆) admits a non-
trivial square root, i.e. a state φ 6= h such that φ ⋆ φ = h, if and only if there exists
a bounded non-zero hermitian continuous linear functional on A that is nilpotent
for the convolution product.

Proof. If h admits a non-trivial square root φ, then clearly ρ = φ − h defines a
bounded non-zero hermitian nilpotent functional.

Conversely, assume that A
∗ contains a non-zero nilpotent hermitian functional

ψ. Then all convolution powers of ψ are also hermitian. If ψ⋆n = 0, and n is the
smallest such number, then set ρ = ψ⋆(n−1). This is non-zero and satisfies ρ⋆ρ = 0.
Therefore ρ(u) = 0 for any u ∈ A with ∆(u) = u⊗ u, in particular ρ(1) = 0.

Since ρ 6= 0, there exists an irreducible unitary corepresentation u(s) such that
ρ|Vs+Vsc

6= 0. Fix such an irreducible unitary corepresentation u(s) and define ψs

as in the Truncation Lemma (Lemma 3.5). Then ψs has finite support and there
exists a unique x ∈ A such that ψs = hx ∈ A

∗
h, cf. Lemma 2.5.

If h is faithful, then, by Lemma 3.3, there exists ǫ > 0 such that φ = h+ǫhx ∈ A
∗
+.

Since h ⋆ ψs = ψs ⋆ h = ψs(1)h = 0, we get

φ ⋆ φ = h ⋆ h+ ǫh ⋆ ψs + ǫψs ⋆ h+ ǫ2ψs ⋆ ψs = h,

i.e. φ is a non-trivial square root of the Haar state h.
If h is not faithful, then x ∈ A can be used to define a nilpotent hermitian

functional ψ̃s = h̃x and a non-trivial square φ̃ = h̃ + ǫh̃x on the reduced version
(Ã, ∆̃). By Lemma 3.6, φ = φ̃ ◦ π̃ then defines a non-trivial square root of h on
(A,∆). �

Since by the Truncation Lemma we can always choose this nilpotent hermitian
linear functional to have finite support, we also get the following characterisation.

Corollary 3.9. The Haar state h of a compact quantum group (A,∆) admits a non-

trivial square root if and only if its dual discrete algebraic quantum group (Â, ∆̂)
introduced in Subsection 2.4 contains a non-zero nilpotent element that is hermitian
w.r.t. †.

We will now show that compact quantum group whose Haar state has no non-
trivial square root is hamiltonian and that all its quantum subgroups are normal.

Lemma 3.10. Let (A,∆) be a compact quantum group with faithful Haar state. A
quantum subgroup B of A is normal if and only if the idempotent state hB ◦ π on A

induced by the Haar state hB of B is in the center of A∗.
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Proof. Denote by

EA/B =
(
id⊗ (hB ◦ π)

)
◦∆,

EB\A =
(
(hB ◦ π)⊗ id

)
◦∆,

the conditional expectations onto the coidalgebras A/B and B\A. The quantum
subgroup B is normal if and only these two coidalgebras coinside, cf. Definition 2.4.
Since EA/B and EB\A are unital and preserve the Haar state, by the uniqueness of
state preserving conditional expectations this is equivalent to EA/B = EB\A, or

f ⋆ (hB ◦ π) = f ◦ EA/B = f ◦ EB\A = (hB ◦ π) ⋆ f
for all f ∈ A

∗. �

Definition 3.11. We call a compact quantum group (A,∆) hamiltonian if all
idempotent states on A are central in A

∗ (w.r.t. the convolution).

Idempotent states on finite and compact quantum groups were characterised in
[FS08, FS09]. For a compact groupG, all idempotent states on C(G) are induced by
Haar measures of closed subgroups of G, and C(G) is hamiltonian if and only if all
closed subgroups of G are normal. Lemma 3.10 shows that all quantum subgroups
of hamiltonian compact quantum groups have to be normal. But noncommutative
compact quantum groups may have idempotent states that are not induced from
quantum subgroups.

Proposition 3.12. Let (A,∆) be a compact quantum group in the quantum DS-
family. If the Haar state of A is faithful, then (A,∆) is hamiltonian. In particular,
every quantum subgroup of (A,∆) is normal.

Proof. By Theorem 3.8, if hA admits no non-trivial square root, then A
∗ contains

no hermitian functionals that are nilpotent for the convolution product.
Then the result follows from the fact that in a unital ring without nilpotent

elements all idempotents are central, as in [DS86, Lemma 3]. Since A
∗
h = {φ ∈

A
∗;φ hermitian} has no nilpotent elements, all idempotent states are central in A

∗
h,

and therefore also in A
∗. �

As mentioned in the introduction the classification of hamiltonian groups plays a
very important role in the arguments of [DS86]. As no such classification is known
for (compact) quantum groups, to study compact quantum groups which do not
admit nontrivial square roots of Haar states we need to develop other techniques.
The next two sections will be devoted to this task.

4. A structure theorem

In this section we characterise compact quantum groups whose Haar state admits
no non-trivial square root in terms of their irreducible unitary corepresentations or
their dual discrete algebraic quantum group, see Theorem 4.1 and Proposition 4.2.

By Corollary 3.9, we have to characterise discrete algebraic quantum groups
which contain no non-zero hermitian nilpotent elements.

For s ∈ I, we define Rs to be the real algebra of hermitian linear functionals on
A that vanish on all irreducible unitary corepresentations of (A,∆) except s and sc,
i.e.

Rs = V̂{s,sc} ∩ A
∗
h.
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Clearly Rs = Rsc . Since Â is a multimatrix algebra, the real algebra of all finitely
supported hermitian linear functionals Âh = Â ∩ A

∗
h = decomposes into a direct

sum

(4.1) Âh =
⊕

s∈Ir

Rs,

where the direct sum runs over the reduced index set Ir which is obtained from I
by choosing only one representative from each set {s, sc}.

Recall that Frobenius [Fro78] has shown that there exist exactly three finite-
dimensional division algebras over R, namely the field of real numbers R, the field
of complex numbers C, and the skew field of quaternions H.

Theorem 4.1. A compact quantum group (A,∆) belongs to the quantum DS-family
if and only if all summands occuring in the decomposition (4.1) are isomorphic to
one of the three finite-dimensional division algebras R, C, or H.

Proof. Let us first verify that the conditions are sufficient. If all summands Rs in the
direct sum (4.1) are isomorphic to division algebras, then they can not contain non-

zero nilpotent elements, therefore Âh has no non-zero nilpotent elements, either,
and by Corollary 3.9 the Haar state of (A,∆) admits no non-trivial square root.

Conversely, if the Haar state of (A,∆) has no non-trivial square root, then none
of the real algebras Rs occuring in (4.1) contain non-zero nilpotent elements.

Let s ∈ I. If u(s) is not contragredient to itself, i.e. if u(s) and u(s
c) are not

equivalent, then we have V̂{s} ∼=Mns
(C), Vs ∩ Vsc = {0}, and the map

V̂{s} ∋ φ 7→ φ+ φ† ∈ Rs ⊆ V̂{s,sc},

where

(φ+ φ†)(a) =







φ(a) if a ∈ Vs,

φ†(a) = φ(a∗) if a ∈ Vsc ,

0 if a ∈ Vt with t 6= s, sc,

for φ ∈ V̂{s} is an isomorphism of real algebras. Therefore Rs
∼= V̂{s} ∼=Mns

(C) as
real algebras. We see that Rs contains no non-zero nilpotent elements if and only
if ns = 1, and in this case Rs

∼= C.
Let us now consider the case where u(s) is contragredient to itself. Then we

have Vs = Vsc , V̂{s} = V̂{s,sc} ∼= Mns
(C). Rs is a real subalgebra of V̂{s} whose

complexification coincides with V̂{s}, since any linear functional on Vs can be written

as a complex linear combination of hermitian functionals. V̂{s} ∼=Mns
(C) is simple,

and since the complexification of any real ideal in Rs would be an ideal in V̂{s},
it follows that Rs is also simple. Therefore, by Wedderburn’s theorem ([Wed08],
see also [vdW91, Section 13.11]), Rs is isomorphic to a full matrix algebra over
a division algebra. In other words, we have Rs

∼= Mm(K) for some m ≥ 1 and
K ∈ {R,C,H}. If Rs contains no non-zero nilpotent elements, then necessarily
m = 1, and only the two cases ns = 1 and Rs

∼= R, or ns = 2 and Rs
∼= H can

occur. �

Let us describe which corepresentations of a compact quantum group (A,∆)
lead to a real algebra of hermitian functionals that is isomorphic to one of the three
finite-dimensional division algebras R, C, and H.
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Let u = (ujk)1≤j,k≤n ∈ Mn(A) be an irreducible unitary corepresentation of a
compact quantum group (A,∆). We denote by ū ∈ Mn(A) the corepresentation
obtained by taking the adjoints of the coefficients of u, i.e. ū = (u∗jk)1≤j,k≤n. The
corepresentation ū is not necessarily unitary, but it is non-degenerate and equivalent
to the contragredient corepresentation of u, i.e. there exists an invertible matrix
T ∈ Mn(C) s.t. ū = TucT−1, cf. [Wor98, Proposition 5.2] or [MvD98, Proposition
6.10].

Proposition 4.2. Let u ∈ Mn(A) be an irreducible unitary corepresentation of a
compact quantum group (A,∆) and denote by R(u) ⊆ A

∗
h the real algebra given by

hermitian linear functionals on A which vanish on the coefficients of all irreducible
unitary corepresentations that are not equivalent to u or uc. Then we have the
following characterisations of R(u).

(i) R(u) ∼= R if and only if u is one-dimensional and contragredient to itself.
This is the case if and only if u is unitary, self-adjoint, and group-like (i.e.
∆(u) = u⊗ u).

(ii) R(u) ∼= C if and only if u is one-dimensional and not contragredient to
itself. This is the case if and only if u is unitary and group-like, but not
self-adjoint.

(iii) R(u) ∼= H if and only if u is two-dimensional and there exists an invertible

matrix Q ∈ M2(C) such that ū = TuT−1, where T = Q̄

(
0 1
−1 0

)

Q−1.

In particular, this implies that u is contragredient to itself.

Proof. The first two cases follow from the proof of Theorem 4.1 if we note that a
one-dimensional unitary corepresentation is contragredient to itself if and only if it
is self-adjoint.

Let us now prove (iii). The real division algebra of quaternions can be realised
as

H =

{(
α+ iβ iγ − δ
iγ + δ α− iβ

)

: α, β, γ, δ ∈ R

}

.

Its complexification is isomorphic to M2(C), and the elements of H can be char-
acterised in M2(C) as the hermitian elements for the anti-linear homomorphism
† :M2(C) →M2(C),

(
a b
c d

)†
=

(
d −c
−b a

)

.

Dualising these relations we see that the real algebra R(u) associated to a unitary
corepresentation u is isomorphic to H if and only if u is two-dimensional and if the
subspace V (u) spanned by the coefficients of u admits a basis a11, a12, a21, a22 such
that

a∗11 = a22, a∗12 = −a21, and ∆(ajk) =

2∑

ℓ=1

ajℓ ⊗ aℓk for 1 ≤ j, k ≤ 2.

Therefore a =

(
a11 a12
a21 a22

)

∈ M2(C) is a corepresentation of (A,∆). It is non-

degenerate, since its coefficients form a basis of V (u), so by [MvD98, Proposition
6.4] it is equivalent to a unitary corepresentation, which we can choose to be u. I.e.
there exists an invertible matrix Q ∈M2(C) s.t. u = QaQ−1. We get

ū = Q̄āQ̄−1 = Q̄FaF−1Q̄−1 = TuT−1
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with F =

(
0 1
−1 0

)

and T = Q̄FQ−1. �

Note that the characterisation above seems to be new even for standard compact
groups, together with Theorem 2.7 yielding the following corollary.

Corollary 4.3. Let G be a separable compact group. The following conditions are
equivalent:

(i) G admits only one-dimensional and two-dimensional irreducible represen-
tations, each two-dimensional irreducible representation U : G→M2(C) is
self-contragredient and there exists an invertible matrix Q ∈ M2(C) such

that Ū = TUT−1, where T = Q̄

(
0 1
−1 0

)

Q−1;

(ii) G ≈ H ×E where H is the group of unit quaternions and E is a Cartesian
product of (at most countably many) copies of Z2.

Let us now consider the Woronowicz quantum group SUq(2). This example will
play an important role in the next section, when we show that a compact quantum
group whose Haar state admits no non-trivial square root is necessarily of Kac type,
i.e. its Haar state is a trace, cf. Theorem 5.1.

Example 4.4. Let q ∈ R\{0}. Denote by SUq(2) = (A,∆) the Woronowicz quan-
tum group [Wor87b], i.e. the universal C∗-algebra generated by the four generators

u11, u12, u21, u22 with the coproduct determined by ∆ujk =
∑2

ℓ=1 ujℓ ⊗ uℓk for
j, k = 1, 2, and the ∗-algebraic relations uu∗ = I = u∗u and ū = FquF

−1
q with

u =

(
u11 u12
u21 u22

)

and Fq =

(
0 q
−1 0

)

, i.e.

2∑

ℓ=1

ujℓu
∗
kℓ = δjk =

2∑

ℓ=1

u∗ℓjuℓk,

u∗11 = u22, u∗12 = −qu21.

Note that SUq(2) is isomorphic to the universal orthogonal quantum group Ao(F̃q)

defined by Wang and van Daele [VDW96], where F̃q is given by

F̃q =
Fq

√
| detFq|

=

(

0 sign(q)
√

|q|
− 1√

|q|
0

)

.

The irreducible unitary corepresentations have been determined in [Wor87a,
Wor87b, VS88, MMN+88, Koo89]. For each non-negative half-integer s ∈ 1

2Z+

there exists a 2s+1-dimensional irreducible unitary corepresentation u(s) = (u
(s)
kℓ )1≤k,ℓ≤2s+1

of SUq(2), which is unique up to unitary equivalence and contragredient to itself.
The map φ→ φ† on the dual discrete algebraic quantum group maps the summands
V̂{s} ∼=M2s+1(C) in the decomposition (4.1) to themselves and takes the form

A† = QAQ−1

where A 7→ A denotes entry-wise complex conjugation and

Q =
(
(−1)jqj−1δj,n−k+1

)

1≤j,k≤2s+1
∈M2s+1(C).
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For example for s = 1
2 , the fundamental corepresentation u(1/2) = u, Q = Fq, and

R1/2
∼=
{(

a −qb
b a

)

; a, b ∈ C

}

.

For q > 0, H ∋ α+βI+ γJ + δK 7→
(

α+ iβ
√
q(−γ + iδ)

1√
q (γ + iδ) α− iβ

)

∈ R1/2 defines

an isomorphism of real algebras and R1/2 contains no non-zero nilpotent elements.
For q < 0, R1/2 is isomorphic to M2(R) and contains nilpotent elements, e.g.,

( √
q −q
1 −√

q

)

.

The higher dimensional irreducible unitary corepresentations always give non-
zero nilpotent hermitian functionals.

5. Kac property and the ‘local’ structure of quantum groups in the

quantum DS-family

As an application of Theorem 4.1 we will now show that compact quantum
groups in the quantum DS-family are necessarily of Kac type, i.e. its Haar state is
a trace. Recall that the Haar state of a compact quantum group (A,∆) is tracial
if and only if the antipode S on A is involutive, see [Wor98, Theorem 1.5]. Hence
being of Kac type is in a sense a ‘local’ property, which will be clear from the proof
of Theorem 5.1. We first need to recall a few more facts and definitions.

A compact quantum group (A,∆) is called a compact matrix quantum group if
it has a finite-dimensional corepresentation u whose coefficients generate A as a
C∗-algebra. It follows from [MvD98, Proposition 3.7] that the C∗-algebra A(u) =
C∗ ({ujk : 1 ≤ j, k ≤ n}) generated by the coefficients of any unitary corepresenta-
tion u ∈Mn(C) of a compact quantum group (A,∆) is a compact matrix quantum
group with the restriction of the coproduct of A. We will call (A(u),∆|A(u)) the quo-
tient quantum group of (A,∆) induced by u. Equivalent corepresentations clearly
induce isomorphic quotient quantum groups.

Theorem 5.1. Let (A,∆) be a compact quantum group in the quantum DS-family.
Then (A,∆) is of Kac type.

Proof. Assume that (A,∆) is in the quantum DS-family. It is sufficient to show
that the square of the antipode acts identically on the coefficients of the irreducible
unitary corepresentations of (A,∆). By Theorem 4.1, the irreducible unitary corep-
resentations of (A,∆) are have dimension one or two.

Let us first consider the one-dimensional corepresentations. If a is the coefficient
of a one-dimensional unitary corepresentation of (A,∆), then a is group-like, i.e.
ε(a) = 1 and ∆(a) = a⊗ a. Therefore S(a) = a∗ = a−1 and S2(a) = a.

Let now u = (ujk)1≤j,k≤2 ∈ M2(A) be a two-dimensional irreducible unitary
corepresentation of (A,∆). We will show that the quotient quantum group (A(u),∆|A(u))
is a quantum subgroup of SUq(2) for some 0 < q ≤ 1.

By Theorem 4.1 and Proposition 4.2, there exists an invertible matrixQ ∈M2(C)
such that

u = TuT−1,

with T = Q̄

(
0 1
−1 0

)

Q−1. The matrix T satisfies the relation TT = −I, so by

[BDRV06, Equation (5.4)], there exist 0 < q ≤ 1 and a unitary matrix U ∈M2(C)
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such that

T = U t

(
0 q
− 1

q 0

)

U.

Let v = UuU∗, then clearly v is a two-dimensional irreducible unitary corepresen-
tation of (A,∆) and (A(v),∆|A(v)) = (A(u),∆|A(u)). Furthermore, v satisfies the
relation

v = UuU∗ = UuU t = UTuT−1U t

= UU t

(
0 q
− 1

q 0

)

UuU−1

(
0 q
− 1

q 0

)−1

(U t)−1U t

=

(
0 q
− 1

q 0

)

v

(
0 q
− 1

q 0

)−1

,

i.e. the coefficients of v satisfy the defining relations of the universal orthogonal

quantum group A0

(
0 q
− 1

q 0

)

∼= SUq2(2), cf. [VDW96] or Example 4.4. If we

denote by w = (wjk)1≤j,k≤2 the generators of SUq2(2), then wjk 7→ vjk defines a
surjective morphism of compact quantum groups from SUq(2) to (A(v),∆|A(v)), i.e.
(A(v),∆|A(v)) is a quantum subgroup of SUq2(2).

In Example 4.4 we have seen that the Haar state on SUq2(2) admits a non-trivial
square root, so (A(u),∆|A(u)) has to be a proper quantum subgroup of SUq2(2). For

q2 6= 1, the quantum subgroups of SUq2(2) are the torus T and its subgroups, cf.
[Pod95] or also [FST09]. These are classical groups and therefore of Kac type. For
q2 = 1 we get SU1(2), which is a also classical group and of Kac type.

It follows that the quotient quantum group (A(u),∆|A(u)) induced by any irre-

ducible unitary corepresentation u is of Kac type, therefore we have S2 = id on the
dense ∗-Hopf algebra contained in A, and (A,∆) is of Kac type. �

The proof of the above theorem shows that the structure of quotient quantum
groups induced by two-dimensional irreducible corepresentations is in fact quite
rigid. This is formalised in the following corollary.

Corollary 5.2. Let (A,∆) be in the quantum DS-family. Then the quotient quan-
tum groups (A(u),∆|A(u)) of (A,∆) induced by its two-dimensional irreducible uni-
tary corepresentations are isomorphic to C(H), where H is the eight-element group
of unit quaternions.

Proof. The second part of the proof of Theorem 5.1 implies that (A(u),∆|A(u)) is
isomorphic to a proper quantum subgroup of C(SUq(2)) for some q ∈ (0, 1], so, due
to [Pod95], also to a proper quantum subgroup of C(SU(2)).

The result then follows by inspection of the subgroups of SU(2) (see, e.g.,
[Pod95]), since H is the only subgroup of SU(2) which is in the DS-family and
which has a two-dimensional irreducible unitary representation. �

The above corollary can be interpreted as describing the ‘local’ structure of the
elements of the quantum DS-family – we know that they only admit one- and two-
dimensional irreducible corepresentations and have now the full understanding of
what types of quotient quantum groups are generated by each of the irreducible
corepresentations (for one-dimensional corepresentations the resulting quotients are
just the algebras of functions on cyclic groups). It has one other important con-
sequence. Recall the Nichols-Zoeller theorem that states that the dimension of a
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finite-dimensional Hopf algebra is divisible by the dimensions of its Hopf subalge-
bras, cf. [NZ89]. Together with the above corollary it implies the following result.

Corollary 5.3. Let (A,∆) be a non-cocommutative compact quantum group in the
quantum DS-family. If A is finite-dimensional, then its dimension is divisible by
eight.

We finish this section by describing the structure of the algebra of functions on
H in greater detail; this will be of use in the next section.

Example 5.4. Denote by ±1,±I,±J,±K the eight unit quaternions, with the
relations I2 = J2 = K2 = −1, I · J = K, J · I = −K, etc. Denote by λg and
1{g}, g ∈ {±1,±I,±J,±K} the corresponding bases for C∗(H) ∼= CH and C(H).
Besides the constant function 1H , H has three more one-dimensional irreducible
unitary representations, which are uniquely determined by

σI(I) = 1, σI(J) = −1,

σJ (I) = −1, σJ (J) = 1,

σK(I) = −1, σK(J) = 1.

Furthermore, H has, up to unitary equivalence, a unique two-dimensional irre-
ducible unitary representation π : H → M2(C) of H (or, equivalently, corepresen-
tation of C(H)), given by

π(I) =

(
0 1
−1 0

)

and π(J) =

(
0 i
i 0

)

.

Denote by πjk ∈ C(H), 1 ≤ j, k ≤ 2 the matrix elements of H w.r.t. to the standard
basis of C2. Then {1H , σI , σJ , σK , π11, π12, π21, π22} is a basis of C(H). We set

C(H)0 = span{1H , σI , σJ , σK} and C(H)1 = span{π11, π12, π21, π22}.
We have ∆πjk =

∑2
ℓ=1 πjℓ ⊗ πℓk and ∆g = g ⊗ g for the one-dimensional unitary

corepresentation of C(H). Furthermore, on can check that the tensor product
of the two-dimensional representation of H decomposes into a direct sum of the
four one-dimensional representations. From these observations follows that the
decomposition C(H) = C(H)0 ⊕C(H)1 defines a Z2-grading of C(H), i.e. we have

(
C(H)j

)∗ ⊆ C(H)j ,

C(H)j · C(H)k ⊆ C(H)j+k ,

∆C(H)j ⊆ C(H)j ⊗ C(H)j

for j, k ∈ Z2. Equivalently, the map d : C(H) → C(H)⊗ CZ2 defined by

d(u) = u0 ⊗ δ0 + u1 ⊗ δ1

for u = u0 + u1 with u0 ∈ A0, u1 ∈ A1, and δg, g ∈ Z2 the standard basis of
C∗(Z2) ∼= CZ2, defines a coaction of C∗(Z2) on C(H).

6. Combining the ‘local’ structure of the compact quantum groups

in the quantum DS-family into the global one and genuinely

quantum examples

In the last section we showed that if (A,∆) is in the quantum DS-family, then we
can completely determine the quotient quantum subgroups induced by individual
irreducible corepresentations of A. Here we show that they can be combined in a
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non-trivial way to provide the examples which belong to the quantum DS-family
and are neither commutative nor cocommutative.

It is easy to see that the quotient quantum subgroup induced by an arbitrary
number of one-dimensional irreducible corepresentations of a compact quantum
group is always cocommutative, so of the form C∗(Γ) for some (discrete) group Γ.
We therefore begin our analysis by combining a one-dimensional corepresentation
with a two-dimensional one.

Proposition 6.1. Let (A,∆) be in the quantum DS-family. Let u ∈ M2(A) be a
two-dimensional irreducible unitary corepresentation and g ∈ A a one-dimensional
unitary corepresentation. Then there exists a unitary matrix U ∈M2(C) s.t.

(
gu11 gu12
gu21 gu22

)

= U

(
u11g

∗ u12g
∗

u21g
∗ u22g

∗

)

U∗.

Proof. W.l.o.g., we can assume that u satisfies ū = FuF−1. Multiplying u by g, we

get a two-dimensional irreducible unitary corepresentation gu =

(
gu11 gu12
gu21 gu22

)

to which we can also apply Corollary 5.2. There exists a unitary matrix V ∈M2(C)
s.t. v = V guV ∗ satisfies v̄ = FvF−1. In terms of gu, this becomes gu = V tvV̄ =
V tFV guV ∗F−1V̄ . Since

gu =

(
(gu11)

∗ (gu12)
∗

(gu21)
∗ (gu22)

∗

)

=

(
u11g

∗ u12g
∗

u21g
∗ u22g

∗

)

= ūg∗,

we get

Fug∗F−1 = FuF−1g∗ = ūg∗ = gu = V tFV guV ∗F−1V̄

and

gu = V ∗F−1V̄ Fug∗F−1V tFV = Uug∗U∗

with U = V ∗F−1V̄ F . �

Let u be a two-dimensional irreducible unitary corepresentation of a compact
quantum group (A,∆) in the quantumDS-family, and let g1, . . . , gn be one-dimensional
unitary corepresentations that do not belong to A(u). The above proposition
suggests that (A(u),∆|A(u)) and (A(g1 ⊕ · · · ⊕ gn),∆|A(g1⊕···⊕gn)) are a matched
pair, and that quotient quantum group (A(v),∆|A(v)) generated by the direct
sum v = u ⊕ g1 ⊕ · · · ⊕ gn is given by a bicrossproduct of (A(u),∆|A(u)) and
(A(g1 ⊕ · · · ⊕ gn),∆|A(g1⊕···⊕gn)). We use this idea to construct examples of non-
commutative, noncocommutative compact quantum groups of Kac type whose Haar
state admits no non-trivial square roots.

Example 6.2. Let Γ be a commutative discrete group and C(H) = C(H)0⊕C(H)1
the algebra of functions on the eight-element group of unit quaternions, with the
Z2-grading introduced in Example 5.4. Denote by S : CΓ → CΓ the antipode of
the ∗-Hopf algebra CΓ. By ε we denote the counits of CΓ and C(H), it will always
be clear from the context which one is meant.

We define actions α : C(H) ⊗ CΓ → CΓ and β : C(H)⊗ CΓ → C(H) by

α(u0 ⊗ a0 + u1 ⊗ a1) = ε(u0)a0 + ε(u1)S(a1),

β(u ⊗ a) = ε(a)u
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for u ∈ C(H), u0 ∈ C(H)0, u1 ∈ C(H)1, a, a0, a1 ∈ CΓ. These actions turn CΓ
into a left C(H)-module algebra and C(H) into a right CΓ-module algebra, e.g.,

ε
(
α(uj ⊗ a)

)
= ε(uj)ε

(
Sj(a)

)
= ε(uj)ε(a),

∆
(
α(uj ⊗ a)

)
= ε(uj)∆

(
Sj(a)

)

= ε(uj)(S ⊗ S)j
(
∆(a)

)

= α(uj(1) ⊗ a(1))⊗ α(uj(2) ⊗ a(2))

for j ∈ {0, 1}, uj ∈ C(H)j , a ∈ CΓ, and where we used Sweedler’s notation
∆(uj) = uj(1) ⊗ uj(2), ∆(a) = a(1) ⊗ a(2) for the coproducts.

One can check that the conditions (A), (B), and (C) in [Maj90, Proposition 3.12]
are satisfied, e.g.

α
(
(uj ⊗ ab)

)
= α(ujvk ⊗ ab) = ε(uj)S

j(ab)

= ε(uj(1))ε(uj(2))S
j(a)Sj(b)

= α(uj(1) ⊗ a)α(uj(2) ⊗ b)

and

β(uj(1) ⊗ a(1))⊗ α(uj(2) ⊗ a(2)) = ε(a(1))uj(1) ⊗ ε(uj(2))S
j(a(2))

= uj ⊗ Sj(a)

= β(uj(2) ⊗ a(2))⊗ α(uj(1) ⊗ a(1))

for j ∈ {0, 1}, uj ∈ C(H)j , a ∈ CΓ. Therefore, by [Maj90, Proposition 3.12],
the vector space K = C(H) ⊙ CΓ can be turned into a Hopf algebra with the
multiplication

(u ⊗ a)(v ⊗ b) = β(u(2) ⊗ b(2))v ⊗ aα(u(1) ⊗ b(1))

and the coproduct

∆K(u⊗ a) = u(1) ⊗ a(1) ⊗ u(2) ⊗ a(2)

for u, v ∈ C(H), a, b ∈ CΓ. Using the definitions of α and β, we get

(uj ⊗ a)(v ⊗ b) = uj(2)vk ⊗ aε(uj(1))S
j(b) = ujv ⊗ aSj(b)

for j ∈ {0, 1}, uj ∈ C(H)j , v ∈ C(H), a, b ∈ CΓ. One can check that K becomes a
∗-Hopf algebra with

(uj ⊗ a)∗ =
(
(1⊗ a)(u ⊗ 1)

)∗
= (u∗j ⊗ 1)(1⊗ a∗) = u∗j ⊗ Sj(a∗)

for j ∈ {0, 1}, uj ∈ C(H)j , a ∈ CΓ. Since Haar states are invariant under the
respective antipodes, we see the tensor product of the Haar states on C(H) and
C∗(Γ) defines a normalized positive integral on K, i.e. K is an algebraic compact
quantum group in the sense of [VD98, VD03].

If u ∈Mn

(
C(H)

)
) is an irreducible unitary corepresentation of C(H) and g ∈ Γ,

then u⊗ g is unitary in K, e.g.,

(u⊗g)(u⊗g)∗ = (u⊗g)(u∗⊗S(g∗)) = (u⊗g)(u∗⊗g) = uu∗⊗gS(g) =
(

1 0
0 1

)

⊗1

for u ∈ M2

(
C(H)

)
the two-dimensional irreducible unitary corepresentation of

C(H).
Therefore, and since the coproduct in K is simply the tensor product of the

coproducts of C(H) and CΓ, we see that the irreducible unitary corepresentations
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of K are of the form u⊗ g, with u an irreducible unitary corepresentation of C(H),
and g ∈ Γ. Since their coefficients span K, we can deduce that K is the ∗-Hopf
algebra of a compact quantum group, for which we can choose the universal C∗-
algebra of the ∗-algebra K. Let us denote this quantum group by C(H) ⊲⊳α C

∗Γ.
It is clear that C(H) ⊲⊳α C∗(Γ) has only one- and two-dimensional irreducible

unitary corepresentations, and straight-forward to show that the two-dimensional
irreducible corepresentations are self-contragredient and satisfy the condition in
Proposition 4.2. Hence the Haar state of C(H) ⊲⊳α C∗(Γ) does not admit any
non-trivial square roots.

Proposition 6.3. Let Γ be an abelian discrete group which contains elements that
are not of order two. The bi-crossed product C(H) ⊲⊳α C∗(Γ) constructed in Ex-
ample 6.2 is a noncommutative, noncocommutative compact quantum group in the
quantum DS-family.

Proposition 6.1 describes the interaction of a two-dimensional irreducible corep-
resentation, say u, of a quantum group in the quantum DS-family with one-
dimensional ones. It is reflected by certain equivalences between u⊗ g and g−1⊗u.
In the last part of the paper we discuss certain aspects of the interaction between
different two-dimensional representations. To this end we need to introduce a cer-
tain equivalence relation on the equivalence classes of irreducible corepresentations
of a fixed compact quantum group. Introduce first the notation: if (A,∆) is a
compact quantum group, let Irr(A) denote the set of the equivalence classes of irre-
ducible corepresentations of A and let ΓA ⊂ Irr(A) denote the equivalence classes of
one-dimensional corepresentations (in other words, group-like elements of A). It is
well-known (and has been used above) that the tensor product of corepresentations
provides ΓA with the structure of a discrete group.

Proposition 6.4. Let (A,∆) be a compact quantum group. The relation ≈Γ on
Irr(A) given by the formula

u ≈Γ v if ∃γ∈ΓA
u = v ⊗ γ

is an equivalence relation.

Proof. Easy check, essentially a consequence of the fact that ΓA forms a group and
associativity of the tensor operation for (not necessarily irreducible) corepresenta-
tions of A. �

The set of equivalence classes in Irr(A) with respect to the relation ≈Γ will
be denoted Irr(A)/ ≈Γ and for u ∈ Irr(A) the corresponding equivalence class
Irr(A)/ ≈Γ will be denoted [u]≈. Note that all one-dimensional corepresentations
form an equivalence class with respect to the relation ≈Γ, to be denoted [1]≈.

Theorem 6.5. Let (A,∆) be in the quantum DS-family. Then the set Irr(A)/ ≈Γ

is equipped with a well-defined product, which is given by the following condition:
for u, v, w ∈ Irr(A)

(6.1) [u]≈ · [v]≈ = [w]≈ if ∃γ∈ΓA
u⊗ v � w ⊗ γ.

Moreover the pair (Irr(A)/ ≈Γ, ·) forms an abelian group, in which each non-trivial
element has order 2.

Proof. We need to check first that the product in the formula (6.1) is well defined. If
γ, γ′ ∈ Irr(A) are one-dimensional, then so is γ⊗γ′ and according to the notation of
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(6.1) and that introduced before the statement of the theorem we have [1]≈ · [1]≈ =
[1]≈. If u ∈ Irr(A) is two-dimensional and γ ∈ ΓA, then u ⊗ γ is irreducible
and equivalent to u with respect to ≈Γ, so [u]≈ · [1]≈ = [u]≈. Similarly γ ⊗ u is
irreducible. Moreover, as both u and γ ⊗ u are self-contragredient by Proposition
4.2, γ ⊗ u = u ⊗ γ−1 (recall that the equality here is understood in terms of the
usual equivalence classes of irreducible representations).

The only non-trivial case is that of u, v ∈ Irr(A) both two-dimensional. Observe
that due to Corollary 5.2 and the discussion in Example 5.4 the tensor product
u ⊗ u is a four-dimensional corepresentation decomposing into 4 one-dimensional
corepresentations, including the trivial one. We will distinguish two-possibilities:
first assume that u ≈Γ v. Then there is some γ ∈ ΓA such that u = v⊗γ = γ−1⊗v.
Hence u⊗ v = γ−1 ⊗ (v ⊗ v) is a direct sum of four one-dimensional corepresenta-
tions (trivially equivalent to each other with respect to ≈Γ). This can be rephrased
by writing [u]≈ · [u]≈ = [1]≈. It remains to consider the possibility of u 6≈Γ v.
Then u ⊗ v is a four-dimensional, necessarily reducible corepresentation. Suppose
that u⊗ v contains a one-dimensional corepresentation, say γ. Then (γ−1 ⊗ u)⊗ v
contains a trivial corepresentation, and as both γ−1 ⊗ u and v are irreducible, this
would mean that γ−1 ⊗ u = vc = v, so u ≈Γ v – contradiction. Thus u ⊗ v de-
composes into a direct sum of two two-dimensional irreducible corepresentations,
say w and w′. To assure that the product in (6.1) is well defined we need to prove
that w ≈Γ w′ (strictly speaking we also need to show that [w]γ depends only on
the ≈Γ-equivalence classes of u and v, but this is easy to see). Tensor the corepre-
sentation u ⊗ v on the left with u. Then it decomposes into four two-dimensional
irreducible corepresentations, each ≈Γ-equivalent to v. Hence in particular u ⊗ w
as a subrepresentation of u⊗ v decomposes into two-dimensional irreducible corep-
resentations ≈Γ-equivalent to v, say γ1 ⊗ v1, and γ2 ⊗ v. Tensor the formula
u ⊗ w = (γ1 ⊗ v) ⊕ (γ2 ⊗ v) again on the left with u. Then on the left we obtain
the direct sum of four two-dimensional corepresentations, each ≈Γ-equivalent to w,
and on the right the direct sum of four two-dimensional corepresentations, two of
which are ≈Γ-equivalent to w, and two are ≈Γ-equivalent to w

′. Hence w and w′

are ≈Γ-equivalent and the proof of the main part of the theorem is finished.
As to the fact that the product · gives Irr(A)/ ≈Γ the group structure described

in the theorem, it suffices to observe that · inherits associativity from the usual
associativity of tensor products of corepresentations and that the first part of the
proof shows that [1]≈ is the neutral element for · and each element in Irr(A)/ ≈Γ

is its own inverse. �

The above theorem implies that if (A,∆) is in the quantum DS-family then
(Irr(A)/ ≈Γ, ·) is a direct sum of (possibly infinitely many) copies of Z2. For
cocommutative (A,∆) the group (Irr(A)/ ≈Γ, ·) is trivial. For a compact group G
in the DS-family the group (Irr(C(G))/ ≈Γ, ·) is either trivial or a two-element
group, depending on whether G contains the group of unit quaternions. If (A,∆)
is the compact quantum group constructed in Example 6.2, then again the group
(Irr(A)/ ≈Γ, ·) is isomorphic to Z2. It is therefore natural to seek the answer to the
following open question.

Problem 6.6. Does there exist (A,∆) in the quantum DS-family such that the
group (Irr(A)/ ≈Γ, ·) has more than two elements?
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It is natural to seek for such an object among finite-dimensional Kac algebras, ex-
ploiting the existing classification of low-dimensional examples (see [IK02]). Corol-
lary 5.3 implies that the dimension of such a Kac algebra would have to be divisible
by 8. To allow for two distinct classes of two-dimensional irreducible corepresenta-
tions we need the dimension to be at least 16. The case by case analysis of the form
of the Grothendieck rings of 16-dimensional Kac algebras listed in [Kas00] implies
that none of these algebras can provide a positive answer to the question asked in
Problem 6.6. Hence the lowest dimension for the Kac algebra that would answer
the question in Problem 6.6 is equal 24.
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