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Abstract

In this paper, we study finite symplectic actions on K3 surfaces X,
i.e. actions of finite groups G on X which act on H?*°(X) trivially.
We show that the action on the K3 lattice H?(X,Z) induced by a
symplectic action of G on X depends only on G up to isomorphism,
except for five groups.

0 Introduction

A compact complex surface X is called a K3 surface if it is simply connected
and has a nowhere vanishing holomorphic 2-form wyx. For properties on K3
surfaces, see [2]. An automorphism g of X is said to be symplectic if g*wx =
wx. Nikulin [I7] studied symplectic actions of finite groups on K3 surfaces.
In particular, he showed the following result:

Theorem 0.1 ([I7]). There exist exactly 14 finite abelian groups G (G =
Cs,Cs,...) which act on K3 surfaces faithfully and symplectically. More-
over, for each G, the action of G on the K3 lattice induced by a faithful and
symplectic action of G on a K3 surface is unique up to isomorphism.

In this paper, we prove that the above uniqueness holds for any finite
groups except for five groups (see Theorem [B.IT1]). We use the same notations
for groups as in [26] (see Table [0.2).

Main Theorem. Let G be a finite group such that G # Qs, Tas, S5, L2(7),2As.
Then the action of G on the K3 lattice induced by a faithful and symplectic
action of G on a K3 surface is unique up to isomorphism. More precisely,
if G; 2 G acts on a K3 surface X; faithfully and symplectically (i = 1,2),
then there exists an isomorphism o : H*(X1,7) — H?(Xs,7Z) preserving the
intersection forms such that o Gy o a™t = Gy in GL(H?*(X3,7Z)).
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As a corollary, we have the following by a similar argument in [I7] (see
[25] for a detailed argument).

Corollary 0.2. Let G be a finite group which does not belong to the excep-
tional cases listed above. If G acts on K3 surfaces X; faithfylly and symplec-
tically for i = 1,2, then there exists a connected family X of K3 surfaces with
an action of G which satisfies the following conditions:

(1) X1, X5 are fibers of X;

(2) the restriction of the action of G on X to the fiber X; coincides with the
given one (1 =1,2);

(8) the action of G on each fiber of X is symplectic.

If two K3 surfaces X; and X5 with actions of G satisfy the conclusions of
Corollary [0.21 X; and X5 are said to be G-deformable.

We recall known results on finite symplectic actions on K3 surfaces. After
a result of Nikulin [I7], Mukai [16] classified finite groups which act on K3
surfaces faithfully and symplectically by listing the eleven maximal groups
(see Theorem 2.4]). Xiao [26] gave another proof of Mukai’s result by studying
the singularities of the quotient G\ X for a K3 surface X with a symplectic
action of a finite group GG. Moreover, he showed the following;:

Theorem 0.3 ([26]). Let G be a finite group. Suppose that G # Qg,Tay.
Then, for any K3 surface X with a faithful and symplectic action of G, the
quotient G\ X has the same A-D-E-configuration of the singularities.

Considering his result, one may expect that the uniqueness as in Theo-
rem holds for most of non-abelian finite groups as well. This paper is
motivated by this expectation. We follow Kondd’s approach [12] with which
he gave another proof of Mukai’s result. He embeds the coinvariant lattice
H?(X,Z)q = (H?*(X,Z)%)* into a Niemeier lattice N, and describes a sym-
plectic action as an action on N. Here a Niemeier lattice is a negative definite
even unimodular lattice of rank 24 which is not isomorphic to the Leech lat-
tice. By looking this action more carefully, we prove Main Theorem. For
some finite groups, the uniqueness of their (symplectic) actions on K3 sur-
faces were studied by several authers [13, 20, 11, 19, 27, 25]. In the case
where G is abelian, Garbagnati and Sarti [7, 8, [6] computed the structure of
H?(X,7)% and H%(X,Z)g. We use computer algebra systems GAP [10] and
Maxima [14] for the computations of permutation groups and lattices.

The paper proceeds as follows. In Section [Il we recall basic facts on
lattices, which are used through the paper. We recall results on finite sym-
plectic actions on K3 surfaces in Section [2. Using these results, we take a
lattice theoretic approach to study finite symplectic actions on K3 surfaces.

2 December 14, 2010



We introduce the notion of “finite symplectic actions on the K3 lattice A,”
taking account of Nikuin’s characterization of symplectic actions on K3 sur-
faces (see Definition and Proposition 2.6]). The set of finite symplectic
actions G C O(A) on A is denoted by L. For G € L, there exists a K3 surface
X with a symplectic action of G such that we have a G-equivalent isomor-
phism A = H?(X,Z). Section [3is the key of the paper. By Kondo’s lemma
(see Lemma [3.2]), the coinvariant lattice Ag for G € L is embedded into a
Niemeier lattice N primitively. Since the action of G on Ag is extended to
that on N such that Ng = Ag, we can study G as an automorphism group
of N. Applying the classification of Niemeier lattices, we classify the prim-
itive embeddings of Ag into Niemeier lattices. To prove Main Theorem, we
first prove the uniqueness of Ag and A®. In Sections @ and [6, we show the
uniqueness of Ag and A® respectively, by using the result in Section Bl Next,
we show the uniqueness of the glueing data of A“ and Ag to A. In Sections
and [7, we show that either O(Ag) = O(q(Ag)) or O(AS) = O(q(A%)) holds
for any G € L. This implies the uniqueness of the glueing data. Finally,
in Section 8 we prove Main Theorem by using the results in the previous
sections. Some applications of Main Theorem are given in Section @ We give
the list of Niemeier lattices and the results of the computations in Section [I(.
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1 Basic facts on lattices

1.1 Definitions

A lattice L = (L,(, )) is a free Z-module L of finite rank equipped with
an integral symmetric bilinear form ( , ). We identify a lattice L with its
Gramian matrix ((v;,v;)) under an integral basis (v;) of L. The discriminant
disc(L) of L is defined as the determinant of the Gramian matrix of L. If
disc(L) # 0 (resp. = *1), a lattice L is said to be non-degenerate (resp.
unimodular). Let ¢4y (resp. t(_)) be the number of positive (resp. negative)
eigenvalues of the Gramian matrix of L. We call (¢4),%_)) the signature of
L and write

sign L = (1), t(-))- (1.1)

If (v,v) = 0mod 2 for all v € L, a lattice L is said to be even. We denote
by L(A) the Z-module L equipped with A times the bilinear form ( , ), i.e.
(L, A(, )). A sublattice K of L is said to be primitive if L/K is torsion-free.
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1.1 Definitions

An automorphism of L is defined as a Z-automorphism of L preserving the
bilinear form ( , ). We denote by O(L) the group of automorphisms of L. For
a subset S C L, we define a subgroup O(L, S) of O(L) by

O(L,S)={ge€O(L) |g-5=S5} (1.2)
Definition 1.1. A lattice L with an action of GG is called a G-lattice if G is a
subgroup of O(L) and is denoted by (G, L). For a G-lattice (G, L), we define
the invariant lattice LG and the coinvariant lattice L by
LS={vel|g-v=v(Nge@)}, Lg=(Lr. (1.3)
A G-lattice (G, L) and a G'-lattice (G’, L') are said to be isomorphic if there
exists an isomorphism « : L — L’ such that

aoGoa =@ (1.4)

We recall some basic properties on discriminant forms of lattices for the
reader’s convenience. See [I8] for details. Let L be a non-degenerate even
lattice. The discriminant group A(L) is a finite abelian group defined by

AL)y=LY/L, LY ={velL®Q]|(v,L)CZ}. (1.5)

Here we extend the bilinear form ( , ) on L to that on L ® Q linearly. We
have

|A(L)| = |disc(L)] . (1.6)
The discriminant form (L) of L is defined by
q(L) : A(L) - Q/2Z; x mod L+ (x,z) mod 2Z. (1.7)

We simply write ¢(L) instead of (A(L),q(L)). For a prime number p, let
A(L), and ¢(L), denote the p-components of A(L) and ¢(L), respectively.

We have

AL =@ AL, oL) = BalD), (19

P p

We can consider ¢(L), as the discriminant form of L ® Z,,. (The discriminant
group and form for a non-degenerate even lattice over Z,, are similarly defined.
Note that any lattice over Z,, is even if p # 2.) An automorphism of ¢(L) is
defined as an automorphism of a finite abelian group A(L) preserving q(L).
We denote the group of automorphisms of ¢(L) by O(¢(L)). An automorphism
¢ € O(L) induces an automorphism @ € O(g(L)). This correspondence gives
the natural homomorphism

O(L) — O(q(L)). (1.9)
We define
Og(L) = Ker(O(L) — O(q(L))) (1.10)
and
O(L) = m(O(L) — O(4(L))). (1.11)
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1.2 Facts

1.2 Facts

We use the following facts. For details, see [1§].

Lemma 1.2 ([18]). Let L1, Ly be non-degenerate even lattices. We define
Isom(q(L1), —q(L2)) = {7 : a(L1)—=q(L2)}. (1.12)
If v € Isom(q(L1), —q(L2)), the lattice I, defined by
Iy={z®ye Ly ®Ly|v(xmod L) =ymod Ly} (1.13)

18 an even unimodular lattice which contains Ly and Lo primitively. This cor-
respondence gives a one-to-one correspondence between Isom(q(Lq1), —q(L2))
and the set of even unimodular lattices ' C LY & Ly which contain Ly and Lo
primitively. Moreover, let v € Isom(q(L1), —q(L2)) and p; € O(L;). Then,
01 ® @2 € O(Ly @ Ly) is extended to an isomorphism I'y — I'ys if and only if
Y 0B oyt =Py in O(q(La)).

Lemma 1.3. Let I' be a non-degenerate even lattice and L a non-degenerate
primitive sublattice of T'.

(1) If g € Og(L), the action of g on L is extended to that on I" whose
restriction to (L) is trivial.

(2) Suppose that T' is unimodular. If G is a subgroup of O(I', L) and the
action of G on (L)i is trivial, then the induced action of G on A(L) is
trivial.

(8) Suppose that T is unimodular. If a group G acts on T and T'¢ is non-
degenerate, then the induced action of G on A(I'q) is trivial.

A lattice over Z, is defined as a free Z,-module of finite rank with a Z,-
valued symmetric bilinear form ( , ). First we consider the case p # 2. In
this case, any lattice can be diagonalized over Z,,.

Proposition 1.4 (cf. [4, 18, B]). Let p be an odd prime and €, € Z; a
non-square p-adic unit. If LP) is a non-degenerate lattice over Loy,

L) = @B ((p")*™ & (g,p") ™) (1.14)
k>0

where ng, > 0 and my, € {0,1} are uniquely determined. Hence

(L) = P (¢ (h) ™ @ ¢? () ), (1.15)
k>1
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1.2 Facts

where
¢ () = (1/p") on Z./p"Z, (1.16)
¢ (p*) = (ep/P") on Z/p*Z. (1.17)

In (1.14), the ni and my, are also uniquely determined.

Let L be a non-degenerate lattice. We can determine ¢(L), as follows.
Let Z,) be a localization of Z by the prime ideal (p), which is considered as
a subring of Z,. Then L can be diagonalized over Z,). Then we can write

L=@LP " (1.18)

k>0

over Z,), where Lép) are lattices over Z,) such that L,(Cp) =0or disc(L,gp)) €
Z(Xp y/ (ZE; ))2. (The discriminant of a lattice over a ring R is defined modulo

(R*)2.) The ny and my, for L ® Z,, in the above proposition are determined
by

(0,0) if L =0,
(g, mx) = { (rank L), 0) if dise(L{”) € (Z3)2/(2%))%,  (1.19)

(rank L,(cp) —1,1) otherwise.

Next we consider the more complicated case p = 2.

Proposition 1.5 (cf. [4, 18, B]). Let L) be a non-degenerate lattice over
Zo. Then L) can be written as an orthogonal sum of the following lattices:

0 2k ok+l ok
<€2k>7 (2k 0) 9 ( 2k 2k:—|—1 ) (120)

where k>0 and e € {1,3,5,7}. Hence, if L) is even, q(L®) can be written
as an orthogonal sum of the following:

¢ (2F) = (e/2%) on Z/2%Z, (1.21)
k
u®(2F) = (1/02k 1/02 ) on (Z)287)%2, (1.22)
k— k
V() (2k) — (1{32; 1%5_1) on (Z,/2"7)%2. (1.23)

In the case p = 2, the uniqueness as in Proposition [I.4] does not hold.
Although there is a complete system of invariants of a non-degenerate lattice
over Zs (see [5]), we only recall the unimodular case.
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1.2 Facts

Proposition 1.6 (cf. [5]). For a non-degenerate lattice L\?) over Zy with
disc(L®) € Z5, a quadruple (r,d,t,e) defined as follows is a complete system
of invariants of L?) . If

1@ = @@i) & (2 (1)) e G ;) o (1.24)

the invariants r,d,t,e are defined by

r = rank L(?, (1.25)
FED R disc(.L(Q)) € £(Z5)?/(Z5)?, (1.26)
—1 otherwise,
t= & mod8Zj € Zy/8Zs, (1.27)
I if L3y
_ if .zs odd, (1.28)
IT  otherwise.

For example, we can directly check that

(1)®3 = (? ;) @ (3) (1.29)

over Zy. We actually have (r,d,t,e) = (3,+1,3,1) for both lattices. Using
Proposition [[L6, we can determine g(L), for a non-degenerate even lattice L
similarly to the case p # 2. We can find an orthogonal decomposition

L=@r? ek (1.30)

k>0

over Zs, where L,(f) is of the form ([24)). Then we can write g(L)s as the
corresponding orthogonal sum of (L2I))-(L.23)). For relations between (L2I])-

(T23), see [18].
For a finite abelian group A, let [(A) denote the minimum number of
generators of A. Let L be a non-degenerate even lattice. Since rank LV =

rank L (see (LH])), we have
I(A(L)) <rank L. (1.31)

The follwoing theorem is a reformulation of Eichler’s result in a view-point of
discriminant forms.

Theorem 1.7 ([18]). Let L, L’ be indefinite (non-degenerate) even lattices of
rank > 3. Suppose that the following conditins are satisfied:
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(1) For each p # 2, either rank L > [(A(L),) + 2, or ng +my > 2 for some
k in the orthogonal decomposition (I.14), i.e.,

a(L)y = gy ® ¢ (0) @ ¢ (") (1.32)
for some q, and k > 0.
(2) Either rank L > I(A(L),) + 2, or

q(L)2 = ¢2 © ¢ (1.33)

for some qo and q¢b, where ¢ is one of the following:
u®(2), k>0, (1.34)
v (28), k>0, (1.35)
gD (2" @ ¢ (2" @ @ (2", & € ZF kK > 0,k — K| < 1. (1.36)

(3) sign L =sign L” and q(L) = q(L’).
Then L is isomorphic to L’.
We use the following facts in Section [7l

Theorem 1.8 ([18]). Let L be an indefinite even lattice of rank > 3. If the
following conditins are satisfied, O(L) = O(q(L)).

(1) For each p # 2, rank L > I(A(L),) + 2.
(2) Either rank L > I[(A(L),) + 2, or

q(L)2 = gpduP(2) or g @0®(2) (1.37)
for some qs.

Remark 1.9. The conditions of Theorem [L.§ are stronger than those of
Theorem [L.71

Theorem 1.10 ([18]). If L'P) is a non-degenerate even lattice over Z,, we
have O(L®)) = O(q(LP))).

2 Finite symplectic actions on the K3 lattice A

A compact complex surface X is called a K3 surface if it is simply connected
and has a nowhere vanishing holomorphic 2-form wx.

Definition 2.1. For a K3 surface X, an automorphism ¢ of X is said to be
symplectic if g*wx = wx.
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We study faithful and symplectic actions of finite groups on K3 surfaces.

Notation 2.2. We use a Fraktur letter (e.g. &) for an abstract group and
use a roman letter (e.g. G) for a group with an action on an object (a lattice,
a finite set,... ). The abstract group structure of G is denoted by [G].

Definition 2.3. We denote by &35 the set of finite abstract groups & # 1
which can be realized as faithful and symplectic actions of groups on K3
surfaces.

Mukai determined &35 by listing the eleven maximal groups in &373™".

Theorem 2.4 ([16]). A finite abstract group & # 1 is an element in &35
if and only if & is a subgroup of the following eleven groups:

Tus, N7a, Mo, &5, Lo(7), Hi92, T192, A4.4, s, F384, Moay.

There are exactly 79 groups in &773"". See Table [0.2 for all elements in
&5, We use Xiao’s notation [26].

For a K3 surface X, the second integral cohomology group H?(X,Z) with
its intersection form is isomorphic to the K3 lattice A defined by

A= ((1) é)@SEBEg(—l)@Q, (2.1)

which is the unique even unimodular lattice of signature (3,19) up to iso-
morphism (see Theorem [[.7]). Here Ejg is the root lattice of type Es. The
Néron—Severi group NS(X) of X is considered as a sublattice of H?(X,Z). If
a group G acts on X, the action of G induces a left action on H?(X,Z) by

g-v=_(¢g"H, geGveHX,Z). (2.2)

Note that if the action of G is faithful, so is the induced action of G on
H?(X,7Z) by the grobal Torelli theorem (see [2]). Hence, if we take an iso-
morphism « : H?(X,Z) — A, the action of G on X induces a subgroup
aoGoa™t c O(A), which is isomorphic to G as an abstract group.

We define the notion of “finite symplectic actions on the K3 lattice.”

Definition 2.5. A finite subgroup G # 1 of O(A) is called a finite symplectic
action on the K3 lattice A, if the following conditions are satisfied:

(1) Ag is negative definite;
(2) (v,v) # =2 for all v € Ag.

We denote the set of finite symplectic actions on the K3 lattices A by £. Note
that the finiteness of G follows from the condition (1).
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Definition is justified due to the following;:

Proposition 2.6 ([I7]). If a finite group G acts on a K3 surface X faithfully
and symplectically, then H*(X,Z)c C NS(X) and the induced subgroup of
O(A) is an element in L. Conversely, any element in L is induced by a
symplectic action of a finite group on a K3 surface.

A K3 surface which admits a symplectic action of a finite group is char-
acterized by coinvariant lattices Ag of G € L.

Proposition 2.7 ([I7]). Let & € &73'". A K3 surface X admits a symplectic
action of & if and only if there exists a primitive embedding Ag — NS(X)
for some G € L such that [G] = &.

Now we consider extensions of symplectic actions.

Proposition 2.8. Suppose that a finite group G acts on a K3 surface X
faithfully and symplectically. Then the action of G on X is extended to a
faithful and symplectic action of G' := Og(H?*(X,Z)q).

Proof (cf. [17]). By Lemma [L3|(1), the action of G on H?(X,Z) is extended
to that of G’ such that

H*(X,7)° = H*(X,7)%". (2.3)

By the definition of a symplectic action, we have wyx € H?(X,C)%. Since G
is a finite group, there exists a G-invariant Kihler (1, 1)-form x € H?(X,R)%.
By (23], the action of G’ also fixes wx and k. By the grobal Torelli theorem
for K3 surfaces, the action of G’ on H?(X,Z) is induced by that on X. Since
the action of G’ fixes wx, the action of G’ on X is symplectic. O

Definition 2.9. For G € £, we define Clos(G) by
ClOS(G) = Oo(Ag) (24)

By Lemma [[3](1), the action of G on A is extended to that of Clos(G)
such that Ag = Acios(), and Clos(G) is considered as an element in £ (see
Definition [Z.5]). We define the subset L¢os of £ by

Laos = {G € L | Clos(G) = G}. (2.5)

By the following proposition, rank Ag depends only on the structure of G as
an abstract group.

Proposition 2.10 ([I7, [16]). Let g be an element in O(A) such that the
group (g) generated by g is an element in L. Then ord(g) < 8 and Tr(g; A) =
x(g) — 2, where

x(g9) = 24,8,6,4,4,2,3,2 if ord(g)=1,2,3,4,5,6,7,8. (2.6)
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Hence, for G € L,

rank Ag = ¢(G) := 24 — ﬁ Z x(9). (2.7)

geqG

In particular, ¢(G) = ¢(Clos(G)).

3 Embeddings of Ay into Niemeier lattices

In this paper, a Niemeier lattice is a negative definite even unimodular lattice
of rank 24 which is not isomorphic to the negative Leech lattice. Here the
negative Leech lattice is the unique negative definite even unimodular lattice
of rank 24 which has no vector v such that (v, v) = —2 (cf. [5]). In this section,
We study primitive embeddings of Ag into Niemeier lattices.

Definition 3.1. Let N denote the set of isomorphism classes of G-lattices
(G, N) which satisfy the following conditions:

(1) G# 1 and N is a Niemeier lattice;

(2) there exists a vector v € N¢ such that (v,v) = —2;
(3) there exists no vector v € N¢g such that (v, v) = —2;
(4)

4) there exists a primitive embedding Ng < A.

Lemma 3.2 ([12]). For any G € L, (G,Ag) = (G', Ng+) for some (G',N) €
N. Conversely, if (G',N) € N, then there exists an element G € L such that
(G,A¢) = (G',Ng).

Remark 3.3. In the above lemma, we write (G, Ag) instead of (G|a., Ac)
(cf. Definition [[LT]). We use the same notation in what follows.

By Lemma B.2], the study of (G, Ag) for G € L is reduced to that of N.
In the following subsections, we present how to make a complete list of N.
Some consequences from the list are given in Subsection [3.4l

3.1 Some facts on Niemeier lattices

The following theorem is standard.

Theorem 3.4 (cf. [5]). There exist exactly 23 isomprphism classes of Niemeier
lattices. The isomorphism class of a Niemeier lattice N is determined by the
root sublattice of N, whose type is given in Table[10.1. Here the root sublattice
of N is the sublattice generated by vectors v € N such that (v,v) = —2.
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3.2 Method for making the list of N

Let N be a Niemeier lattice. A vector d € N is called a root if (d,d) =
—2. Let A denote the set of roots of N. A Weyl chamber C is a connected
component of N @ R — Ugead™. The set of positive roots AT corresponding
to C is defined by

AT ={de A|(d,C) CRso}. (3.1)

We have A = AT LU —A™. The set of simple roots R(N, A™) corresponding
to AT is the set of positive roots d € AT such that there exists no decom-
position d = dy + dy with d; € AT, Tt is known that R(N,A") becomes a
Dynkin diagram of rank 24. The automorphism group of the Dynkin diagram
R(N,A™) is denoted by Aut(R(N,A")). Let W(N) denote the subgroup of
O(N) generated by reflections of d € A. The action of W(N) on the set of
Weyl chambers is free and transitive. The group O(N, A™) (see (I.2)) is con-
sidered as a subgroup of Aut(R(N,A™)). We have O(N) = W x O(N,A™).

3.2 Method for making the list of

We use the above result to construct a complete list of N'. For the proof of
the following lemma, see [12].

Lemma 3.5 ([12]). Let N be a Niemeier lattice and G a subgroup of O(N).
Then the condition (3) in Definition[31l is satisfied if and only if there exists
a G-invariant set of positive roots.

Let Ni.---, Naz be all Niemeier lattices and A} a set of positive roots of
N;. Let G C O(N;) be a subgroup satisfying the condition (B]) in Definition
3.1l By the above lemma, we may assume that G preserves A;’ by replacing
G by yGy~! for some v € W(N;) if necessary. Hence we may only consider
subgroups of O(N;, Af). Using GAP [10], we can make a complete list of sub-
groups G;1,- - -, Gyj, of O(N;, A}) such that [G;;] € &35 up to conjugacyll.
Since O(N;, A]") is realized as a subgroup of Aut(R(N;, A})), so is Gyj. To
decide whether (G;;, N;) € N or not, we should check conditions ([2)-#) in
Definition Bl for (G;j;, N;).

The condition (2)) can be checked directly. For example, if N; is of type
AP? | the condition (@) is equivalent to the existence of a Gj-fixed element
in R(N;, Af). By Lemma [3.5] the condition (3)) is already satisfied.

To confirm the condition (), it is sufficient to show that there exists an
even lattice L such that

sign L = (3,19 — ¢(Gyj)), (L) = —q(Ng,;) (3:2)

by Lemma and Proposition 2.10. We can compute the Gramian matrix of
N%i by using the orbit decomposition of R(N;, Af) which is obtained from

INote that conjugacy in O(Ni,Aj) is equivalent to conjugacy in O(N;), which is a
property of semi-direct product groups.
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3.3 Example

the list of (Gj;, N;). From the Gramian matrix of N%i, we can determine
A(N%3) and q(N%) (cf. Section [I)). Since ¢(Ng,,) = —q(N%) by Lemma
[L.2, we obtain the list of ¢(Ng,,). From the list, we have the following:

Lemma 3.6. For (G;;, N;) satisfying the condition (2) in Definition[31, the
condition ({§)) is equivalent to the inequality

I(A(NCi7)) < 22 — ¢(Gy;) = rank N% — 2. (3.3)

Here l(A) denotes the minimum number of generators of a finite abelian group

A.

Proof. For each case satisfying the inequality (B3], we can find a lattice L
satisfying (B.2). See Tables [0.2 and 0.3 for ¢(Ng,,) and L in each case
respectively. Conversely, the existence of L implies that

I(A(NCi7)) = I(A(Ng,,)) = l(A(L)) < rank L = 22 — ¢(Gj;) (3.4)
by Lemma [[.2] and (L.37). O

By the above argument, the set which consists of (Gj;, N;) satisfying the
condition (2)) and the inequality ([B:3)) becomes a complete list of N.

3.3 Example

We consider the case of the cyclic group Cyg of order 8 as an example. We
make the list of (G, N) € N with [G] = Cs. Since ¢(Cg) = 18, we have
rank Ng = 18 and rank N = 6. Using GAP [10], we can make a complete
list of subgroups G C O(N, A™) such that [G] = Cs up to conjugacy for each
Niemeier lattice N. The result is as follows.

case (I) (I1) (IIH)  (Iv) (V) (VI
root type of N ES* AP*eo Dy AT AT AT AP
number of stable
components of R(N,A™) 0 1 0 2 0 2
(G,N) e N? no yes no yes no yes

If the condition (2]) in Definition 3.1 holds, then at least one component of the
Dynkin diagram R(N,A™) is stable under the action of G. In the case (I),
the action of G as a permutation group of the components Eg of R(N, A7) is
transitive. Therefore, we have (G, N) € N in the case (I). Similarly, we have
(G,N) € N in the cases (III) and (V). In fact, we have (G, N) € N in the
cases (II), (IV) and (VI), as we will see below. Let g be a generator of G.

The case (II). There exists a numbering of R(N,AT) = {vy,...,ve4} as
in Figure 1 such that

g Vi = Vg(i), (3.5)
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3.3 Example

where
o=(1,6,11,16,5,10,15,20)(2,7,12,17,4,9,14,19)(3, 8, 13,18)(23, 24).
(3.6)
Hence N¢ @ Q is generated by
3 3
wyp = Z(U1+5z’ + Vs45i), We = Z(UQ—H% + Va15i),
ézo =0 (3.7)
w3 = ZU3+5¢, W4 = V21, W5 = V22, We = V23 + V24
i=0

over Q. From the explicit description of G € O(N, AT), we find that N is
generated by the above vectors and (w; + ws3)/2 over Z. Therefore,

wi, wa, (w1 + ws)/2, wa, ws, We (3.8)

form a basis of N over Z. The Gramian matrix of N under the basis (3.8)
is

—-16 8 0 0 O 0
8§ —16 8 0 0 0
0 8§ -8 0 O 0
0 0 0 -2 1 0 (3.9)
0 0 0 1 -2 2
0 0 0 0 2 -4
We can determine A(N®) and ¢(N%) from (3.9) (cf. Section [I):
A(NC) = 7/27. & 7/AZ & (Z/87) %2, (3.10)
G\ ~ 0 1/8
g(N")=(1/2)® (1/4) @ <1/8 0 ) . (3.11)
Since ¢(Ng) = —q(N¢) by Lemma [[L2], we have
~ _ 0 1/8
¢(Ng) = (-1/2) e (-1/4) & (1/8 0 ) . (3.12)

The case (IV). Similarly, there exists a numbering of R(N, A™) as in Figure
2 such that g - v; = v4(;), where
o= (3,4)(5,7,6,8)(9, 11,13, 15,17, 19, 21, 23)(10, 12, 14, 16, 18, 20, 22, 24).
(3.13)
Moreover, N ® Q is generated by

8
W) = V1, W2 = V2, W3 = V3 + Vg, Wy = g Vi,

—
7 7 ' (3.14)
ws = Y Voyai, We = D Vi042i
i=0 i=0
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3.3 Example

1 6 11 16
2 7 12 17 21 29 23
3 8 13 18
4 9 14 19 24
) 10 15 20
Figure 1: Ag'% @ Dy
over Q, and N is generated by
1
w17w27w37w47w57§(w1 —’U)2+’U)5—’U)6) (315>

over Z. The Gramian matrix of N¢ under the basis (3.I5)) is

-2 1 0 O 0 -1
1 -2 0 0 0 1
0O 0 -2 0 0 0
0 0 0 -4 0 0 (3.16)
0 0 0 0 -16 -8
-1 1 0 0 -8 -6

From (B.I6), we can check that ¢(N¢g) is isomorphic to (B.12).
1 i 3 i 21 i 23 i
2 4 22 24

Figure 2: A$'?

The case (VI). There exists a numbering of R(N, A1) as in Figure 3 such
that g - v; = v, (), where

o= (3,4)(5,6,7,8)(9,10,11,12,13, 14, 15,16)(17, 18, 19, 20, 21, 22, 23, 24).
(3.17)
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3.3 Example

Moreover, N ® Q is generated by

4 8
w; = V1, W2 = V2, W3 = E Vi, W4 = E (%
2

i " (3.18)
Ws szz‘, We = Zvi
i=9 i=17
over Q, and N€ is generated by
1 1 1
wy, w2, W3, 5(11)1 + wg + w3 + 'LU4), 5(11)4 + U)5), 5(11)4 + w6) (319)
over Z. The Gramian matrix of N¢ under the basis (3.19) is
-2 0 0 -1 0 O
0O -2 0 -1 0 0
0O 0 -4 -2 0 0 (3.20)

-1 -1 -2 —4 -2 =2
0 0 0 -2 -6 -2
0 0 0 -2 -2 —6

From (3.20), we can check that ¢(Ng) is isomorphic to (3:12).

1 © 2 O 23 0 24 O

: 24
Figure 3: A}
The type of the root sublattice of N&, i.e. the sublattice generated by

vectors v € N such that (v,v) = —2, in each case is as follows.

case | (II) (IV) (VI)
root type ‘ Az A1 A, A?z

(3.21)

Hence the condition (2]) in Definition B.1] is satisfied. The condition (3] is
satisfied by Lemma By the above argument, we have

o) = -8 -y e (49 1) (322

in each case. Let L be a lattice defined by

L= e@de (g ﬁ) . (3.23)
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3.4 Consequences from the list of N

Then we have sign L = (3,1) and ¢(L) = —q(N¢). By Lemmall.2] there exists
a primitive embedding Ng < A such that (Ng)x = L. Thus the condition
(@) is satisfied. Therefore, we have (G, N) € N in the cases (II), (IV) and
(VI).

3.4 Consequences from the list of N/
Let Q denote a set defined by
Q = {(6,9) | 3G € L such that & = [G],q = q(Ac)}. (3.24)
By Lemma 3.2 we have
Q= {(8,q) | I(G,N) € N such that & = [G], ¢ = ¢(Ng)}. (3.25)
We introduce an equivalence relation ~ on Q by
(8,9) ~ (6, ¢) = 6=6"and ¢ (. (3.26)
By ([8:28) and the list of q((N;)%%) for (G;j, N;) € N, we have the following:

Proposition 3.7. For & € 373", we have

t ({q] (8,9) € Q}/isom) =

{1 if & # Qs, Taa, (3.27)

2 if®:Q87T24'

Remark 3.8. From the Xiao’s list [26], we have §&773"" = 79. By the above
proposition, #(Q/ ~) = 81. In Table [0.2] we list a complete representative
{(&,,qn)} of Q/ ~. Our numbering coincides with that in [26].

By (B:25), we have the natural map
7N —=09; (G,N)w~ (|[G],q(N)). (3.28)

In Table 106} the type of the root sublattice of N¢ for each (G, N) € N is
given. From the table, we have the following:

Proposition 3.9. Let Q° denote the subset of Q defined by
Q° ={(6,9) € Q| & # Bss}. (3.29)

There erists a section o : Q° — 7 1(Q°) of ® with the following conditions.

We set N' = 0(Q°).

(1) Let (G,N) € N and (G',N") e N'. If n(G,N) = n(G', N') and NE =
(NC', then (G,N) = (G, N").
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(2) Let (G,N) € N'. If [G] # &3, then N is of type AT**.

Proof. For each (6,q) € Q°, we can chose o(®,q) € N case by case. For
example, we consider the case of Cs = 14 (see Subsection B.3]). By the table
(321, the root types of N for (G, N) € N with [G] = Cy are different from
each other. Therefore, N¢ are not isomorphic to each other. Hence we can
chose (G, N) of the case (VI), in which N is of type AP?*) as o(14,q14).
Similarly, for (G, N) € N with 7(G, N) = (&,, ¢,,), the isomorphism classes
of N¢ can be distinguished by looking the root types except for the cases
n = 32,41,56,63. For the cases n = 32,41,56,63, we can distinguish them
by looking the root types and the numbers of vectors v € N¢ such that

(v,v) = —4 or —6. As a consequence, we can choose (G, N) enclosed by
boxes in Table [I0.6l The choice of ¢ is not unique. 0

4 Uniqueness of coinvariant lattices Ag
Let S denote a set of G-lattices defined by
S ={(G,S) | 3G" € L such that (G, S) = (G',Ac)}. (4.1)

For (G,S) € S, we have G C Oy(S) by Lemma [[.3(3). In this section, we
apply the results in the previous section to prove the following:

Theorem 4.1. The natural map ¢ : S/isom — Q/ ~ is bijective.

Proof. The surjectivity of ¢ is trivial. We shall show the injectivity. Let
(8,q) € Q. Suppose that (G,S) € S, [G] = & and ¢(5) = q. We show that
(G, S) is uniquely determined up to isomorphism.

(1) The case & # &zg. By Proposition 3.9, there exists an element
(I, N) € N’ such that [I'] = & and ¢(Nr) = q. We show that (G,S) =
(T, Nr). By Lemma L2, ¢(S) = ¢ = ¢(Nr) = —q(NT). Again by Lemma
[L.2] there exists a primitive embedding S < N’ of S into a Niemeier lattice
N’ such that (S)%, = N'. By Lemma [[3] the action of G on S is extended
to that on N’ such that (N')g = S and (N')¢ = N'. Thus (G,N') € N
(see Definition B.1]). By Proposition 8.9, we have (G, N’) = (I', N). Hence
<G7 S) = (G7 (N/)G) = <F7Nl")

(2) The case & = &zg. From Table [[0.4] we find that &43 C &55 and
c(B43) = ¢(B55). Hence there exists a subgroup G5 of G such that [G)3] =
®By3. Since ¢(By3) = ¢(Bss), we have (G)3,5) € S. Let Gz € L be as in
Lemma B8 By (1) and Proposition B.7, (G’,S’) € S such that [G'] = B3
is unique up to isomorphism. Therefore, we have (G)3,S) = (Ga3,AGys)-
By the condition (2) in Lemma [R.8] there exists a unique subgroup Gsg of
Oo(Ag,s) such that [G5g] = B55 up to conjugacy in O(Ag,,). Hence (G, S) =
(Gss, AGus)- O
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Definition 4.2. Let (8,q) € Q. By Theorem [A]] there exists a unique
element (G, S) € S such that ([G],¢(S)) ~ (&,q), i.e., [G] = & and ¢(S5) = ¢
up to isomorphism. The lattice S determined by this conditions is denoted
by S(®,q). Since G C Oy(5), & is a subgroup of [Oy(S(8,q))].

By the definition of S(®&, q), we have
A = 5(G], q(Ag)) (4.2)
for G € L.

Corollary 4.3. Let (&,q),(®',¢) € Q. If & C &', ¢ = ¢ and ¢(&) = (&),
then S(&,q) = S(&',¢).

Proof. Let G’ € L such that [G'] = & and ¢(Ag/) = ¢'. Then Agr =2 S(&',¢').
Let G be the subgroup of G’ which corresponds to the subgroup & of &’. Since
¢(G) = ¢(G"), we have S(8,q) = Ag = Ay =2 S(&,¢'). O

Remark 4.4. In Table [10.4] we give the trees of
Ts = {Q5n ‘ S(an,(hl) = S} (43>

for Ts with #Ts > 2. From Tables [10.2] and [10.4], we find that there exist
exactly 40 isomorphism classes of lattices S(&,,, ¢,) (or Ag for G € L£). Also,
we can check that the natural map

{5(6,9) | (6,9) € Q}/isom — {q | (&,9) € Q,¢ = q(5(6,q))}/isom (4.4)
is bijective.
Definition 4.5. Let (&,q) € Q. We define Clos(®, q) by
Clos(®, 4) = ([00(S(6, )], ). (4.5)
Note that & is a subgroup of [Og(S(®, q))] (see Definition E).

For (8,q) € Q, there exists an element G € L such that ([G],q(Ag)) ~
(&, q). Since S([G],q(Ag)) = Ag, we have

Clos(8, q) = ([O0(Ag)], q) = ([Clos(G)], q) (4.6)

(see Definition [Z9). In particular, we have Clos(®,q) € Q. Let Qs denote
a subset of Q defined by

Qelos = {(®,¢) € Q | Clos(&,q) = (6,q)}. (4.7)

For G € L, G € L5 if and only if ([G], ¢(Ag)) € Qclos-
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Corollary 4.6. The map
Qeios/ ~— {A¢ | G € L} /isom (4.8)
which is induced by the correspondence (&, q) — S(,q) is bijective.

Proof. The inverse map of (48) is the map induced by the correspondence
5= ([00(5)], 4(5))- O

Corollary 4.7. Let (8,q) € Q. Then we have Clos(®,q) = (&', q), where
&’ is the unique mazximal element in

{6" e 8| (87,¢") € 9,6 C 8", q=¢",c(&) =c(&")}. (4.9)
Moreover, we have the following.

(1) If & € {Qs, T4}, i.e., (B,9) ~ (Bn,qn) for n € {12,13,37,38}, then
we have the follwoing table.

n| | é&=086,|m|é& =086,
12| Qs 12 Qs
13| Qs 40 | Qs *Qs
37 Toy 7 Thgo
38 Toy 54 Tys

Here m is determined by (&, ¢m) ~ Clos(8, q).
(2) If & € {Qs, Tos}, then &' is the unique mazximal element in

(6" c 8P | & C 8", ¢(6) = ¢(6")}. (4.10)

Proof. For any element &” in (4.9]), we have S(&, q) = S(8”, ¢") by Corollary
43 Hence 8" C & = [0¢(S(®,q))]. Therefore, the former part of the
corollary follows. We can directly check the latter part by Proposition [3.7]
and Table [10.4] O

5 Property O(Ag) = O(q(Ag))

This section is devoted to prove the following theorem, which gives a sufficient

condition for G € L such that O(Ag) = O(q(Ag)) (see (LII)).

Theorem 5.1. Let G € L with ¢(G) = rank Ag > 17 (see Proposition[2.10).
The group O(Ag) is qual to O(q(Ag)) if and only if [Clos(G)] € {Bus, H51}.
In particular, if ¢(G) = rank Ag = 19, then O(Ag) = O(q¢(Ag)).

Since ¢(®48) = ¢(B51) = 18 by Table [0.2] the latter part of the theorem
follows from the former part.
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5.1 Criterion of the property O(L) = O(q(L))

5.1 Criterion of the property O(L) = O(q(L))

We prepare for a criterion of the property O(L) = O(gq(L)).

Lemma 5.2. Let H be a group and K1, Ko subgroups of H. If K1 C Ko and
ﬁKl\H/KQ == 1, then K2 =H.

Proof. By the second assumption, any element in H is of the form ki ks with
k; € K;. Hence Ko = H by the first assumption. OJ

Proposition 5.3. Let Ly be a non-degenerate even lattice. The group O(L)
is qual to O(q(L1)) if and only if there exists a non-degenerate even lattice Lo
satisfying the following conditions.

(1) There exists an essentially unique even unimodular lattice T' C LY @& Ly
which contains L; primitively. Here the uniqueness of I' means that for
another I, there exist isomorphisms @; € O(L;) for i = 1,2 such that
©1 D o induces an isomorphism T — T,

(2) The restriction map O(T, Ly) — O(Ls) is surjective (see (1.2)).

Proof. Assume that there exists Lo satisfying the conditions ([Il) and (2]). Let
v € Isom(q(L1), —q(L2)) be the isomorphism corresponding to I' (see Lamma
[L.2). The condition (dl) implies that

O(L2)\ Isom(q(L1), —q(L2))/O(L1) = v~ 100(L2)or\ O(q(L1))/O(L1) (5.1)

is a one point set by Lemma[l.2l On the other hand, the condition (2)) implies
that for any ¢y € O(Ls), there exists an automorphism ¢ € O(L1) such that
yop, 0y ! =P, by Lemma L2 Hence v 'oO(Ly)oy C O(Ly). By Lemma
(.2, we have O(L1) = O(q(L1)).

Conversely, assume that O(L;) = O(q(L1)). Then any non-degenerate
even lattice Lo with q(Ls) = —q(L;) satisfies the conditions () and (2)) by

Lemma [[2l For example, we can take Lq(—1) as Lo. ]

5.2 Proof of Theorem [5.1]

Now we apply Proposition B.3] to prove Theorem B.Il Let Gy € L with
¢(Gp) > 17. By Corollary .6, Ag, = S(8,,q,) for some (&,,q,) € Qelos-
Since n # 58 (see Table [[0.4]), we have

AGO = S(an,(hl) = NG7 ([G]7Q(NG>) ~ (®n:Qn> € chos (52>

for some (G,N) € N/ by Proposition B9l Since ¢(&3) = 12 < 17, N is of
type A?M by Proposition 3.9 To prove Theorem [5.1] it is sufficient to show
that the conditions (1) and (2) in Proposition (.3 are satisfied for L; = Ng
and Ly = N if and only if n # 48,51.
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5.2  Proof of Theorem [5.1]

We check that for (G, N) € N satisfying the conditions (5.2), the condi-
tion () is satisfied as follows: Let N’ C (Ng)Y @ (N%)Y be a Niemeier lattce
which contains Ng and N primitively. By Lemma [[L3], the action of G on
Ng¢ is extended to that on N’ such that (N')¢ = N¢. We have (G,N’) € N
by Definition B.Il By Proposition B.9, (G, N) = (G, N’). The uniqueness of
N is shown.

Before showing the condition (2]), we prepare for a couple of lemmas.

Lemma 5.4. For (G,N) € N’ satisfying the conditions ([5.3), let = denote
the restriction map

7:O(N,N%) — O(N©). (5.3)
Then we have Ker(r) = G. In particular, G «O(N, NY).

Proof. Clearly, we have G C Ker(w). Let g € Ker(w). Then g|n. € O¢(Ng)
by Lemma [[3(3). Since (&,,,q,) € Qclos, i-€., Clos(&,, q,) = (8, qn), we
have g € G (see Definition [L.5]). Hence Ker(7) C G. O

Let AT be a set of positive roots of N which is stable under the action
of G (see Subsection B.I). Since N is of type A¥?*, O(N, At) is isomorphic
to the Mathieu group My, of degree 24 and the Weyl group W(N) of N is
isomorphic to C3%. We have O(N) = W(N) x May.

Lemma 5.5. For (G, N) € N satisfying the conditions (5.2), we have
O(N7 NG) = C;n X NM24(G>7 (54>

where m = rank N = 24 — ¢(GQ) and Nyr,, (G) is the normalizer subgroup of
G in Myy. In particular, we have |O(N, N%)| = 2™ | Ny, (G)]

Proof. Set {v1,...,v24} = R(N,AT) and W' = O(N, N¥)NW. The action
of G decomposes R(N,A™) into n orbits O1,...,O,,. The invariant lattice
N¢ is generated by Zveoj v(j=1,...,m)over Q. Let w & W. Then w is

of the form
24

w=[]Tw)*, e €{0,1}, (5.5)

i=1
where T'(v) is the reflection of v. Since

24 24
w - Zaivi = Z(—l)eiaivi, a; € Q, (5.6)
i=1 i=1

W’ is generated by Hveoj T(v) (j =1,...,m), thus W = CJ". By Lemma
5.4, we have an injection ¢ : O(N, N%)/W’' — Nup,,(G). For g € Nap,, (G),
we have gG - v; = Gg - v;. Therefore, for any j, we have g - O; = O;s for
some j’. Hence we have Ny, (G) C O(N, N%), and ¢ is an isomorphism. The
assertion follows from this. O
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5.2  Proof of Theorem [5.1]

Now we show that for (G, N) € N’ satisfying the conditions (5.2)), the
condition (2]) is satisfied. By Lemma [55 we can determine the order of
O(N, N%) from the order of Nyy,, (G). We can compute the order of Ny, (G)
by using GAP [10]. On the other hand, we can also determine the order of
O(N€) as follows.

Let B = (bi;) € M,,(Z) be the Gramian matrix of N¢. Then O(N€)
is identified with the matrix group H consisting of P € M,,(Z) such that
tPBP = B. Let S denote the set consisting of column vectors v € Z™ such
that ‘v Bv = b;; for some i. Then any element P € H is of the form (vy - - - v,,)
with v; € S. Since N© is negative definite, we can enumerate all elements
in S and H in finite steps. Practically, we take B with smaller |b;;| (cf. the
reduction theory of quadratic forms). Since the rank of N¢ is less than or
equal to 24 — 17 = 7 by the assumption of the theorem, we can determine the
order of O(N%) in practical time by this method. The author used Maxima
[14] for this computation. The result is the following:

Lemma 5.6. For (G,N) € N’ satisfying the conditions (5.3), we have
[O(N,N) : G] = |O(NY)| if and only if [G] # B4z, Bs51.

For example, we consider the case n = 80 (|G] = &gy = F384). There
exists exactly one element (G, N) € N such that [G] = F3g4. The Niemeier
lattice N is of type AT?*. We have [Ny, (G) : G] = 2 and |O(N9)| = 64.
Since ¢(G) = 19, we have |O(NY)| = [O(N,N¢) : G] = 2%4719.2 = 64 by
Lemma [5.5]

Similarly, for other cases except n # 48,51, we have [O(N,N%) : G] =
|O(N®)|. The following is the table of k(G) = [Nag, (G) : G].

n 12 26 32 33 34 39 40 46 49 54 55 56 61
kK(G)|48 4 2 6 8 2 24 4 120 2 6 12 2

n |62 63 656 70 74 75 76 77 78 79 80 81
kG2 6 24 1 2 24 2 4 4 2 2 24

On the other hand, we have [O(N,N%) : G] < |O(N®)| for the cases
n = 48,51, as follows.

n 48 51
k(G) 2 2
O(NG)/2m 6 6

We shall finish the proof of Theorem B.Il We already checked that the
condition (1) is satisfied. By Lemma[5.4] the restriction map 7 : O(N, N¢) —
O(N®) induces an injection O(N, N%)/G — O(N%). By Lemma [5.6] this
map is an isomorphism if and only if n # 48, 51. Therefore, the condition (2),
i.e. the surjectivity of 7 is satisfied if and only if n # 48,51. By Proposition
(.3, O(N¢g) = O(gn,) if and only if n # 48, 51.
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6 Uniqueness of invariant lattices A

This section is devoted to prove the following:

Proposition 6.1. Set B = {G5, Lo(7),Us}. For (8,q) € Q (see (3-24)), we
have

i ({AG ‘ GeL,[G]=6,q¢Ag) = q}/isom) = (6.1)

1 otherwise.

{2 if® e E,

The Gramian matrices of A® are given in Table 103

Proof. Let G € L such that [G] = ® and q(Ag) = q. By Lemma [, ¢(A%) =
—q(Ag) = —q.

First we consider the case rank AY > 3. Since sign A = (3,19) and Ag is
negative definite, A® is indefinite in this case. From Table I0.3}, we can check
that the conditions (I) and (2) in Theorem [T for A® are satisfied. Hence
the assertion follows from Theorem [.71 We can directly find the Gramian
matrices of A€ with the given signature and discriminant form for each case.

Next we consider the case rank A = 3. In this case, A is positive definite.
From the table of definite ternary forms [22], we can check that there exists a
unique positive definite even lattice K of rank 3 such that ¢(K) = —q up to
isomorphism, except for the cases & = &5, Lo(7),As. If & = G5, Lo(7), U,
there exist exactly two positive definite even lattices K, Ko of rank 3 such
that q(K;) = —q up to isomorphism. For each i = 1,2, there exists a primitive
embedding Ag — A such that (Ag)x = K; by Lemma[[2l By Lemma[L.3] the
action of G on A¢ is extended to that on A such that A9 = K;. This action
is an element in £ by Definition Therefore, the assertion follows. O

7 Property O(A%) = O(q(A%))
This section is devoted to prove the following:

Theorem 7.1. Let G € L. If rank A® > 4, or equivalently, c(G) < 18 (see

Proposition[Z110), then O(AG) = O(q(A%)).

We may assume that G € L5 by replacing G by Clos(G) if necessary.
Then Ag = S(8,,, q,,) for some (&,,, ¢,) € Qclos (see Sectiond]). We can check
that AY satisfies the conditions (1) and () in Theorem [[.§ from Table 10.3,
except for the following nine cases:

n = 26,30, 32, 33, 40, 46, 48, 56, 61. (7.1)

Hence we have O(AY) = O(g(A%)) except for these nine cases.
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7.1 Preparation for the cases (Z.1l)

For example, in the case n = 65, we find that

AC = (‘21 Z) & (1) @ (-8), (72)
(M%) = g5 2 v (2 @ ¢ (4) @ ¢ (8) @ ¢ (3) (7.3)

from Table 0.3l Since
rank A® =4 > [(A(A%)3) +2 =3, (7.4)

the condition () is satisfied. On the other hand, since v(?)(2) appears in the
orthogonal decomposition (Z3) of ¢(A%), the condition (2)) is satisfied.

7.1 Preparation for the cases (7.1

Before studying the cases (1)), we recall some properties of the spinor norm
(see e.g. []). Let L be a non-degenerate lattice. For any ¢ € O(L ® Q), ¢ is
written as a composition of reflections:

p = ﬁT(vi), v, € L®Q, (vi,v;) #0. (7.5)
i=1
Here T'(v) € O(L ® Q) is the reflection of v, which is defined by
T()-w=w— 25:”;’;)@ (7.6)
The spinor norm 6(y) of ¢ is defined by
0(p) = ﬁ(vz‘,m mod (Q*)* € Q*/(Q*)?, (7.7)

=1

which is independent of the choice of the expression (.H). We define a map
f and a subgroup O'(L) C O(L) by

f=det xf:0(L) — {1} x Q*/(Q*)? (7.8)

and O'(L) = Ker(f). Note that if L = Ly @ Lo, then f(O(L;)) C f(O(L)).
We can define the spinor norm 8,,(,) € Q) /(Q))? of ¢, € O(L ® Q) in a
similar way. Moreover, we define

fp =det x8), : O(Ly) — {£1} x QX /(Q))? (7.9)

and O'(L,) = Ker(f,), where L, = L ® Z,,.
To deal with the cases ((T1]), we use the following proposition, which is a
consequence of Strong Approximation Theorem of quadratic forms (cf. [4]).
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7.1 Preparation for the cases (Z.1l)

Proposition 7.2. Let L be an indefinite even lattice of rank > 3. We set
Oo(Ly) = Ker(O(L,) — O(q(Ly))) and d = disc(L). If the natural map

p O LP
O(L) — 1‘5 7;; ((OO(( Lp))>> (7.10)

is surjective, then O(L) = O(q(L)).
Proof. We have a natural commutative diagram

1 — O'(L) — O(L) — f(O(L)) — 1

! o Iy | ¢ T
0'(L, O(L,
b H 06<LP) 7 H Oo(Lyp) H fp OO -
pld pld
(7.11)
where O (L,) = O'(L,) N Og(L,). The rows in (Z.I1]) are exact. Since
O(L
=[]ow(L),) =]] 5 ((Lp>) (7.12)
pld pld NP

by Theorem [[LI0 it is sufficient to show that 3 is surjective. Since [O'(L,) :
05 (Ly)] < 00, each coset of O'(L,)/ O(L,) is open dense subset of O'(L,) in
p-adic topology. By Strong Approximation Theorem of quadratic forms (cf.
[4]), the image of O'(L) in ILa O'(L,) is dense. Therefore, « is surjective. On
the other hand, v is surjective by the assumption. By chasing the diagram,
[ is surjective. O

For f(O(L)) and f,(O¢(Ly)), we have the following:
Lemma 7.3. Let L) be a non-degenerate even lattice over Loy

(1) If v € L®) satisfies a = (v,v) € Zy U2Zy, then T(v) € Oo(L®P)) and
fp(T(v)) = (=1,a) € fp(Oo(Ly)).

(2) If LY contains U = (91) as a sublattice, then

P Jp = {£1} x 27 /(25 )? otherwise.
(3) If p=2 and L?) contains V = (21) as a sublattice, then
f2(Oo(L(2))) D Js. (714)
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7.2 Proof of Theorem [7l for the cases (Z.1))

Proof. Let v,a be as in (). Since T'(v)-w = w — (2(v,w)/a)v and 2/a € Z),
we have T'(v) -w € L®) for w € L®). Hence T(v) € O(LWP). If w € (LP)V,
then (v, w) € Z,, thus T(v) - w = w mod L. Hence T(v) € Og(L®P)). Since
the determinant of any reflection is euqal to —1, we have f,(T'(v)) = (—1,a).
This proves ().

Let (e1,e2) be a basis of U such that (e;,e;) = 0 and (ej,es) = 1. For
T € Ly, set v, = e1 + xea. We have (vg,v,) = 2z € 2Z;. By (@), T(v.) €
Oo(LP) and f,(T(v;)) = (—1,2z). We can check that the group generated
by elements of the form (—1,2z) is Jo (resp. J,) if p =2 (resp. p # 2).

The proof of (3] is similar to (), and we omit it. O

Lemma 7.4. Let L be a non-degenerate even lattice.
(1) f(=11) = ((=1)="&E, disc(L)).

(
(2) If L = U(t
Ut)=(94)-

Proof. Let (e1,...,e,) be an orthogonal basis of L ® Q, where r = rank L.
Then, —1;, = [];_, T(e;) and [];_,(e;, e;) = disc(L) mod (Q*)?. Therefore,
f(—=15) = ((—1)",disc(L)). This proves ().

Let (e1, e2) be a basis of U(t) such that (e;,e;) = 0 and (e1, e5) = t. Then,
O(U(t)) = (Z/27)? is generated by T(e; £ e3). Therefore, f(O(U(t))) =
((—1,£2t)). This proves (2I). O

)& L' for some L', then f(O(L)) D ((—1,42t)), where

7.2 Proof of Theorem [7.1] for the cases ([7.1)

We set L = A%, r = rank L and d = disc(L). We shall show that the
map (ZI0) is surjective in each case in (7). In other words, we show that
[1,14 fo(O(Lyp)) is generated by the images of O(L) and [],, 4 fp(Oo(Lp)). As
is shown below, we have f,(O(L,)) = N, except fot the cases n = 46,61,
where

N, = {£1} x Q /(Q;)*. (7.15)

Recall that the map (a, b, ¢) — (—1)%3°2¢ induces an isomorphism (Z/27)3 —
Q5 /(Q3)?. Moreover, the map (a, b) — £%p® induces an isomorphism (Z/27Z)?
Q) /(Qx)? if p # 2, where €, is a non-square p-adic unit. Let (eq,...,e,) be
a basis of L whose Gramian matrix is given by Table 0.3l We say a is rep-
resented by L if there exists a vector v € L such that (v,v) = a. We denote
f(O(L)) and fy(Oo(Lp)) by I and I, respectively.

(1) The case n = 26. We have

L= (g g) o) @ @), d=—2° (7.16)
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7.2 Proof of Theorem [7l for the cases (Z.1))

Since 2 and 6 are represented by L, we have (—1,2),(—1,6) € Iy by Lemma
C3([M). By Lemma [TAR), (—1,+£16) = (—1,41) € I. We can check that the
images of these four elements generate N,. (In what follows, we omit “the
image(s) of” for simplicity.)

(2) The case n = 30. We have

P2
{0 3 2 3 6
L:<3 0) @(3 0), d=—3. (7.17)

By Lemma [T42]), (—1,+6) € I. Since T'(e5) € O(L), we have f(T(e5)) =
(—1,2) € I. We can check that these three elements generate N3.
(3) The case n = 32. We have

~ (0 5 4 2 _ 92 =3
L_<5 o)@<2 6), d=—22.5% (7.18)

Since Lo contains U, we have Jy C I by Lemmal[T3|[2]). Since 4 is represented
by L, we have (—1,4) = (=1,1) € I5 by Lemma [Z3(0). By Lemma [T.4{2]),
(—1,£10) € I. Since T'(e3) € O(L), we have f(T(e1)) = (—1,4) = (—1,1) €
I. Let L’ = (3%). By Lemma [C4[), f(-1z) = (1,20) = (1,5) € I.
Therefore, the images of I, I, I5 contain the follwoing elements.

‘ image in Ny X Nj
I (1,25/(25)2)5 (17T)7(:17§) X (17T)
I (1,1) x (—1,1)
I | (=1,4T0) x (~1,£10), (-1,T) x (=1, 1), (1,5) x (1,5)

From this, we can check that I, I, I5 generate Ny X Ns.
(4) The case n = 33. We have

~ (0 7 2 1 3
b0 e (P D). am -

By Lemma [T.4(2), (—1,+14) € I. Since T'(e3) € O(L), we have (—1,2) € I.
We can check that these three elements generate Nv.
(5) The case n = 40. We have

L= (4% a (—4)%2  q=2", (7.20)

Let ¢ = T'(e1)T(e1 + 2e2) € O(Lz). Then, modulo Ly, we have

e e 2 3 e
08 =T(er) (Zl — e+ 2ez>) =T() =7, (72)

€92 €92 4 €2 €2
2 =T = - = 2 =T === 22
o2 =1l (G- g2 ) =T 2 =2 (a2
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7.2 Proof of Theorem [7l for the cases (Z.1))

20) = (1,5) € I. Since
(—1,8) € I. We can check

Hence ¢ € Og(L2) and fa(p) = (—1,4) - (-1,
T(e1),T(eq),T(e1+e2) € O(L), we have (—1,+4),
that these four elements generate N.

(6) The case n = 46. We have

= G ;) ® (6) @ (—18), d=—22-3% (7.23)

Since Ly contains V', we have Jy C I by Lemma [[3(B). By Theorem
3.14(i) of [1], we have f2(O(Ls3)) = Ja, thus Is = f2(O(Lg)) = J5. Since
T(e1),T(e3), T(eq) € O(L), we have (—1,2),(—1,6),(—1,—-18) € I. From
this, we can check that I, I generate fo(O(L3)) x Ns.

(7) The case n = 48. We have

(0 3 12 6 o2 e
L_<3 0)@<6 12), d=—2%.3% (7.24)

Since Lo contains U, we have Jy C Iy by Lemma [7.3([2). By Lemma [7.4][2),
(—1,£6) € I. Since T'(e3),T(e3 + es4) € O(L), we have (—1,12), (-1, 36) € I.
Therefore, the images of I, Is contains the follwoing elements.

‘ image in Ny X N3

_(L23/(Z5)%) x (1,1),(-1,2) x (1,1)
(—1,46) x (—1,46), (—1,3) x (~1,3),(~1,T)

I
I

x (=1,1)

From this, we can check that I, I generate Ny x Nj.
(8) The case n = 56. We have

L= {4)® g (-8), d=-2° (7.25)

By the argument in the case n = 40, ¢ = T(e1)T(e1 + 2e2) € Og(Lo)
and fo(¢) = (1,5) € Iz. Since T(e1),T(eq),T(e1 + e2) € O(L), we have
(—1,4),(—1,-8),(—1,8) € I. We can check that these four elements gener-
ate Ns.

(9) The case n = 61. We have

(0 3 8 4 ot a3
QN D), e o

Since Lo contains U, we have Jo C I by Lemma [[3[[2). By Theorem 3.14(i)
f [1]_, fg(O(LQZ) = JQ, thus IQ = f2(O(L2>) :_JQ. Since T(63> S O(L),
(—=1,8) = (—1,2) € I. By Lemma [T.4[2)), (—1,£6) € I. From this, we can
check that I, I, generate fo(O(Lg)) x Ns.
Now we have proved Theorem [7.1]
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8 Uniqueness of symplectic actions on the K3 lattice

In this section, we use the results in the previous sections to prove Main
Theorem.

8.1 Case ¢(G) <18
Proposition 8.1. The natural map

{GeL } ¢(G) < 18}/conj — {(G, S) € S | ¢(G) < 18} /isom (8.1)
18 bijective.
Proof. The surjectivity follows from the definition of S (see (AI])). Let
(G, S) € S such that ¢(G) < 18. Suppose that G; € £ and (G4, Ag,) = (G, S)
for i« = 1,2. To prove the injectivity, it is sufficient to show that G; and G5
are conjugate in O(A). By Proposition 6.1, A®T = A%, By Theorem [7.1]

O(AG1) = O(q(A%1)). Therefore, a primitive embedding Ag, — A such that
(Ag,)t = A% is unique up to isomorphism and the restriction map

m:O(A, Ag,) — O(Ag,) (8.2)

is surjective by Lemma [I.2. Hence we may assume that Ag, = Ag, by
replacing Go by pGap~! for some ¢ € O(A) if necessary. Since (G, Ag,) =

(G2, Ag,) = (G, S), G1 and Gy are conjugate as subgroups of O(Ag, ). Since
7 is surjective, G; and G are conjugate in O(A). O

8.2 Case ¢(G) =19

Lemma 8.2. Let G1,G2 € L such that [G1] = [G2], Clos(G1) = Clos(G2)
and ¢(G;) =19. If [Clos(G;)] # Ua 4, Fasa, then G1 and Gy are conjugate in
Clos(G;).

Proof. 1t is sufficient to consider the case G; C Clos(G;). By Tables[10.2] and
m, we find that 57) = [CIOS(GZ)] = T48,H192,T192,M20. USiIlg GAP [10],
we can check that there exists a unique subgroup & of §) up to conjugacy in
$ such that ® = [G;]. The assertion follows from this. O

Now we consider subgroups & of 204 4 or F3g4 such that ¢(®) = 19. In
[16], Mukai constructed K3 surfaces with maximal finite symplectic actions.
We use two K3 surfaces with symplectic actions of 24 4 or Fsgs from [16].

Let X be a surface in P° defined by the following equations:

22+ + 2% = V32, (8.3)
2% 4 Cy? + (%2 = V30, (8.4)
2 + Cy® + (27 = V3w, (8.5)
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8.2 Case c(G) =19

where ¢ = exp(2mv/—1/3) and z,y, z, u, v, w are homogeneous coordinates of
P°. Since X is a smooth complete intersection of type (2,2,2) in P?, X is a
K3 surface. Let G denote a subgroup of PGL(6,C) generated by

(x:y:z:iu:v:iw)—= (—x:—y:z:u:v:w), (8.6)
(x:y:z:iu:v:iw)—= (x:y:2z:—u:—v:w), (8.7)
(z:y:z:u:v:w) e (y:z:2:u:Cv: Cw), (8.8)
(z:y:z:u:v:w)— (x:Cy:Cz:v:w:u), (8.9)
(x:y:z:iu:v:iw)— (—x:—z:—y:u:w:v). (8.10)

Then G acts on X symplectically and [G] = 4 4. Moreover, let G denote the
group generated by G and

g:(x:y:z:urv:iw)— (urviw:x:z:y). (8.11)
Then G acts on X and g*wx = v/—lwy. Using GAP [10], we can show the
following;:

Lemma 8.3. Suppose that & € &3 is a subgroup of Ay 4 and c(&) = 19.
Then there exists a unique subgroup K of G such that [K] = & up to conjugacy

Let Y be a surface in P? defined by the following equation:
eyt 42ttt =0, (8.12)

where z, v, z, t are homogeneous coordinates of P2. Since Y is a smooth quartic
surface in P3, Y is a K3 surface. Let H denote a subgroup of PGL(4,C)
generated by

(x:y:z:t)— (ix: —iy:z:t), (8.13)
(x:y:z:t)—=>(y:x:2:1t), (8.14)
(r:y:z:t)— (y:z:t:x), (8.15)

where ¢ = /—1. Then H acts on Y symplectically and [H]| = F3g4. Moreover,
let H denote the group generated by H and

h:(z:y:z:t)— (iz:y:z:t). (8.16)

Then H acts on Y and h*wy = iwy. Again using GAP, we can show the
following;:

Lemma 8.4. Suppose that & € 75" is a subgroup of Fss4 and c¢(®) = 19.
Then there exists a unique subgroup K of H such that [K] = & up to conjugacy
mn H.
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8.2 Case c(G) =19

Remark 8.5. In GAP system, we can realize G and H as quotients of
permutation groups. For example, a subgroup of PGL(2,C) generated by
(x:y)— (Cz:y)and (z:y)— (y:x) is realized as

((123),(14)(25)(36))/((123)(4506)). (8.17)

Remark 8.6. We can show that the projective automorphism groups of X
and Y are G and H, respectively (cf. [9]). However, since X and Y have
Picard number 20, the automorphism groups of X and Y are infinite groups
by [24].

By considering induced actions on H?(X,Z) and H?(Y,Z), which are iso-
morphic to A, we have the following:

Lemma 8.7. Consider G (resp. H) as a subgroup of O(A). Suppose that
& is a subgroup of Ay 4 (resp. Fzga) such that ¢(B) = 19. Then there exists
a unique subgroup K of G (resp. H) up to conjugacy in O(A) such that
(K] = 8.

We use the following lemma in the proof of Theorem E.11

Lemma 8.8. There exists an element Gyz € L which satisfies the following:
(1) [Gaz] = Gu3;

(2) There exists a unique subgroup Gss of Og(Ag,,) such that [Gss] = Bsg
up to conjugacy in O(Ag,,).

Proof. We fix an identification H?(Y,Z) = A. By Table [0.4, there exists a
subgroup G4z of H such that [G43] = B43. Since ¢(By3) = ¢(H) = 19, we

have Ag,, = Ap. Since [H] = Figy is a maximal element in &373"7, we have

[Oo(Ag)] = [H]. Since H < H, we have H € O(A, A*). By Lemma B4 and
Table [0.4], the condition (2) is satisfied. ]

We have the following by the above lemmas.

Proposition 8.9. Set E = {G5, L2(7), A} C &35, The natural map

{GeL } c¢(G) =19,[G] € E}/conj — {(G,S) € S } c(G) =19,|G] ¢ E}</8i8108I§1
18 bijective. '

Proof. The surjectivity follows from the definition of S (see ([AI])). Let
(G,S) € S such that ¢(G) = 19 and [G] ¢ E. Suppose that G; € £ and
(Gi,Ag,) = (G,S) for i = 1,2. To prove the injectivity, it is sufficient to
show that G; and Gy are conjugate in O(A). By Proposition 6.1, At =2 AG2,
By Theorem B0, O(Ag,) = O(q(Ag,)). Therefore, a primitive embedding
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8.3 Proof of Main Theorem

Ag, — A such that (Ag,)x = A% is unique up to isomorphism by Lemma
L2 Hence we may assume that Ag, = Ag, by replacing Go by pGap~! for
some o € O(A) if necessary. Thus [Clos(G1)] = [Clos(G2)].

(1) The case [Clos(G;)] # Us4, F334. By Lemma B2, G; and G2 are
conjugate in Clos(G;) (C O(A)).

(2) The case [Clos(G;)] = g4 (resp. Fzgy). By the above argument,
we have Ag, = Ag (resp. Ay) for some identification A = H?(X,Z) (resp.
H?(Y,Z)). Hence Clos(G;) = G (resp. H). By Lemma B7, G; and Gy are
conjugate in O(A). O

Proposition 8.10. For & = &5, Lo(7),Us, there exist exactly two elements
G1,G2 in L up to conjugacy in O(A) such that [G;] = &. We have Ag, = Ag,,
q(ACr) =2 q(A%?) and NG+ 2 AC2,

Proof. By Proposition 3.7] and Theorem (.1l there exists a unique element
(Go,S) € S up to isomorphism such that [Gy] = &. Since & is a maximal
element in &3, we have Og(S) = Go. By Theorem 511, O(S) = O(q(S)).
By Lemma [[.2] and Proposition [6.1] there exist exactly two primitive sublat-
tices S7,S2 of A such that S; 2 S up to O(A). The action of G; := O¢(S;)
on S; is extended to that on A such that Ag, = 5; (i =1,2). Let G € L such
that [G] = &. Then Ag = S. Hence we may assume that Ag = S; (i = 1,2)
by replacing G by ¢Gp~! for some ¢ € O(A) if necessary. Then we have
G = G;. This implies the assertion. O

8.3 Proof of Main Theorem
Theorem 8.11. Let & € &35,

(1) If & = Qsg, Toy, there exist exactly two elements G1,Go € L such that
[Gi] = & up to conjugacy in O(A). We have the following table, by
changing numbering of G1, Gs if necessary (see Corollary[{.7).

& || n | [Clos(Gy)] | disc(Ag,) | n | [Clos(G2)] | disc(Ag,)
Os |12 Os 512 || 40| Qs*Qs | —1024
Toy || 77 Th92 —192 04 Tys —384

Here n is determined by ([Gi], ¢(Ag;)) ~ (&, qn)-

(2) If & = &5, Lo(7),2s, there exist exactly two elements G, Gy € L such
that [G;] = & up to conjugacy in O(A). We have Ag, = Ag,, q(A%1) =
q(A%2) and AGr 2 NGz,

(3) Otherwise, there exists a unique G € L such that |G] = & up to conju-

gacy in O(A).
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Proof. By Theorem A1), (G, S) € S is determined uniquely by [G] and ¢(S)
up to isomorphism. The assertions (1) and (3) follow from Propositions B.1],
and Table [[0.2l The asserion (2) is the same as Proposition .10 ]

9 Applications

Combining Xioa’s result (Theorem [0.3), the following theorem is a conse-
quence of Theorem B.11] and grobal Torelli theorem for K3 surfaces (cf. [17]).

Theorem 9.1. Let G be a group such that [G] € &5 (see Notation [2.2).
Set El = {Q87T24}7 E2 = {657 L2<7)7Ql6}

(1) If |[G] ¢ Ey U Es, then the moduli of K3 surfaces with faithful and
symplectic G-actions is connected.

(2) If |[G] € Ey1 U Ey, then the moduli of K3 surfaces with faithful and
symplectic G-actions has exactly two connected components.

(3) If X; is a K3 surface with a faithful and symplectic G;-action for i =
1,2 such that [G;] € FEs and G1\X1,G2\X2 have the same A-D-E-
configuration of the singularities, then [G1] = [G2] =: G and X1, X5 are
G-deformable (see Section[0).

(4) If X is a K3 surface with a faithful and symplectic action of G of type
(&,q9) € Q, ie., ([G],q(H*(X,Z)g)) ~ (8,q), then the action is ex-
tended to that of type Clos(®, q) (see Section[4) and Table[10.4).

10 Tables

10.1 Niemeler lattices

We give the list of Niemeier lattices N (see Subsection B.I). Let AT be
a set of positive roots of N. We denote by O(N,A™); the group which
consists of g € O(N, A1) preserving each connected component of the Dynkin
diagram R(N,A™). We set O(N, AT)y = O(N, A1)/ O(N,AT);. The group
O(N, A™)y acts on the set of connected components of R(N,A™).
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10.2 Abstract groups and discriminant forms

1 root type ‘ O(NZ,A;'—)l‘ O(NZ,A;'—)Q ‘ O(NZ,A;'—)‘
1 Day 1 1 1

2 Dis @ Eg 1 1 1

3 E$? 1 S3 6

4 Agy 2 1 2

5 D2 1 S 2

6 A7 @ E; 2 1 2

7| D@ E? 1 S, 2

8 A1s5 @ Dy 2 1 2

9 DE3 1 S3 6

10 A2 2 S 4

11| Aj1 @ D7 @ Eg 2 1 2

12 EP 2 Sy 48
13| A?@ D 2 Sy 4

14 D! 1 H 24
15 AP? 2 S3 12
16| AP* @ DF? 2 Gy x Gy 8
17 AP 2 A4 24
18| A oD, 2 Sy 48
19 DS 3 S 2160
20 ASS 2 S5 240
21 APS 2 F3 x GL(3,Fy) 2688
22 A2 2 Mz 190080
23 AP 1 May 244823040

10.2 Abstract groups and discriminant forms
We give the list of a complete representative {(Q,,q,)} of @/ ~. Recall that
Q ={(®,q) | 3G € L such that & = [G],q = q(Ac)}
={(6,9) | (G, N) € N such that & = [G],q = q(Ne)}

and (8,q) ~ (&',¢') if and only if & = &', ¢ = ¢’ (see Subsection B.4). For
q: A(q) — Q/2Z, we denote the order of A(q) by |q|. We use the following
notation (cf. [5]):

" =¢?(@)", a7 = P (@) @ P (),
n ®n _n ®n—1 r
b =u@ ()", b = u®(b) v (), b = (L), (b)),

where p is an odd prime, a = p¥, b = 2F and Lfgl , . is a (unique) unimodular

lattice over Zs which has the invariants r, d, t, e defined in Proposition L@l (see
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10.2 Abstract groups and discriminant forms

Section [I). For example,

Algss) = (2/2)%° © Z/32 & 7.9,
1 1/2

ge3 = (—1/2) @ (1/2 1 ) ® (2/3) ® (2/9).

In the list, e.g. ¢5 is isomorphic to ¢i¢.
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10.2 Abstract groups and discriminant forms

n | &, &, || an c(&n)
1] 2 Cs 256 2;° 8
2| 3 Cs 729 3+6 12
3| 4 C2 | 1024 | 2% 457 12
41 4 Cy 1024 | 252 441 14
5| 5 Cs 625 416 16
6| 6 Dg 972 | 2%, 310 14
7| 6 Cs 1296 118 16
8| 7 Cr 343 433 18
9| 8 C3 1024 | 24,452 14
10| 8 Dy 1024 475 15
11| 8 | CoxCy| 1024 122 16
12| 8 Qs 512 2.2 85 17
13 8 Qs 1024 440 17
14| 8 Cy 512 426 18
15| 9 C3 729 #30 16
16 | 10 Dip 625 5+4 16
17| 12 Ay 576 | 2;%,45°,3%2 | 16
18| 12 Do | 1296 | 24* 3% 16
19| 12 | Cy x Cg | 1728 161 18
20 | 12 Q12 432 161 18
21| 16 Cs 512 | 2{%, 8" 15
22| 16 | Cyx Dg | 1024 | 2% 4" 16
23| 16 Toc; | 512 439 17
24| 16 | Qe*Cy | 1024 440 17
25| 16 C3? 1024 875 18
26 | 16 SDys | 512 | 231 4dt 842 | 18
27| 16 | Cy x Qg | 256 175 18
28 | 16 Iyd 256 480 19
29 | 16 Q16 256 480 19
30| 18 2As.3 729 3t4,9-1 16
31| 18 | Csx Dg | 972 448 18
32| 20 | Hol(Cs) | 500 2,2,573 18
33| 21 | Oy xCs | 343 7+3 18
34 | 24 H 576 | 453,312 17
35| 24 | Cyx Ay | 576 151 18
36| 24 | C3xDg | 432 161 18
37| 24 Ty 192 177 19
38 | 24 Ty 384 454 19
39 | 32 20Cy | 512 | 282,482, 84 | 17
40| 32 | QexQs | 1024 41° 17
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10.2 Abstract groups and discriminant forms

41 | 32 T7aq 512 456 18
42 | 32 Tuco 256 475 18
43 | 32 | 256 480 19
44 | 32 Tse 256 480 19
45 | 32 Tgasz 256 480 19
46 | 36 320y 324 | 252,3t2 971 |18
47 | 36 Cs x Ay 432 161 18
48 | 36 G33 972 | 25%,3%3,971 |18
49 | 48 24C3 384 | 254871370 17
50 | 48 420 256 475 18
51| 48 Cy x &y 576 | 247,442,372 | 18
52 | 48 | 2%(Cy x Cg) | 288 478 19
53 | 48 22Q12 288 478 19
54 | 48 Tus 384 | 241872371 |19
55 | 60 As 300 | 2;%,3%h572 | 18
56 | 64 Tosaq 512 443 gt 18
57 | 64 T30, 256 475 18
58 | 64 Ty0a, 256 480 19
59 | 64 T30 256 480 19
60 | 64 | Y 256 480 19
61| 72 A4 3 432 452,373 18
62 | 72 Nro 324 | 471312971 |19
63| 72 My 216 | 277,371,971 19
64 | 80 24C5 160 181 19
65 | 96 24Dg 384 | 252,441,811 371 1 18
66 | 96 24C 384 476 19
67 | 96 42 Dg 256 480 19
68 | 96 23D1y 288 478 19
69 | 96 | (Qs*Qg) x Cs | 192 477 19
70 | 120 G5 300 | 45%,3%1 572 |19
71 | 128 Flog 256 480 19
72 | 144 A3 288 478 19
73 | 160 24Dy 160 181 19
74 | 168 Lo (7) 196 4t 72 19
75 | 192 4291, 256 212,852 18
76 | 192 Higo 384 | 4,285 371 |19
77 | 192 Ti92 192 473 3+1 19
78 | 288 A4 4 288 | 242,871,312 |19
79 | 360 As 180 | 451,372 5t |19
80 | 384 Fsgy 256 45t 842 19
81 | 960 Moy 160 | 25%,871,571 |19

38 December 14, 2010



10.3 Invariant lattices A®

10.3 Invariant lattices A¢

For G € L, there exsits a number n such that ([G],q(Ag)) ~ (&, qn) (see
Table [0.2)). Here we give the invariant lattices A® for each n. We set

r=rank A® =22 — ¢(G), d = discA®, ¢ = —q, = q(A°).

In the table, we set
0 0

0 1 2 -1 0 2 0 -1

U_(l 0)”42_(—1 2)’D4_ 0o 0 2 -1

and Eg denotes the root latice of type Eg, as usual. For abelian G € L, the
Gramian matrices of AY were determined in [8].

n|r d q Gramian matrix

1| 14| —256 27 U3 & Eg(—2)

2 110 | —729 3+6 UoU(3)%2 @ Ay(—1)%2
3110 —1024 | 25°%,45° UaU(2)%2® Dy(-2)
4| 8 | —1024 | 242441 UaU4)®?a (—2)%2
6| 8| —972 22,37° | U(3) @ Aa(2) @ Ay(—1)%2
9 | 8 | —1024 | 2% 42 U(2)%3 @ (—4)9?

10| 7 | 1024 440 Ud (492 @ (—4)®3
12 5| 512 | 273872 (g %2 —Zz) @ (—2)®?
16| 6 | —625 514 U U(5)®?

17| 6 | =576 | 252, 45>, 312 U@ Ay(2) © Az(—4)
18| 6 | —1296 | 2% 3+ UaU(6)%?

21| 7 | 512 2%, 841 U(2)%3 & (—8)

221 6 | —1024 | 2%, 454 U(2) @ (4)%2 @ (—4)9?
26 | 4 | =512 | 2t 4t 82 U(8) @ (2) @ (4)

30| 6 | =729 | 3t 9t! U(3)%2 @ (23)

32| 4 | =500 2,2, 513 UGB)®(52)

33| 4 | —343 773 Umne(3})

34| 5| 576 453 312 U®As(2) ® (—12)
39| 5 | 512 | 20340285 | UQ2) @ (4) @ (—4) @ (8)
40 | 5 | 1024 410 ()3 @ (—4)®2

39 December 14, 2010



10.4 Trees of groups with common invariant lattices
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10.4 Trees of groups with common invariant lattices

We give the trees of

Ts = {& | S(Gn,qn) =S} ={&, | g0 = q(5)}

for T's with §Ts > 2. In the table, fn denotes &,,. The maximal element in
each Ts corresponds to an element in Qs defined by (4.7).
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10.5 Extensions of G € L

416 #18 £33 #22 #26 £30 #39 #48 #51 #54 56 76
T O O A
85 7 #8  #11 #14 #15 #23 #31 435 438 #41 166

475
840 77 #81 61 RN
N 50 5T
24 #69  H73  £36 847 | |
N e
413 437 #64  £20 419 I
425 427
£30
/ AN
478 467 471
N | /N
£68 #72 | £58 459 460
N s
153 152 p44 £43 845
N/ |
#28 429

10.5 Extensions of G € L

We give the list of possible extensions of G € L.s. For example, let G € L
of type (8s5,¢s55), i.e., ([G],q(Ag)) ~ (B55,¢55). Then, for i = 1,2, there
exsits an element G’ € Lgos of type (H79,qg79) such that G € G’ and G’
is conjugate to G; in Theorem [RIT[(2). We omit the eleven maximal cases:

n = 54,62,63,70,74,76,77,78,79, 80, 81.
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10.6 Root types of N¢

n | extensions
3,4,6,9,10,12,16,17, 18, 21, 22, 26, 30, 32, 34, 39, 40, 46, 48, 49, 51,

1 54,55, 56,61, 62,63,65,70,74,75,76,77,78,79, 80, 81

9 6,17,18, 30, 33, 34,46, 48,49, 51, 54, 55,61, 62,63, 65, 70,74, 75, 76,
77,78,79,80,81

3 9,10,17,18, 21, 22, 26, 34, 39, 40, 48, 49, 51, 54, 55, 56, 61, 62, 65, 70,
74,75,76,77,78,79, 80,81

4 10,12, 22, 26, 32, 34, 39, 40, 46, 51, 54, 56, 61, 62,63, 65, 70, 74, 75, 76,

77,78,79,80,81

6 | 18,30, 34, 46,48, 51, 54, 55,61, 62,63, 65, 70,74,76,77,78,79, 80,81
9 | 21,22,39,40,49, 51, 56,65, 75,76,77,78, 80, 81

10 | 22,26, 34, 39, 40, 51, 54, 56, 61, 62,65, 70, 74, 75,76, 77, 78,79, 80, 81
12 | 26, 54,63,75, 80,81

16 | 32,55,70,79,81

17 | 34,49, 51,55,61,65,70,74,75,76,77,78,79, 80, 81
18 | 48,51, 54,61,62,70,76,77,78

21 | 39,49, 56,65,75,76,77,78,80, 81

22 1 39,40, 51, 56,65,75,76,77,78,80,81

26 | 54,80

30 | 46,48,61,62,63,78,79

32170

33| 74

34 | 51,61,65,70,74,76,77,78,79, 80,81

39 | 56,65,75,76,77,78,80,81

40 | 56,76, 77,80

46 | 62,63,79

48 | 62

49 | 65,75,76,78,80, 81

51 | 76,77,78

55 | 70,79, 81

56 | 76,77,80

61 | 78

65 | 76, 78,80, 81

75 | 80,81

10.6 Root types of N©

We give the type of the root sublattice of N& which is generated by vec-
tors v € N with (v,v) = —2, for each (G, N) € N such that [G] = &,, and
q(Ng) = gy, (see Table[I0.2)). In the list, elements in A/ are enclosed by boxes
(see Proposition B.9) and the number of vectors v € N¢ with (v,v) = —4 or
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10.6 Root types of N¢

—6 are given for the cases n = 32,41, 56, 63. As for Niemeier lattices N = N;,

see Table 1011
n=1
1 3 6 7 8 9
type Eg A?g @D E7 Dg A?g D Dg Dg
7 11 12 12 13 14
type | AY® @ Dy @ Dg DY* Dy @ Eg AP0 @ Dg DE?
1 15 16 16 16 18
type Ag A?g @ D?z A?Zl EB A7 D4 @ D5 A?lz EB D4
1 18 19 19 20 21
type A?‘% b Az P As A?‘L sz A?Q Aielb
i 21 22 23|
type Aiezl <) A?Z A§e4 Aieg
n=2
12 14 17 18 19 19 21 22 ‘ 23

type E6 D6 A6 A2 D A5 A%B() D4 D A;BQ A?z ASES A%B()

n —=
i | 12 16 16 18 19 19 21
type | DY? AT® DY* AT @ A3 AS® DY? AY!
i | 21 21 21 | 22 23 23
type | AT® Az ATC  AJ7 AV APTATE
n=4
i |13 18 19 20 21 22 23|
type D5 D4 A%BQ A?z D A4 A%BQ D Ag A%BQ D A%BQ A?AL
n=>5,16
i |19 20 22 [23]
type D4 A4 ASBZ A?Zl
n==6
i 12 12 14 18 18 19
type D4 E6 D5 A?d @D A2 AQ D A5 A§B4
i 19 19 21 22 22 [23]
type A%BQ D Ag D4 A?z D A3 A2 ASM A%M
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10.6 Root types of N¢

n="718
i |12 18 19 19 21 22 |23
type D4 A?J@AQ ASBZ A3 A?Zl A2 AiB
n=8,33
i |21 [23]
type | Az A?S
n=29
i | 21 21 [23] 23 23
type | ATT AT AT? AT ATE
n =10
i |18 19 21 21 22 23] 23
type | Az AJZ APT APT@ A3 AT AT AP?
n=11,22
i | 21 23] 23
type | ATT AT? AT
n =12
i |18 22 123
type D4 A?J@AQ A?Zl
n = 13,24, 28,29, 37, 40,43, 44,45, 59, 60, 67,69, 71,77, 80
i []23
type | A"
n = 14,26
i |18 22 [23]
type Ag Al@AQ A?Q
n=15,30
i | 19 22 |23]
type | AS® AP ATP
n=17
i | 19 19 21 21 22 23 23 |23]
type | AY? Ay @D, Az A7 A7 ATT ATT AP
n = 19,20, 36,47, 61
i | 19 |23
type | A5 AT
44
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10.6 Root types of N¢

n =21
i | 23 |23]
type | AP AP®
n = 23,39
i |[23] 23 23
type | A7® A" APY
n = 25,27,42,50,57,75
i
type | AV
n =31
i |19 19 22 |23]
type A2 A2 A2 Al
n = 32
i 19 20 20 22 |23
type Ag A?z A4 A1 ) AQ A?
f{ve N9 | (v,v) = -4} 14 22
n=234
i | 19 19 21 21 21
type A;GZ A2 @D Ag A?Z A?Z @D Ag Ag
i | 22 23 23 23 123
type | ATZ  ATZT ATE AT AT
n = 35,51
i |21 21 |23] 23 23
type | ATZ ATT A, AT AT?
n = 38, 54
i |18 22 [23]
type | Ao As Ay
n =41
i 23 23 |23
type AP A7 AP
fH{loe NO [ (v,v)=—4}] 26 26 42
n =46
i 22 22 23|
type A%BQ @ AQ A1 @ A%BQ A?S
n =48

(

19 22 [23]

type

Ay Ay Ay
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10.6 Root types of N¢

n =49
i |23 23 23|
type | A, AP* AY°
n = 52,53,68,72,78
i |23 |23
type | Ay A7
n =55
i |19 22 22 23 [23]
type D4 A2 AgBQ A?d A?AL
n = 56
i 23 |23
type AT AT
tH{loe N9 | (v,u) =—4} | 26 42
n = 58
i | 23 23
type | AY? AP?
n =62
i |22 |23]
type | A2 Ag
n =63
i 22 22 23|
type ATS AP A, APS
fH{ve N | (v,v) = —6} | 14 26
n = 64,73,81
i | 23 |23]
type | AY®  AY?
n = 65
i |23 23 23 |[23]
type | A1 AT? AP AP
n = 66,76
i |23 23 |23
type Al A1 A%B
n =70
i |19 22 23 [23
type A3 A2 Al A?
n="74
i |21 23 23]
type | A3 AP? AY°
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